1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2016 Matthew Macy <mmacy@mattmacy.io>
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 */
28
29 #include "if_em.h"
30
31 #ifdef RSS
32 #include <net/rss_config.h>
33 #include <netinet/in_rss.h>
34 #endif
35
36 #ifdef VERBOSE_DEBUG
37 #define DPRINTF device_printf
38 #else
39 #define DPRINTF(...)
40 #endif
41
42 /*********************************************************************
43 * Local Function prototypes
44 *********************************************************************/
45 static int igb_isc_txd_encap(void *arg, if_pkt_info_t pi);
46 static void igb_isc_txd_flush(void *arg, uint16_t txqid, qidx_t pidx);
47 static int igb_isc_txd_credits_update(void *arg, uint16_t txqid, bool clear);
48
49 static void igb_isc_rxd_refill(void *arg, if_rxd_update_t iru);
50
51 static void igb_isc_rxd_flush(void *arg, uint16_t rxqid, uint8_t flid __unused,
52 qidx_t pidx);
53 static int igb_isc_rxd_available(void *arg, uint16_t rxqid, qidx_t idx,
54 qidx_t budget);
55
56 static int igb_isc_rxd_pkt_get(void *arg, if_rxd_info_t ri);
57
58 static int igb_tx_ctx_setup(struct tx_ring *txr, if_pkt_info_t pi,
59 uint32_t *cmd_type_len, uint32_t *olinfo_status);
60 static int igb_tso_setup(struct tx_ring *txr, if_pkt_info_t pi,
61 uint32_t *cmd_type_len, uint32_t *olinfo_status);
62
63 static void igb_rx_checksum(uint32_t staterr, if_rxd_info_t ri, uint32_t ptype);
64 static int igb_determine_rsstype(uint16_t pkt_info);
65
66 extern void igb_if_enable_intr(if_ctx_t ctx);
67 extern int em_intr(void *arg);
68
69 struct if_txrx igb_txrx = {
70 .ift_txd_encap = igb_isc_txd_encap,
71 .ift_txd_flush = igb_isc_txd_flush,
72 .ift_txd_credits_update = igb_isc_txd_credits_update,
73 .ift_rxd_available = igb_isc_rxd_available,
74 .ift_rxd_pkt_get = igb_isc_rxd_pkt_get,
75 .ift_rxd_refill = igb_isc_rxd_refill,
76 .ift_rxd_flush = igb_isc_rxd_flush,
77 .ift_legacy_intr = em_intr
78 };
79
80 /**********************************************************************
81 *
82 * Setup work for hardware segmentation offload (TSO) on
83 * adapters using advanced tx descriptors
84 *
85 **********************************************************************/
86 static int
igb_tso_setup(struct tx_ring * txr,if_pkt_info_t pi,uint32_t * cmd_type_len,uint32_t * olinfo_status)87 igb_tso_setup(struct tx_ring *txr, if_pkt_info_t pi, uint32_t *cmd_type_len,
88 uint32_t *olinfo_status)
89 {
90 struct e1000_adv_tx_context_desc *TXD;
91 struct e1000_softc *sc = txr->sc;
92 uint32_t type_tucmd_mlhl = 0, vlan_macip_lens = 0;
93 uint32_t mss_l4len_idx = 0;
94 uint32_t paylen;
95
96 switch(pi->ipi_etype) {
97 case ETHERTYPE_IPV6:
98 type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV6;
99 break;
100 case ETHERTYPE_IP:
101 type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV4;
