xref: /haiku/src/tools/fs_shell/vfs.cpp (revision bf57c148f7787f0df15980976997c6dfb70ee067)
1 /*
2  * Copyright 2002-2009, Axel Dörfler, axeld@pinc-software.de.
3  * Distributed under the terms of the MIT License.
4  *
5  * Copyright 2001-2002, Travis Geiselbrecht. All rights reserved.
6  * Distributed under the terms of the NewOS License.
7  */
8 
9 /*! Virtual File System and File System Interface Layer */
10 
11 #include "vfs.h"
12 
13 #include <new>
14 #include <stdlib.h>
15 #include <string.h>
16 
17 #include "fd.h"
18 #include "fssh_atomic.h"
19 #include "fssh_defs.h"
20 #include "fssh_dirent.h"
21 #include "fssh_errno.h"
22 #include "fssh_fcntl.h"
23 #include "fssh_fs_info.h"
24 #include "fssh_fs_volume.h"
25 #include "fssh_kernel_export.h"
26 #include "fssh_module.h"
27 #include "fssh_stat.h"
28 #include "fssh_stdio.h"
29 #include "fssh_string.h"
30 #include "fssh_uio.h"
31 #include "fssh_unistd.h"
32 #include "hash.h"
33 #include "KPath.h"
34 #include "posix_compatibility.h"
35 #include "syscalls.h"
36 
37 //#define TRACE_VFS
38 #ifdef TRACE_VFS
39 #	define TRACE(x) fssh_dprintf x
40 #	define FUNCTION(x) fssh_dprintf x
41 #else
42 #	define TRACE(x) ;
43 #	define FUNCTION(x) ;
44 #endif
45 
46 #define ADD_DEBUGGER_COMMANDS
47 
48 #define ASSERT_LOCKED_MUTEX(x)
49 #define ASSERT(x)
50 
51 namespace FSShell {
52 
53 
54 #define HAS_FS_CALL(vnode, op)			(vnode->ops->op != NULL)
55 #define HAS_FS_MOUNT_CALL(mount, op)	(mount->volume->ops->op != NULL)
56 
57 #define FS_CALL(vnode, op, params...) \
58 			vnode->ops->op(vnode->mount->volume, vnode, params)
59 #define FS_CALL_NO_PARAMS(vnode, op) \
60 			vnode->ops->op(vnode->mount->volume, vnode)
61 #define FS_MOUNT_CALL(mount, op, params...) \
62 			mount->volume->ops->op(mount->volume, params)
63 #define FS_MOUNT_CALL_NO_PARAMS(mount, op) \
64 			mount->volume->ops->op(mount->volume)
65 
66 
67 const static uint32_t kMaxUnusedVnodes = 16;
68 	// This is the maximum number of unused vnodes that the system
69 	// will keep around (weak limit, if there is enough memory left,
70 	// they won't get flushed even when hitting that limit).
71 	// It may be chosen with respect to the available memory or enhanced
72 	// by some timestamp/frequency heurism.
73 
74 struct vnode : fssh_fs_vnode {
75 	struct vnode	*next;
76 	vm_cache_ref	*cache;
77 	fssh_mount_id	device;
78 	list_link		mount_link;
79 	list_link		unused_link;
80 	fssh_vnode_id	id;
81 	struct fs_mount	*mount;
82 	struct vnode	*covered_by;
83 	int32_t			ref_count;
84 	uint32_t		type : 29;
85 						// TODO: S_INDEX_DIR actually needs another bit.
86 						// Better combine this field with the following ones.
87 	uint32_t		remove : 1;
88 	uint32_t		busy : 1;
89 	uint32_t		unpublished : 1;
90 	struct file_descriptor *mandatory_locked_by;
91 };
92 
93 struct vnode_hash_key {
94 	fssh_mount_id	device;
95 	fssh_vnode_id	vnode;
96 };
97 
98 /**	\brief Structure to manage a mounted file system
99 
100 	Note: The root_vnode and covers_vnode fields (what others?) are
101 	initialized in fs_mount() and not changed afterwards. That is as soon
102 	as the mount is mounted and it is made sure it won't be unmounted
103 	(e.g. by holding a reference to a vnode of that mount) (read) access
104 	to those fields is always safe, even without additional locking. Morever
105 	while mounted the mount holds a reference to the covers_vnode, and thus
106 	making the access path vnode->mount->covers_vnode->mount->... safe if a
107 	reference to vnode is held (note that for the root mount covers_vnode
108 	is NULL, though).
109  */
110 struct fs_mount {
111 	struct fs_mount	*next;
112 	fssh_file_system_module_info *fs;
113 	fssh_mount_id		id;
114 	fssh_fs_volume		*volume;
115 	char			*device_name;
116 	char			*fs_name;
117 	fssh_recursive_lock	rlock;	// guards the vnodes list
118 	struct vnode	*root_vnode;
119 	struct vnode	*covers_vnode;
120 	struct list		vnodes;
121 	bool			unmounting;
122 	bool			owns_file_device;
123 };
124 
125 static fssh_mutex sFileSystemsMutex;
126 
127 /**	\brief Guards sMountsTable.
128  *
129  *	The holder is allowed to read/write access the sMountsTable.
130  *	Manipulation of the fs_mount structures themselves
131  *	(and their destruction) requires different locks though.
132  */
133 static fssh_mutex sMountMutex;
134 
135 /**	\brief Guards mount/unmount operations.
136  *
137  *	The fs_mount() and fs_unmount() hold the lock during their whole operation.
138  *	That is locking the lock ensures that no FS is mounted/unmounted. In
139  *	particular this means that
140  *	- sMountsTable will not be modified,
141  *	- the fields immutable after initialization of the fs_mount structures in
142  *	  sMountsTable will not be modified,
143  *	- vnode::covered_by of any vnode in sVnodeTable will not be modified.
144  *
145  *	The thread trying to lock the lock must not hold sVnodeMutex or
146  *	sMountMutex.
147  */
148 static fssh_recursive_lock sMountOpLock;
149 
150 /**	\brief Guards the vnode::covered_by field of any vnode
151  *
152  *	The holder is allowed to read access the vnode::covered_by field of any
153  *	vnode. Additionally holding sMountOpLock allows for write access.
154  *
155  *	The thread trying to lock the must not hold sVnodeMutex.
156  */
157 static fssh_mutex sVnodeCoveredByMutex;
158 
159 /**	\brief Guards sVnodeTable.
160  *
161  *	The holder is allowed to read/write access sVnodeTable and to
162  *	to any unbusy vnode in that table, save
163  *	to the immutable fields (device, id, private_node, mount) to which
164  *	only read-only access is allowed, and to the field covered_by, which is
165  *	guarded by sMountOpLock and sVnodeCoveredByMutex.
166  *
167  *	The thread trying to lock the mutex must not hold sMountMutex.
168  *	You must not have this mutex held when calling create_sem(), as this
169  *	might call vfs_free_unused_vnodes().
170  */
171 static fssh_mutex sVnodeMutex;
172 
173 #define VNODE_HASH_TABLE_SIZE 1024
174 static hash_table *sVnodeTable;
175 static list sUnusedVnodeList;
176 static uint32_t sUnusedVnodes = 0;
177 static struct vnode *sRoot;
178 
179 #define MOUNTS_HASH_TABLE_SIZE 16
180 static hash_table *sMountsTable;
181 static fssh_mount_id sNextMountID = 1;
182 
183 #define MAX_TEMP_IO_VECS 8
184 
185 fssh_mode_t __fssh_gUmask = 022;
186 
187 /* function declarations */
188 
189 // file descriptor operation prototypes
190 static fssh_status_t file_read(struct file_descriptor *, fssh_off_t pos,
191 			void *buffer, fssh_size_t *);
192 static fssh_status_t file_write(struct file_descriptor *, fssh_off_t pos,
193 			const void *buffer, fssh_size_t *);
194 static fssh_off_t file_seek(struct file_descriptor *, fssh_off_t pos,
195 			int seek_type);
196 static void file_free_fd(struct file_descriptor *);
197 static fssh_status_t file_close(struct file_descriptor *);
198 static fssh_status_t dir_read(struct file_descriptor *,
199 			struct fssh_dirent *buffer, fssh_size_t bufferSize,
200 			uint32_t *_count);
201 static fssh_status_t dir_read(struct vnode *vnode, void *cookie,
202 			struct fssh_dirent *buffer, fssh_size_t bufferSize,
203 			uint32_t *_count);
204 static fssh_status_t dir_rewind(struct file_descriptor *);
205 static void dir_free_fd(struct file_descriptor *);
206 static fssh_status_t dir_close(struct file_descriptor *);
207 static fssh_status_t attr_dir_read(struct file_descriptor *,
208 			struct fssh_dirent *buffer, fssh_size_t bufferSize,
209 			uint32_t *_count);
210 static fssh_status_t attr_dir_rewind(struct file_descriptor *);
211 static void attr_dir_free_fd(struct file_descriptor *);
212 static fssh_status_t attr_dir_close(struct file_descriptor *);
213 static fssh_status_t attr_read(struct file_descriptor *, fssh_off_t pos,
214 			void *buffer, fssh_size_t *);
215 static fssh_status_t attr_write(struct file_descriptor *, fssh_off_t pos,
216 			const void *buffer, fssh_size_t *);
217 static fssh_off_t attr_seek(struct file_descriptor *, fssh_off_t pos,
218 			int seek_type);
219 static void attr_free_fd(struct file_descriptor *);
220 static fssh_status_t attr_close(struct file_descriptor *);
221 static fssh_status_t attr_read_stat(struct file_descriptor *,
222 			struct fssh_stat *);
223 static fssh_status_t attr_write_stat(struct file_descriptor *,
224 			const struct fssh_stat *, int statMask);
225 static fssh_status_t index_dir_read(struct file_descriptor *,
226 			struct fssh_dirent *buffer, fssh_size_t bufferSize,
227 			uint32_t *_count);
228 static fssh_status_t index_dir_rewind(struct file_descriptor *);
229 static void index_dir_free_fd(struct file_descriptor *);
230 static fssh_status_t index_dir_close(struct file_descriptor *);
231 static fssh_status_t query_read(struct file_descriptor *,
232 			struct fssh_dirent *buffer, fssh_size_t bufferSize,
233 			uint32_t *_count);
234 static fssh_status_t query_rewind(struct file_descriptor *);
235 static void query_free_fd(struct file_descriptor *);
236 static fssh_status_t query_close(struct file_descriptor *);
237 
238 static fssh_status_t common_ioctl(struct file_descriptor *, uint32_t, void *buf,
239 			fssh_size_t len);
240 static fssh_status_t common_read_stat(struct file_descriptor *,
241 			struct fssh_stat *);
242 static fssh_status_t common_write_stat(struct file_descriptor *,
243 			const struct fssh_stat *, int statMask);
244 
245 static fssh_status_t vnode_path_to_vnode(struct vnode *vnode, char *path,
246 			bool traverseLeafLink, int count, struct vnode **_vnode,
247 			fssh_vnode_id *_parentID);
248 static fssh_status_t dir_vnode_to_path(struct vnode *vnode, char *buffer,
249 			fssh_size_t bufferSize);
250 static fssh_status_t fd_and_path_to_vnode(int fd, char *path,
251 			bool traverseLeafLink, struct vnode **_vnode,
252 			fssh_vnode_id *_parentID, bool kernel);
253 static void inc_vnode_ref_count(struct vnode *vnode);
254 static fssh_status_t dec_vnode_ref_count(struct vnode *vnode, bool reenter);
255 static inline void put_vnode(struct vnode *vnode);
256 
257 static struct fd_ops sFileOps = {
258 	file_read,
259 	file_write,
260 	file_seek,
261 	common_ioctl,
262 	NULL,
263 	NULL,
264 	NULL,		// read_dir()
265 	NULL,		// rewind_dir()
266 	common_read_stat,
267 	common_write_stat,
268 	file_close,
269 	file_free_fd
270 };
271 
272 static struct fd_ops sDirectoryOps = {
273 	NULL,		// read()
274 	NULL,		// write()
275 	NULL,		// seek()
276 	common_ioctl,
277 	NULL,		// select()
278 	NULL,		// deselect()
279 	dir_read,
280 	dir_rewind,
281 	common_read_stat,
282 	common_write_stat,
283 	dir_close,
284 	dir_free_fd
285 };
286 
287 static struct fd_ops sAttributeDirectoryOps = {
288 	NULL,		// read()
289 	NULL,		// write()
290 	NULL,		// seek()
291 	common_ioctl,
292 	NULL,		// select()
293 	NULL,		// deselect()
294 	attr_dir_read,
295 	attr_dir_rewind,
296 	common_read_stat,
297 	common_write_stat,
298 	attr_dir_close,
299 	attr_dir_free_fd
300 };
301 
302 static struct fd_ops sAttributeOps = {
303 	attr_read,
304 	attr_write,
305 	attr_seek,
306 	common_ioctl,
307 	NULL,		// select()
308 	NULL,		// deselect()
309 	NULL,		// read_dir()
310 	NULL,		// rewind_dir()
311 	attr_read_stat,
312 	attr_write_stat,
313 	attr_close,
314 	attr_free_fd
315 };
316 
317 static struct fd_ops sIndexDirectoryOps = {
318 	NULL,		// read()
319 	NULL,		// write()
320 	NULL,		// seek()
321 	NULL,		// ioctl()
322 	NULL,		// select()
323 	NULL,		// deselect()
324 	index_dir_read,
325 	index_dir_rewind,
326 	NULL,		// read_stat()
327 	NULL,		// write_stat()
328 	index_dir_close,
329 	index_dir_free_fd
330 };
331 
332 #if 0
333 static struct fd_ops sIndexOps = {
334 	NULL,		// read()
335 	NULL,		// write()
336 	NULL,		// seek()
337 	NULL,		// ioctl()
338 	NULL,		// select()
339 	NULL,		// deselect()
340 	NULL,		// dir_read()
341 	NULL,		// dir_rewind()
342 	index_read_stat,	// read_stat()
343 	NULL,		// write_stat()
344 	NULL,		// dir_close()
345 	NULL		// free_fd()
346 };
347 #endif
348 
349 static struct fd_ops sQueryOps = {
350 	NULL,		// read()
351 	NULL,		// write()
352 	NULL,		// seek()
353 	NULL,		// ioctl()
354 	NULL,		// select()
355 	NULL,		// deselect()
356 	query_read,
357 	query_rewind,
358 	NULL,		// read_stat()
359 	NULL,		// write_stat()
360 	query_close,
361 	query_free_fd
362 };
363 
364 
365 // VNodePutter
366 class VNodePutter {
367 public:
368 	VNodePutter(struct vnode *vnode = NULL) : fVNode(vnode) {}
369 
370 	~VNodePutter()
371 	{
372 		Put();
373 	}
374 
375 	void SetTo(struct vnode *vnode)
376 	{
377 		Put();
378 		fVNode = vnode;
379 	}
380 
381 	void Put()
382 	{
383 		if (fVNode) {
384 			put_vnode(fVNode);
385 			fVNode = NULL;
386 		}
387 	}
388 
389 	struct vnode *Detach()
390 	{
391 		struct vnode *vnode = fVNode;
392 		fVNode = NULL;
393 		return vnode;
394 	}
395 
396 private:
397 	struct vnode *fVNode;
398 };
399 
400 
401 static int
402 mount_compare(void *_m, const void *_key)
403 {
404 	struct fs_mount *mount = (fs_mount *)_m;
405 	const fssh_mount_id *id = (fssh_mount_id *)_key;
406 
407 	if (mount->id == *id)
408 		return 0;
409 
410 	return -1;
411 }
412 
413 
414 static uint32_t
415 mount_hash(void *_m, const void *_key, uint32_t range)
416 {
417 	struct fs_mount *mount = (fs_mount *)_m;
418 	const fssh_mount_id *id = (fssh_mount_id *)_key;
419 
420 	if (mount)
421 		return mount->id % range;
422 
423 	return (uint32_t)*id % range;
424 }
425 
426 
427 /** Finds the mounted device (the fs_mount structure) with the given ID.
428  *	Note, you must hold the gMountMutex lock when you call this function.
429  */
430 
431 static struct fs_mount *
432 find_mount(fssh_mount_id id)
433 {
434 	ASSERT_LOCKED_MUTEX(&sMountMutex);
435 
436 	return (fs_mount *)hash_lookup(sMountsTable, (void *)&id);
437 }
438 
439 
440 static fssh_status_t
441 get_mount(fssh_mount_id id, struct fs_mount **_mount)
442 {
443 	MutexLocker locker(&sMountMutex);
444 
445 	struct fs_mount *mount = find_mount(id);
446 	if (mount == NULL)
447 		return FSSH_B_BAD_VALUE;
448 
449 	if (mount->root_vnode == NULL) {
450 		// might have been called during a mount operation in which
451 		// case the root node may still be NULL
452 		return FSSH_B_BUSY;
453 	}
454 
455 	inc_vnode_ref_count(mount->root_vnode);
456 	*_mount = mount;
457 
458 	return FSSH_B_OK;
459 }
460 
461 
462 static void
463 put_mount(struct fs_mount *mount)
464 {
465 	if (mount)
466 		put_vnode(mount->root_vnode);
467 }
468 
469 
470 static fssh_status_t
471 put_file_system(fssh_file_system_module_info *fs)
472 {
473 	return fssh_put_module(fs->info.name);
474 }
475 
476 
477 /**	Tries to open the specified file system module.
478  *	Accepts a file system name of the form "bfs" or "file_systems/bfs/v1".
479  *	Returns a pointer to file system module interface, or NULL if it
480  *	could not open the module.
481  */
482 
483 static fssh_file_system_module_info *
484 get_file_system(const char *fsName)
485 {
486 	char name[FSSH_B_FILE_NAME_LENGTH];
487 	if (fssh_strncmp(fsName, "file_systems/", fssh_strlen("file_systems/"))) {
488 		// construct module name if we didn't get one
489 		// (we currently support only one API)
490 		fssh_snprintf(name, sizeof(name), "file_systems/%s/v1", fsName);
491 		fsName = NULL;
492 	}
493 
494 	fssh_file_system_module_info *info;
495 	if (fssh_get_module(fsName ? fsName : name, (fssh_module_info **)&info) != FSSH_B_OK)
496 		return NULL;
497 
498 	return info;
499 }
500 
501 
502 /**	Accepts a file system name of the form "bfs" or "file_systems/bfs/v1"
503  *	and returns a compatible fs_info.fsh_name name ("bfs" in both cases).
504  *	The name is allocated for you, and you have to free() it when you're
505  *	done with it.
506  *	Returns NULL if the required memory is no available.
507  */
508 
509 static char *
510 get_file_system_name(const char *fsName)
511 {
512 	const fssh_size_t length = fssh_strlen("file_systems/");
513 
514 	if (fssh_strncmp(fsName, "file_systems/", length)) {
515 		// the name already seems to be the module's file name
516 		return fssh_strdup(fsName);
517 	}
518 
519 	fsName += length;
520 	const char *end = fssh_strchr(fsName, '/');
521 	if (end == NULL) {
522 		// this doesn't seem to be a valid name, but well...
523 		return fssh_strdup(fsName);
524 	}
525 
526 	// cut off the trailing /v1
527 
528 	char *name = (char *)malloc(end + 1 - fsName);
529 	if (name == NULL)
530 		return NULL;
531 
532 	fssh_strlcpy(name, fsName, end + 1 - fsName);
533 	return name;
534 }
535 
536 
537 static int
538 vnode_compare(void *_vnode, const void *_key)
539 {
540 	struct vnode *vnode = (struct vnode *)_vnode;
541 	const struct vnode_hash_key *key = (vnode_hash_key *)_key;
542 
543 	if (vnode->device == key->device && vnode->id == key->vnode)
544 		return 0;
545 
546 	return -1;
547 }
548 
549 
550 static uint32_t
551 vnode_hash(void *_vnode, const void *_key, uint32_t range)
552 {
553 	struct vnode *vnode = (struct vnode *)_vnode;
554 	const struct vnode_hash_key *key = (vnode_hash_key *)_key;
555 
556 #define VHASH(mountid, vnodeid) (((uint32_t)((vnodeid) >> 32) + (uint32_t)(vnodeid)) ^ (uint32_t)(mountid))
557 
558 	if (vnode != NULL)
559 		return VHASH(vnode->device, vnode->id) % range;
560 
561 	return VHASH(key->device, key->vnode) % range;
562 
563 #undef VHASH
564 }
565 
566 
567 static void
568 add_vnode_to_mount_list(struct vnode *vnode, struct fs_mount *mount)
569 {
570 	fssh_recursive_lock_lock(&mount->rlock);
571 
572 	list_add_link_to_head(&mount->vnodes, &vnode->mount_link);
573 
574 	fssh_recursive_lock_unlock(&mount->rlock);
575 }
576 
577 
578 static void
579 remove_vnode_from_mount_list(struct vnode *vnode, struct fs_mount *mount)
580 {
581 	fssh_recursive_lock_lock(&mount->rlock);
582 
583 	list_remove_link(&vnode->mount_link);
584 	vnode->mount_link.next = vnode->mount_link.prev = NULL;
585 
586 	fssh_recursive_lock_unlock(&mount->rlock);
587 }
588 
589 
590 static fssh_status_t
591 create_new_vnode(struct vnode **_vnode, fssh_mount_id mountID, fssh_vnode_id vnodeID)
592 {
593 	FUNCTION(("create_new_vnode()\n"));
594 
595 	struct vnode *vnode = (struct vnode *)malloc(sizeof(struct vnode));
596 	if (vnode == NULL)
597 		return FSSH_B_NO_MEMORY;
598 
599 	// initialize basic values
600 	fssh_memset(vnode, 0, sizeof(struct vnode));
601 	vnode->device = mountID;
602 	vnode->id = vnodeID;
603 
604 	// add the vnode to the mount structure
605 	fssh_mutex_lock(&sMountMutex);
606 	vnode->mount = find_mount(mountID);
607 	if (!vnode->mount || vnode->mount->unmounting) {
608 		fssh_mutex_unlock(&sMountMutex);
609 		free(vnode);
610 		return FSSH_B_ENTRY_NOT_FOUND;
611 	}
612 
613 	hash_insert(sVnodeTable, vnode);
614 	add_vnode_to_mount_list(vnode, vnode->mount);
615 
616 	fssh_mutex_unlock(&sMountMutex);
617 
618 	vnode->ref_count = 1;
619 	*_vnode = vnode;
620 
621 	return FSSH_B_OK;
622 }
623 
624 
625 /**	Frees the vnode and all resources it has acquired, and removes
626  *	it from the vnode hash as well as from its mount structure.
627  *	Will also make sure that any cache modifications are written back.
628  */
629 
630 static void
631 free_vnode(struct vnode *vnode, bool reenter)
632 {
633 	ASSERT(vnode->ref_count == 0 && vnode->busy);
634 
635 	// write back any changes in this vnode's cache -- but only
636 	// if the vnode won't be deleted, in which case the changes
637 	// will be discarded
638 
639 	if (!vnode->remove && HAS_FS_CALL(vnode, fsync))
640 		FS_CALL_NO_PARAMS(vnode, fsync);
641 
642 	if (!vnode->unpublished) {
643 		if (vnode->remove)
644 			FS_CALL(vnode, remove_vnode, reenter);
645 		else
646 			FS_CALL(vnode, put_vnode, reenter);
647 	}
648 
649 	// The file system has removed the resources of the vnode now, so we can
650 	// make it available again (and remove the busy vnode from the hash)
651 	fssh_mutex_lock(&sVnodeMutex);
652 	hash_remove(sVnodeTable, vnode);
653 	fssh_mutex_unlock(&sVnodeMutex);
654 
655 	remove_vnode_from_mount_list(vnode, vnode->mount);
656 
657 	free(vnode);
658 }
659 
660 
661 /**	\brief Decrements the reference counter of the given vnode and deletes it,
662  *	if the counter dropped to 0.
663  *
664  *	The caller must, of course, own a reference to the vnode to call this
665  *	function.
666  *	The caller must not hold the sVnodeMutex or the sMountMutex.
667  *
668  *	\param vnode the vnode.
669  *	\param reenter \c true, if this function is called (indirectly) from within
670  *		   a file system.
671  *	\return \c FSSH_B_OK, if everything went fine, an error code otherwise.
672  */
673 
674 static fssh_status_t
675 dec_vnode_ref_count(struct vnode *vnode, bool reenter)
676 {
677 	fssh_mutex_lock(&sVnodeMutex);
678 
679 	int32_t oldRefCount = fssh_atomic_add(&vnode->ref_count, -1);
680 
681 	TRACE(("dec_vnode_ref_count: vnode %p, ref now %ld\n", vnode, vnode->ref_count));
682 
683 	if (oldRefCount == 1) {
684 		if (vnode->busy)
685 			fssh_panic("dec_vnode_ref_count: called on busy vnode %p\n", vnode);
686 
687 		bool freeNode = false;
688 
689 		// Just insert the vnode into an unused list if we don't need
690 		// to delete it
691 		if (vnode->remove) {
692 			vnode->busy = true;
693 			freeNode = true;
694 		} else {
695 			list_add_item(&sUnusedVnodeList, vnode);
696 			if (++sUnusedVnodes > kMaxUnusedVnodes) {
697 				// there are too many unused vnodes so we free the oldest one
698 				// ToDo: evaluate this mechanism
699 				vnode = (struct vnode *)list_remove_head_item(&sUnusedVnodeList);
700 				vnode->busy = true;
701 				freeNode = true;
702 				sUnusedVnodes--;
703 			}
704 		}
705 
706 		fssh_mutex_unlock(&sVnodeMutex);
707 
708 		if (freeNode)
709 			free_vnode(vnode, reenter);
710 	} else
711 		fssh_mutex_unlock(&sVnodeMutex);
712 
713 	return FSSH_B_OK;
714 }
715 
716 
717 /**	\brief Increments the reference counter of the given vnode.
718  *
719  *	The caller must either already have a reference to the vnode or hold
720  *	the sVnodeMutex.
721  *
722  *	\param vnode the vnode.