102 /* Tell transmit desc to also do IPv4 checksum. */
103 *olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
104 break;
105 default:
106 panic("%s: CSUM_TSO but no supported IP version (0x%04x)",
107 __func__, ntohs(pi->ipi_etype));
108 break;
109 }
110
111 TXD = (struct e1000_adv_tx_context_desc *) &txr->tx_base[pi->ipi_pidx];
112
113 /* This is used in the transmit desc in encap */
114 paylen = pi->ipi_len - pi->ipi_ehdrlen - pi->ipi_ip_hlen - pi->ipi_tcp_hlen;
115
116 /* VLAN MACLEN IPLEN */
117 if (pi->ipi_mflags & M_VLANTAG) {
118 vlan_macip_lens |= (pi->ipi_vtag << E1000_ADVTXD_VLAN_SHIFT);
119 }
120
121 vlan_macip_lens |= pi->ipi_ehdrlen << E1000_ADVTXD_MACLEN_SHIFT;
122 vlan_macip_lens |= pi->ipi_ip_hlen;
123 TXD->vlan_macip_lens = htole32(vlan_macip_lens);
124
125 /* ADV DTYPE TUCMD */
126 type_tucmd_mlhl |= E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
127 type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP;
128 TXD->type_tucmd_mlhl = htole32(type_tucmd_mlhl);
129
130 /* MSS L4LEN IDX */
131 mss_l4len_idx |= (pi->ipi_tso_segsz << E1000_ADVTXD_MSS_SHIFT);
132 mss_l4len_idx |= (pi->ipi_tcp_hlen << E1000_ADVTXD_L4LEN_SHIFT);
133 /* 82575 needs the queue index added */
134 if (sc->hw.mac.type == e1000_82575)
135 mss_l4len_idx |= txr->me << 4;
136 TXD->mss_l4len_idx = htole32(mss_l4len_idx);
137
138 TXD->u.seqnum_seed = htole32(0);
139 *cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
140 *olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
141 *olinfo_status |= paylen << E1000_ADVTXD_PAYLEN_SHIFT;
142
143 return (1);
144 }
145
146 /*********************************************************************
147 *
148 * Advanced Context Descriptor setup for VLAN, CSUM or TSO
149 *
150 **********************************************************************/
151 static int
igb_tx_ctx_setup(struct tx_ring * txr,if_pkt_info_t pi,uint32_t * cmd_type_len,uint32_t * olinfo_status)152 igb_tx_ctx_setup(struct tx_ring *txr, if_pkt_info_t pi, uint32_t *cmd_type_len,
153 uint32_t *olinfo_status)
154 {
155 struct e1000_adv_tx_context_desc *TXD;
156 struct e1000_softc *sc = txr->sc;
157 uint32_t vlan_macip_lens, type_tucmd_mlhl;
158 uint32_t mss_l4len_idx;
159 mss_l4len_idx = vlan_macip_lens = type_tucmd_mlhl = 0;
160
161 /* First check if TSO is to be used */
162 if (pi->ipi_csum_flags & CSUM_TSO)
163 return (igb_tso_setup(txr, pi, cmd_type_len, olinfo_status));
164
165 /* Indicate the whole packet as payload when not doing TSO */
166 *olinfo_status |= pi->ipi_len << E1000_ADVTXD_PAYLEN_SHIFT;
167
168 /* Now ready a context descriptor */
169 TXD = (struct e1000_adv_tx_context_desc *) &txr->tx_base[pi->ipi_pidx];
170
171 /*
172 ** In advanced descriptors the vlan tag must
173 ** be placed into the context descriptor. Hence
174 ** we need to make one even if not doing offloads.
175 */
176 if (pi->ipi_mflags & M_VLANTAG) {
177 vlan_macip_lens |= (pi->ipi_vtag << E1000_ADVTXD_VLAN_SHIFT);
178 } else if ((pi->ipi_csum_flags & IGB_CSUM_OFFLOAD) == 0) {
179 return (0);
180 }
181
182 /* Set the ether header length */
183 vlan_macip_lens |= pi->ipi_ehdrlen << E1000_ADVTXD_MACLEN_SHIFT;
184
185 switch(pi->ipi_etype) {
186 case ETHERTYPE_IP:
187 type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV4;
188 break;
189 case ETHERTYPE_IPV6:
190 type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_IPV6;
191 break;
192 default:
193 break;
194 }
195
196 vlan_macip_lens |= pi->ipi_ip_hlen;
197 type_tucmd_mlhl |= E1000_ADVTXD_DCMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
198
199 switch (pi->ipi_ipproto) {
200 case IPPROTO_TCP:
201 if (pi->ipi_csum_flags & (CSUM_IP_TCP | CSUM_IP6_TCP)) {
202 type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_TCP;
203 *olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
204 }
205 break;
206 case IPPROTO_UDP:
207 if (pi->ipi_csum_flags & (CSUM_IP_UDP | CSUM_IP6_UDP)) {
208 type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_UDP;
209 *olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
210 }
211 break;
212 #ifndef __HAIKU__
213 case IPPROTO_SCTP:
214 if (pi->ipi_csum_flags & (CSUM_IP_SCTP | CSUM_IP6_SCTP)) {
215 type_tucmd_mlhl |= E1000_ADVTXD_TUCMD_L4T_SCTP;
216 *olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
217 }
218 break;
219 #endif
220 default:
221 break;
222 }
223
224 /* 82575 needs the queue index added */
225 if (sc->hw.mac.type == e1000_82575)
226 mss_l4len_idx = txr->me << 4;
227
228 /* Now copy bits into descriptor */
229 TXD->vlan_macip_lens = htole32(vlan_macip_lens);
230 TXD->type_tucmd_mlhl = htole32(type_tucmd_mlhl);
231 TXD->u.seqnum_seed = htole32(0);
232 TXD->mss_l4len_idx = htole32(mss_l4len_idx);
233
234 return (1);
235 }
236
237 static int
igb_isc_txd_encap(void * arg,if_pkt_info_t pi)238 igb_isc_txd_encap(void *arg, if_pkt_info_t pi)
239 {
240 struct e1000_softc *sc = arg;
241 if_softc_ctx_t scctx = sc->shared;
242 struct em_tx_queue *que = &sc->tx_queues[pi->ipi_qsidx];
243 struct tx_ring *txr = &que->txr;
244 int nsegs = pi->ipi_nsegs;
245 bus_dma_segment_t *segs = pi->ipi_segs;
246 union e1000_adv_tx_desc *txd = NULL;
247 int i, j, pidx_last;
248 uint32_t olinfo_status, cmd_type_len, txd_flags;
249 qidx_t ntxd;
250
251 pidx_last = olinfo_status = 0;
252 /* Basic descriptor defines */
253 cmd_type_len = (E1000_ADVTXD_DTYP_DATA |
254 E1000_ADVTXD_DCMD_IFCS | E1000_ADVTXD_DCMD_DEXT);
255
256 if (pi->ipi_mflags & M_VLANTAG)
257 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
258
259 i = pi->ipi_pidx;
260 ntxd = scctx->isc_ntxd[0];
261 txd_flags = pi->ipi_flags & IPI_TX_INTR ? E1000_ADVTXD_DCMD_RS : 0;
262 /* Consume the first descriptor */
263 i += igb_tx_ctx_setup(txr, pi, &cmd_type_len, &olinfo_status);
264 if (i == scctx->isc_ntxd[0])
265 i = 0;
266
267 /* 82575 needs the queue index added */
268 if (sc->hw.mac.type == e1000_82575)
269 olinfo_status |= txr->me << 4;
270
271 for (j = 0; j < nsegs; j++) {
272 bus_size_t seglen;
273 bus_addr_t segaddr;
274
275 txd = (union e1000_adv_tx_desc *)&txr->tx_base[i];
276 seglen = segs[j].ds_len;
277 segaddr = htole64(segs[j].ds_addr);
278
279 txd->read.buffer_addr = segaddr;
280 txd->read.cmd_type_len = htole32(E1000_TXD_CMD_IFCS |
281 cmd_type_len | seglen);