723  */
724 
725 static void
726 inc_vnode_ref_count(struct vnode *vnode)
727 {
728 	fssh_atomic_add(&vnode->ref_count, 1);
729 	TRACE(("inc_vnode_ref_count: vnode %p, ref now %ld\n", vnode, vnode->ref_count));
730 }
731 
732 
733 /**	\brief Looks up a vnode by mount and node ID in the sVnodeTable.
734  *
735  *	The caller must hold the sVnodeMutex.
736  *
737  *	\param mountID the mount ID.
738  *	\param vnodeID the node ID.
739  *
740  *	\return The vnode structure, if it was found in the hash table, \c NULL
741  *			otherwise.
742  */
743 
744 static struct vnode *
745 lookup_vnode(fssh_mount_id mountID, fssh_vnode_id vnodeID)
746 {
747 	struct vnode_hash_key key;
748 
749 	key.device = mountID;
750 	key.vnode = vnodeID;
751 
752 	return (vnode *)hash_lookup(sVnodeTable, &key);
753 }
754 
755 
756 /**	\brief Retrieves a vnode for a given mount ID, node ID pair.
757  *
758  *	If the node is not yet in memory, it will be loaded.
759  *
760  *	The caller must not hold the sVnodeMutex or the sMountMutex.
761  *
762  *	\param mountID the mount ID.
763  *	\param vnodeID the node ID.
764  *	\param _vnode Pointer to a vnode* variable into which the pointer to the
765  *		   retrieved vnode structure shall be written.
766  *	\param reenter \c true, if this function is called (indirectly) from within
767  *		   a file system.
768  *	\return \c FSSH_B_OK, if everything when fine, an error code otherwise.
769  */
770 
771 static fssh_status_t
772 get_vnode(fssh_mount_id mountID, fssh_vnode_id vnodeID, struct vnode **_vnode, int reenter)
773 {
774 	FUNCTION(("get_vnode: mountid %ld vnid 0x%Lx %p\n", mountID, vnodeID, _vnode));
775 
776 	fssh_mutex_lock(&sVnodeMutex);
777 
778 	int32_t tries = 300;
779 		// try for 3 secs
780 restart:
781 	struct vnode *vnode = lookup_vnode(mountID, vnodeID);
782 	if (vnode && vnode->busy) {
783 		fssh_mutex_unlock(&sVnodeMutex);
784 		if (--tries < 0) {
785 			// vnode doesn't seem to become unbusy
786 			fssh_panic("vnode %d:%" FSSH_B_PRIdINO " is not becoming unbusy!\n",
787 				(int)mountID, vnodeID);
788 			return FSSH_B_BUSY;
789 		}
790 		fssh_snooze(10000); // 10 ms
791 		fssh_mutex_lock(&sVnodeMutex);
792 		goto restart;
793 	}
794 
795 	TRACE(("get_vnode: tried to lookup vnode, got %p\n", vnode));
796 
797 	fssh_status_t status;
798 
799 	if (vnode) {
800 		if (vnode->ref_count == 0) {
801 			// this vnode has been unused before
802 			list_remove_item(&sUnusedVnodeList, vnode);
803 			sUnusedVnodes--;
804 		}
805 		inc_vnode_ref_count(vnode);
806 	} else {
807 		// we need to create a new vnode and read it in
808 		status = create_new_vnode(&vnode, mountID, vnodeID);
809 		if (status < FSSH_B_OK)
810 			goto err;
811 
812 		vnode->busy = true;
813 		fssh_mutex_unlock(&sVnodeMutex);
814 
815 		int type;
816 		uint32_t flags;
817 		status = FS_MOUNT_CALL(vnode->mount, get_vnode, vnodeID, vnode, &type,
818 			&flags, reenter);
819 		if (status == FSSH_B_OK && vnode->private_node == NULL)
820 			status = FSSH_B_BAD_VALUE;
821 
822 		fssh_mutex_lock(&sVnodeMutex);
823 
824 		if (status < FSSH_B_OK)
825 			goto err1;
826 
827 		vnode->type = type;
828 		vnode->busy = false;
829 	}
830 
831 	fssh_mutex_unlock(&sVnodeMutex);
832 
833 	TRACE(("get_vnode: returning %p\n", vnode));
834 
835 	*_vnode = vnode;
836 	return FSSH_B_OK;
837 
838 err1:
839 	hash_remove(sVnodeTable, vnode);
840 	remove_vnode_from_mount_list(vnode, vnode->mount);
841 err:
842 	fssh_mutex_unlock(&sVnodeMutex);
843 	if (vnode)
844 		free(vnode);
845 
846 	return status;
847 }
848 
849 
850 /**	\brief Decrements the reference counter of the given vnode and deletes it,
851  *	if the counter dropped to 0.
852  *
853  *	The caller must, of course, own a reference to the vnode to call this
854  *	function.
855  *	The caller must not hold the sVnodeMutex or the sMountMutex.
856  *
857  *	\param vnode the vnode.
858  */
859 
860 static inline void
861 put_vnode(struct vnode *vnode)
862 {
863 	dec_vnode_ref_count(vnode, false);
864 }
865 
866 
867 /**	Disconnects all file descriptors that are associated with the
868  *	\a vnodeToDisconnect, or if this is NULL, all vnodes of the specified
869  *	\a mount object.
870  *
871  *	Note, after you've called this function, there might still be ongoing
872  *	accesses - they won't be interrupted if they already happened before.
873  *	However, any subsequent access will fail.
874  *
875  *	This is not a cheap function and should be used with care and rarely.
876  *	TODO: there is currently no means to stop a blocking read/write!
877  */
878 
879 void
880 disconnect_mount_or_vnode_fds(struct fs_mount *mount,
881 	struct vnode *vnodeToDisconnect)
882 {
883 }
884 
885 
886 /**	\brief Resolves a mount point vnode to the volume root vnode it is covered
887  *		   by.
888  *
889  *	Given an arbitrary vnode, the function checks, whether the node is covered
890  *	by the root of a volume. If it is the function obtains a reference to the
891  *	volume root node and returns it.
892  *
893  *	\param vnode The vnode in question.
894  *	\return The volume root vnode the vnode cover is covered by, if it is
895  *			indeed a mount point, or \c NULL otherwise.
896  */
897 
898 static struct vnode *
899 resolve_mount_point_to_volume_root(struct vnode *vnode)
900 {
901 	if (!vnode)
902 		return NULL;
903 
904 	struct vnode *volumeRoot = NULL;
905 
906 	fssh_mutex_lock(&sVnodeCoveredByMutex);
907 	if (vnode->covered_by) {
908 		volumeRoot = vnode->covered_by;
909 		inc_vnode_ref_count(volumeRoot);
910 	}
911 	fssh_mutex_unlock(&sVnodeCoveredByMutex);
912 
913 	return volumeRoot;
914 }
915 
916 
917 /**	\brief Resolves a mount point vnode to the volume root vnode it is covered
918  *		   by.
919  *
920  *	Given an arbitrary vnode (identified by mount and node ID), the function
921  *	checks, whether the node is covered by the root of a volume. If it is the
922  *	function returns the mount and node ID of the volume root node. Otherwise
923  *	it simply returns the supplied mount and node ID.
924  *
925  *	In case of error (e.g. the supplied node could not be found) the variables
926  *	for storing the resolved mount and node ID remain untouched and an error
927  *	code is returned.
928  *
929  *	\param mountID The mount ID of the vnode in question.
930  *	\param nodeID The node ID of the vnode in question.
931  *	\param resolvedMountID Pointer to storage for the resolved mount ID.
932  *	\param resolvedNodeID Pointer to storage for the resolved node ID.
933  *	\return
934  *	- \c FSSH_B_OK, if everything went fine,
935  *	- another error code, if something went wrong.
936  */
937 
938 fssh_status_t
939 resolve_mount_point_to_volume_root(fssh_mount_id mountID, fssh_vnode_id nodeID,
940 	fssh_mount_id *resolvedMountID, fssh_vnode_id *resolvedNodeID)
941 {
942 	// get the node
943 	struct vnode *node;
944 	fssh_status_t error = get_vnode(mountID, nodeID, &node, false);
945 	if (error != FSSH_B_OK)
946 		return error;
947 
948 	// resolve the node
949 	struct vnode *resolvedNode = resolve_mount_point_to_volume_root(node);
950 	if (resolvedNode) {
951 		put_vnode(node);
952 		node = resolvedNode;
953 	}
954 
955 	// set the return values
956 	*resolvedMountID = node->device;
957 	*resolvedNodeID = node->id;
958 
959 	put_vnode(node);
960 
961 	return FSSH_B_OK;
962 }
963 
964 
965 /**	\brief Resolves a volume root vnode to the underlying mount point vnode.
966  *
967  *	Given an arbitrary vnode, the function checks, whether the node is the
968  *	root of a volume. If it is (and if it is not "/"), the function obtains
969  *	a reference to the underlying mount point node and returns it.
970  *
971  *	\param vnode The vnode in question (caller must have a reference).
972  *	\return The mount point vnode the vnode covers, if it is indeed a volume
973  *			root and not "/", or \c NULL otherwise.
974  */
975 
976 static struct vnode *
977 resolve_volume_root_to_mount_point(struct vnode *vnode)
978 {
979 	if (!vnode)
980 		return NULL;
981 
982 	struct vnode *mountPoint = NULL;
983 
984 	struct fs_mount *mount = vnode->mount;
985 	if (vnode == mount->root_vnode && mount->covers_vnode) {
986 		mountPoint = mount->covers_vnode;
987 		inc_vnode_ref_count(mountPoint);
988 	}
989 
990 	return mountPoint;
991 }
992 
993 
994 /**	\brief Gets the directory path and leaf name for a given path.
995  *
996  *	The supplied \a path is transformed to refer to the directory part of
997  *	the entry identified by the original path, and into the buffer \a filename
998  *	the leaf name of the original entry is written.
999  *	Neither the returned path nor the leaf name can be expected to be
1000  *	canonical.
1001  *
1002  *	\param path The path to be analyzed. Must be able to store at least one
1003  *		   additional character.
1004  *	\param filename The buffer into which the leaf name will be written.
1005  *		   Must be of size FSSH_B_FILE_NAME_LENGTH at least.
1006  *	\return \c FSSH_B_OK, if everything went fine, \c FSSH_B_NAME_TOO_LONG, if the leaf
1007  *		   name is longer than \c FSSH_B_FILE_NAME_LENGTH.
1008  */
1009 
1010 static fssh_status_t
1011 get_dir_path_and_leaf(char *path, char *filename)
1012 {
1013 	char *p = fssh_strrchr(path, '/');
1014 		// '/' are not allowed in file names!
1015 
1016 	FUNCTION(("get_dir_path_and_leaf(path = %s)\n", path));
1017 
1018 	if (!p) {
1019 		// this path is single segment with no '/' in it
1020 		// ex. "foo"
1021 		if (fssh_strlcpy(filename, path, FSSH_B_FILE_NAME_LENGTH) >= FSSH_B_FILE_NAME_LENGTH)
1022 			return FSSH_B_NAME_TOO_LONG;
1023 		fssh_strcpy(path, ".");
1024 	} else {
1025 		p++;
1026 		if (*p == '\0') {
1027 			// special case: the path ends in '/'
1028 			fssh_strcpy(filename, ".");
1029 		} else {
1030 			// normal leaf: replace the leaf portion of the path with a '.'
1031 			if (fssh_strlcpy(filename, p, FSSH_B_FILE_NAME_LENGTH)
1032 				>= FSSH_B_FILE_NAME_LENGTH) {
1033 				return FSSH_B_NAME_TOO_LONG;
1034 			}
1035 		}
1036 		p[0] = '.';
1037 		p[1] = '\0';
1038 	}
1039 	return FSSH_B_OK;
1040 }
1041 
1042 
1043 static fssh_status_t
1044 entry_ref_to_vnode(fssh_mount_id mountID, fssh_vnode_id directoryID, const char *name, struct vnode **_vnode)
1045 {
1046 	char clonedName[FSSH_B_FILE_NAME_LENGTH + 1];
1047 	if (fssh_strlcpy(clonedName, name, FSSH_B_FILE_NAME_LENGTH) >= FSSH_B_FILE_NAME_LENGTH)
1048 		return FSSH_B_NAME_TOO_LONG;
1049 
1050 	// get the directory vnode and let vnode_path_to_vnode() do the rest
1051 	struct vnode *directory;
1052 
1053 	fssh_status_t status = get_vnode(mountID, directoryID, &directory, false);
1054 	if (status < 0)
1055 		return status;
1056 
1057 	return vnode_path_to_vnode(directory, clonedName, false, 0, _vnode, NULL);
1058 }
1059 
1060 
1061 static fssh_status_t
1062 lookup_dir_entry(struct vnode* dir, const char* name, struct vnode** _vnode)
1063 {
1064 	fssh_ino_t id;
1065 	fssh_status_t status = FS_CALL(dir, lookup, name, &id);
1066 	if (status < FSSH_B_OK)
1067 		return status;
1068 
1069 	fssh_mutex_lock(&sVnodeMutex);
1070 	*_vnode = lookup_vnode(dir->device, id);
1071 	fssh_mutex_unlock(&sVnodeMutex);
1072 
1073 	if (*_vnode == NULL) {
1074 		fssh_panic("lookup_dir_entry(): could not lookup vnode (mountid %d "
1075 			"vnid %" FSSH_B_PRIdINO ")\n", (int)dir->device, id);
1076 		return FSSH_B_ENTRY_NOT_FOUND;
1077 	}
1078 
1079 	return FSSH_B_OK;
1080 }
1081 
1082 
1083 /*!	Returns the vnode for the relative path starting at the specified \a vnode.
1084 	\a path must not be NULL.
1085 	If it returns successfully, \a path contains the name of the last path
1086 	component. This function clobbers the buffer pointed to by \a path only
1087 	if it does contain more than one component.
1088 	Note, this reduces the ref_count of the starting \a vnode, no matter if
1089 	it is successful or not!
1090 */
1091 static fssh_status_t
1092 vnode_path_to_vnode(struct vnode *vnode, char *path, bool traverseLeafLink,
1093 	int count, struct vnode **_vnode, fssh_vnode_id *_parentID)
1094 {
1095 	fssh_status_t status = 0;
1096 	fssh_vnode_id lastParentID = vnode->id;
1097 
1098 	FUNCTION(("vnode_path_to_vnode(vnode = %p, path = %s)\n", vnode, path));
1099 
1100 	if (path == NULL) {
1101 		put_vnode(vnode);
1102 		return FSSH_B_BAD_VALUE;
1103 	}
1104 
1105 	while (true) {
1106 		struct vnode *nextVnode;
1107 		char *nextPath;
1108 
1109 		TRACE(("vnode_path_to_vnode: top of loop. p = %p, p = '%s'\n", path, path));
1110 
1111 		// done?
1112 		if (path[0] == '\0')
1113 			break;
1114 
1115 		// walk to find the next path component ("path" will point to a single
1116 		// path component), and filter out multiple slashes
1117 		for (nextPath = path + 1; *nextPath != '\0' && *nextPath != '/'; nextPath++);
1118 
1119 		if (*nextPath == '/') {
1120 			*nextPath = '\0';
1121 			do
1122 				nextPath++;
1123 			while (*nextPath == '/');
1124 		}
1125 
1126 		// See if the '..' is at the root of a mount and move to the covered
1127 		// vnode so we pass the '..' path to the underlying filesystem
1128 		if (!fssh_strcmp("..", path)
1129 			&& vnode->mount->root_vnode == vnode
1130 			&& vnode->mount->covers_vnode) {
1131 			nextVnode = vnode->mount->covers_vnode;
1132 			inc_vnode_ref_count(nextVnode);
1133 			put_vnode(vnode);
1134 			vnode = nextVnode;
1135 		}
1136 
1137 		// Check if we have the right to search the current directory vnode.
1138 		// If a file system doesn't have the access() function, we assume that
1139 		// searching a directory is always allowed
1140 		if (HAS_FS_CALL(vnode, access))
1141 			status = FS_CALL(vnode, access, FSSH_X_OK);
1142 
1143 		// Tell the filesystem to get the vnode of this path component (if we got the
1144 		// permission from the call above)
1145 		if (status >= FSSH_B_OK)
1146 			status = lookup_dir_entry(vnode, path, &nextVnode);
1147 
1148 		if (status < FSSH_B_OK) {
1149 			put_vnode(vnode);
1150 			return status;
1151 		}
1152 
1153 		// If the new node is a symbolic link, resolve it (if we've been told to do it)
1154 		if (FSSH_S_ISLNK(vnode->type)
1155 			&& !(!traverseLeafLink && nextPath[0] == '\0')) {
1156 			fssh_size_t bufferSize;
1157 			char *buffer;
1158 
1159 			TRACE(("traverse link\n"));
1160 
1161 			// it's not exactly nice style using goto in this way, but hey, it works :-/
1162 			if (count + 1 > FSSH_B_MAX_SYMLINKS) {
1163 				status = FSSH_B_LINK_LIMIT;
1164 				goto resolve_link_error;
1165 			}
1166 
1167 			buffer = (char *)malloc(bufferSize = FSSH_B_PATH_NAME_LENGTH);
1168 			if (buffer == NULL) {
1169 				status = FSSH_B_NO_MEMORY;
1170 				goto resolve_link_error;
1171 			}
1172 
1173 			if (HAS_FS_CALL(nextVnode, read_symlink)) {
1174 				status = FS_CALL(nextVnode, read_symlink, buffer,
1175 					&bufferSize);
1176 			} else
1177 				status = FSSH_B_BAD_VALUE;
1178 
1179 			if (status < FSSH_B_OK) {
1180 				free(buffer);
1181 
1182 		resolve_link_error:
1183 				put_vnode(vnode);
1184 				put_vnode(nextVnode);
1185 
1186 				return status;
1187 			}
1188 			put_vnode(nextVnode);
1189 
1190 			// Check if we start from the root directory or the current
1191 			// directory ("vnode" still points to that one).
1192 			// Cut off all leading slashes if it's the root directory
1193 			path = buffer;
1194 			if (path[0] == '/') {
1195 				// we don't need the old directory anymore
1196 				put_vnode(vnode);
1197 
1198 				while (*++path == '/')
1199 					;
1200 				vnode = sRoot;
1201 				inc_vnode_ref_count(vnode);
1202 			}
1203 			inc_vnode_ref_count(vnode);
1204 				// balance the next recursion - we will decrement the ref_count
1205 				// of the vnode, no matter if we succeeded or not
1206 
1207 			status = vnode_path_to_vnode(vnode, path, traverseLeafLink, count + 1,
1208 				&nextVnode, &lastParentID);
1209 
1210 			free(buffer);
1211 
1212 			if (status < FSSH_B_OK) {
1213 				put_vnode(vnode);
1214 				return status;
1215 			}
1216 		} else
1217 			lastParentID = vnode->id;
1218 
1219 		// decrease the ref count on the old dir we just looked up into
1220 		put_vnode(vnode);
1221 
1222 		path = nextPath;
1223 		vnode = nextVnode;
1224 
1225 		// see if we hit a mount point
1226 		struct vnode *mountPoint = resolve_mount_point_to_volume_root(vnode);
1227 		if (mountPoint) {
1228 			put_vnode(vnode);
1229 			vnode = mountPoint;
1230 		}
1231 	}
1232 
1233 	*_vnode = vnode;
1234 	if (_parentID)
1235 		*_parentID = lastParentID;
1236 
1237 	return FSSH_B_OK;
1238 }
1239 
1240 
1241 static fssh_status_t
1242 path_to_vnode(char *path, bool traverseLink, struct vnode **_vnode,
1243 	fssh_vnode_id *_parentID, bool kernel)
1244 {
1245 	struct vnode *start = NULL;
1246 
1247 	FUNCTION(("path_to_vnode(path = \"%s\")\n", path));
1248 
1249 	if (!path)
1250 		return FSSH_B_BAD_VALUE;
1251 
1252 	// figure out if we need to start at root or at cwd
1253 	if (*path == '/') {
1254 		if (sRoot == NULL) {
1255 			// we're a bit early, aren't we?
1256 			return FSSH_B_ERROR;
1257 		}
1258 
1259 		while (*++path == '/')
1260 			;
1261 		start = sRoot;
1262 		inc_vnode_ref_count(start);
1263 	} else {
1264 		struct io_context *context = get_current_io_context(kernel);
1265 
1266 		fssh_mutex_lock(&context->io_mutex);
1267 		start = context->cwd;
1268 		if (start != NULL)
1269 			inc_vnode_ref_count(start);
1270 		fssh_mutex_unlock(&context->io_mutex);
1271 
1272 		if (start == NULL)
1273 			return FSSH_B_ERROR;
1274 	}
1275 
1276 	return vnode_path_to_vnode(start, path, traverseLink, 0, _vnode, _parentID);
1277 }
1278 
1279 
1280 /** Returns the vnode in the next to last segment of the path, and returns
1281  *	the last portion in filename.
1282  *	The path buffer must be able to store at least one additional character.
1283  */
1284 
1285 static fssh_status_t
1286 path_to_dir_vnode(char *path, struct vnode **_vnode, char *filename, bool kernel)
1287 {
1288 	fssh_status_t status = get_dir_path_and_leaf(path, filename);
1289 	if (status != FSSH_B_OK)
1290 		return status;
1291 
1292 	return path_to_vnode(path, true, _vnode, NULL, kernel);
1293 }
1294 
1295 
1296 /**	\brief Retrieves the directory vnode and the leaf name of an entry referred
1297  *		   to by a FD + path pair.
1298  *
1299  *	\a path must be given in either case. \a fd might be omitted, in which
1300  *	case \a path is either an absolute path or one relative to the current
1301  *	directory. If both a supplied and \a path is relative it is reckoned off
1302  *	of the directory referred to by \a fd. If \a path is absolute \a fd is
1303  *	ignored.
1304  *
1305  *	The caller has the responsibility to call put_vnode() on the returned
1306  *	directory vnode.
1307  *
1308  *	\param fd The FD. May be < 0.
1309  *	\param path The absolute or relative path. Must not be \c NULL. The buffer
1310  *	       is modified by this function. It must have at least room for a
1311  *	       string one character longer than the path it contains.
1312  *	\param _vnode A pointer to a variable the directory vnode shall be written
1313  *		   into.
1314  *	\param filename A buffer of size FSSH_B_FILE_NAME_LENGTH or larger into which
1315  *		   the leaf name of the specified entry will be written.
1316  *	\param kernel \c true, if invoked from inside the kernel, \c false if
1317  *		   invoked from userland.
1318  *	\return \c FSSH_B_OK, if everything went fine, another error code otherwise.
1319  */
1320 
1321 static fssh_status_t
1322 fd_and_path_to_dir_vnode(int fd, char *path, struct vnode **_vnode,
1323 	char *filename, bool kernel)
1324 {
1325 	if (!path)
1326 		return FSSH_B_BAD_VALUE;
1327 	if (fd < 0)
1328 		return path_to_dir_vnode(path, _vnode, filename, kernel);
1329 
1330 	fssh_status_t status = get_dir_path_and_leaf(path, filename);
1331 	if (status != FSSH_B_OK)
1332 		return status;
1333 
1334 	return fd_and_path_to_vnode(fd, path, true, _vnode, NULL, kernel);
1335 }
1336 
1337 
1338 /** Returns a vnode's name in the d_name field of a supplied dirent buffer.
1339  */
1340 
1341 static fssh_status_t
1342 get_vnode_name(struct vnode *vnode, struct vnode *parent,
1343 	struct fssh_dirent *buffer, fssh_size_t bufferSize)
1344 {
1345 	if (bufferSize < sizeof(struct fssh_dirent))
1346 		return FSSH_B_BAD_VALUE;
1347 
1348 	// See if vnode is the root of a mount and move to the covered
1349 	// vnode so we get the underlying file system
1350 	VNodePutter vnodePutter;
1351 	if (vnode->mount->root_vnode == vnode && vnode->mount->covers_vnode != NULL) {
1352 		vnode = vnode->mount->covers_vnode;
1353 		inc_vnode_ref_count(vnode);
1354 		vnodePutter.SetTo(vnode);
1355 	}
1356 
1357 	if (HAS_FS_CALL(vnode, get_vnode_name)) {
1358 		// The FS supports getting the name of a vnode.
1359 		return FS_CALL(vnode, get_vnode_name, buffer->d_name,
1360 			(char*)buffer + bufferSize - buffer->d_name);
1361 	}
1362 
1363 	// The FS doesn't support getting the name of a vnode. So we search the
1364 	// parent directory for the vnode, if the caller let us.
1365 
1366 	if (parent == NULL)
1367 		return FSSH_EOPNOTSUPP;
1368 
1369 	void *cookie;
1370 
1371 	fssh_status_t status = FS_CALL(parent, open_dir, &cookie);
1372 	if (status >= FSSH_B_OK) {
1373 		while (true) {
1374 			uint32_t num = 1;
1375 			status = dir_read(parent, cookie, buffer, bufferSize, &num);
1376 			if (status < FSSH_B_OK)
1377 				break;
1378 			if (num == 0) {
1379 				status = FSSH_B_ENTRY_NOT_FOUND;
1380 				break;
1381 			}
1382 
1383 			if (vnode->id == buffer->d_ino) {
1384 				// found correct entry!
1385 				break;
1386 			}
1387 		}
1388 
1389 		FS_CALL(vnode, close_dir, cookie);
1390 		FS_CALL(vnode, free_dir_cookie, cookie);
1391 	}
1392 	return status;
1393 }
1394 
1395 
1396 static fssh_status_t
1397 get_vnode_name(struct vnode *vnode, struct vnode *parent, char *name,
1398 	fssh_size_t nameSize)
1399 {
1400 	char buffer[sizeof(struct fssh_dirent) + FSSH_B_FILE_NAME_LENGTH];
1401 	struct fssh_dirent *dirent = (struct fssh_dirent *)buffer;
1402 
1403 	fssh_status_t status = get_vnode_name(vnode, parent, buffer, sizeof(buffer));
1404 	if (status != FSSH_B_OK)
1405 		return status;
1406 
1407 	if (fssh_strlcpy(name, dirent->d_name, nameSize) >= nameSize)
1408 		return FSSH_B_BUFFER_OVERFLOW;
1409 
1410 	return FSSH_B_OK;
1411 }
1412 
1413 
1414 /**	Gets the full path to a given directory vnode.
1415  *	It uses the fs_get_vnode_name() call to get the name of a vnode; if a
1416  *	file system doesn't support this call, it will fall back to iterating
1417  *	through the parent directory to get the name of the child.
1418  *
1419  *	To protect against circular loops, it supports a maximum tree depth
1420  *	of 256 levels.
1421  *
1422  *	Note that the path may not be correct the time this function returns!
1423  *	It doesn't use any locking to prevent returning the correct path, as
1424  *	paths aren't safe anyway: the path to a file can change at any time.
1425  *
1426  *	It might be a good idea, though, to check if the returned path exists
1427  *	in the calling function (it's not done here because of efficiency)
1428  */
1429 
1430 static fssh_status_t
1431 dir_vnode_to_path(struct vnode *vnode, char *buffer, fssh_size_t bufferSize)
1432 {
1433 	FUNCTION(("dir_vnode_to_path(%p, %p, %lu)\n", vnode, buffer, bufferSize));
1434 
1435 	if (vnode == NULL || buffer == NULL)
1436 		return FSSH_B_BAD_VALUE;
1437 
1438 	/* this implementation is currently bound to FSSH_B_PATH_NAME_LENGTH */
1439 	KPath pathBuffer;
1440 	if (pathBuffer.InitCheck() != FSSH_B_OK)
1441 		return FSSH_B_NO_MEMORY;
1442 
1443 	char *path = pathBuffer.LockBuffer();
1444 	int32_t insert = pathBuffer.BufferSize();
1445 	int32_t maxLevel = 256;
1446 	int32_t length;
1447 	fssh_status_t status;
1448 
1449 	// we don't use get_vnode() here because this call is more
1450 	// efficient and does all we need from get_vnode()
1451 	inc_vnode_ref_count(vnode);
1452 
1453 	// resolve a volume root to its mount point
1454 	struct vnode *mountPoint = resolve_volume_root_to_mount_point(vnode);
1455 	if (mountPoint) {
1456 		put_vnode(vnode);
1457 		vnode = mountPoint;
1458 	}
1459 
1460 	path[--insert] = '\0';
1461 
1462 	while (true) {
1463 		// the name buffer is also used for fs_read_dir()
1464 		char nameBuffer[sizeof(struct fssh_dirent) + FSSH_B_FILE_NAME_LENGTH];
1465 		char *name = &((struct fssh_dirent *)nameBuffer)->d_name[0];
1466 		struct vnode *parentVnode;
1467 		fssh_vnode_id parentID;
1468 
1469 		// lookup the parent vnode
1470 		status = lookup_dir_entry(vnode, "..", &parentVnode);
1471 		if (status < FSSH_B_OK)
1472 			goto out;
1473 
1474 		// get the node's name
1475 		status = get_vnode_name(vnode, parentVnode,
1476 			(struct fssh_dirent*)nameBuffer, sizeof(nameBuffer));
1477 
1478 		// resolve a volume root to its mount point
1479 		mountPoint = resolve_volume_root_to_mount_point(parentVnode);
1480 		if (mountPoint) {
1481 			put_vnode(parentVnode);
1482 			parentVnode = mountPoint;
1483 			parentID = parentVnode->id;
1484 		}
1485 
1486 		bool hitRoot = (parentVnode == vnode);
1487 
1488 		// release the current vnode, we only need its parent from now on
1489 		put_vnode(vnode);
1490 		vnode = parentVnode;
1491 
1492 		if (status < FSSH_B_OK)
1493 			goto out;
1494 
1495 		if (hitRoot) {
1496 			// we have reached "/", which means we have constructed the full
1497 			// path
1498 			break;
1499 		}
1500 
1501 		// ToDo: add an explicit check for loops in about 10 levels to do
1502 		// real loop detection
1503 
1504 		// don't go deeper as 'maxLevel' to prevent circular loops
1505 		if (maxLevel-- < 0) {
1506 			status = FSSH_ELOOP;
1507 			goto out;
1508 		}
1509 
1510 		// add the name in front of the current path
1511 		name[FSSH_B_FILE_NAME_LENGTH - 1] = '\0';
1512 		length = fssh_strlen(name);
1513 		insert -= length;
1514 		if (insert <= 0) {
1515 			status = FSSH_ENOBUFS;
1516 			goto out;
1517 		}
1518 		fssh_memcpy(path + insert, name, length);
1519 		path[--insert] = '/';
1520 	}
1521 
1522 	// the root dir will result in an empty path: fix it
1523 	if (path[insert] == '\0')
1524 		path[--insert] = '/';
1525 
1526 	TRACE(("  path is: %s\n", path + insert));
1527 
1528 	// copy the path to the output buffer
1529 	length = pathBuffer.BufferSize() - insert;
1530 	if (length <= (int)bufferSize)
1531 		fssh_memcpy(buffer, path + insert, length);
1532 	else
1533 		status = FSSH_ENOBUFS;
1534 
1535 out:
1536 	put_vnode(vnode);
1537 	return status;
1538 }
1539 
1540 
1541 /**	Checks the length of every path component, and adds a '.'
1542  *	if the path ends in a slash.
1543  *	The given path buffer must be able to store at least one
1544  *	additional character.
1545  */
1546 
1547 static fssh_status_t
1548 check_path(char *to)
1549 {
1550 	int32_t length = 0;
1551 
1552 	// check length of every path component
1553 
1554 	while (*to) {
1555 		char *begin;
1556 		if (*to == '/')
1557 			to++, length++;
1558 
1559 		begin = to;
1560 		while (*to != '/' && *to)
1561 			to++, length++;
1562 
1563 		if (to - begin > FSSH_B_FILE_NAME_LENGTH)
1564 			return FSSH_B_NAME_TOO_LONG;
1565 	}
1566 
1567 	if (length == 0)
1568 		return FSSH_B_ENTRY_NOT_FOUND;
1569 
1570 	// complete path if there is a slash at the end
1571 
1572 	if (*(to - 1) == '/') {
1573 		if (length > FSSH_B_PATH_NAME_LENGTH - 2)
1574 			return FSSH_B_NAME_TOO_LONG;
1575 
1576 		to[0] = '.';
1577 		to[1] = '\0';
1578 	}
1579 
1580 	return FSSH_B_OK;
1581 }
1582 
1583 
1584 static struct file_descriptor *
1585 get_fd_and_vnode(int fd, struct vnode **_vnode, bool kernel)
1586 {
1587 	struct file_descriptor *descriptor = get_fd(get_current_io_context(kernel), fd);
1588 	if (descriptor == NULL)
1589 		return NULL;
1590 
1591 	if (fd_vnode(descriptor) == NULL) {
1592 		put_fd(descriptor);
1593 		return NULL;
1594 	}
1595 
1596 	// ToDo: when we can close a file descriptor at any point, investigate
1597 	//	if this is still valid to do (accessing the vnode without ref_count
1598 	//	or locking)
1599 	*_vnode = descriptor->u.vnode;
1600 	return descriptor;
1601 }
1602 
1603 
1604 static struct vnode *
1605 get_vnode_from_fd(int fd, bool kernel)
1606 {
1607 	struct file_descriptor *descriptor;
1608 	struct vnode *vnode;
1609 
1610 	descriptor = get_fd(get_current_io_context(kernel), fd);
1611 	if (descriptor == NULL)
1612 		return NULL;
1613 
1614 	vnode = fd_vnode(descriptor);
1615 	if (vnode != NULL)
1616 		inc_vnode_ref_count(vnode);
1617 
1618 	put_fd(descriptor);
1619 	return vnode;
1620 }
1621 
1622 
1623 /**	Gets the vnode from an FD + path combination. If \a fd is lower than zero,
1624  *	only the path will be considered. In this case, the \a path must not be
1625  *	NULL.
1626  *	If \a fd is a valid file descriptor, \a path may be NULL for directories,
1627  *	and should be NULL for files.
1628  */
1629 
1630 static fssh_status_t
1631 fd_and_path_to_vnode(int fd, char *path, bool traverseLeafLink,
1632 	struct vnode **_vnode, fssh_vnode_id *_parentID, bool kernel)
1633 {
1634 	if (fd < 0 && !path)
1635 		return FSSH_B_BAD_VALUE;
1636 
1637 	if (fd < 0 || (path != NULL && path[0] == '/')) {
1638 		// no FD or absolute path
1639 		return path_to_vnode(path, traverseLeafLink, _vnode, _parentID, kernel);
1640 	}
1641 
1642 	// FD only, or FD + relative path
1643 	struct vnode *vnode = get_vnode_from_fd(fd, kernel);
1644 	if (!vnode)
1645 		return FSSH_B_FILE_ERROR;
1646 
1647 	if (path != NULL) {
1648 		return vnode_path_to_vnode(vnode, path, traverseLeafLink, 0,
1649 			_vnode, _parentID);
1650 	}
1651 
1652 	// there is no relative path to take into account
1653 
1654 	*_vnode = vnode;
1655 	if (_parentID)
1656 		*_parentID = -1;
1657 
1658 	return FSSH_B_OK;
1659 }
1660 
1661 
1662 static int
1663 get_new_fd(int type, struct fs_mount *mount, struct vnode *vnode,
1664 	void *cookie, int openMode, bool kernel)
1665 {
1666 	struct file_descriptor *descriptor;
1667 	int fd;
1668 
1669 	// if the vnode is locked, we don't allow creating a new file descriptor for it
1670 	if (vnode && vnode->mandatory_locked_by != NULL)
1671 		return FSSH_B_BUSY;
1672 
1673 	descriptor = alloc_fd();
1674 	if (!descriptor)
1675 		return FSSH_B_NO_MEMORY;
1676 
1677 	if (vnode)
1678 		descriptor->u.vnode = vnode;
1679 	else
1680 		descriptor->u.mount = mount;
1681 	descriptor->cookie = cookie;
1682 
1683 	switch (type) {
1684 		// vnode types
1685 		case FDTYPE_FILE:
1686 			descriptor->ops = &sFileOps;
1687 			break;
1688 		case FDTYPE_DIR:
1689 			descriptor->ops = &sDirectoryOps;
1690 			break;
1691 		case FDTYPE_ATTR:
1692 			descriptor->ops = &sAttributeOps;
1693 			break;
1694 		case FDTYPE_ATTR_DIR:
1695 			descriptor->ops = &sAttributeDirectoryOps;
1696 			break;
1697 
1698 		// mount types
1699 		case FDTYPE_INDEX_DIR:
1700 			descriptor->ops = &sIndexDirectoryOps;
1701 			break;
1702 		case FDTYPE_QUERY:
1703 			descriptor->ops = &sQueryOps;
1704 			break;
1705 
1706 		default:
1707 			fssh_panic("get_new_fd() called with unknown type %d\n", type);
1708 			break;
1709 	}
1710 	descriptor->type = type;
1711 	descriptor->open_mode = openMode;
1712 
1713 	fd = new_fd(get_current_io_context(kernel), descriptor);
1714 	if (fd < 0) {
1715 		free(descriptor);
1716 		return FSSH_B_NO_MORE_FDS;
1717 	}
1718 
1719 	return fd;
1720 }
1721 
1722 
1723 /*!	Does the dirty work of combining the file_io_vecs with the iovecs
1724 	and calls the file system hooks to read/write the request to disk.
1725 */
1726 static fssh_status_t
1727 common_file_io_vec_pages(int fd, const fssh_file_io_vec *fileVecs,
1728 	fssh_size_t fileVecCount, const fssh_iovec *vecs, fssh_size_t vecCount,
1729 	uint32_t *_vecIndex, fssh_size_t *_vecOffset, fssh_size_t *_numBytes,
1730 	bool doWrite)
1731 {
1732 	if (fileVecCount == 0) {
1733 		// There are no file vecs at this offset, so we're obviously trying
1734 		// to access the file outside of its bounds
1735 		return FSSH_B_BAD_VALUE;
1736 	}
1737 
1738 	fssh_size_t numBytes = *_numBytes;
1739 	uint32_t fileVecIndex;
1740 	fssh_size_t vecOffset = *_vecOffset;
1741 	uint32_t vecIndex = *_vecIndex;
1742 	fssh_status_t status;
1743 	fssh_size_t size;
1744 
1745 	if (!doWrite && vecOffset == 0) {
1746 		// now directly read the data from the device
1747 		// the first file_io_vec can be read directly
1748 
1749 		size = fileVecs[0].length;
1750 		if (size > numBytes)
1751 			size = numBytes;
1752 
1753 		status = fssh_read_pages(fd, fileVecs[0].offset, &vecs[vecIndex],
1754 			vecCount - vecIndex, &size);
1755 		if (status < FSSH_B_OK)
1756 			return status;
1757 
1758 		// TODO: this is a work-around for buggy device drivers!
1759 		//	When our own drivers honour the length, we can:
1760 		//	a) also use this direct I/O for writes (otherwise, it would
1761 		//	   overwrite precious data)
1762 		//	b) panic if the term below is true (at least for writes)
1763 		if ((uint64_t)size > (uint64_t)fileVecs[0].length) {
1764 			//dprintf("warning: device driver %p doesn't respect total length in read_pages() call!\n", ref->device);
1765 			size = fileVecs[0].length;
1766 		}
1767 
1768 		ASSERT(size <= fileVecs[0].length);
1769 
1770 		// If the file portion was contiguous, we're already done now
1771 		if (size == numBytes)
1772 			return FSSH_B_OK;
1773 
1774 		// if we reached the end of the file, we can return as well
1775 		if ((uint64_t)size != (uint64_t)fileVecs[0].length) {
1776 			*_numBytes = size;
1777 			return FSSH_B_OK;
1778 		}
1779 
1780 		fileVecIndex = 1;
1781 
1782 		// first, find out where we have to continue in our iovecs
1783 		for (; vecIndex < vecCount; vecIndex++) {
1784 			if (size < vecs[vecIndex].iov_len)
1785 				break;
1786 
1787 			size -= vecs[vecIndex].iov_len;
1788 		}
1789 
1790 		vecOffset = size;
1791 	} else {
1792 		fileVecIndex = 0;
1793 		size = 0;
1794 	}
1795 
1796 	// Too bad, let's process the rest of the file_io_vecs
1797 
1798 	fssh_size_t totalSize = size;
1799 	fssh_size_t bytesLeft = numBytes - size;
1800 
1801 	for (; fileVecIndex < fileVecCount; fileVecIndex++) {
1802 		const fssh_file_io_vec &fileVec = fileVecs[fileVecIndex];
1803 		fssh_off_t fileOffset = fileVec.offset;
1804 		fssh_off_t fileLeft = fssh_min_c((uint64_t)fileVec.length, (uint64_t)bytesLeft);
1805 
1806 		TRACE(("FILE VEC [%lu] length %Ld\n", fileVecIndex, fileLeft));
1807 
1808 		// process the complete fileVec
1809 		while (fileLeft > 0) {
1810 			fssh_iovec tempVecs[MAX_TEMP_IO_VECS];
1811 			uint32_t tempCount = 0;
1812 
1813 			// size tracks how much of what is left of the current fileVec
1814 			// (fileLeft) has been assigned to tempVecs
1815 			size = 0;
1816 
1817 			// assign what is left of the current fileVec to the tempVecs
1818 			for (size = 0; (uint64_t)size < (uint64_t)fileLeft && vecIndex < vecCount
1819 					&& tempCount < MAX_TEMP_IO_VECS;) {
1820 				// try to satisfy one iovec per iteration (or as much as
1821 				// possible)
1822 
1823 				// bytes left of the current iovec
1824 				fssh_size_t vecLeft = vecs[vecIndex].iov_len - vecOffset;
1825 				if (vecLeft == 0) {
1826 					vecOffset = 0;
1827 					vecIndex++;
1828 					continue;
1829 				}
1830 
1831 				TRACE(("fill vec %ld, offset = %lu, size = %lu\n",
1832 					vecIndex, vecOffset, size));
1833 
1834 				// actually available bytes
1835 				fssh_size_t tempVecSize = fssh_min_c(vecLeft, fileLeft - size);
1836 
1837 				tempVecs[tempCount].iov_base
1838 					= (void *)((fssh_addr_t)vecs[vecIndex].iov_base + vecOffset);
1839 				tempVecs[tempCount].iov_len = tempVecSize;
1840 				tempCount++;
1841 
1842 				size += tempVecSize;
1843 				vecOffset += tempVecSize;
1844 			}
1845 
1846 			fssh_size_t bytes = size;
1847 			if (doWrite) {
1848 				status = fssh_write_pages(fd, fileOffset, tempVecs,
1849 					tempCount, &bytes);
1850 			} else {
1851 				status = fssh_read_pages(fd, fileOffset, tempVecs,
1852 					tempCount, &bytes);
1853 			}
1854 			if (status < FSSH_B_OK)
1855 				return status;
1856 
1857 			totalSize += bytes;
1858 			bytesLeft -= size;
1859 			fileOffset += size;
1860 			fileLeft -= size;
1861 
1862 			if (size != bytes || vecIndex >= vecCount) {
1863 				// there are no more bytes or iovecs, let's bail out
1864 				*_numBytes = totalSize;
1865 				return FSSH_B_OK;
1866 			}
1867 		}
1868 	}
1869 
1870 	*_vecIndex = vecIndex;
1871 	*_vecOffset = vecOffset;
1872 	*_numBytes = totalSize;
1873 	return FSSH_B_OK;
1874 }
1875 
1876 
1877 //	#pragma mark - public VFS API
1878 
1879 
1880 extern "C" fssh_status_t
1881 fssh_new_vnode(fssh_fs_volume *volume, fssh_vnode_id vnodeID,
1882 	void *privateNode, fssh_fs_vnode_ops *ops)
1883 {
1884 	FUNCTION(("new_vnode(volume = %p (%ld), vnodeID = %Ld, node = %p)\n",
1885 		volume, volume->id, vnodeID, privateNode));
1886 
1887 	if (privateNode == NULL)
1888 		return FSSH_B_BAD_VALUE;
1889 
1890 	fssh_mutex_lock(&sVnodeMutex);
1891 
1892 	// file system integrity check:
1893 	// test if the vnode already exists and bail out if this is the case!
1894 
1895 	// ToDo: the R5 implementation obviously checks for a different cookie
1896 	//	and doesn't panic if they are equal
1897 
1898 	struct vnode *vnode = lookup_vnode(volume->id, vnodeID);
1899 	if (vnode != NULL) {
1900 		fssh_panic("vnode %d:%" FSSH_B_PRIdINO " already exists (node = %p, "
1901 			"vnode->node = %p)!", (int)volume->id, vnodeID, privateNode,
1902 			vnode->private_node);
1903 	}
1904 
1905 	fssh_status_t status = create_new_vnode(&vnode, volume->id, vnodeID);
1906 	if (status == FSSH_B_OK) {
1907 		vnode->private_node = privateNode;
1908 		vnode->ops = ops;
1909 		vnode->busy = true;
1910 		vnode->unpublished = true;
1911 	}
1912 
1913 	TRACE(("returns: %s\n", strerror(status)));
1914 
1915 	fssh_mutex_unlock(&sVnodeMutex);
1916 	return status;
1917 }
1918 
1919 
1920 extern "C" fssh_status_t
1921 fssh_publish_vnode(fssh_fs_volume *volume, fssh_vnode_id vnodeID,
1922 	void *privateNode, fssh_fs_vnode_ops *ops, int type, uint32_t flags)
1923 {
1924 	FUNCTION(("publish_vnode()\n"));
1925 
1926 	MutexLocker locker(sVnodeMutex);
1927 
1928 	struct vnode *vnode = lookup_vnode(volume->id, vnodeID);
1929 	fssh_status_t status = FSSH_B_OK;
1930 
1931 	if (vnode != NULL && vnode->busy && vnode->unpublished
1932 		&& vnode->private_node == privateNode) {
1933 		// already known, but not published
1934 	} else if (vnode == NULL && privateNode != NULL) {
1935 		status = create_new_vnode(&vnode, volume->id, vnodeID);
1936 		if (status == FSSH_B_OK) {
1937 			vnode->private_node = privateNode;
1938 			vnode->ops = ops;
1939 			vnode->busy = true;
1940 			vnode->unpublished = true;
1941 		}
1942 	} else
1943 		status = FSSH_B_BAD_VALUE;
1944 
1945 	// create sub vnodes, if necessary
1946 	if (status == FSSH_B_OK && volume->sub_volume != NULL) {
1947 		locker.Unlock();
1948 
1949 		fssh_fs_volume *subVolume = volume;
1950 		while (status == FSSH_B_OK && subVolume->sub_volume != NULL) {
1951 			subVolume = subVolume->sub_volume;
1952 			status = subVolume->ops->create_sub_vnode(subVolume, vnodeID,
1953 				vnode);
1954 		}
1955 
1956 		if (status != FSSH_B_OK) {
1957 			// error -- clean up the created sub vnodes
1958 			while (subVolume->super_volume != volume) {
1959 				subVolume = subVolume->super_volume;
1960 				subVolume->ops->delete_sub_vnode(subVolume, vnode);
1961 			}
1962 		}
1963 
1964 		locker.Lock();
1965 	}
1966 
1967 	if (status == FSSH_B_OK) {
1968 		vnode->type = type;
1969 		vnode->busy = false;
1970 		vnode->unpublished = false;
1971 	}
1972 
1973 	TRACE(("returns: %s\n", strerror(status)));
1974 
1975 	return status;
1976 }
1977 
1978 
1979 extern "C" fssh_status_t
1980 fssh_get_vnode(fssh_fs_volume *volume, fssh_vnode_id vnodeID,
1981 	void **privateNode)
1982 {
1983 	struct vnode *vnode;
1984 
1985 	if (volume == NULL)
1986 		return FSSH_B_BAD_VALUE;
1987 
1988 	fssh_status_t status = get_vnode(volume->id, vnodeID, &vnode, true);
1989 	if (status < FSSH_B_OK)
1990 		return status;
1991 
1992 	// If this is a layered FS, we need to get the node cookie for the requested
1993 	// layer.
1994 	if (HAS_FS_CALL(vnode, get_super_vnode)) {
1995 		fssh_fs_vnode resolvedNode;
1996 		fssh_status_t status = FS_CALL(vnode, get_super_vnode, volume,
1997 			&resolvedNode);
1998 		if (status != FSSH_B_OK) {
1999 			fssh_panic("get_vnode(): Failed to get super node for vnode %p, "
2000 				"volume: %p", vnode, volume);
2001 			put_vnode(vnode);
2002 			return status;
2003 		}
2004 
2005 		if (privateNode != NULL)
2006 			*privateNode = resolvedNode.private_node;
2007 	} else if (privateNode != NULL)
2008 		*privateNode = vnode->private_node;
2009 
2010 	return FSSH_B_OK;
2011 }
2012 
2013 
2014 extern "C" fssh_status_t
2015 fssh_acquire_vnode(fssh_fs_volume *volume, fssh_vnode_id vnodeID)
2016 {
2017 	struct vnode *vnode;
2018 
2019 	fssh_mutex_lock(&sVnodeMutex);
2020 	vnode = lookup_vnode(volume->id, vnodeID);
2021 	fssh_mutex_unlock(&sVnodeMutex);
2022 
2023 	if (vnode == NULL)
2024 		return FSSH_B_BAD_VALUE;
2025 
2026 	inc_vnode_ref_count(vnode);
2027 	return FSSH_B_OK;
2028 }
2029 
2030 
2031 extern "C" fssh_status_t
2032 fssh_put_vnode(fssh_fs_volume *volume, fssh_vnode_id vnodeID)
2033 {
2034 	struct vnode *vnode;
2035 
2036 	fssh_mutex_lock(&sVnodeMutex);
2037 	vnode = lookup_vnode(volume->id, vnodeID);
2038 	fssh_mutex_unlock(&sVnodeMutex);
2039 
2040 	if (vnode == NULL)
2041 		return FSSH_B_BAD_VALUE;
2042 
2043 	dec_vnode_ref_count(vnode, true);
2044 	return FSSH_B_OK;
2045 }
2046 
2047 
2048 extern "C" fssh_status_t
2049 fssh_remove_vnode(fssh_fs_volume *volume, fssh_vnode_id vnodeID)
2050 {
2051 	struct vnode *vnode;
2052 	bool remove = false;
2053 
2054 	MutexLocker locker(sVnodeMutex);
2055 
2056 	vnode = lookup_vnode(volume->id, vnodeID);
2057 	if (vnode == NULL)
2058 		return FSSH_B_ENTRY_NOT_FOUND;
2059 
2060 	if (vnode->covered_by != NULL) {
2061 		// this vnode is in use
2062 		fssh_mutex_unlock(&sVnodeMutex);
2063 		return FSSH_B_BUSY;
2064 	}
2065 
2066 	vnode->remove = true;
2067 	if (vnode->unpublished) {
2068 		// prepare the vnode for deletion
2069 		vnode->busy = true;
2070 		remove = true;
2071 	}
2072 
2073 	locker.Unlock();
2074 
2075 	if (remove) {
2076 		// if the vnode hasn't been published yet, we delete it here
2077 		fssh_atomic_add(&vnode->ref_count, -1);
2078 		free_vnode(vnode, true);
2079 	}
2080 
2081 	return FSSH_B_OK;
2082 }
2083 
2084 
2085 extern "C" fssh_status_t
2086 fssh_unremove_vnode(fssh_fs_volume *volume, fssh_vnode_id vnodeID)
2087 {
2088 	struct vnode *vnode;
2089 
2090 	fssh_mutex_lock(&sVnodeMutex);
2091 
2092 	vnode = lookup_vnode(volume->id, vnodeID);
2093 	if (vnode)
2094 		vnode->remove = false;
2095 
2096 	fssh_mutex_unlock(&sVnodeMutex);
2097 	return FSSH_B_OK;
2098 }
2099 
2100 
2101 extern "C" fssh_status_t
2102 fssh_get_vnode_removed(fssh_fs_volume *volume, fssh_vnode_id vnodeID, bool* removed)
2103 {
2104 	fssh_mutex_lock(&sVnodeMutex);
2105 
2106 	fssh_status_t result;
2107 
2108 	if (struct vnode* vnode = lookup_vnode(volume->id, vnodeID)) {
2109 		if (removed)
2110 			*removed = vnode->remove;
2111 		result = FSSH_B_OK;
2112 	} else
2113 		result = FSSH_B_BAD_VALUE;
2114 
2115 	fssh_mutex_unlock(&sVnodeMutex);
2116 	return result;
2117 }
2118 
2119 
2120 extern "C" fssh_fs_volume*
2121 fssh_volume_for_vnode(fssh_fs_vnode *_vnode)
2122 {
2123 	if (_vnode == NULL)
2124 		return NULL;
2125 
2126 	struct vnode* vnode = static_cast<struct vnode*>(_vnode);
2127 	return vnode->mount->volume;
2128 }
2129 
2130 
2131 extern "C" fssh_status_t
2132 fssh_check_access_permissions(int accessMode, fssh_mode_t mode,
2133 	fssh_gid_t nodeGroupID, fssh_uid_t nodeUserID)
2134 {
2135 	// get node permissions
2136 	int userPermissions = (mode & FSSH_S_IRWXU) >> 6;
2137 	int groupPermissions = (mode & FSSH_S_IRWXG) >> 3;
2138 	int otherPermissions = mode & FSSH_S_IRWXO;
2139 
2140 	// get the node permissions for this uid/gid
2141 	int permissions = 0;
2142 	fssh_uid_t uid = fssh_geteuid();
2143 
2144 	if (uid == 0) {
2145 		// user is root
2146 		// root has always read/write permission, but at least one of the
2147 		// X bits must be set for execute permission
2148 		permissions = userPermissions | groupPermissions | otherPermissions
2149 			| FSSH_S_IROTH | FSSH_S_IWOTH;
2150 		if (FSSH_S_ISDIR(mode))
2151 			permissions |= FSSH_S_IXOTH;
2152 	} else if (uid == nodeUserID) {
2153 		// user is node owner
2154 		permissions = userPermissions;
2155 	} else if (fssh_getegid() == nodeGroupID) {
2156 		// user is in owning group
2157 		permissions = groupPermissions;
2158 	} else {
2159 		// user is one of the others
2160 		permissions = otherPermissions;
2161 	}
2162 
2163 	return (accessMode & ~permissions) == 0 ? FSSH_B_OK : FSSH_B_NOT_ALLOWED;
2164 }
2165 
2166 
2167 //! Works directly on the host's file system
2168 extern "C" fssh_status_t
2169 fssh_read_pages(int fd, fssh_off_t pos, const fssh_iovec *vecs,
2170 	fssh_size_t count, fssh_size_t *_numBytes)
2171 {
2172 	// check how much the iovecs allow us to read
2173 	fssh_size_t toRead = 0;
2174 	for (fssh_size_t i = 0; i < count; i++)
2175 		toRead += vecs[i].iov_len;
2176 
2177 	fssh_iovec* newVecs = NULL;
2178 	if (*_numBytes < toRead) {
2179 		// We're supposed to read less than specified by the vecs. Since
2180 		// readv_pos() doesn't support this, we need to clone the vecs.