282 txd->read.olinfo_status = htole32(olinfo_status);
283 pidx_last = i;
284 if (++i == scctx->isc_ntxd[0]) {
285 i = 0;
286 }
287 }
288 if (txd_flags) {
289 txr->tx_rsq[txr->tx_rs_pidx] = pidx_last;
290 txr->tx_rs_pidx = (txr->tx_rs_pidx+1) & (ntxd-1);
291 MPASS(txr->tx_rs_pidx != txr->tx_rs_cidx);
292 }
293
294 txd->read.cmd_type_len |= htole32(E1000_TXD_CMD_EOP | txd_flags);
295 pi->ipi_new_pidx = i;
296
297 return (0);
298 }
299
300 static void
igb_isc_txd_flush(void * arg,uint16_t txqid,qidx_t pidx)301 igb_isc_txd_flush(void *arg, uint16_t txqid, qidx_t pidx)
302 {
303 struct e1000_softc *sc = arg;
304 struct em_tx_queue *que = &sc->tx_queues[txqid];
305 struct tx_ring *txr = &que->txr;
306
307 E1000_WRITE_REG(&sc->hw, E1000_TDT(txr->me), pidx);
308 }
309
310 static int
igb_isc_txd_credits_update(void * arg,uint16_t txqid,bool clear)311 igb_isc_txd_credits_update(void *arg, uint16_t txqid, bool clear)
312 {
313 struct e1000_softc *sc = arg;
314 if_softc_ctx_t scctx = sc->shared;
315 struct em_tx_queue *que = &sc->tx_queues[txqid];
316 struct tx_ring *txr = &que->txr;
317
318 qidx_t processed = 0;
319 int updated;
320 qidx_t cur, prev, ntxd, rs_cidx;
321 int32_t delta;
322 uint8_t status;
323
324 rs_cidx = txr->tx_rs_cidx;
325 if (rs_cidx == txr->tx_rs_pidx)
326 return (0);
327 cur = txr->tx_rsq[rs_cidx];
328 status = ((union e1000_adv_tx_desc *)&txr->tx_base[cur])->wb.status;
329 updated = !!(status & E1000_TXD_STAT_DD);
330
331 if (!updated)
332 return (0);
333
334 /* If clear is false just let caller know that there
335 * are descriptors to reclaim */
336 if (!clear)
337 return (1);
338
339 prev = txr->tx_cidx_processed;
340 ntxd = scctx->isc_ntxd[0];
341 do {
342 MPASS(prev != cur);
343 delta = (int32_t)cur - (int32_t)prev;
344 if (delta < 0)
345 delta += ntxd;
346 MPASS(delta > 0);
347
348 processed += delta;
349 prev = cur;
350 rs_cidx = (rs_cidx + 1) & (ntxd-1);
351 if (rs_cidx == txr->tx_rs_pidx)
352 break;
353 cur = txr->tx_rsq[rs_cidx];
354 status = ((union e1000_adv_tx_desc *)&txr->tx_base[cur])->wb.status;
355 } while ((status & E1000_TXD_STAT_DD));
356
357 txr->tx_rs_cidx = rs_cidx;
358 txr->tx_cidx_processed = prev;
359 return (processed);
360 }
361
362 static void
igb_isc_rxd_refill(void * arg,if_rxd_update_t iru)363 igb_isc_rxd_refill(void *arg, if_rxd_update_t iru)
364 {
365 struct e1000_softc *sc = arg;
366 if_softc_ctx_t scctx = sc->shared;
367 uint16_t rxqid = iru->iru_qsidx;
368 struct em_rx_queue *que = &sc->rx_queues[rxqid];
369 union e1000_adv_rx_desc *rxd;
370 struct rx_ring *rxr = &que->rxr;
371 uint64_t *paddrs;
372 uint32_t next_pidx, pidx;
373 uint16_t count;
374 int i;
375
376 paddrs = iru->iru_paddrs;
377 pidx = iru->iru_pidx;
378 count = iru->iru_count;
379
380 for (i = 0, next_pidx = pidx; i < count; i++) {
381 rxd = (union e1000_adv_rx_desc *)&rxr->rx_base[next_pidx];
382
383 rxd->read.pkt_addr = htole64(paddrs[i]);
384 if (++next_pidx == scctx->isc_nrxd[0])
385 next_pidx = 0;
386 }
387 }
388
389 static void
igb_isc_rxd_flush(void * arg,uint16_t rxqid,uint8_t flid __unused,qidx_t pidx)390 igb_isc_rxd_flush(void *arg, uint16_t rxqid, uint8_t flid __unused, qidx_t pidx)
391 {
392 struct e1000_softc *sc = arg;
393 struct em_rx_queue *que = &sc->rx_queues[rxqid];
394 struct rx_ring *rxr = &que->rxr;
395
396 E1000_WRITE_REG(&sc->hw, E1000_RDT(rxr->me), pidx);
397 }
398
399 static int
igb_isc_rxd_available(void * arg,uint16_t rxqid,qidx_t idx,qidx_t budget)400 igb_isc_rxd_available(void *arg, uint16_t rxqid, qidx_t idx, qidx_t budget)
401 {
402 struct e1000_softc *sc = arg;
403 if_softc_ctx_t scctx = sc->shared;
404 struct em_rx_queue *que = &sc->rx_queues[rxqid];
405 struct rx_ring *rxr = &que->rxr;
406 union e1000_adv_rx_desc *rxd;
407 uint32_t staterr = 0;
408 int cnt, i;
409
410 for (cnt = 0, i = idx; cnt < scctx->isc_nrxd[0] && cnt <= budget;) {
411 rxd = (union e1000_adv_rx_desc *)&rxr->rx_base[i];
412 staterr = le32toh(rxd->wb.upper.status_error);
413
414 if ((staterr & E1000_RXD_STAT_DD) == 0)
415 break;
416 if (++i == scctx->isc_nrxd[0])
417 i = 0;
418 if (staterr & E1000_RXD_STAT_EOP)
419 cnt++;
420 }
421 return (cnt);
422 }
423
424 /****************************************************************
425 * Routine sends data which has been dma'ed into host memory
426 * to upper layer. Initialize ri structure.
427 *
428 * Returns 0 upon success, errno on failure
429 ***************************************************************/
430
431 static int
igb_isc_rxd_pkt_get(void * arg,if_rxd_info_t ri)432 igb_isc_rxd_pkt_get(void *arg, if_rxd_info_t ri)
433 {
434 struct e1000_softc *sc = arg;
435 if_softc_ctx_t scctx = sc->shared;
436 struct em_rx_queue *que = &sc->rx_queues[ri->iri_qsidx];
437 struct rx_ring *rxr = &que->rxr;
438 union e1000_adv_rx_desc *rxd;
439
440 uint16_t pkt_info, len;
441 uint32_t ptype, staterr;
442 int i, cidx;
443 bool eop;
444
445 staterr = i = 0;
446 cidx = ri->iri_cidx;
447
448 do {
449 rxd = (union e1000_adv_rx_desc *)&rxr->rx_base[cidx];
450 staterr = le32toh(rxd->wb.upper.status_error);
451 pkt_info = le16toh(rxd->wb.lower.lo_dword.hs_rss.pkt_info);
452
453 MPASS ((staterr & E1000_RXD_STAT_DD) != 0);
454
455 len = le16toh(rxd->wb.upper.length);
456 ptype = le32toh(rxd->wb.lower.lo_dword.data) & IGB_PKTTYPE_MASK;
457
458 ri->iri_len += len;
459 rxr->rx_bytes += ri->iri_len;
460
461 rxd->wb.upper.status_error = 0;
462 eop = ((staterr & E1000_RXD_STAT_EOP) == E1000_RXD_STAT_EOP);
463
464 /* Make sure bad packets are discarded */
465 if (eop && ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) != 0)) {
466 sc->dropped_pkts++;
467 ++rxr->rx_discarded;
468 return (EBADMSG);
469 }
470 ri->iri_frags[i].irf_flid = 0;
471 ri->iri_frags[i].irf_idx = cidx;
472 ri->iri_frags[i].irf_len = len;
473
474 if (++cidx == scctx->isc_nrxd[0])
475 cidx = 0;
476 #ifdef notyet
477 if (rxr->hdr_split == true) {
478 ri->iri_frags[i].irf_flid = 1;
479 ri->iri_frags[i].irf_idx = cidx;
480 if (++cidx == scctx->isc_nrxd[0])
481 cidx = 0;
482 }
483 #endif
484 i++;
485 } while (!eop);
486
487 rxr->rx_packets++;
488
489 if ((scctx->isc_capenable & IFCAP_RXCSUM) != 0)
490 igb_rx_checksum(staterr, ri, ptype);
491
492 if (staterr & E1000_RXD_STAT_VP) {
493 if (((sc->hw.mac.type == e1000_i350) ||
494 (sc->hw.mac.type == e1000_i354)) &&
495 (staterr & E1000_RXDEXT_STATERR_LB))
496 ri->iri_vtag = be16toh(rxd->wb.upper.vlan);
497 else
498 ri->iri_vtag = le16toh(rxd->wb.upper.vlan);
499 ri->iri_flags |= M_VLANTAG;
500 }
501
502 ri->iri_flowid =
503 le32toh(rxd->wb.lower.hi_dword.rss);
504 ri->iri_rsstype = igb_determine_rsstype(pkt_info);
505 ri->iri_nfrags = i;
506
507 return (0);
508 }
509
510 /*********************************************************************
511 *
512 * Verify that the hardware indicated that the checksum is valid.