2181 		newVecs = new(std::nothrow) fssh_iovec[count];
2182 		if (!newVecs)
2183 			return FSSH_B_NO_MEMORY;
2184 
2185 		fssh_size_t newCount = 0;
2186 		for (fssh_size_t i = 0; i < count && toRead > 0; i++) {
2187 			fssh_size_t vecLen = fssh_min_c(vecs[i].iov_len, toRead);
2188 			newVecs[i].iov_base = vecs[i].iov_base;
2189 			newVecs[i].iov_len = vecLen;
2190 			toRead -= vecLen;
2191 			newCount++;
2192 		}
2193 
2194 		vecs = newVecs;
2195 		count = newCount;
2196 	}
2197 
2198 	fssh_ssize_t bytesRead = fssh_readv_pos(fd, pos, vecs, count);
2199 	delete[] newVecs;
2200 	if (bytesRead < 0)
2201 		return fssh_get_errno();
2202 
2203 	*_numBytes = bytesRead;
2204 	return FSSH_B_OK;
2205 }
2206 
2207 
2208 //! Works directly on the host's file system
2209 extern "C" fssh_status_t
2210 fssh_write_pages(int fd, fssh_off_t pos, const fssh_iovec *vecs,
2211 	fssh_size_t count, fssh_size_t *_numBytes)
2212 {
2213 	// check how much the iovecs allow us to write
2214 	fssh_size_t toWrite = 0;
2215 	for (fssh_size_t i = 0; i < count; i++)
2216 		toWrite += vecs[i].iov_len;
2217 
2218 	fssh_iovec* newVecs = NULL;
2219 	if (*_numBytes < toWrite) {
2220 		// We're supposed to write less than specified by the vecs. Since
2221 		// writev_pos() doesn't support this, we need to clone the vecs.
2222 		newVecs = new(std::nothrow) fssh_iovec[count];
2223 		if (!newVecs)
2224 			return FSSH_B_NO_MEMORY;
2225 
2226 		fssh_size_t newCount = 0;
2227 		for (fssh_size_t i = 0; i < count && toWrite > 0; i++) {
2228 			fssh_size_t vecLen = fssh_min_c(vecs[i].iov_len, toWrite);
2229 			newVecs[i].iov_base = vecs[i].iov_base;
2230 			newVecs[i].iov_len = vecLen;
2231 			toWrite -= vecLen;
2232 			newCount++;
2233 		}
2234 
2235 		vecs = newVecs;
2236 		count = newCount;
2237 	}
2238 
2239 	fssh_ssize_t bytesWritten = fssh_writev_pos(fd, pos, vecs, count);
2240 	delete[] newVecs;
2241 	if (bytesWritten < 0)
2242 		return fssh_get_errno();
2243 
2244 	*_numBytes = bytesWritten;
2245 	return FSSH_B_OK;
2246 }
2247 
2248 
2249 //! Works directly on the host's file system
2250 extern "C" fssh_status_t
2251 fssh_read_file_io_vec_pages(int fd, const fssh_file_io_vec *fileVecs,
2252 	fssh_size_t fileVecCount, const fssh_iovec *vecs, fssh_size_t vecCount,
2253 	uint32_t *_vecIndex, fssh_size_t *_vecOffset, fssh_size_t *_bytes)
2254 {
2255 	return common_file_io_vec_pages(fd, fileVecs, fileVecCount,
2256 		vecs, vecCount, _vecIndex, _vecOffset, _bytes, false);
2257 }
2258 
2259 
2260 //! Works directly on the host's file system
2261 extern "C" fssh_status_t
2262 fssh_write_file_io_vec_pages(int fd, const fssh_file_io_vec *fileVecs,
2263 	fssh_size_t fileVecCount, const fssh_iovec *vecs, fssh_size_t vecCount,
2264 	uint32_t *_vecIndex, fssh_size_t *_vecOffset, fssh_size_t *_bytes)
2265 {
2266 	return common_file_io_vec_pages(fd, fileVecs, fileVecCount,
2267 		vecs, vecCount, _vecIndex, _vecOffset, _bytes, true);
2268 }
2269 
2270 
2271 extern "C" fssh_status_t
2272 fssh_entry_cache_add(fssh_dev_t mountID, fssh_ino_t dirID, const char* name,
2273 	fssh_ino_t nodeID)
2274 {
2275 	// We don't implement an entry cache in the FS shell.
2276 	return FSSH_B_OK;
2277 }
2278 
2279 
2280 extern "C" fssh_status_t
2281 fssh_entry_cache_remove(fssh_dev_t mountID, fssh_ino_t dirID, const char* name)
2282 {
2283 	// We don't implement an entry cache in the FS shell.
2284 	return FSSH_B_ENTRY_NOT_FOUND;
2285 }
2286 
2287 
2288 //	#pragma mark - private VFS API
2289 //	Functions the VFS exports for other parts of the kernel
2290 
2291 
2292 /** Acquires another reference to the vnode that has to be released
2293  *	by calling vfs_put_vnode().
2294  */
2295 
2296 void
2297 vfs_acquire_vnode(void *_vnode)
2298 {
2299 	inc_vnode_ref_count((struct vnode *)_vnode);
2300 }
2301 
2302 
2303 /** This is currently called from file_cache_create() only.
2304  *	It's probably a temporary solution as long as devfs requires that
2305  *	fs_read_pages()/fs_write_pages() are called with the standard
2306  *	open cookie and not with a device cookie.
2307  *	If that's done differently, remove this call; it has no other
2308  *	purpose.
2309  */
2310 
2311 fssh_status_t
2312 vfs_get_cookie_from_fd(int fd, void **_cookie)
2313 {
2314 	struct file_descriptor *descriptor;
2315 
2316 	descriptor = get_fd(get_current_io_context(true), fd);
2317 	if (descriptor == NULL)
2318 		return FSSH_B_FILE_ERROR;
2319 
2320 	*_cookie = descriptor->cookie;
2321 	return FSSH_B_OK;
2322 }
2323 
2324 
2325 int
2326 vfs_get_vnode_from_fd(int fd, bool kernel, void **vnode)
2327 {
2328 	*vnode = get_vnode_from_fd(fd, kernel);
2329 
2330 	if (*vnode == NULL)
2331 		return FSSH_B_FILE_ERROR;
2332 
2333 	return FSSH_B_NO_ERROR;
2334 }
2335 
2336 
2337 fssh_status_t
2338 vfs_get_vnode_from_path(const char *path, bool kernel, void **_vnode)
2339 {
2340 	TRACE(("vfs_get_vnode_from_path: entry. path = '%s', kernel %d\n", path, kernel));
2341 
2342 	KPath pathBuffer(FSSH_B_PATH_NAME_LENGTH + 1);
2343 	if (pathBuffer.InitCheck() != FSSH_B_OK)
2344 		return FSSH_B_NO_MEMORY;
2345 
2346 	char *buffer = pathBuffer.LockBuffer();
2347 	fssh_strlcpy(buffer, path, pathBuffer.BufferSize());
2348 
2349 	struct vnode *vnode;
2350 	fssh_status_t status = path_to_vnode(buffer, true, &vnode, NULL, kernel);
2351 	if (status < FSSH_B_OK)
2352 		return status;
2353 
2354 	*_vnode = vnode;
2355 	return FSSH_B_OK;
2356 }
2357 
2358 
2359 fssh_status_t
2360 vfs_get_vnode(fssh_mount_id mountID, fssh_vnode_id vnodeID, void **_vnode)
2361 {
2362 	struct vnode *vnode;
2363 
2364 	fssh_status_t status = get_vnode(mountID, vnodeID, &vnode, false);
2365 	if (status < FSSH_B_OK)
2366 		return status;
2367 
2368 	*_vnode = vnode;
2369 	return FSSH_B_OK;
2370 }
2371 
2372 
2373 fssh_status_t
2374 vfs_read_pages(void *_vnode, void *cookie, fssh_off_t pos,
2375 	const fssh_iovec *vecs, fssh_size_t count, fssh_size_t *_numBytes)
2376 {
2377 	struct vnode *vnode = (struct vnode *)_vnode;
2378 
2379 	return FS_CALL(vnode, read_pages,
2380 		cookie, pos, vecs, count, _numBytes);
2381 }
2382 
2383 
2384 fssh_status_t
2385 vfs_write_pages(void *_vnode, void *cookie, fssh_off_t pos,
2386 	const fssh_iovec *vecs, fssh_size_t count, fssh_size_t *_numBytes)
2387 {
2388 	struct vnode *vnode = (struct vnode *)_vnode;
2389 
2390 	return FS_CALL(vnode, write_pages,
2391 		cookie, pos, vecs, count, _numBytes);
2392 }
2393 
2394 
2395 fssh_status_t
2396 vfs_entry_ref_to_vnode(fssh_mount_id mountID, fssh_vnode_id directoryID,
2397 	const char *name, void **_vnode)
2398 {
2399 	return entry_ref_to_vnode(mountID, directoryID, name,
2400 		(struct vnode **)_vnode);
2401 }
2402 
2403 
2404 void
2405 vfs_fs_vnode_to_node_ref(void *_vnode, fssh_mount_id *_mountID,
2406 	fssh_vnode_id *_vnodeID)
2407 {
2408 	struct vnode *vnode = (struct vnode *)_vnode;
2409 
2410 	*_mountID = vnode->device;
2411 	*_vnodeID = vnode->id;
2412 }
2413 
2414 
2415 /**	Looks up a vnode with the given mount and vnode ID.
2416  *	Must only be used with "in-use" vnodes as it doesn't grab a reference
2417  *	to the node.
2418  *	It's currently only be used by file_cache_create().
2419  */
2420 
2421 fssh_status_t
2422 vfs_lookup_vnode(fssh_mount_id mountID, fssh_vnode_id vnodeID,
2423 	struct vnode **_vnode)
2424 {
2425 	fssh_mutex_lock(&sVnodeMutex);
2426 	struct vnode *vnode = lookup_vnode(mountID, vnodeID);
2427 	fssh_mutex_unlock(&sVnodeMutex);
2428 
2429 	if (vnode == NULL)
2430 		return FSSH_B_ERROR;
2431 
2432 	*_vnode = vnode;
2433 	return FSSH_B_OK;
2434 }
2435 
2436 
2437 fssh_status_t
2438 vfs_get_fs_node_from_path(fssh_fs_volume *volume, const char *path,
2439 	bool kernel, void **_node)
2440 {
2441 	TRACE(("vfs_get_fs_node_from_path(volume = %p (%ld), path = \"%s\", "
2442 		"kernel %d)\n", volume, volume->id, path, kernel));
2443 
2444 	KPath pathBuffer(FSSH_B_PATH_NAME_LENGTH + 1);
2445 	if (pathBuffer.InitCheck() != FSSH_B_OK)
2446 		return FSSH_B_NO_MEMORY;
2447 
2448 	fs_mount *mount;
2449 	fssh_status_t status = get_mount(volume->id, &mount);
2450 	if (status < FSSH_B_OK)
2451 		return status;
2452 
2453 	char *buffer = pathBuffer.LockBuffer();
2454 	fssh_strlcpy(buffer, path, pathBuffer.BufferSize());
2455 
2456 	struct vnode *vnode = mount->root_vnode;
2457 
2458 	if (buffer[0] == '/')
2459 		status = path_to_vnode(buffer, true, &vnode, NULL, true);
2460 	else {
2461 		inc_vnode_ref_count(vnode);
2462 			// vnode_path_to_vnode() releases a reference to the starting vnode
2463 		status = vnode_path_to_vnode(vnode, buffer, true, 0, &vnode, NULL);
2464 	}
2465 
2466 	put_mount(mount);
2467 
2468 	if (status < FSSH_B_OK)
2469 		return status;
2470 
2471 	if (vnode->device != volume->id) {
2472 		// wrong mount ID - must not gain access on foreign file system nodes
2473 		put_vnode(vnode);
2474 		return FSSH_B_BAD_VALUE;
2475 	}
2476 
2477 	// Use get_vnode() to resolve the cookie for the right layer.
2478 	status = ::fssh_get_vnode(volume, vnode->id, _node);
2479 	put_vnode(vnode);
2480 
2481 	return FSSH_B_OK;
2482 }
2483 
2484 
2485 /**	Finds the full path to the file that contains the module \a moduleName,
2486  *	puts it into \a pathBuffer, and returns FSSH_B_OK for success.
2487  *	If \a pathBuffer was too small, it returns \c FSSH_B_BUFFER_OVERFLOW,
2488  *	\c FSSH_B_ENTRY_NOT_FOUNT if no file could be found.
2489  *	\a pathBuffer is clobbered in any case and must not be relied on if this
2490  *	functions returns unsuccessfully.
2491  */
2492 
2493 fssh_status_t
2494 vfs_get_module_path(const char *basePath, const char *moduleName, char *pathBuffer,
2495 	fssh_size_t bufferSize)
2496 {
2497 	struct vnode *dir, *file;
2498 	fssh_status_t status;
2499 	fssh_size_t length;
2500 	char *path;
2501 
2502 	if (bufferSize == 0 || fssh_strlcpy(pathBuffer, basePath, bufferSize) >= bufferSize)
2503 		return FSSH_B_BUFFER_OVERFLOW;
2504 
2505 	status = path_to_vnode(pathBuffer, true, &dir, NULL, true);
2506 	if (status < FSSH_B_OK)
2507 		return status;
2508 
2509 	// the path buffer had been clobbered by the above call
2510 	length = fssh_strlcpy(pathBuffer, basePath, bufferSize);
2511 	if (pathBuffer[length - 1] != '/')
2512 		pathBuffer[length++] = '/';
2513 
2514 	path = pathBuffer + length;
2515 	bufferSize -= length;
2516 
2517 	while (moduleName) {
2518 		char *nextPath = fssh_strchr(moduleName, '/');
2519 		if (nextPath == NULL)
2520 			length = fssh_strlen(moduleName);
2521 		else {
2522 			length = nextPath - moduleName;
2523 			nextPath++;
2524 		}
2525 
2526 		if (length + 1 >= bufferSize) {
2527 			status = FSSH_B_BUFFER_OVERFLOW;
2528 			goto err;
2529 		}
2530 
2531 		fssh_memcpy(path, moduleName, length);
2532 		path[length] = '\0';
2533 		moduleName = nextPath;
2534 
2535 		status = vnode_path_to_vnode(dir, path, true, 0, &file, NULL);
2536 		if (status < FSSH_B_OK) {
2537 			// vnode_path_to_vnode() has already released the reference to dir
2538 			return status;
2539 		}
2540 
2541 		if (FSSH_S_ISDIR(file->type)) {
2542 			// goto the next directory
2543 			path[length] = '/';
2544 			path[length + 1] = '\0';
2545 			path += length + 1;
2546 			bufferSize -= length + 1;
2547 
2548 			dir = file;
2549 		} else if (FSSH_S_ISREG(file->type)) {
2550 			// it's a file so it should be what we've searched for
2551 			put_vnode(file);
2552 
2553 			return FSSH_B_OK;
2554 		} else {
2555 			TRACE(("vfs_get_module_path(): something is strange here: %d...\n", file->type));
2556 			status = FSSH_B_ERROR;
2557 			dir = file;
2558 			goto err;
2559 		}
2560 	}
2561 
2562 	// if we got here, the moduleName just pointed to a directory, not to
2563 	// a real module - what should we do in this case?
2564 	status = FSSH_B_ENTRY_NOT_FOUND;
2565 
2566 err:
2567 	put_vnode(dir);
2568 	return status;
2569 }
2570 
2571 
2572 /**	\brief Normalizes a given path.
2573  *
2574  *	The path must refer to an existing or non-existing entry in an existing
2575  *	directory, that is chopping off the leaf component the remaining path must
2576  *	refer to an existing directory.
2577  *
2578  *	The returned will be canonical in that it will be absolute, will not
2579  *	contain any "." or ".." components or duplicate occurrences of '/'s,
2580  *	and none of the directory components will by symbolic links.
2581  *
2582  *	Any two paths referring to the same entry, will result in the same
2583  *	normalized path (well, that is pretty much the definition of `normalized',
2584  *	isn't it :-).
2585  *
2586  *	\param path The path to be normalized.
2587  *	\param buffer The buffer into which the normalized path will be written.
2588  *	\param bufferSize The size of \a buffer.
2589  *	\param kernel \c true, if the IO context of the kernel shall be used,
2590  *		   otherwise that of the team this thread belongs to. Only relevant,
2591  *		   if the path is relative (to get the CWD).
2592  *	\return \c FSSH_B_OK if everything went fine, another error code otherwise.
2593  */
2594 
2595 fssh_status_t
2596 vfs_normalize_path(const char *path, char *buffer, fssh_size_t bufferSize,
2597 	bool kernel)
2598 {
2599 	if (!path || !buffer || bufferSize < 1)
2600 		return FSSH_B_BAD_VALUE;
2601 
2602 	TRACE(("vfs_normalize_path(`%s')\n", path));
2603 
2604 	// copy the supplied path to the stack, so it can be modified
2605 	KPath mutablePathBuffer(FSSH_B_PATH_NAME_LENGTH + 1);
2606 	if (mutablePathBuffer.InitCheck() != FSSH_B_OK)
2607 		return FSSH_B_NO_MEMORY;
2608 
2609 	char *mutablePath = mutablePathBuffer.LockBuffer();
2610 	if (fssh_strlcpy(mutablePath, path, FSSH_B_PATH_NAME_LENGTH) >= FSSH_B_PATH_NAME_LENGTH)
2611 		return FSSH_B_NAME_TOO_LONG;
2612 
2613 	// get the dir vnode and the leaf name
2614 	struct vnode *dirNode;
2615 	char leaf[FSSH_B_FILE_NAME_LENGTH];
2616 	fssh_status_t error = path_to_dir_vnode(mutablePath, &dirNode, leaf, kernel);
2617 	if (error != FSSH_B_OK) {
2618 		TRACE(("vfs_normalize_path(): failed to get dir vnode: %s\n", strerror(error)));
2619 		return error;
2620 	}
2621 
2622 	// if the leaf is "." or "..", we directly get the correct directory
2623 	// vnode and ignore the leaf later
2624 	bool isDir = (fssh_strcmp(leaf, ".") == 0 || fssh_strcmp(leaf, "..") == 0);
2625 	if (isDir)
2626 		error = vnode_path_to_vnode(dirNode, leaf, false, 0, &dirNode, NULL);
2627 	if (error != FSSH_B_OK) {
2628 		TRACE(("vfs_normalize_path(): failed to get dir vnode for \".\" or \"..\": %s\n",
2629 			strerror(error)));
2630 		return error;
2631 	}
2632 
2633 	// get the directory path
2634 	error = dir_vnode_to_path(dirNode, buffer, bufferSize);
2635 	put_vnode(dirNode);
2636 	if (error < FSSH_B_OK) {
2637 		TRACE(("vfs_normalize_path(): failed to get dir path: %s\n", strerror(error)));
2638 		return error;
2639 	}
2640 
2641 	// append the leaf name
2642 	if (!isDir) {
2643 		// insert a directory separator only if this is not the file system root
2644 		if ((fssh_strcmp(buffer, "/") != 0
2645 			 && fssh_strlcat(buffer, "/", bufferSize) >= bufferSize)
2646 			|| fssh_strlcat(buffer, leaf, bufferSize) >= bufferSize) {
2647 			return FSSH_B_NAME_TOO_LONG;
2648 		}
2649 	}
2650 
2651 	TRACE(("vfs_normalize_path() -> `%s'\n", buffer));
2652 	return FSSH_B_OK;
2653 }
2654 
2655 
2656 void
2657 vfs_put_vnode(void *_vnode)
2658 {
2659 	put_vnode((struct vnode *)_vnode);
2660 }
2661 
2662 
2663 fssh_status_t
2664 vfs_get_cwd(fssh_mount_id *_mountID, fssh_vnode_id *_vnodeID)
2665 {
2666 	// Get current working directory from io context
2667 	struct io_context *context = get_current_io_context(false);
2668 	fssh_status_t status = FSSH_B_OK;
2669 
2670 	fssh_mutex_lock(&context->io_mutex);
2671 
2672 	if (context->cwd != NULL) {
2673 		*_mountID = context->cwd->device;
2674 		*_vnodeID = context->cwd->id;
2675 	} else
2676 		status = FSSH_B_ERROR;
2677 
2678 	fssh_mutex_unlock(&context->io_mutex);
2679 	return status;
2680 }
2681 
2682 
2683 fssh_status_t
2684 vfs_get_file_map(void *_vnode, fssh_off_t offset, fssh_size_t size,
2685 	fssh_file_io_vec *vecs, fssh_size_t *_count)
2686 {
2687 	struct vnode *vnode = (struct vnode *)_vnode;
2688 
2689 	FUNCTION(("vfs_get_file_map: vnode %p, vecs %p, offset %lld, size = %u\n", vnode, vecs, offset, (unsigned)size));
2690 
2691 	return FS_CALL(vnode, get_file_map, offset, size, vecs, _count);
2692 }
2693 
2694 
2695 fssh_status_t
2696 vfs_stat_vnode(void *_vnode, struct fssh_stat *stat)
2697 {
2698 	struct vnode *vnode = (struct vnode *)_vnode;
2699 
2700 	fssh_status_t status = FS_CALL(vnode, read_stat, stat);
2701 
2702 	// fill in the st_dev and st_ino fields
2703 	if (status == FSSH_B_OK) {
2704 		stat->fssh_st_dev = vnode->device;
2705 		stat->fssh_st_ino = vnode->id;
2706 	}
2707 
2708 	return status;
2709 }
2710 
2711 
2712 fssh_status_t
2713 vfs_get_vnode_name(void *_vnode, char *name, fssh_size_t nameSize)
2714 {
2715 	return get_vnode_name((struct vnode *)_vnode, NULL, name, nameSize);
2716 }
2717 
2718 
2719 fssh_status_t
2720 vfs_entry_ref_to_path(fssh_dev_t device, fssh_ino_t inode, const char *leaf,
2721 	bool kernel, char *path, fssh_size_t pathLength)
2722 {
2723 	struct vnode *vnode;
2724 	fssh_status_t status;
2725 
2726 	// filter invalid leaf names
2727 	if (leaf != NULL && (leaf[0] == '\0' || fssh_strchr(leaf, '/')))
2728 		return FSSH_B_BAD_VALUE;
2729 
2730 	// get the vnode matching the dir's node_ref
2731 	if (leaf && (fssh_strcmp(leaf, ".") == 0 || fssh_strcmp(leaf, "..") == 0)) {
2732 		// special cases "." and "..": we can directly get the vnode of the
2733 		// referenced directory
2734 		status = entry_ref_to_vnode(device, inode, leaf, &vnode);
2735 		leaf = NULL;
2736 	} else
2737 		status = get_vnode(device, inode, &vnode, false);
2738 	if (status < FSSH_B_OK)
2739 		return status;
2740 
2741 	// get the directory path
2742 	status = dir_vnode_to_path(vnode, path, pathLength);
2743 	put_vnode(vnode);
2744 		// we don't need the vnode anymore
2745 	if (status < FSSH_B_OK)
2746 		return status;
2747 
2748 	// append the leaf name
2749 	if (leaf) {
2750 		// insert a directory separator if this is not the file system root
2751 		if ((fssh_strcmp(path, "/") && fssh_strlcat(path, "/", pathLength)
2752 				>= pathLength)
2753 			|| fssh_strlcat(path, leaf, pathLength) >= pathLength) {
2754 			return FSSH_B_NAME_TOO_LONG;
2755 		}
2756 	}
2757 
2758 	return FSSH_B_OK;
2759 }
2760 
2761 
2762 /**	If the given descriptor locked its vnode, that lock will be released.
2763  */
2764 
2765 void
2766 vfs_unlock_vnode_if_locked(struct file_descriptor *descriptor)
2767 {
2768 	struct vnode *vnode = fd_vnode(descriptor);
2769 
2770 	if (vnode != NULL && vnode->mandatory_locked_by == descriptor)
2771 		vnode->mandatory_locked_by = NULL;
2772 }
2773 
2774 
2775 /**	Closes all file descriptors of the specified I/O context that
2776  *	don't have the FSSH_O_CLOEXEC flag set.
2777  */
2778 
2779 void
2780 vfs_exec_io_context(void *_context)
2781 {
2782 	struct io_context *context = (struct io_context *)_context;
2783 	uint32_t i;
2784 
2785 	for (i = 0; i < context->table_size; i++) {
2786 		fssh_mutex_lock(&context->io_mutex);
2787 
2788 		struct file_descriptor *descriptor = context->fds[i];
2789 		bool remove = false;
2790 
2791 		if (descriptor != NULL && fd_close_on_exec(context, i)) {
2792 			context->fds[i] = NULL;
2793 			context->num_used_fds--;
2794 
2795 			remove = true;
2796 		}
2797 
2798 		fssh_mutex_unlock(&context->io_mutex);
2799 
2800 		if (remove) {
2801 			close_fd(descriptor);
2802 			put_fd(descriptor);
2803 		}
2804 	}
2805 }
2806 
2807 
2808 /** Sets up a new io_control structure, and inherits the properties
2809  *	of the parent io_control if it is given.
2810  */
2811 
2812 void *
2813 vfs_new_io_context(void *_parentContext)
2814 {
2815 	fssh_size_t tableSize;
2816 	struct io_context *context;
2817 	struct io_context *parentContext;
2818 
2819 	context = (io_context *)malloc(sizeof(struct io_context));
2820 	if (context == NULL)
2821 		return NULL;
2822 
2823 	fssh_memset(context, 0, sizeof(struct io_context));
2824 
2825 	parentContext = (struct io_context *)_parentContext;
2826 	if (parentContext)
2827 		tableSize = parentContext->table_size;
2828 	else
2829 		tableSize = DEFAULT_FD_TABLE_SIZE;
2830 
2831 	// allocate space for FDs and their close-on-exec flag
2832 	context->fds = (file_descriptor **)malloc(sizeof(struct file_descriptor *) * tableSize
2833 		+ (tableSize + 7) / 8);
2834 	if (context->fds == NULL) {
2835 		free(context);
2836 		return NULL;
2837 	}
2838 
2839 	fssh_memset(context->fds, 0, sizeof(struct file_descriptor *) * tableSize
2840 		+ (tableSize + 7) / 8);
2841 	context->fds_close_on_exec = (uint8_t *)(context->fds + tableSize);
2842 
2843 	fssh_mutex_init(&context->io_mutex, "I/O context");
2844 
2845 	// Copy all parent files which don't have the FSSH_O_CLOEXEC flag set
2846 
2847 	if (parentContext) {
2848 		fssh_size_t i;
2849 
2850 		fssh_mutex_lock(&parentContext->io_mutex);
2851 
2852 		context->cwd = parentContext->cwd;
2853 		if (context->cwd)
2854 			inc_vnode_ref_count(context->cwd);
2855 
2856 		for (i = 0; i < tableSize; i++) {
2857 			struct file_descriptor *descriptor = parentContext->fds[i];
2858 
2859 			if (descriptor != NULL && !fd_close_on_exec(parentContext, i)) {
2860 				context->fds[i] = descriptor;
2861 				context->num_used_fds++;
2862 				fssh_atomic_add(&descriptor->ref_count, 1);
2863 				fssh_atomic_add(&descriptor->open_count, 1);
2864 			}
2865 		}
2866 
2867 		fssh_mutex_unlock(&parentContext->io_mutex);
2868 	} else {
2869 		context->cwd = sRoot;
2870 
2871 		if (context->cwd)
2872 			inc_vnode_ref_count(context->cwd);
2873 	}
2874 
2875 	context->table_size = tableSize;
2876 
2877 	return context;
2878 }
2879 
2880 
2881 fssh_status_t
2882 vfs_free_io_context(void *_ioContext)
2883 {
2884 	struct io_context *context = (struct io_context *)_ioContext;
2885 	uint32_t i;
2886 
2887 	if (context->cwd)
2888 		dec_vnode_ref_count(context->cwd, false);
2889 
2890 	fssh_mutex_lock(&context->io_mutex);
2891 
2892 	for (i = 0; i < context->table_size; i++) {
2893 		if (struct file_descriptor *descriptor = context->fds[i]) {
2894 			close_fd(descriptor);
2895 			put_fd(descriptor);
2896 		}
2897 	}
2898 
2899 	fssh_mutex_destroy(&context->io_mutex);
2900 
2901 	free(context->fds);
2902 	free(context);
2903 
2904 	return FSSH_B_OK;
2905 }
2906 
2907 
2908 fssh_status_t
2909 vfs_init(kernel_args *args)
2910 {
2911 	sVnodeTable = hash_init(VNODE_HASH_TABLE_SIZE, fssh_offsetof(struct vnode, next),
2912 		&vnode_compare, &vnode_hash);
2913 	if (sVnodeTable == NULL)
2914 		fssh_panic("vfs_init: error creating vnode hash table\n");
2915 
2916 	list_init_etc(&sUnusedVnodeList, fssh_offsetof(struct vnode, unused_link));
2917 
2918 	sMountsTable = hash_init(MOUNTS_HASH_TABLE_SIZE, fssh_offsetof(struct fs_mount, next),
2919 		&mount_compare, &mount_hash);
2920 	if (sMountsTable == NULL)
2921 		fssh_panic("vfs_init: error creating mounts hash table\n");
2922 
2923 	sRoot = NULL;
2924 
2925 	fssh_mutex_init(&sFileSystemsMutex, "vfs_lock");
2926 	fssh_recursive_lock_init(&sMountOpLock, "vfs_mount_op_lock");
2927 	fssh_mutex_init(&sMountMutex, "vfs_mount_lock");
2928 	fssh_mutex_init(&sVnodeCoveredByMutex, "vfs_vnode_covered_by_lock");
2929 	fssh_mutex_init(&sVnodeMutex, "vfs_vnode_lock");
2930 
2931 	if (block_cache_init() != FSSH_B_OK)
2932 		return FSSH_B_ERROR;
2933 
2934 	return file_cache_init();
2935 }
2936 
2937 
2938 //	#pragma mark -
2939 //	The filetype-dependent implementations (fd_ops + open/create/rename/remove, ...)
2940 
2941 
2942 /** Calls fs_open() on the given vnode and returns a new
2943  *	file descriptor for it
2944  */
2945 
2946 static int
2947 create_vnode(struct vnode *directory, const char *name, int openMode, int perms, bool kernel)
2948 {
2949 	struct vnode *vnode;
2950 	void *cookie;
2951 	fssh_vnode_id newID;
2952 	int status;
2953 
2954 	if (!HAS_FS_CALL(directory, create))
2955 		return FSSH_EROFS;
2956 
2957 	status = FS_CALL(directory, create, name, openMode, perms, &cookie, &newID);
2958 	if (status < FSSH_B_OK)
2959 		return status;
2960 
2961 	fssh_mutex_lock(&sVnodeMutex);
2962 	vnode = lookup_vnode(directory->device, newID);
2963 	fssh_mutex_unlock(&sVnodeMutex);
2964 
2965 	if (vnode == NULL) {
2966 		fssh_dprintf("vfs: fs_create() returned success but there is no vnode!");
2967 		return FSSH_EINVAL;
2968 	}
2969 
2970 	if ((status = get_new_fd(FDTYPE_FILE, NULL, vnode, cookie, openMode, kernel)) >= 0)
2971 		return status;
2972 
2973 	// something went wrong, clean up
2974 
2975 	FS_CALL(vnode, close, cookie);
2976 	FS_CALL(vnode, free_cookie, cookie);
2977 	put_vnode(vnode);
2978 
2979 	FS_CALL(directory, unlink, name);
2980 
2981 	return status;
2982 }
2983 
2984 
2985 /** Calls fs_open() on the given vnode and returns a new
2986  *	file descriptor for it
2987  */
2988 
2989 static int
2990 open_vnode(struct vnode *vnode, int openMode, bool kernel)
2991 {
2992 	void *cookie;
2993 	int status;
2994 
2995 	status = FS_CALL(vnode, open, openMode, &cookie);
2996 	if (status < 0)
2997 		return status;
2998 
2999 	status = get_new_fd(FDTYPE_FILE, NULL, vnode, cookie, openMode, kernel);
3000 	if (status < 0) {
3001 		FS_CALL(vnode, close, cookie);
3002 		FS_CALL(vnode, free_cookie, cookie);
3003 	}
3004 	return status;
3005 }
3006 
3007 
3008 /** Calls fs open_dir() on the given vnode and returns a new
3009  *	file descriptor for it
3010  */
3011 
3012 static int
3013 open_dir_vnode(struct vnode *vnode, bool kernel)
3014 {
3015 	void *cookie;
3016 	int status;
3017 
3018 	status = FS_CALL(vnode, open_dir, &cookie);
3019 	if (status < FSSH_B_OK)
3020 		return status;
3021 
3022 	// file is opened, create a fd
3023 	status = get_new_fd(FDTYPE_DIR, NULL, vnode, cookie, 0, kernel);
3024 	if (status >= 0)
3025 		return status;
3026 
3027 	FS_CALL(vnode, close_dir, cookie);
3028 	FS_CALL(vnode, free_dir_cookie, cookie);
3029 
3030 	return status;
3031 }
3032 
3033 
3034 /** Calls fs open_attr_dir() on the given vnode and returns a new
3035  *	file descriptor for it.
3036  *	Used by attr_dir_open(), and attr_dir_open_fd().
3037  */
3038 
3039 static int
3040 open_attr_dir_vnode(struct vnode *vnode, bool kernel)
3041 {
3042 	void *cookie;
3043 	int status;
3044 
3045 	if (!HAS_FS_CALL(vnode, open_attr_dir))
3046 		return FSSH_EOPNOTSUPP;
3047 
3048 	status = FS_CALL(vnode, open_attr_dir, &cookie);
3049 	if (status < 0)
3050 		return status;
3051 
3052 	// file is opened, create a fd
3053 	status = get_new_fd(FDTYPE_ATTR_DIR, NULL, vnode, cookie, 0, kernel);
3054 	if (status >= 0)
3055 		return status;
3056 
3057 	FS_CALL(vnode, close_attr_dir, cookie);
3058 	FS_CALL(vnode, free_attr_dir_cookie, cookie);
3059 
3060 	return status;
3061 }
3062 
3063 
3064 static int
3065 file_create_entry_ref(fssh_mount_id mountID, fssh_vnode_id directoryID, const char *name, int openMode, int perms, bool kernel)
3066 {
3067 	struct vnode *directory;
3068 	int status;
3069 
3070 	FUNCTION(("file_create_entry_ref: name = '%s', omode %x, perms %d, kernel %d\n", name, openMode, perms, kernel));
3071 
3072 	// get directory to put the new file in
3073 	status = get_vnode(mountID, directoryID, &directory, false);
3074 	if (status < FSSH_B_OK)
3075 		return status;
3076 
3077 	status = create_vnode(directory, name, openMode, perms, kernel);
3078 	put_vnode(directory);
3079 
3080 	return status;
3081 }
3082 
3083 
3084 static int
3085 file_create(int fd, char *path, int openMode, int perms, bool kernel)
3086 {
3087 	char name[FSSH_B_FILE_NAME_LENGTH];
3088 	struct vnode *directory;
3089 	int status;
3090 
3091 	FUNCTION(("file_create: path '%s', omode %x, perms %d, kernel %d\n", path, openMode, perms, kernel));
3092 
3093 	// get directory to put the new file in
3094 	status = fd_and_path_to_dir_vnode(fd, path, &directory, name, kernel);
3095 	if (status < 0)
3096 		return status;
3097 
3098 	status = create_vnode(directory, name, openMode, perms, kernel);
3099 
3100 	put_vnode(directory);
3101 	return status;
3102 }
3103 
3104 
3105 static int
3106 file_open_entry_ref(fssh_mount_id mountID, fssh_vnode_id directoryID, const char *name, int openMode, bool kernel)
3107 {
3108 	struct vnode *vnode;
3109 	int status;
3110 
3111 	if (name == NULL || *name == '\0')
3112 		return FSSH_B_BAD_VALUE;
3113 
3114 	FUNCTION(("file_open_entry_ref(ref = (%ld, %Ld, %s), openMode = %d)\n",
3115 		mountID, directoryID, name, openMode));
3116 
3117 	// get the vnode matching the entry_ref
3118 	status = entry_ref_to_vnode(mountID, directoryID, name, &vnode);
3119 	if (status < FSSH_B_OK)
3120 		return status;
3121 
3122 	status = open_vnode(vnode, openMode, kernel);
3123 	if (status < FSSH_B_OK)
3124 		put_vnode(vnode);
3125 
3126 	return status;
3127 }
3128 
3129 
3130 static int
3131 file_open(int fd, char *path, int openMode, bool kernel)
3132 {
3133 	int status = FSSH_B_OK;
3134 	bool traverse = ((openMode & FSSH_O_NOTRAVERSE) == 0);
3135 
3136 	FUNCTION(("file_open: fd: %d, entry path = '%s', omode %d, kernel %d\n",
3137 		fd, path, openMode, kernel));
3138 
3139 	// get the vnode matching the vnode + path combination
3140 	struct vnode *vnode = NULL;
3141 	fssh_vnode_id parentID;
3142 	status = fd_and_path_to_vnode(fd, path, traverse, &vnode, &parentID, kernel);
3143 	if (status != FSSH_B_OK)
3144 		return status;
3145 
3146 	// open the vnode
3147 	status = open_vnode(vnode, openMode, kernel);
3148 	// put only on error -- otherwise our reference was transferred to the FD
3149 	if (status < FSSH_B_OK)
3150 		put_vnode(vnode);
3151 
3152 	return status;
3153 }
3154 
3155 
3156 static fssh_status_t
3157 file_close(struct file_descriptor *descriptor)
3158 {
3159 	struct vnode *vnode = descriptor->u.vnode;
3160 	fssh_status_t status = FSSH_B_OK;
3161 
3162 	FUNCTION(("file_close(descriptor = %p)\n", descriptor));
3163 
3164 	if (HAS_FS_CALL(vnode, close))
3165 		status = FS_CALL(vnode, close, descriptor->cookie);
3166 
3167 	return status;
3168 }
3169 
3170 
3171 static void
3172 file_free_fd(struct file_descriptor *descriptor)
3173 {
3174 	struct vnode *vnode = descriptor->u.vnode;
3175 
3176 	if (vnode != NULL) {
3177 		FS_CALL(vnode, free_cookie, descriptor->cookie);
3178 		put_vnode(vnode);
3179 	}
3180 }
3181 
3182 
3183 static fssh_status_t
3184 file_read(struct file_descriptor *descriptor, fssh_off_t pos, void *buffer, fssh_size_t *length)
3185 {
3186 	struct vnode *vnode = descriptor->u.vnode;
3187 
3188 	FUNCTION(("file_read: buf %p, pos %Ld, len %p = %ld\n", buffer, pos, length, *length));
3189 	return FS_CALL(vnode, read, descriptor->cookie, pos, buffer, length);
3190 }
3191 
3192 
3193 static fssh_status_t
3194 file_write(struct file_descriptor *descriptor, fssh_off_t pos, const void *buffer, fssh_size_t *length)
3195 {
3196 	struct vnode *vnode = descriptor->u.vnode;
3197 
3198 	FUNCTION(("file_write: buf %p, pos %Ld, len %p\n", buffer, pos, length));
3199 	return FS_CALL(vnode, write, descriptor->cookie, pos, buffer, length);
3200 }
3201 
3202 
3203 static fssh_off_t
3204 file_seek(struct file_descriptor *descriptor, fssh_off_t pos, int seekType)
3205 {
3206 	fssh_off_t offset;
3207 
3208 	FUNCTION(("file_seek(pos = %Ld, seekType = %d)\n", pos, seekType));
3209 	// ToDo: seek should fail for pipes and FIFOs...
3210 
3211 	switch (seekType) {
3212 		case FSSH_SEEK_SET:
3213 			offset = 0;
3214 			break;
3215 		case FSSH_SEEK_CUR:
3216 			offset = descriptor->pos;
3217 			break;
3218 		case FSSH_SEEK_END:
3219 		{
3220 			struct vnode *vnode = descriptor->u.vnode;
3221 			struct fssh_stat stat;
3222 			fssh_status_t status;
3223 
3224 			if (!HAS_FS_CALL(vnode, read_stat))
3225 				return FSSH_EOPNOTSUPP;
3226 
3227 			status = FS_CALL(vnode, read_stat, &stat);
3228 			if (status < FSSH_B_OK)
3229 				return status;
3230 
3231 			offset = stat.fssh_st_size;
3232 			break;
3233 		}
3234 		default:
3235 			return FSSH_B_BAD_VALUE;
3236 	}
3237 
3238 	// assumes fssh_off_t is 64 bits wide
3239 	if (offset > 0 && LLONG_MAX - offset < pos)
3240 		return FSSH_EOVERFLOW;
3241 
3242 	pos += offset;
3243 	if (pos < 0)
3244 		return FSSH_B_BAD_VALUE;
3245 
3246 	return descriptor->pos = pos;
3247 }
3248 
3249 
3250 static fssh_status_t
3251 dir_create_entry_ref(fssh_mount_id mountID, fssh_vnode_id parentID, const char *name, int perms, bool kernel)
3252 {
3253 	struct vnode *vnode;
3254 	fssh_status_t status;
3255 
3256 	if (name == NULL || *name == '\0')
3257 		return FSSH_B_BAD_VALUE;
3258 
3259 	FUNCTION(("dir_create_entry_ref(dev = %ld, ino = %Ld, name = '%s', perms = %d)\n", mountID, parentID, name, perms));
3260 
3261 	status = get_vnode(mountID, parentID, &vnode, kernel);
3262 	if (status < FSSH_B_OK)
3263 		return status;
3264 
3265 	if (HAS_FS_CALL(vnode, create_dir))
3266 		status = FS_CALL(vnode, create_dir, name, perms);
3267 	else
3268 		status = FSSH_EROFS;
3269 
3270 	put_vnode(vnode);
3271 	return status;
3272 }
3273 
3274 
3275 static fssh_status_t
3276 dir_create(int fd, char *path, int perms, bool kernel)
3277 {
3278 	char filename[FSSH_B_FILE_NAME_LENGTH];
3279 	struct vnode *vnode;
3280 	fssh_status_t status;
3281 
3282 	FUNCTION(("dir_create: path '%s', perms %d, kernel %d\n", path, perms, kernel));
3283 
3284 	status = fd_and_path_to_dir_vnode(fd, path, &vnode, filename, kernel);
3285 	if (status < 0)
3286 		return status;
3287 
3288 	if (HAS_FS_CALL(vnode, create_dir))
3289 		status = FS_CALL(vnode, create_dir, filename, perms);
3290 	else
3291 		status = FSSH_EROFS;
3292 
3293 	put_vnode(vnode);
3294 	return status;
3295 }
3296 
3297 
3298 static int
3299 dir_open_entry_ref(fssh_mount_id mountID, fssh_vnode_id parentID, const char *name, bool kernel)
3300 {
3301 	struct vnode *vnode;
3302 	int status;
3303 
3304 	FUNCTION(("dir_open_entry_ref()\n"));
3305 
3306 	if (name && *name == '\0')
3307 		return FSSH_B_BAD_VALUE;
3308 
3309 	// get the vnode matching the entry_ref/node_ref
3310 	if (name)
3311 		status = entry_ref_to_vnode(mountID, parentID, name, &vnode);
3312 	else
3313 		status = get_vnode(mountID, parentID, &vnode, false);
3314 	if (status < FSSH_B_OK)
3315 		return status;
3316 
3317 	status = open_dir_vnode(vnode, kernel);
3318 	if (status < FSSH_B_OK)
3319 		put_vnode(vnode);
3320 
3321 	return status;
3322 }
3323 
3324 
3325 static int
3326 dir_open(int fd, char *path, bool kernel)
3327 {
3328 	int status = FSSH_B_OK;
3329 
3330 	FUNCTION(("dir_open: fd: %d, entry path = '%s', kernel %d\n", fd, path, kernel));
3331 
3332 	// get the vnode matching the vnode + path combination
3333 	struct vnode *vnode = NULL;
3334 	fssh_vnode_id parentID;
3335 	status = fd_and_path_to_vnode(fd, path, true, &vnode, &parentID, kernel);
3336 	if (status != FSSH_B_OK)
3337 		return status;
3338 
3339 	// open the dir
3340 	status = open_dir_vnode(vnode, kernel);
3341 	if (status < FSSH_B_OK)
3342 		put_vnode(vnode);
3343 
3344 	return status;
3345 }
3346 
3347 
3348 static fssh_status_t
3349 dir_close(struct file_descriptor *descriptor)
3350 {
3351 	struct vnode *vnode = descriptor->u.vnode;
3352 
3353 	FUNCTION(("dir_close(descriptor = %p)\n", descriptor));
3354 
3355 	if (HAS_FS_CALL(vnode, close_dir))
3356 		return FS_CALL(vnode, close_dir, descriptor->cookie);
3357 
3358 	return FSSH_B_OK;
3359 }
3360 
3361 
3362 static void
3363 dir_free_fd(struct file_descriptor *descriptor)
3364 {
3365 	struct vnode *vnode = descriptor->u.vnode;
3366 
3367 	if (vnode != NULL) {
3368 		FS_CALL(vnode, free_dir_cookie, descriptor->cookie);
3369 		put_vnode(vnode);
3370 	}
3371 }
3372 
3373 
3374 static fssh_status_t
3375 dir_read(struct file_descriptor *descriptor, struct fssh_dirent *buffer,
3376 	fssh_size_t bufferSize, uint32_t *_count)
3377 {
3378 	return dir_read(descriptor->u.vnode, descriptor->cookie, buffer, bufferSize, _count);
3379 }
3380 
3381 
3382 static void
3383 fix_dirent(struct vnode *parent, struct fssh_dirent *entry)
3384 {
3385 	// set d_pdev and d_pino
3386 	entry->d_pdev = parent->device;
3387 	entry->d_pino = parent->id;
3388 
3389 	// If this is the ".." entry and the directory is the root of a FS,
3390 	// we need to replace d_dev and d_ino with the actual values.
3391 	if (fssh_strcmp(entry->d_name, "..") == 0
3392 		&& parent->mount->root_vnode == parent
3393 		&& parent->mount->covers_vnode) {
3394 		inc_vnode_ref_count(parent);
3395 			// vnode_path_to_vnode() puts the node
3396 
3397 		// ".." is guaranteed to to be clobbered by this call
3398 		struct vnode *vnode;
3399 		fssh_status_t status = vnode_path_to_vnode(parent, (char*)"..", false,
3400 			0, &vnode, NULL);
3401 
3402 		if (status == FSSH_B_OK) {
3403 			entry->d_dev = vnode->device;
3404 			entry->d_ino = vnode->id;
3405 		}
3406 	} else {
3407 		// resolve mount points
3408 		struct vnode *vnode = NULL;
3409 		fssh_status_t status = get_vnode(entry->d_dev, entry->d_ino, &vnode, false);
3410 		if (status != FSSH_B_OK)
3411 			return;
3412 
3413 		fssh_mutex_lock(&sVnodeCoveredByMutex);
3414 		if (vnode->covered_by) {
3415 			entry->d_dev = vnode->covered_by->device;
3416 			entry->d_ino = vnode->covered_by->id;
3417 		}
3418 		fssh_mutex_unlock(&sVnodeCoveredByMutex);
3419 
3420 		put_vnode(vnode);
3421 	}
3422 }
3423 
3424 
3425 static fssh_status_t
3426 dir_read(struct vnode *vnode, void *cookie, struct fssh_dirent *buffer,
3427 	fssh_size_t bufferSize, uint32_t *_count)
3428 {
3429 	if (!HAS_FS_CALL(vnode, read_dir))
3430 		return FSSH_EOPNOTSUPP;
3431 
3432 	fssh_status_t error = FS_CALL(vnode, read_dir,cookie,buffer,bufferSize,_count);
3433 	if (error != FSSH_B_OK)
3434 		return error;
3435 
3436 	// we need to adjust the read dirents
3437 	if (*_count > 0) {
3438 		// XXX: Currently reading only one dirent is supported. Make this a loop!
3439 		fix_dirent(vnode, buffer);
3440 	}
3441 
3442 	return error;
3443 }
3444 
3445 
3446 static fssh_status_t
3447 dir_rewind(struct file_descriptor *descriptor)
3448 {
3449 	struct vnode *vnode = descriptor->u.vnode;
3450 
3451 	if (HAS_FS_CALL(vnode, rewind_dir))
3452 		return FS_CALL(vnode, rewind_dir,descriptor->cookie);
3453 
3454 	return FSSH_EOPNOTSUPP;
3455 }
3456 
3457 
3458 static fssh_status_t
3459 dir_remove(int fd, char *path, bool kernel)
3460 {
3461 	char name[FSSH_B_FILE_NAME_LENGTH];
3462 	struct vnode *directory;
3463 	fssh_status_t status;
3464 
3465 	if (path != NULL) {
3466 		// we need to make sure our path name doesn't stop with "/", ".", or ".."