513 * Inform the stack about the status of checksum so that stack
514 * doesn't spend time verifying the checksum.
515 *
516 *********************************************************************/
517 static void
igb_rx_checksum(uint32_t staterr,if_rxd_info_t ri,uint32_t ptype)518 igb_rx_checksum(uint32_t staterr, if_rxd_info_t ri, uint32_t ptype)
519 {
520 uint16_t status = (uint16_t)staterr;
521 uint8_t errors = (uint8_t)(staterr >> 24);
522
523 if (__predict_false(status & E1000_RXD_STAT_IXSM))
524 return;
525
526 /* If there is a layer 3 or 4 error we are done */
527 if (__predict_false(errors & (E1000_RXD_ERR_IPE | E1000_RXD_ERR_TCPE)))
528 return;
529
530 /* IP Checksum Good */
531 if (status & E1000_RXD_STAT_IPCS)
532 ri->iri_csum_flags = (CSUM_IP_CHECKED | CSUM_IP_VALID);
533
534 /* Valid L4E checksum */
535 if (__predict_true(status &
536 (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))) {
537 /* SCTP header present */
538 if (__predict_false((ptype & E1000_RXDADV_PKTTYPE_ETQF) == 0 &&
539 (ptype & E1000_RXDADV_PKTTYPE_SCTP) != 0)) {
540 ri->iri_csum_flags |= CSUM_SCTP_VALID;
541 } else {
542 ri->iri_csum_flags |= CSUM_DATA_VALID | CSUM_PSEUDO_HDR;
543 ri->iri_csum_data = htons(0xffff);
544 }
545 }
546 }
547
548 /********************************************************************
549 *
550 * Parse the packet type to determine the appropriate hash
551 *
552 ******************************************************************/
553 static int
igb_determine_rsstype(uint16_t pkt_info)554 igb_determine_rsstype(uint16_t pkt_info)
555 {
556 switch (pkt_info & E1000_RXDADV_RSSTYPE_MASK) {
557 case E1000_RXDADV_RSSTYPE_IPV4_TCP:
558 return M_HASHTYPE_RSS_TCP_IPV4;
559 case E1000_RXDADV_RSSTYPE_IPV4:
560 return M_HASHTYPE_RSS_IPV4;
561 case E1000_RXDADV_RSSTYPE_IPV6_TCP:
562 return M_HASHTYPE_RSS_TCP_IPV6;
563 case E1000_RXDADV_RSSTYPE_IPV6_EX:
564 return M_HASHTYPE_RSS_IPV6_EX;
565 case E1000_RXDADV_RSSTYPE_IPV6:
566 return M_HASHTYPE_RSS_IPV6;
567 case E1000_RXDADV_RSSTYPE_IPV6_TCP_EX:
568 return M_HASHTYPE_RSS_TCP_IPV6_EX;
569 default:
570 return M_HASHTYPE_OPAQUE;
571 }
572 }
573