3467 		char *lastSlash = fssh_strrchr(path, '/');
3468 		if (lastSlash != NULL) {
3469 			char *leaf = lastSlash + 1;
3470 			if (!fssh_strcmp(leaf, ".."))
3471 				return FSSH_B_NOT_ALLOWED;
3472 
3473 			// omit multiple slashes
3474 			while (lastSlash > path && lastSlash[-1] == '/') {
3475 				lastSlash--;
3476 			}
3477 
3478 			if (!leaf[0]
3479 				|| !fssh_strcmp(leaf, ".")) {
3480 				// "name/" -> "name", or "name/." -> "name"
3481 				lastSlash[0] = '\0';
3482 			}
3483 		} else if (!fssh_strcmp(path, ".."))
3484 			return FSSH_B_NOT_ALLOWED;
3485 	}
3486 
3487 	status = fd_and_path_to_dir_vnode(fd, path, &directory, name, kernel);
3488 	if (status < FSSH_B_OK)
3489 		return status;
3490 
3491 	if (HAS_FS_CALL(directory, remove_dir)) {
3492 		status = FS_CALL(directory, remove_dir, name);
3493 	} else
3494 		status = FSSH_EROFS;
3495 
3496 	put_vnode(directory);
3497 	return status;
3498 }
3499 
3500 
3501 static fssh_status_t
3502 common_ioctl(struct file_descriptor *descriptor, uint32_t op, void *buffer,
3503 	fssh_size_t length)
3504 {
3505 	struct vnode *vnode = descriptor->u.vnode;
3506 
3507 	if (HAS_FS_CALL(vnode, ioctl)) {
3508 		return FS_CALL(vnode, ioctl,
3509 			descriptor->cookie, op, buffer, length);
3510 	}
3511 
3512 	return FSSH_EOPNOTSUPP;
3513 }
3514 
3515 
3516 static fssh_status_t
3517 common_fcntl(int fd, int op, uint32_t argument, bool kernel)
3518 {
3519 	struct file_descriptor *descriptor;
3520 	struct vnode *vnode;
3521 	fssh_status_t status;
3522 
3523 	FUNCTION(("common_fcntl(fd = %d, op = %d, argument = %lx, %s)\n",
3524 		fd, op, argument, kernel ? "kernel" : "user"));
3525 
3526 	descriptor = get_fd_and_vnode(fd, &vnode, kernel);
3527 	if (descriptor == NULL)
3528 		return FSSH_B_FILE_ERROR;
3529 
3530 	switch (op) {
3531 		case FSSH_F_SETFD:
3532 		{
3533 			struct io_context *context = get_current_io_context(kernel);
3534 			// Set file descriptor flags
3535 
3536 			// FSSH_O_CLOEXEC is the only flag available at this time
3537 			fssh_mutex_lock(&context->io_mutex);
3538 			fd_set_close_on_exec(context, fd, argument == FSSH_FD_CLOEXEC);
3539 			fssh_mutex_unlock(&context->io_mutex);
3540 
3541 			status = FSSH_B_OK;
3542 			break;
3543 		}
3544 
3545 		case FSSH_F_GETFD:
3546 		{
3547 			struct io_context *context = get_current_io_context(kernel);
3548 
3549 			// Get file descriptor flags
3550 			fssh_mutex_lock(&context->io_mutex);
3551 			status = fd_close_on_exec(context, fd) ? FSSH_FD_CLOEXEC : 0;
3552 			fssh_mutex_unlock(&context->io_mutex);
3553 			break;
3554 		}
3555 
3556 		case FSSH_F_SETFL:
3557 			// Set file descriptor open mode
3558 			if (HAS_FS_CALL(vnode, set_flags)) {
3559 				// we only accept changes to FSSH_O_APPEND and FSSH_O_NONBLOCK
3560 				argument &= FSSH_O_APPEND | FSSH_O_NONBLOCK;
3561 
3562 				status = FS_CALL(vnode, set_flags, descriptor->cookie, (int)argument);
3563 				if (status == FSSH_B_OK) {
3564 					// update this descriptor's open_mode field
3565 					descriptor->open_mode = (descriptor->open_mode & ~(FSSH_O_APPEND | FSSH_O_NONBLOCK))
3566 						| argument;
3567 				}
3568 			} else
3569 				status = FSSH_EOPNOTSUPP;
3570 			break;
3571 
3572 		case FSSH_F_GETFL:
3573 			// Get file descriptor open mode
3574 			status = descriptor->open_mode;
3575 			break;
3576 
3577 		case FSSH_F_DUPFD:
3578 		{
3579 			struct io_context *context = get_current_io_context(kernel);
3580 
3581 			status = new_fd_etc(context, descriptor, (int)argument);
3582 			if (status >= 0) {
3583 				fssh_mutex_lock(&context->io_mutex);
3584 				fd_set_close_on_exec(context, fd, false);
3585 				fssh_mutex_unlock(&context->io_mutex);
3586 
3587 				fssh_atomic_add(&descriptor->ref_count, 1);
3588 			}
3589 			break;
3590 		}
3591 
3592 		case FSSH_F_GETLK:
3593 		case FSSH_F_SETLK:
3594 		case FSSH_F_SETLKW:
3595 			status = FSSH_B_BAD_VALUE;
3596 			break;
3597 
3598 		// ToDo: add support for more ops?
3599 
3600 		default:
3601 			status = FSSH_B_BAD_VALUE;
3602 	}
3603 
3604 	put_fd(descriptor);
3605 	return status;
3606 }
3607 
3608 
3609 static fssh_status_t
3610 common_sync(int fd, bool kernel)
3611 {
3612 	struct file_descriptor *descriptor;
3613 	struct vnode *vnode;
3614 	fssh_status_t status;
3615 
3616 	FUNCTION(("common_fsync: entry. fd %d kernel %d\n", fd, kernel));
3617 
3618 	descriptor = get_fd_and_vnode(fd, &vnode, kernel);
3619 	if (descriptor == NULL)
3620 		return FSSH_B_FILE_ERROR;
3621 
3622 	if (HAS_FS_CALL(vnode, fsync))
3623 		status = FS_CALL_NO_PARAMS(vnode, fsync);
3624 	else
3625 		status = FSSH_EOPNOTSUPP;
3626 
3627 	put_fd(descriptor);
3628 	return status;
3629 }
3630 
3631 
3632 static fssh_status_t
3633 common_lock_node(int fd, bool kernel)
3634 {
3635 	struct file_descriptor *descriptor;
3636 	struct vnode *vnode;
3637 
3638 	descriptor = get_fd_and_vnode(fd, &vnode, kernel);
3639 	if (descriptor == NULL)
3640 		return FSSH_B_FILE_ERROR;
3641 
3642 	fssh_status_t status = FSSH_B_OK;
3643 
3644 	// We need to set the locking atomically - someone
3645 	// else might set one at the same time
3646 #ifdef __x86_64__
3647 	if (fssh_atomic_test_and_set64((int64_t *)&vnode->mandatory_locked_by,
3648 			(fssh_addr_t)descriptor, 0) != 0)
3649 #else
3650 	if (fssh_atomic_test_and_set((int32_t *)&vnode->mandatory_locked_by,
3651 			(fssh_addr_t)descriptor, 0) != 0)
3652 #endif
3653 		status = FSSH_B_BUSY;
3654 
3655 	put_fd(descriptor);
3656 	return status;
3657 }
3658 
3659 
3660 static fssh_status_t
3661 common_unlock_node(int fd, bool kernel)
3662 {
3663 	struct file_descriptor *descriptor;
3664 	struct vnode *vnode;
3665 
3666 	descriptor = get_fd_and_vnode(fd, &vnode, kernel);
3667 	if (descriptor == NULL)
3668 		return FSSH_B_FILE_ERROR;
3669 
3670 	fssh_status_t status = FSSH_B_OK;
3671 
3672 	// We need to set the locking atomically - someone
3673 	// else might set one at the same time
3674 #ifdef __x86_64__
3675 	if (fssh_atomic_test_and_set64((int64_t *)&vnode->mandatory_locked_by,
3676 			0, (fssh_addr_t)descriptor) != (int64_t)descriptor)
3677 #else
3678 	if (fssh_atomic_test_and_set((int32_t *)&vnode->mandatory_locked_by,
3679 			0, (fssh_addr_t)descriptor) != (int32_t)descriptor)
3680 #endif
3681 		status = FSSH_B_BAD_VALUE;
3682 
3683 	put_fd(descriptor);
3684 	return status;
3685 }
3686 
3687 
3688 static fssh_status_t
3689 common_read_link(int fd, char *path, char *buffer, fssh_size_t *_bufferSize,
3690 	bool kernel)
3691 {
3692 	struct vnode *vnode;
3693 	fssh_status_t status;
3694 
3695 	status = fd_and_path_to_vnode(fd, path, false, &vnode, NULL, kernel);
3696 	if (status < FSSH_B_OK)
3697 		return status;
3698 
3699 	if (HAS_FS_CALL(vnode, read_symlink)) {
3700 		status = FS_CALL(vnode, read_symlink, buffer, _bufferSize);
3701 	} else
3702 		status = FSSH_B_BAD_VALUE;
3703 
3704 	put_vnode(vnode);
3705 	return status;
3706 }
3707 
3708 
3709 static fssh_status_t
3710 common_create_symlink(int fd, char *path, const char *toPath, int mode,
3711 	bool kernel)
3712 {
3713 	// path validity checks have to be in the calling function!
3714 	char name[FSSH_B_FILE_NAME_LENGTH];
3715 	struct vnode *vnode;
3716 	fssh_status_t status;
3717 
3718 	FUNCTION(("common_create_symlink(fd = %d, path = %s, toPath = %s, mode = %d, kernel = %d)\n", fd, path, toPath, mode, kernel));
3719 
3720 	status = fd_and_path_to_dir_vnode(fd, path, &vnode, name, kernel);
3721 	if (status < FSSH_B_OK)
3722 		return status;
3723 
3724 	if (HAS_FS_CALL(vnode, create_symlink))
3725 		status = FS_CALL(vnode, create_symlink, name, toPath, mode);
3726 	else
3727 		status = FSSH_EROFS;
3728 
3729 	put_vnode(vnode);
3730 
3731 	return status;
3732 }
3733 
3734 
3735 static fssh_status_t
3736 common_create_link(char *path, char *toPath, bool kernel)
3737 {
3738 	// path validity checks have to be in the calling function!
3739 	char name[FSSH_B_FILE_NAME_LENGTH];
3740 	struct vnode *directory, *vnode;
3741 	fssh_status_t status;
3742 
3743 	FUNCTION(("common_create_link(path = %s, toPath = %s, kernel = %d)\n", path, toPath, kernel));
3744 
3745 	status = path_to_dir_vnode(path, &directory, name, kernel);
3746 	if (status < FSSH_B_OK)
3747 		return status;
3748 
3749 	status = path_to_vnode(toPath, true, &vnode, NULL, kernel);
3750 	if (status < FSSH_B_OK)
3751 		goto err;
3752 
3753 	if (directory->mount != vnode->mount) {
3754 		status = FSSH_B_CROSS_DEVICE_LINK;
3755 		goto err1;
3756 	}
3757 
3758 	if (HAS_FS_CALL(directory, link))
3759 		status = FS_CALL(directory, link, name, vnode);
3760 	else
3761 		status = FSSH_EROFS;
3762 
3763 err1:
3764 	put_vnode(vnode);
3765 err:
3766 	put_vnode(directory);
3767 
3768 	return status;
3769 }
3770 
3771 
3772 static fssh_status_t
3773 common_unlink(int fd, char *path, bool kernel)
3774 {
3775 	char filename[FSSH_B_FILE_NAME_LENGTH];
3776 	struct vnode *vnode;
3777 	fssh_status_t status;
3778 
3779 	FUNCTION(("common_unlink: fd: %d, path '%s', kernel %d\n", fd, path, kernel));
3780 
3781 	status = fd_and_path_to_dir_vnode(fd, path, &vnode, filename, kernel);
3782 	if (status < 0)
3783 		return status;
3784 
3785 	if (HAS_FS_CALL(vnode, unlink))
3786 		status = FS_CALL(vnode, unlink, filename);
3787 	else
3788 		status = FSSH_EROFS;
3789 
3790 	put_vnode(vnode);
3791 
3792 	return status;
3793 }
3794 
3795 
3796 static fssh_status_t
3797 common_access(char *path, int mode, bool kernel)
3798 {
3799 	struct vnode *vnode;
3800 	fssh_status_t status;
3801 
3802 	status = path_to_vnode(path, true, &vnode, NULL, kernel);
3803 	if (status < FSSH_B_OK)
3804 		return status;
3805 
3806 	if (HAS_FS_CALL(vnode, access))
3807 		status = FS_CALL(vnode, access, mode);
3808 	else
3809 		status = FSSH_B_OK;
3810 
3811 	put_vnode(vnode);
3812 
3813 	return status;
3814 }
3815 
3816 
3817 static fssh_status_t
3818 common_rename(int fd, char *path, int newFD, char *newPath, bool kernel)
3819 {
3820 	struct vnode *fromVnode, *toVnode;
3821 	char fromName[FSSH_B_FILE_NAME_LENGTH];
3822 	char toName[FSSH_B_FILE_NAME_LENGTH];
3823 	fssh_status_t status;
3824 
3825 	FUNCTION(("common_rename(fd = %d, path = %s, newFD = %d, newPath = %s, kernel = %d)\n", fd, path, newFD, newPath, kernel));
3826 
3827 	status = fd_and_path_to_dir_vnode(fd, path, &fromVnode, fromName, kernel);
3828 	if (status < 0)
3829 		return status;
3830 
3831 	status = fd_and_path_to_dir_vnode(newFD, newPath, &toVnode, toName, kernel);
3832 	if (status < 0)
3833 		goto err;
3834 
3835 	if (fromVnode->device != toVnode->device) {
3836 		status = FSSH_B_CROSS_DEVICE_LINK;
3837 		goto err1;
3838 	}
3839 
3840 	if (HAS_FS_CALL(fromVnode, rename))
3841 		status = FS_CALL(fromVnode, rename, fromName, toVnode, toName);
3842 	else
3843 		status = FSSH_EROFS;
3844 
3845 err1:
3846 	put_vnode(toVnode);
3847 err:
3848 	put_vnode(fromVnode);
3849 
3850 	return status;
3851 }
3852 
3853 
3854 static fssh_status_t
3855 common_read_stat(struct file_descriptor *descriptor, struct fssh_stat *stat)
3856 {
3857 	struct vnode *vnode = descriptor->u.vnode;
3858 
3859 	FUNCTION(("common_read_stat: stat %p\n", stat));
3860 
3861 	stat->fssh_st_atim.tv_nsec = 0;
3862 	stat->fssh_st_mtim.tv_nsec = 0;
3863 	stat->fssh_st_ctim.tv_nsec = 0;
3864 	stat->fssh_st_crtim.tv_nsec = 0;
3865 
3866 	fssh_status_t status = FS_CALL(vnode, read_stat, stat);
3867 
3868 	// fill in the st_dev and st_ino fields
3869 	if (status == FSSH_B_OK) {
3870 		stat->fssh_st_dev = vnode->device;
3871 		stat->fssh_st_ino = vnode->id;
3872 	}
3873 
3874 	return status;
3875 }
3876 
3877 
3878 static fssh_status_t
3879 common_write_stat(struct file_descriptor *descriptor,
3880 	const struct fssh_stat *stat, int statMask)
3881 {
3882 	struct vnode *vnode = descriptor->u.vnode;
3883 
3884 	FUNCTION(("common_write_stat(vnode = %p, stat = %p, statMask = %d)\n", vnode, stat, statMask));
3885 	if (!HAS_FS_CALL(vnode, write_stat))
3886 		return FSSH_EROFS;
3887 
3888 	return FS_CALL(vnode, write_stat, stat, statMask);
3889 }
3890 
3891 
3892 static fssh_status_t
3893 common_path_read_stat(int fd, char *path, bool traverseLeafLink,
3894 	struct fssh_stat *stat, bool kernel)
3895 {
3896 	struct vnode *vnode;
3897 	fssh_status_t status;
3898 
3899 	FUNCTION(("common_path_read_stat: fd: %d, path '%s', stat %p,\n", fd, path, stat));
3900 
3901 	status = fd_and_path_to_vnode(fd, path, traverseLeafLink, &vnode, NULL, kernel);
3902 	if (status < 0)
3903 		return status;
3904 
3905 	status = FS_CALL(vnode, read_stat, stat);
3906 
3907 	// fill in the st_dev and st_ino fields
3908 	if (status == FSSH_B_OK) {
3909 		stat->fssh_st_dev = vnode->device;
3910 		stat->fssh_st_ino = vnode->id;
3911 	}
3912 
3913 	put_vnode(vnode);
3914 	return status;
3915 }
3916 
3917 
3918 static fssh_status_t
3919 common_path_write_stat(int fd, char *path, bool traverseLeafLink,
3920 	const struct fssh_stat *stat, int statMask, bool kernel)
3921 {
3922 	struct vnode *vnode;
3923 	fssh_status_t status;
3924 
3925 	FUNCTION(("common_write_stat: fd: %d, path '%s', stat %p, stat_mask %d, kernel %d\n", fd, path, stat, statMask, kernel));
3926 
3927 	status = fd_and_path_to_vnode(fd, path, traverseLeafLink, &vnode, NULL, kernel);
3928 	if (status < 0)
3929 		return status;
3930 
3931 	if (HAS_FS_CALL(vnode, write_stat))
3932 		status = FS_CALL(vnode, write_stat, stat, statMask);
3933 	else
3934 		status = FSSH_EROFS;
3935 
3936 	put_vnode(vnode);
3937 
3938 	return status;
3939 }
3940 
3941 
3942 static int
3943 attr_dir_open(int fd, char *path, bool kernel)
3944 {
3945 	struct vnode *vnode;
3946 	int status;
3947 
3948 	FUNCTION(("attr_dir_open(fd = %d, path = '%s', kernel = %d)\n", fd, path, kernel));
3949 
3950 	status = fd_and_path_to_vnode(fd, path, true, &vnode, NULL, kernel);
3951 	if (status < FSSH_B_OK)
3952 		return status;
3953 
3954 	status = open_attr_dir_vnode(vnode, kernel);
3955 	if (status < 0)
3956 		put_vnode(vnode);
3957 
3958 	return status;
3959 }
3960 
3961 
3962 static fssh_status_t
3963 attr_dir_close(struct file_descriptor *descriptor)
3964 {
3965 	struct vnode *vnode = descriptor->u.vnode;
3966 
3967 	FUNCTION(("attr_dir_close(descriptor = %p)\n", descriptor));
3968 
3969 	if (HAS_FS_CALL(vnode, close_attr_dir))
3970 		return FS_CALL(vnode, close_attr_dir, descriptor->cookie);
3971 
3972 	return FSSH_B_OK;
3973 }
3974 
3975 
3976 static void
3977 attr_dir_free_fd(struct file_descriptor *descriptor)
3978 {
3979 	struct vnode *vnode = descriptor->u.vnode;
3980 
3981 	if (vnode != NULL) {
3982 		FS_CALL(vnode, free_attr_dir_cookie, descriptor->cookie);
3983 		put_vnode(vnode);
3984 	}
3985 }
3986 
3987 
3988 static fssh_status_t
3989 attr_dir_read(struct file_descriptor *descriptor, struct fssh_dirent *buffer,
3990 	fssh_size_t bufferSize, uint32_t *_count)
3991 {
3992 	struct vnode *vnode = descriptor->u.vnode;
3993 
3994 	FUNCTION(("attr_dir_read(descriptor = %p)\n", descriptor));
3995 
3996 	if (HAS_FS_CALL(vnode, read_attr_dir))
3997 		return FS_CALL(vnode, read_attr_dir, descriptor->cookie, buffer, bufferSize, _count);
3998 
3999 	return FSSH_EOPNOTSUPP;
4000 }
4001 
4002 
4003 static fssh_status_t
4004 attr_dir_rewind(struct file_descriptor *descriptor)
4005 {
4006 	struct vnode *vnode = descriptor->u.vnode;
4007 
4008 	FUNCTION(("attr_dir_rewind(descriptor = %p)\n", descriptor));
4009 
4010 	if (HAS_FS_CALL(vnode, rewind_attr_dir))
4011 		return FS_CALL(vnode, rewind_attr_dir, descriptor->cookie);
4012 
4013 	return FSSH_EOPNOTSUPP;
4014 }
4015 
4016 
4017 static int
4018 attr_create(int fd, const char *name, uint32_t type, int openMode, bool kernel)
4019 {
4020 	struct vnode *vnode;
4021 	void *cookie;
4022 	int status;
4023 
4024 	if (name == NULL || *name == '\0')
4025 		return FSSH_B_BAD_VALUE;
4026 
4027 	vnode = get_vnode_from_fd(fd, kernel);
4028 	if (vnode == NULL)
4029 		return FSSH_B_FILE_ERROR;
4030 
4031 	if (!HAS_FS_CALL(vnode, create_attr)) {
4032 		status = FSSH_EROFS;
4033 		goto err;
4034 	}
4035 
4036 	status = FS_CALL(vnode, create_attr, name, type, openMode, &cookie);
4037 	if (status < FSSH_B_OK)
4038 		goto err;
4039 
4040 	if ((status = get_new_fd(FDTYPE_ATTR, NULL, vnode, cookie, openMode, kernel)) >= 0)
4041 		return status;
4042 
4043 	FS_CALL(vnode, close_attr, cookie);
4044 	FS_CALL(vnode, free_attr_cookie, cookie);
4045 
4046 	FS_CALL(vnode, remove_attr, name);
4047 
4048 err:
4049 	put_vnode(vnode);
4050 
4051 	return status;
4052 }
4053 
4054 
4055 static int
4056 attr_open(int fd, const char *name, int openMode, bool kernel)
4057 {
4058 	struct vnode *vnode;
4059 	void *cookie;
4060 	int status;
4061 
4062 	if (name == NULL || *name == '\0')
4063 		return FSSH_B_BAD_VALUE;
4064 
4065 	vnode = get_vnode_from_fd(fd, kernel);
4066 	if (vnode == NULL)
4067 		return FSSH_B_FILE_ERROR;
4068 
4069 	if (!HAS_FS_CALL(vnode, open_attr)) {
4070 		status = FSSH_EOPNOTSUPP;
4071 		goto err;
4072 	}
4073 
4074 	status = FS_CALL(vnode, open_attr, name, openMode, &cookie);
4075 	if (status < FSSH_B_OK)
4076 		goto err;
4077 
4078 	// now we only need a file descriptor for this attribute and we're done
4079 	if ((status = get_new_fd(FDTYPE_ATTR, NULL, vnode, cookie, openMode, kernel)) >= 0)
4080 		return status;
4081 
4082 	FS_CALL(vnode, close_attr, cookie);
4083 	FS_CALL(vnode, free_attr_cookie, cookie);
4084 
4085 err:
4086 	put_vnode(vnode);
4087 
4088 	return status;
4089 }
4090 
4091 
4092 static fssh_status_t
4093 attr_close(struct file_descriptor *descriptor)
4094 {
4095 	struct vnode *vnode = descriptor->u.vnode;
4096 
4097 	FUNCTION(("attr_close(descriptor = %p)\n", descriptor));
4098 
4099 	if (HAS_FS_CALL(vnode, close_attr))
4100 		return FS_CALL(vnode, close_attr, descriptor->cookie);
4101 
4102 	return FSSH_B_OK;
4103 }
4104 
4105 
4106 static void
4107 attr_free_fd(struct file_descriptor *descriptor)
4108 {
4109 	struct vnode *vnode = descriptor->u.vnode;
4110 
4111 	if (vnode != NULL) {
4112 		FS_CALL(vnode, free_attr_cookie, descriptor->cookie);
4113 		put_vnode(vnode);
4114 	}
4115 }
4116 
4117 
4118 static fssh_status_t
4119 attr_read(struct file_descriptor *descriptor, fssh_off_t pos, void *buffer, fssh_size_t *length)
4120 {
4121 	struct vnode *vnode = descriptor->u.vnode;
4122 
4123 	FUNCTION(("attr_read: buf %p, pos %Ld, len %p = %ld\n", buffer, pos, length, *length));
4124 	if (!HAS_FS_CALL(vnode, read_attr))
4125 		return FSSH_EOPNOTSUPP;
4126 
4127 	return FS_CALL(vnode, read_attr, descriptor->cookie, pos, buffer, length);
4128 }
4129 
4130 
4131 static fssh_status_t
4132 attr_write(struct file_descriptor *descriptor, fssh_off_t pos, const void *buffer, fssh_size_t *length)
4133 {
4134 	struct vnode *vnode = descriptor->u.vnode;
4135 
4136 	FUNCTION(("attr_write: buf %p, pos %Ld, len %p\n", buffer, pos, length));
4137 	if (!HAS_FS_CALL(vnode, write_attr))
4138 		return FSSH_EOPNOTSUPP;
4139 
4140 	return FS_CALL(vnode, write_attr, descriptor->cookie, pos, buffer, length);
4141 }
4142 
4143 
4144 static fssh_off_t
4145 attr_seek(struct file_descriptor *descriptor, fssh_off_t pos, int seekType)
4146 {
4147 	fssh_off_t offset;
4148 
4149 	switch (seekType) {
4150 		case FSSH_SEEK_SET:
4151 			offset = 0;
4152 			break;
4153 		case FSSH_SEEK_CUR:
4154 			offset = descriptor->pos;
4155 			break;
4156 		case FSSH_SEEK_END:
4157 		{
4158 			struct vnode *vnode = descriptor->u.vnode;
4159 			struct fssh_stat stat;
4160 			fssh_status_t status;
4161 
4162 			if (!HAS_FS_CALL(vnode, read_stat))
4163 				return FSSH_EOPNOTSUPP;
4164 
4165 			status = FS_CALL(vnode, read_attr_stat, descriptor->cookie, &stat);
4166 			if (status < FSSH_B_OK)
4167 				return status;
4168 
4169 			offset = stat.fssh_st_size;
4170 			break;
4171 		}
4172 		default:
4173 			return FSSH_B_BAD_VALUE;
4174 	}
4175 
4176 	// assumes fssh_off_t is 64 bits wide
4177 	if (offset > 0 && LLONG_MAX - offset < pos)
4178 		return FSSH_EOVERFLOW;
4179 
4180 	pos += offset;
4181 	if (pos < 0)
4182 		return FSSH_B_BAD_VALUE;
4183 
4184 	return descriptor->pos = pos;
4185 }
4186 
4187 
4188 static fssh_status_t
4189 attr_read_stat(struct file_descriptor *descriptor, struct fssh_stat *stat)
4190 {
4191 	struct vnode *vnode = descriptor->u.vnode;
4192 
4193 	FUNCTION(("attr_read_stat: stat 0x%p\n", stat));
4194 
4195 	if (!HAS_FS_CALL(vnode, read_attr_stat))
4196 		return FSSH_EOPNOTSUPP;
4197 
4198 	return FS_CALL(vnode, read_attr_stat, descriptor->cookie, stat);
4199 }
4200 
4201 
4202 static fssh_status_t
4203 attr_write_stat(struct file_descriptor *descriptor,
4204 	const struct fssh_stat *stat, int statMask)
4205 {
4206 	struct vnode *vnode = descriptor->u.vnode;
4207 
4208 	FUNCTION(("attr_write_stat: stat = %p, statMask %d\n", stat, statMask));
4209 
4210 	if (!HAS_FS_CALL(vnode, write_attr_stat))
4211 		return FSSH_EROFS;
4212 
4213 	return FS_CALL(vnode, write_attr_stat, descriptor->cookie, stat, statMask);
4214 }
4215 
4216 
4217 static fssh_status_t
4218 attr_remove(int fd, const char *name, bool kernel)
4219 {
4220 	struct file_descriptor *descriptor;
4221 	struct vnode *vnode;
4222 	fssh_status_t status;
4223 
4224 	if (name == NULL || *name == '\0')
4225 		return FSSH_B_BAD_VALUE;
4226 
4227 	FUNCTION(("attr_remove: fd = %d, name = \"%s\", kernel %d\n", fd, name, kernel));
4228 
4229 	descriptor = get_fd_and_vnode(fd, &vnode, kernel);
4230 	if (descriptor == NULL)
4231 		return FSSH_B_FILE_ERROR;
4232 
4233 	if (HAS_FS_CALL(vnode, remove_attr))
4234 		status = FS_CALL(vnode, remove_attr, name);
4235 	else
4236 		status = FSSH_EROFS;
4237 
4238 	put_fd(descriptor);
4239 
4240 	return status;
4241 }
4242 
4243 
4244 static fssh_status_t
4245 attr_rename(int fromfd, const char *fromName, int tofd, const char *toName, bool kernel)
4246 {
4247 	struct file_descriptor *fromDescriptor, *toDescriptor;
4248 	struct vnode *fromVnode, *toVnode;
4249 	fssh_status_t status;
4250 
4251 	if (fromName == NULL || *fromName == '\0' || toName == NULL || *toName == '\0')
4252 		return FSSH_B_BAD_VALUE;
4253 
4254 	FUNCTION(("attr_rename: from fd = %d, from name = \"%s\", to fd = %d, to name = \"%s\", kernel %d\n", fromfd, fromName, tofd, toName, kernel));
4255 
4256 	fromDescriptor = get_fd_and_vnode(fromfd, &fromVnode, kernel);
4257 	if (fromDescriptor == NULL)
4258 		return FSSH_B_FILE_ERROR;
4259 
4260 	toDescriptor = get_fd_and_vnode(tofd, &toVnode, kernel);
4261 	if (toDescriptor == NULL) {
4262 		status = FSSH_B_FILE_ERROR;
4263 		goto err;
4264 	}
4265 
4266 	// are the files on the same volume?
4267 	if (fromVnode->device != toVnode->device) {
4268 		status = FSSH_B_CROSS_DEVICE_LINK;
4269 		goto err1;
4270 	}
4271 
4272 	if (HAS_FS_CALL(fromVnode, rename_attr))
4273 		status = FS_CALL(fromVnode, rename_attr, fromName, toVnode, toName);
4274 	else
4275 		status = FSSH_EROFS;
4276 
4277 err1:
4278 	put_fd(toDescriptor);
4279 err:
4280 	put_fd(fromDescriptor);
4281 
4282 	return status;
4283 }
4284 
4285 
4286 static fssh_status_t
4287 index_dir_open(fssh_mount_id mountID, bool kernel)
4288 {
4289 	struct fs_mount *mount;
4290 	void *cookie;
4291 
4292 	FUNCTION(("index_dir_open(mountID = %ld, kernel = %d)\n", mountID, kernel));
4293 
4294 	fssh_status_t status = get_mount(mountID, &mount);
4295 	if (status < FSSH_B_OK)
4296 		return status;
4297 
4298 	if (!HAS_FS_MOUNT_CALL(mount, open_index_dir)) {
4299 		status = FSSH_EOPNOTSUPP;
4300 		goto out;
4301 	}
4302 
4303 	status = FS_MOUNT_CALL(mount, open_index_dir, &cookie);
4304 	if (status < FSSH_B_OK)
4305 		goto out;
4306 
4307 	// get fd for the index directory
4308 	status = get_new_fd(FDTYPE_INDEX_DIR, mount, NULL, cookie, 0, kernel);
4309 	if (status >= 0)
4310 		goto out;
4311 
4312 	// something went wrong
4313 	FS_MOUNT_CALL(mount, close_index_dir, cookie);
4314 	FS_MOUNT_CALL(mount, free_index_dir_cookie, cookie);
4315 
4316 out:
4317 	put_mount(mount);
4318 	return status;
4319 }
4320 
4321 
4322 static fssh_status_t
4323 index_dir_close(struct file_descriptor *descriptor)
4324 {
4325 	struct fs_mount *mount = descriptor->u.mount;
4326 
4327 	FUNCTION(("index_dir_close(descriptor = %p)\n", descriptor));
4328 
4329 	if (HAS_FS_MOUNT_CALL(mount, close_index_dir))
4330 		return FS_MOUNT_CALL(mount, close_index_dir, descriptor->cookie);
4331 
4332 	return FSSH_B_OK;
4333 }
4334 
4335 
4336 static void
4337 index_dir_free_fd(struct file_descriptor *descriptor)
4338 {
4339 	struct fs_mount *mount = descriptor->u.mount;
4340 
4341 	if (mount != NULL) {
4342 		FS_MOUNT_CALL(mount, free_index_dir_cookie, descriptor->cookie);
4343 		// ToDo: find a replacement ref_count object - perhaps the root dir?
4344 		//put_vnode(vnode);
4345 	}
4346 }
4347 
4348 
4349 static fssh_status_t
4350 index_dir_read(struct file_descriptor *descriptor, struct fssh_dirent *buffer,
4351 	fssh_size_t bufferSize, uint32_t *_count)
4352 {
4353 	struct fs_mount *mount = descriptor->u.mount;
4354 
4355 	if (HAS_FS_MOUNT_CALL(mount, read_index_dir))
4356 		return FS_MOUNT_CALL(mount, read_index_dir, descriptor->cookie, buffer, bufferSize, _count);
4357 
4358 	return FSSH_EOPNOTSUPP;
4359 }
4360 
4361 
4362 static fssh_status_t
4363 index_dir_rewind(struct file_descriptor *descriptor)
4364 {
4365 	struct fs_mount *mount = descriptor->u.mount;
4366 
4367 	if (HAS_FS_MOUNT_CALL(mount, rewind_index_dir))
4368 		return FS_MOUNT_CALL(mount, rewind_index_dir, descriptor->cookie);
4369 
4370 	return FSSH_EOPNOTSUPP;
4371 }
4372 
4373 
4374 static fssh_status_t
4375 index_create(fssh_mount_id mountID, const char *name, uint32_t type, uint32_t flags, bool kernel)
4376 {
4377 	FUNCTION(("index_create(mountID = %ld, name = %s, kernel = %d)\n", mountID, name, kernel));
4378 
4379 	struct fs_mount *mount;
4380 	fssh_status_t status = get_mount(mountID, &mount);
4381 	if (status < FSSH_B_OK)
4382 		return status;
4383 
4384 	if (!HAS_FS_MOUNT_CALL(mount, create_index)) {
4385 		status = FSSH_EROFS;
4386 		goto out;
4387 	}
4388 
4389 	status = FS_MOUNT_CALL(mount, create_index, name, type, flags);
4390 
4391 out:
4392 	put_mount(mount);
4393 	return status;
4394 }
4395 
4396 
4397 static fssh_status_t
4398 index_name_read_stat(fssh_mount_id mountID, const char *name,
4399 	struct fssh_stat *stat, bool kernel)
4400 {
4401 	FUNCTION(("index_remove(mountID = %ld, name = %s, kernel = %d)\n", mountID, name, kernel));
4402 
4403 	struct fs_mount *mount;
4404 	fssh_status_t status = get_mount(mountID, &mount);
4405 	if (status < FSSH_B_OK)
4406 		return status;
4407 
4408 	if (!HAS_FS_MOUNT_CALL(mount, read_index_stat)) {
4409 		status = FSSH_EOPNOTSUPP;
4410 		goto out;
4411 	}
4412 
4413 	status = FS_MOUNT_CALL(mount, read_index_stat, name, stat);
4414 
4415 out:
4416 	put_mount(mount);
4417 	return status;
4418 }
4419 
4420 
4421 static fssh_status_t
4422 index_remove(fssh_mount_id mountID, const char *name, bool kernel)
4423 {
4424 	FUNCTION(("index_remove(mountID = %ld, name = %s, kernel = %d)\n", mountID, name, kernel));
4425 
4426 	struct fs_mount *mount;
4427 	fssh_status_t status = get_mount(mountID, &mount);
4428 	if (status < FSSH_B_OK)
4429 		return status;
4430 
4431 	if (!HAS_FS_MOUNT_CALL(mount, remove_index)) {
4432 		status = FSSH_EROFS;
4433 		goto out;
4434 	}
4435 
4436 	status = FS_MOUNT_CALL(mount, remove_index, name);
4437 
4438 out:
4439 	put_mount(mount);
4440 	return status;
4441 }
4442 
4443 
4444 /*!	ToDo: the query FS API is still the pretty much the same as in R5.
4445 		It would be nice if the FS would find some more kernel support
4446 		for them.
4447 		For example, query parsing should be moved into the kernel.
4448 */
4449 static int
4450 query_open(fssh_dev_t device, const char *query, uint32_t flags,
4451 	fssh_port_id port, int32_t token, bool kernel)
4452 {
4453 	struct fs_mount *mount;
4454 	void *cookie;
4455 
4456 	FUNCTION(("query_open(device = %ld, query = \"%s\", kernel = %d)\n", device, query, kernel));
4457 
4458 	fssh_status_t status = get_mount(device, &mount);
4459 	if (status < FSSH_B_OK)
4460 		return status;
4461 
4462 	if (!HAS_FS_MOUNT_CALL(mount, open_query)) {
4463 		status = FSSH_EOPNOTSUPP;
4464 		goto out;
4465 	}
4466 
4467 	status = FS_MOUNT_CALL(mount, open_query, query, flags, port, token, &cookie);
4468 	if (status < FSSH_B_OK)
4469 		goto out;
4470 
4471 	// get fd for the index directory
4472 	status = get_new_fd(FDTYPE_QUERY, mount, NULL, cookie, 0, kernel);
4473 	if (status >= 0)
4474 		goto out;
4475 
4476 	// something went wrong
4477 	FS_MOUNT_CALL(mount, close_query, cookie);
4478 	FS_MOUNT_CALL(mount, free_query_cookie, cookie);
4479 
4480 out:
4481 	put_mount(mount);
4482 	return status;
4483 }
4484 
4485 
4486 static fssh_status_t
4487 query_close(struct file_descriptor *descriptor)
4488 {
4489 	struct fs_mount *mount = descriptor->u.mount;
4490 
4491 	FUNCTION(("query_close(descriptor = %p)\n", descriptor));
4492 
4493 	if (HAS_FS_MOUNT_CALL(mount, close_query))
4494 		return FS_MOUNT_CALL(mount, close_query, descriptor->cookie);
4495 
4496 	return FSSH_B_OK;
4497 }
4498 
4499 
4500 static void
4501 query_free_fd(struct file_descriptor *descriptor)
4502 {
4503 	struct fs_mount *mount = descriptor->u.mount;
4504 
4505 	if (mount != NULL) {
4506 		FS_MOUNT_CALL(mount, free_query_cookie, descriptor->cookie);
4507 		// ToDo: find a replacement ref_count object - perhaps the root dir?
4508 		//put_vnode(vnode);
4509 	}
4510 }
4511 
4512 
4513 static fssh_status_t
4514 query_read(struct file_descriptor *descriptor, struct fssh_dirent *buffer,
4515 	fssh_size_t bufferSize, uint32_t *_count)
4516 {
4517 	struct fs_mount *mount = descriptor->u.mount;
4518 
4519 	if (HAS_FS_MOUNT_CALL(mount, read_query))
4520 		return FS_MOUNT_CALL(mount, read_query, descriptor->cookie, buffer, bufferSize, _count);
4521 
4522 	return FSSH_EOPNOTSUPP;
4523 }
4524 
4525 
4526 static fssh_status_t
4527 query_rewind(struct file_descriptor *descriptor)
4528 {
4529 	struct fs_mount *mount = descriptor->u.mount;
4530 
4531 	if (HAS_FS_MOUNT_CALL(mount, rewind_query))
4532 		return FS_MOUNT_CALL(mount, rewind_query, descriptor->cookie);
4533 
4534 	return FSSH_EOPNOTSUPP;
4535 }
4536 
4537 
4538 //	#pragma mark -
4539 //	General File System functions
4540 
4541 
4542 static fssh_dev_t
4543 fs_mount(char *path, const char *device, const char *fsName, uint32_t flags,
4544 	const char *args, bool kernel)
4545 {
4546 	struct fs_mount *mount;
4547 	fssh_status_t status = 0;
4548 
4549 	FUNCTION(("fs_mount: entry. path = '%s', fs_name = '%s'\n", path, fsName));
4550 
4551 	// The path is always safe, we just have to make sure that fsName is
4552 	// almost valid - we can't make any assumptions about args, though.
4553 	// A NULL fsName is OK, if a device was given and the FS is not virtual.
4554 	// We'll get it from the DDM later.
4555 	if (fsName == NULL) {
4556 		if (!device || flags & FSSH_B_MOUNT_VIRTUAL_DEVICE)
4557 			return FSSH_B_BAD_VALUE;
4558 	} else if (fsName[0] == '\0')
4559 		return FSSH_B_BAD_VALUE;
4560 
4561 	RecursiveLocker mountOpLocker(sMountOpLock);
4562 
4563 	// If the file system is not a "virtual" one, the device argument should
4564 	// point to a real file/device (if given at all).
4565 	// get the partition
4566 	KPath normalizedDevice;
4567 
4568 	if (!(flags & FSSH_B_MOUNT_VIRTUAL_DEVICE) && device) {
4569 		// normalize the device path
4570 //		status = normalizedDevice.SetTo(device, true);
4571 // NOTE: normalizing works only in our namespace.
4572 		status = normalizedDevice.SetTo(device, false);
4573 		if (status != FSSH_B_OK)
4574 			return status;
4575 
4576 		device = normalizedDevice.Path();
4577 			// correct path to file device
4578 	}
4579 
4580 	mount = (struct fs_mount *)malloc(sizeof(struct fs_mount));
4581 	if (mount == NULL)
4582 		return FSSH_B_NO_MEMORY;
4583 
4584 	mount->volume = (fssh_fs_volume*)malloc(sizeof(fssh_fs_volume));
4585 	if (mount->volume == NULL) {
4586 		free(mount);
4587 		return FSSH_B_NO_MEMORY;
4588 	}
4589 
4590 	list_init_etc(&mount->vnodes, fssh_offsetof(struct vnode, mount_link));
4591 
4592 	mount->fs_name = get_file_system_name(fsName);
4593 	if (mount->fs_name == NULL) {
4594 		status = FSSH_B_NO_MEMORY;
4595 		goto err1;
4596 	}
4597 
4598 	mount->device_name = fssh_strdup(device);
4599 		// "device" can be NULL
4600 
4601 	mount->fs = get_file_system(fsName);
4602 	if (mount->fs == NULL) {
4603 		status = FSSH_ENODEV;
4604 		goto err3;
4605 	}
4606 
4607 	fssh_recursive_lock_init(&mount->rlock, "mount rlock");
4608 
4609 	// initialize structure
4610 	mount->id = sNextMountID++;
4611 	mount->root_vnode = NULL;
4612 	mount->covers_vnode = NULL;
4613 	mount->unmounting = false;
4614 	mount->owns_file_device = false;
4615 
4616 	mount->volume->id = mount->id;
4617 	mount->volume->layer = 0;
4618 	mount->volume->private_volume = NULL;
4619 	mount->volume->ops = NULL;
4620 	mount->volume->sub_volume = NULL;
4621 	mount->volume->super_volume = NULL;
4622 
4623 	// insert mount struct into list before we call FS's mount() function
4624 	// so that vnodes can be created for this mount
4625 	fssh_mutex_lock(&sMountMutex);
4626 	hash_insert(sMountsTable, mount);
4627 	fssh_mutex_unlock(&sMountMutex);
4628 
4629 	fssh_vnode_id rootID;
4630 
4631 	if (!sRoot) {
4632 		// we haven't mounted anything yet
4633 		if (fssh_strcmp(path, "/") != 0) {
4634 			status = FSSH_B_ERROR;
4635 			goto err4;
4636 		}
4637 
4638 		status = mount->fs->mount(mount->volume, device, flags, args, &rootID);
4639 		if (status < 0) {
4640 			// ToDo: why should we hide the error code from the file system here?
4641 			//status = ERR_VFS_GENERAL;
4642 			goto err4;
4643 		}
4644 	} else {
4645 		struct vnode *coveredVnode;
4646 		status = path_to_vnode(path, true, &coveredVnode, NULL, kernel);
4647 		if (status < FSSH_B_OK)
4648 			goto err4;
4649 
4650 		// make sure covered_vnode is a DIR
4651 		struct fssh_stat coveredNodeStat;
4652 		status = FS_CALL(coveredVnode, read_stat, &coveredNodeStat);
4653 		if (status < FSSH_B_OK)
4654 			goto err4;
4655 
4656 		if (!FSSH_S_ISDIR(coveredNodeStat.fssh_st_mode)) {
4657 			status = FSSH_B_NOT_A_DIRECTORY;
4658 			goto err4;
4659 		}
4660 
4661 		if (coveredVnode->mount->root_vnode == coveredVnode) {
4662 			// this is already a mount point
4663 			status = FSSH_B_BUSY;
4664 			goto err4;
4665 		}
4666 
4667 		mount->covers_vnode = coveredVnode;
4668 
4669 		// mount it
4670 		status = mount->fs->mount(mount->volume, device, flags, args, &rootID);
4671 		if (status < FSSH_B_OK)
4672 			goto err5;
4673 	}
4674 
4675 	// the root node is supposed to be owned by the file system - it must
4676 	// exist at this point
4677 	mount->root_vnode = lookup_vnode(mount->id, rootID);
4678 	if (mount->root_vnode == NULL || mount->root_vnode->ref_count != 1) {
4679 		fssh_panic("fs_mount: file system does not own its root node!\n");
4680 		status = FSSH_B_ERROR;
4681 		goto err6;
4682 	}
4683 
4684 	// No race here, since fs_mount() is the only function changing
4685 	// covers_vnode (and holds sMountOpLock at that time).
4686 	fssh_mutex_lock(&sVnodeCoveredByMutex);
4687 	if (mount->covers_vnode)
4688 		mount->covers_vnode->covered_by = mount->root_vnode;
4689 	fssh_mutex_unlock(&sVnodeCoveredByMutex);
4690 
4691 	if (!sRoot)
4692 		sRoot = mount->root_vnode;
4693 
4694 	return mount->id;
4695 
4696 err6:
4697 	FS_MOUNT_CALL_NO_PARAMS(mount, unmount);
4698 err5:
4699 	if (mount->covers_vnode)
4700 		put_vnode(mount->covers_vnode);
4701 
4702 err4:
4703 	fssh_mutex_lock(&sMountMutex);
4704 	hash_remove(sMountsTable, mount);
4705 	fssh_mutex_unlock(&sMountMutex);
4706 
4707 	fssh_recursive_lock_destroy(&mount->rlock);
4708 
4709 	put_file_system(mount->fs);
4710 	free(mount->device_name);
4711 err3:
4712 	free(mount->fs_name);
4713 err1:
4714 	free(mount->volume);
4715 	free(mount);
4716 
4717 	return status;
4718 }
4719 
4720 
4721 static fssh_status_t
4722 fs_unmount(char *path, uint32_t flags, bool kernel)
4723 {
4724 	struct fs_mount *mount;
4725 	struct vnode *vnode;
4726 	fssh_status_t err;
4727 
4728 	FUNCTION(("vfs_unmount: entry. path = '%s', kernel %d\n", path, kernel));
4729 
4730 	err = path_to_vnode(path, true, &vnode, NULL, kernel);
4731 	if (err < 0)
4732 		return FSSH_B_ENTRY_NOT_FOUND;
4733 
4734 	RecursiveLocker mountOpLocker(sMountOpLock);
4735 
4736 	mount = find_mount(vnode->device);
4737 	if (!mount)
4738 		fssh_panic("vfs_unmount: find_mount() failed on root vnode @%p of mount\n", vnode);
4739 
4740 	if (mount->root_vnode != vnode) {
4741 		// not mountpoint
4742 		put_vnode(vnode);
4743 		return FSSH_B_BAD_VALUE;
4744 	}
4745 
4746 	// grab the vnode master mutex to keep someone from creating
4747 	// a vnode while we're figuring out if we can continue
4748 	fssh_mutex_lock(&sVnodeMutex);
4749 
4750 	bool disconnectedDescriptors = false;
4751 
4752 	while (true) {
4753 		bool busy = false;
4754 
4755 		// cycle through the list of vnodes associated with this mount and
4756 		// make sure all of them are not busy or have refs on them
4757 		vnode = NULL;
4758 		while ((vnode = (struct vnode *)list_get_next_item(&mount->vnodes, vnode)) != NULL) {
4759 			// The root vnode ref_count needs to be 2 here: one for the file
4760 			// system, one from the path_to_vnode() call above
4761 			if (vnode->busy
4762 				|| ((vnode->ref_count != 0 && mount->root_vnode != vnode)
4763 					|| (vnode->ref_count != 2 && mount->root_vnode == vnode))) {
4764 				// there are still vnodes in use on this mount, so we cannot
4765 				// unmount yet
4766 				busy = true;
4767 				break;
4768 			}
4769 		}
4770 
4771 		if (!busy)
4772 			break;
4773 
4774 		if ((flags & FSSH_B_FORCE_UNMOUNT) == 0) {
4775 			fssh_mutex_unlock(&sVnodeMutex);
4776 			put_vnode(mount->root_vnode);
4777 
4778 			return FSSH_B_BUSY;
4779 		}
4780 
4781 		if (disconnectedDescriptors) {
4782 			// wait a bit until the last access is finished, and then try again
4783 			fssh_mutex_unlock(&sVnodeMutex);
4784 			fssh_snooze(100000);
4785 			// TODO: if there is some kind of bug that prevents the ref counts
4786 			//	from getting back to zero, this will fall into an endless loop...
4787 			fssh_mutex_lock(&sVnodeMutex);
4788 			continue;
4789 		}
4790 
4791 		// the file system is still busy - but we're forced to unmount it,
4792 		// so let's disconnect all open file descriptors
4793 
4794 		mount->unmounting = true;
4795 			// prevent new vnodes from being created
4796 
4797 		fssh_mutex_unlock(&sVnodeMutex);
4798 
4799 		disconnect_mount_or_vnode_fds(mount, NULL);
4800 		disconnectedDescriptors = true;
4801 
4802 		fssh_mutex_lock(&sVnodeMutex);
4803 	}
4804 
4805 	// we can safely continue, mark all of the vnodes busy and this mount
4806 	// structure in unmounting state
4807 	mount->unmounting = true;
4808 
4809 	while ((vnode = (struct vnode *)list_get_next_item(&mount->vnodes, vnode)) != NULL) {
4810 		vnode->busy = true;
4811 
4812 		if (vnode->ref_count == 0) {
4813 			// this vnode has been unused before
4814 			list_remove_item(&sUnusedVnodeList, vnode);
4815 			sUnusedVnodes--;
4816 		}
4817 	}
4818 
4819 	// The ref_count of the root node is 2 at this point, see above why this is
4820 	mount->root_vnode->ref_count -= 2;
4821 
4822 	fssh_mutex_unlock(&sVnodeMutex);
4823 
4824 	fssh_mutex_lock(&sVnodeCoveredByMutex);
4825 	mount->covers_vnode->covered_by = NULL;
4826 	fssh_mutex_unlock(&sVnodeCoveredByMutex);
4827 	put_vnode(mount->covers_vnode);
4828 
4829 	// Free all vnodes associated with this mount.
4830 	// They will be removed from the mount list by free_vnode(), so
4831 	// we don't have to do this.
4832 	while ((vnode = (struct vnode *)list_get_first_item(&mount->vnodes)) != NULL) {
4833 		free_vnode(vnode, false);
4834 	}
4835 
4836 	// remove the mount structure from the hash table
4837 	fssh_mutex_lock(&sMountMutex);
4838 	hash_remove(sMountsTable, mount);
4839 	fssh_mutex_unlock(&sMountMutex);
4840 
4841 	mountOpLocker.Unlock();
4842 
4843 	FS_MOUNT_CALL_NO_PARAMS(mount, unmount);
4844 
4845 	// release the file system
4846 	put_file_system(mount->fs);
4847 
4848 	free(mount->device_name);
4849 	free(mount->fs_name);
4850 	free(mount);
4851 
4852 	return FSSH_B_OK;
4853 }
4854 
4855 
4856 static fssh_status_t
4857 fs_sync(fssh_dev_t device)
4858 {
4859 	struct fs_mount *mount;
4860 	fssh_status_t status = get_mount(device, &mount);
4861 	if (status < FSSH_B_OK)
4862 		return status;
4863 
4864 	fssh_mutex_lock(&sMountMutex);
4865 
4866 	if (HAS_FS_MOUNT_CALL(mount, sync))
4867 		status = FS_MOUNT_CALL_NO_PARAMS(mount, sync);
4868 
4869 	fssh_mutex_unlock(&sMountMutex);
4870 
4871 	struct vnode *previousVnode = NULL;
4872 	while (true) {
4873 		// synchronize access to vnode list
4874 		fssh_recursive_lock_lock(&mount->rlock);
4875 
4876 		struct vnode *vnode = (struct vnode *)list_get_next_item(&mount->vnodes,
4877 			previousVnode);
4878 
4879 		fssh_vnode_id id = -1;
4880 		if (vnode != NULL)
4881 			id = vnode->id;
4882 
4883 		fssh_recursive_lock_unlock(&mount->rlock);
4884 
4885 		if (vnode == NULL)
4886 			break;
4887 
4888 		// acquire a reference to the vnode
4889 
4890 		if (get_vnode(mount->id, id, &vnode, true) == FSSH_B_OK) {
4891 			if (previousVnode != NULL)
4892 				put_vnode(previousVnode);
4893 
4894 			if (HAS_FS_CALL(vnode, fsync))
4895 				FS_CALL_NO_PARAMS(vnode, fsync);
4896 
4897 			// the next vnode might change until we lock the vnode list again,
4898 			// but this vnode won't go away since we keep a reference to it.
4899 			previousVnode = vnode;
4900 		} else {
4901 			fssh_dprintf("syncing of mount %d stopped due to vnode %"
4902 				FSSH_B_PRIdINO ".\n", (int)mount->id, id);
4903 			break;
4904 		}
4905 	}
4906 
4907 	if (previousVnode != NULL)
4908 		put_vnode(previousVnode);
4909 
4910 	put_mount(mount);
4911 	return status;
4912 }
4913 
4914 
4915 static fssh_status_t
4916 fs_read_info(fssh_dev_t device, struct fssh_fs_info *info)
4917 {
4918 	struct fs_mount *mount;
4919 	fssh_status_t status = get_mount(device, &mount);
4920 	if (status < FSSH_B_OK)
4921 		return status;
4922 
4923 	fssh_memset(info, 0, sizeof(struct fssh_fs_info));
4924 
4925 	if (HAS_FS_MOUNT_CALL(mount, read_fs_info))
4926 		status = FS_MOUNT_CALL(mount, read_fs_info, info);
4927 
4928 	// fill in info the file system doesn't (have to) know about
4929 	if (status == FSSH_B_OK) {
4930 		info->dev = mount->id;
4931 		info->root = mount->root_vnode->id;
4932 		fssh_strlcpy(info->fsh_name, mount->fs_name, sizeof(info->fsh_name));
4933 		if (mount->device_name != NULL) {
4934 			fssh_strlcpy(info->device_name, mount->device_name,
4935 				sizeof(info->device_name));
4936 		}
4937 	}
4938 
4939 	// if the call is not supported by the file system, there are still
4940 	// the parts that we filled out ourselves
4941 
4942 	put_mount(mount);
4943 	return status;
4944 }
4945 
4946 
4947 static fssh_status_t
4948 fs_write_info(fssh_dev_t device, const struct fssh_fs_info *info, int mask)
4949 {
4950 	struct fs_mount *mount;
4951 	fssh_status_t status = get_mount(device, &mount);
4952 	if (status < FSSH_B_OK)
4953 		return status;
4954 
4955 	if (HAS_FS_MOUNT_CALL(mount, write_fs_info))
4956 		status = FS_MOUNT_CALL(mount, write_fs_info, info, mask);
4957 	else
4958 		status = FSSH_EROFS;
4959 
4960 	put_mount(mount);
4961 	return status;
4962 }
4963 
4964 
4965 static fssh_dev_t
4966 fs_next_device(int32_t *_cookie)
4967 {
4968 	struct fs_mount *mount = NULL;
4969 	fssh_dev_t device = *_cookie;
4970 
4971 	fssh_mutex_lock(&sMountMutex);
4972 
4973 	// Since device IDs are assigned sequentially, this algorithm
4974 	// does work good enough. It makes sure that the device list
4975 	// returned is sorted, and that no device is skipped when an
4976 	// already visited device got unmounted.
4977 
4978 	while (device < sNextMountID) {
4979 		mount = find_mount(device++);
4980 		if (mount != NULL && mount->volume->private_volume != NULL)
4981 			break;
4982 	}
4983 
4984 	*_cookie = device;
4985 
4986 	if (mount != NULL)
4987 		device = mount->id;
4988 	else
4989 		device = FSSH_B_BAD_VALUE;
4990 
4991 	fssh_mutex_unlock(&sMountMutex);
4992 
4993 	return device;
4994 }
4995 
4996 
4997 static fssh_status_t
4998 get_cwd(char *buffer, fssh_size_t size, bool kernel)
4999 {
5000 	// Get current working directory from io context
5001 	struct io_context *context = get_current_io_context(kernel);
5002 	fssh_status_t status;
5003 
5004 	FUNCTION(("vfs_get_cwd: buf %p, size %ld\n", buffer, size));
5005 
5006 	fssh_mutex_lock(&context->io_mutex);
5007 
5008 	if (context->cwd)
5009 		status = dir_vnode_to_path(context->cwd, buffer, size);
5010 	else
5011 		status = FSSH_B_ERROR;
5012 
5013 	fssh_mutex_unlock(&context->io_mutex);
5014 	return status;
5015 }
5016 
5017 
5018 static fssh_status_t
5019 set_cwd(int fd, char *path, bool kernel)
5020 {
5021 	struct io_context *context;
5022 	struct vnode *vnode = NULL;
5023 	struct vnode *oldDirectory;
5024 	struct fssh_stat stat;
5025 	fssh_status_t status;
5026 
5027 	FUNCTION(("set_cwd: path = \'%s\'\n", path));
5028 
5029 	// Get vnode for passed path, and bail if it failed
5030 	status = fd_and_path_to_vnode(fd, path, true, &vnode, NULL, kernel);
5031 	if (status < 0)
5032 		return status;
5033 
5034 	status = FS_CALL(vnode, read_stat, &stat);
5035 	if (status < 0)
5036 		goto err;
5037 
5038 	if (!FSSH_S_ISDIR(stat.fssh_st_mode)) {
5039 		// nope, can't cwd to here
5040 		status = FSSH_B_NOT_A_DIRECTORY;
5041 		goto err;
5042 	}
5043 
5044 	// Get current io context and lock
5045 	context = get_current_io_context(kernel);
5046 	fssh_mutex_lock(&context->io_mutex);
5047 
5048 	// save the old current working directory first
5049 	oldDirectory = context->cwd;
5050 	context->cwd = vnode;
5051 
5052 	fssh_mutex_unlock(&context->io_mutex);
5053 
5054 	if (oldDirectory)
5055 		put_vnode(oldDirectory);
5056 
5057 	return FSSH_B_NO_ERROR;
5058 
5059 err:
5060 	put_vnode(vnode);
5061 	return status;
5062 }
5063 
5064 
5065 //	#pragma mark -
5066 //	Calls from within the kernel
5067 
5068 
5069 fssh_dev_t
5070 _kern_mount(const char *path, const char *device, const char *fsName,
5071 	uint32_t flags, const char *args, fssh_size_t argsLength)
5072 {
5073 	KPath pathBuffer(path, false, FSSH_B_PATH_NAME_LENGTH + 1);
5074 	if (pathBuffer.InitCheck() != FSSH_B_OK)
5075 		return FSSH_B_NO_MEMORY;
5076 
5077 	return fs_mount(pathBuffer.LockBuffer(), device, fsName, flags, args, true);
5078 }
5079 
5080 
5081 fssh_status_t
5082 _kern_unmount(const char *path, uint32_t flags)
5083 {
5084 	KPath pathBuffer(path, false, FSSH_B_PATH_NAME_LENGTH + 1);
5085 	if (pathBuffer.InitCheck() != FSSH_B_OK)
5086 		return FSSH_B_NO_MEMORY;
5087 
5088 	return fs_unmount(pathBuffer.LockBuffer(), flags, true);
5089 }
5090 
5091 
5092 fssh_status_t
5093 _kern_read_fs_info(fssh_dev_t device, struct fssh_fs_info *info)
5094 {
5095 	if (info == NULL)
5096 		return FSSH_B_BAD_VALUE;
5097 
5098 	return fs_read_info(device, info);
5099 }
5100 
5101 
5102 fssh_status_t
5103 _kern_write_fs_info(fssh_dev_t device, const struct fssh_fs_info *info, int mask)
5104 {
5105 	if (info == NULL)
5106 		return FSSH_B_BAD_VALUE;
5107 
5108 	return fs_write_info(device, info, mask);
5109 }
5110 
5111 
5112 fssh_status_t
5113 _kern_sync(void)
5114 {
5115 	// Note: _kern_sync() is also called from _user_sync()
5116 	int32_t cookie = 0;
5117 	fssh_dev_t device;
5118 	while ((device = fs_next_device(&cookie)) >= 0) {
5119 		fssh_status_t status = fs_sync(device);
5120 		if (status != FSSH_B_OK && status != FSSH_B_BAD_VALUE)
5121 			fssh_dprintf("sync: device %d couldn't sync: %s\n", (int)device, fssh_strerror(status));
5122 	}
5123 
5124 	return FSSH_B_OK;
5125 }
5126 
5127 
5128 fssh_dev_t
5129 _kern_next_device(int32_t *_cookie)
5130 {
5131 	return fs_next_device(_cookie);
5132 }
5133 
5134 
5135 int
5136 _kern_open_entry_ref(fssh_dev_t device, fssh_ino_t inode, const char *name, int openMode, int perms)
5137 {
5138 	if (openMode & FSSH_O_CREAT)
5139 		return file_create_entry_ref(device, inode, name, openMode, perms, true);
5140 
5141 	return file_open_entry_ref(device, inode, name, openMode, true);
5142 }
5143 
5144 
5145 /**	\brief Opens a node specified by a FD + path pair.
5146  *
5147  *	At least one of \a fd and \a path must be specified.
5148  *	If only \a fd is given, the function opens the node identified by this
5149  *	FD. If only a path is given, this path is opened. If both are given and
5150  *	the path is absolute, \a fd is ignored; a relative path is reckoned off
5151  *	of the directory (!) identified by \a fd.
5152  *
5153  *	\param fd The FD. May be < 0.
5154  *	\param path The absolute or relative path. May be \c NULL.
5155  *	\param openMode The open mode.
5156  *	\return A FD referring to the newly opened node, or an error code,
5157  *			if an error occurs.
5158  */
5159 
5160 int
5161 _kern_open(int fd, const char *path, int openMode, int perms)
5162 {
5163 	KPath pathBuffer(path, false, FSSH_B_PATH_NAME_LENGTH + 1);
5164 	if (pathBuffer.InitCheck() != FSSH_B_OK)
5165 		return FSSH_B_NO_MEMORY;
5166 
5167 	if (openMode & FSSH_O_CREAT)
5168 		return file_create(fd, pathBuffer.LockBuffer(), openMode, perms, true);
5169 
5170 	return file_open(fd, pathBuffer.LockBuffer(), openMode, true);
5171 }
5172 
5173 
5174 /**	\brief Opens a directory specified by entry_ref or node_ref.
5175  *
5176  *	The supplied name may be \c NULL, in which case directory identified
5177  *	by \a device and \a inode will be opened. Otherwise \a device and
5178  *	\a inode identify the parent directory of the directory to be opened
5179  *	and \a name its entry name.
5180  *
5181  *	\param device If \a name is specified the ID of the device the parent
5182  *		   directory of the directory to be opened resides on, otherwise
5183  *		   the device of the directory itself.
5184  *	\param inode If \a name is specified the node ID of the parent
5185  *		   directory of the directory to be opened, otherwise node ID of the
5186  *		   directory itself.
5187  *	\param name The entry name of the directory to be opened. If \c NULL,
5188  *		   the \a device + \a inode pair identify the node to be opened.
5189  *	\return The FD of the newly opened directory or an error code, if
5190  *			something went wrong.
5191  */
5192 
5193 int
5194 _kern_open_dir_entry_ref(fssh_dev_t device, fssh_ino_t inode, const char *name)
5195 {
5196 	return dir_open_entry_ref(device, inode, name, true);
5197 }
5198 
5199 
5200 /**	\brief Opens a directory specified by a FD + path pair.
5201  *
5202  *	At least one of \a fd and \a path must be specified.
5203  *	If only \a fd is given, the function opens the directory identified by this
5204  *	FD. If only a path is given, this path is opened. If both are given and
5205  *	the path is absolute, \a fd is ignored; a relative path is reckoned off
5206  *	of the directory (!) identified by \a fd.
5207  *
5208  *	\param fd The FD. May be < 0.
5209  *	\param path The absolute or relative path. May be \c NULL.
5210  *	\return A FD referring to the newly opened directory, or an error code,
5211  *			if an error occurs.
5212  */
5213 
5214 int
5215 _kern_open_dir(int fd, const char *path)
5216 {
5217 	KPath pathBuffer(path, false, FSSH_B_PATH_NAME_LENGTH + 1);
5218 	if (pathBuffer.InitCheck() != FSSH_B_OK)
5219 		return FSSH_B_NO_MEMORY;
5220 
5221 	return dir_open(fd, pathBuffer.LockBuffer(), true);
5222 }
5223 
5224 
5225 fssh_status_t
5226 _kern_fcntl(int fd, int op, uint32_t argument)
5227 {
5228 	return common_fcntl(fd, op, argument, true);
5229 }
5230 
5231 
5232 fssh_status_t
5233 _kern_fsync(int fd)
5234 {
5235 	return common_sync(fd, true);
5236 }
5237 
5238 
5239 fssh_status_t
5240 _kern_lock_node(int fd)
5241 {
5242 	return common_lock_node(fd, true);
5243 }
5244 
5245 
5246 fssh_status_t
5247 _kern_unlock_node(int fd)
5248 {
5249 	return common_unlock_node(fd, true);
5250 }
5251 
5252 
5253 fssh_status_t
5254 _kern_create_dir_entry_ref(fssh_dev_t device, fssh_ino_t inode, const char *name, int perms)
5255 {
5256 	return dir_create_entry_ref(device, inode, name, perms, true);
5257 }
5258 
5259 
5260 /**	\brief Creates a directory specified by a FD + path pair.
5261  *
5262  *	\a path must always be specified (it contains the name of the new directory
5263  *	at least). If only a path is given, this path identifies the location at
5264  *	which the directory shall be created. If both \a fd and \a path are given and
5265  *	the path is absolute, \a fd is ignored; a relative path is reckoned off
5266  *	of the directory (!) identified by \a fd.
5267  *
5268  *	\param fd The FD. May be < 0.
5269  *	\param path The absolute or relative path. Must not be \c NULL.
5270  *	\param perms The access permissions the new directory shall have.
5271  *	\return \c FSSH_B_OK, if the directory has been created successfully, another
5272  *			error code otherwise.
5273  */
5274 
5275 fssh_status_t
5276 _kern_create_dir(int fd, const char *path, int perms)
5277 {
5278 	KPath pathBuffer(path, false, FSSH_B_PATH_NAME_LENGTH + 1);
5279 	if (pathBuffer.InitCheck() != FSSH_B_OK)
5280 		return FSSH_B_NO_MEMORY;
5281 
5282 	return dir_create(fd, pathBuffer.LockBuffer(), perms, true);
5283 }
5284 
5285 
5286 fssh_status_t
5287 _kern_remove_dir(int fd, const char *path)
5288 {
5289 	if (path) {
5290 		KPath pathBuffer(path, false, FSSH_B_PATH_NAME_LENGTH + 1);
5291 		if (pathBuffer.InitCheck() != FSSH_B_OK)
5292 			return FSSH_B_NO_MEMORY;
5293 
5294 		return dir_remove(fd, pathBuffer.LockBuffer(), true);
5295 	}
5296 
5297 	return dir_remove(fd, NULL, true);
5298 }
5299 
5300 
5301 /**	\brief Reads the contents of a symlink referred to by a FD + path pair.
5302  *
5303  *	At least one of \a fd and \a path must be specified.
5304  *	If only \a fd is given, the function the symlink to be read is the node
5305  *	identified by this FD. If only a path is given, this path identifies the
5306  *	symlink to be read. If both are given and the path is absolute, \a fd is
5307  *	ignored; a relative path is reckoned off of the directory (!) identified
5308  *	by \a fd.
5309  *	If this function fails with FSSH_B_BUFFER_OVERFLOW, the \a _bufferSize pointer
5310  *	will still be updated to reflect the required buffer size.
5311  *
5312  *	\param fd The FD. May be < 0.
5313  *	\param path The absolute or relative path. May be \c NULL.
5314  *	\param buffer The buffer into which the contents of the symlink shall be
5315  *		   written.
5316  *	\param _bufferSize A pointer to the size of the supplied buffer.
5317  *	\return The length of the link on success or an appropriate error code
5318  */
5319 
5320 fssh_status_t
5321 _kern_read_link(int fd, const char *path, char *buffer, fssh_size_t *_bufferSize)
5322 {
5323 	if (path) {
5324 		KPath pathBuffer(path, false, FSSH_B_PATH_NAME_LENGTH + 1);
5325 		if (pathBuffer.InitCheck() != FSSH_B_OK)
5326 			return FSSH_B_NO_MEMORY;
5327 
5328 		return common_read_link(fd, pathBuffer.LockBuffer(),
5329 			buffer, _bufferSize, true);
5330 	}
5331 
5332 	return common_read_link(fd, NULL, buffer, _bufferSize, true);
5333 }
5334 
5335 
5336 /**	\brief Creates a symlink specified by a FD + path pair.
5337  *
5338  *	\a path must always be specified (it contains the name of the new symlink
5339  *	at least). If only a path is given, this path identifies the location at
5340  *	which the symlink shall be created. If both \a fd and \a path are given and
5341  *	the path is absolute, \a fd is ignored; a relative path is reckoned off
5342  *	of the directory (!) identified by \a fd.
5343  *
5344  *	\param fd The FD. May be < 0.
5345  *	\param toPath The absolute or relative path. Must not be \c NULL.
5346  *	\param mode The access permissions the new symlink shall have.
5347  *	\return \c FSSH_B_OK, if the symlink has been created successfully, another
5348  *			error code otherwise.
5349  */
5350 
5351 fssh_status_t
5352 _kern_create_symlink(int fd, const char *path, const char *toPath, int mode)
5353 {
5354 	KPath pathBuffer(path, false, FSSH_B_PATH_NAME_LENGTH + 1);
5355 	KPath toPathBuffer(toPath, false, FSSH_B_PATH_NAME_LENGTH + 1);
5356 	if (pathBuffer.InitCheck() != FSSH_B_OK || toPathBuffer.InitCheck() != FSSH_B_OK)
5357 		return FSSH_B_NO_MEMORY;
5358 
5359 	char *toBuffer = toPathBuffer.LockBuffer();
5360 
5361 	fssh_status_t status = check_path(toBuffer);
5362 	if (status < FSSH_B_OK)
5363 		return status;
5364 
5365 	return common_create_symlink(fd, pathBuffer.LockBuffer(),
5366 		toBuffer, mode, true);
5367 }
5368 
5369 
5370 fssh_status_t
5371 _kern_create_link(const char *path, const char *toPath)
5372 {
5373 	KPath pathBuffer(path, false, FSSH_B_PATH_NAME_LENGTH + 1);
5374 	KPath toPathBuffer(toPath, false, FSSH_B_PATH_NAME_LENGTH + 1);
5375 	if (pathBuffer.InitCheck() != FSSH_B_OK || toPathBuffer.InitCheck() != FSSH_B_OK)
5376 		return FSSH_B_NO_MEMORY;
5377 
5378 	return common_create_link(pathBuffer.LockBuffer(),
5379 		toPathBuffer.LockBuffer(), true);
5380 }
5381 
5382 
5383 /**	\brief Removes an entry specified by a FD + path pair from its directory.
5384  *
5385  *	\a path must always be specified (it contains at least the name of the entry
5386  *	to be deleted). If only a path is given, this path identifies the entry
5387  *	directly. If both \a fd and \a path are given and the path is absolute,
5388  *	\a fd is ignored; a relative path is reckoned off of the directory (!)
5389  *	identified by \a fd.
5390  *
5391  *	\param fd The FD. May be < 0.
5392  *	\param path The absolute or relative path. Must not be \c NULL.
5393  *	\return \c FSSH_B_OK, if the entry has been removed successfully, another
5394  *			error code otherwise.
5395  */
5396 
5397 fssh_status_t
5398 _kern_unlink(int fd, const char *path)
5399 {
5400 	KPath pathBuffer(path, false, FSSH_B_PATH_NAME_LENGTH + 1);
5401 	if (pathBuffer.InitCheck() != FSSH_B_OK)
5402 		return FSSH_B_NO_MEMORY;
5403 
5404 	return common_unlink(fd, pathBuffer.LockBuffer(), true);
5405 }
5406 
5407 
5408 /**	\brief Moves an entry specified by a FD + path pair to a an entry specified
5409  *		   by another FD + path pair.
5410  *
5411  *	\a oldPath and \a newPath must always be specified (they contain at least
5412  *	the name of the entry). If only a path is given, this path identifies the
5413  *	entry directly. If both a FD and a path are given and the path is absolute,
5414  *	the FD is ignored; a relative path is reckoned off of the directory (!)
5415  *	identified by the respective FD.
5416  *
5417  *	\param oldFD The FD of the old location. May be < 0.
5418  *	\param oldPath The absolute or relative path of the old location. Must not
5419  *		   be \c NULL.
5420  *	\param newFD The FD of the new location. May be < 0.
5421  *	\param newPath The absolute or relative path of the new location. Must not
5422  *		   be \c NULL.
5423  *	\return \c FSSH_B_OK, if the entry has been moved successfully, another
5424  *			error code otherwise.
5425  */
5426 
5427 fssh_status_t
5428 _kern_rename(int oldFD, const char *oldPath, int newFD, const char *newPath)
5429 {
5430 	KPath oldPathBuffer(oldPath, false, FSSH_B_PATH_NAME_LENGTH + 1);
5431 	KPath newPathBuffer(newPath, false, FSSH_B_PATH_NAME_LENGTH + 1);
5432 	if (oldPathBuffer.InitCheck() != FSSH_B_OK || newPathBuffer.InitCheck() != FSSH_B_OK)
5433 		return FSSH_B_NO_MEMORY;
5434 
5435 	return common_rename(oldFD, oldPathBuffer.LockBuffer(),
5436 		newFD, newPathBuffer.LockBuffer(), true);
5437 }
5438 
5439 
5440 fssh_status_t
5441 _kern_access(const char *path, int mode)
5442 {
5443 	KPath pathBuffer(path, false, FSSH_B_PATH_NAME_LENGTH + 1);
5444 	if (pathBuffer.InitCheck() != FSSH_B_OK)
5445 		return FSSH_B_NO_MEMORY;
5446 
5447 	return common_access(pathBuffer.LockBuffer(), mode, true);
5448 }
5449 
5450 
5451 /**	\brief Reads stat data of an entity specified by a FD + path pair.
5452  *
5453  *	If only \a fd is given, the stat operation associated with the type
5454  *	of the FD (node, attr, attr dir etc.) is performed. If only \a path is
5455  *	given, this path identifies the entry for whose node to retrieve the
5456  *	stat data. If both \a fd and \a path are given and the path is absolute,
5457  *	\a fd is ignored; a relative path is reckoned off of the directory (!)
5458  *	identified by \a fd and specifies the entry whose stat data shall be
5459  *	retrieved.
5460  *
5461  *	\param fd The FD. May be < 0.
5462  *	\param path The absolute or relative path. Must not be \c NULL.
5463  *	\param traverseLeafLink If \a path is given, \c true specifies that the
5464  *		   function shall not stick to symlinks, but traverse them.
5465  *	\param stat The buffer the stat data shall be written into.
5466  *	\param statSize The size of the supplied stat buffer.
5467  *	\return \c FSSH_B_OK, if the the stat data have been read successfully, another
5468  *			error code otherwise.
5469  */
5470 
5471 fssh_status_t
5472 _kern_read_stat(int fd, const char *path, bool traverseLeafLink,
5473 	fssh_struct_stat *stat, fssh_size_t statSize)
5474 {
5475 	fssh_struct_stat completeStat;
5476 	fssh_struct_stat *originalStat = NULL;
5477 	fssh_status_t status;
5478 
5479 	if (statSize > sizeof(fssh_struct_stat))
5480 		return FSSH_B_BAD_VALUE;
5481 
5482 	// this supports different stat extensions
5483 	if (statSize < sizeof(fssh_struct_stat)) {
5484 		originalStat = stat;
5485 		stat = &completeStat;
5486 	}
5487 
5488 	if (path) {
5489 		// path given: get the stat of the node referred to by (fd, path)
5490 		KPath pathBuffer(path, false, FSSH_B_PATH_NAME_LENGTH + 1);
5491 		if (pathBuffer.InitCheck() != FSSH_B_OK)
5492 			return FSSH_B_NO_MEMORY;
5493 
5494 		status = common_path_read_stat(fd, pathBuffer.LockBuffer(),
5495 			traverseLeafLink, stat, true);
5496 	} else {
5497 		// no path given: get the FD and use the FD operation
5498 		struct file_descriptor *descriptor
5499 			= get_fd(get_current_io_context(true), fd);
5500 		if (descriptor == NULL)
5501 			return FSSH_B_FILE_ERROR;
5502 
5503 		if (descriptor->ops->fd_read_stat)
5504 			status = descriptor->ops->fd_read_stat(descriptor, stat);
5505 		else
5506 			status = FSSH_EOPNOTSUPP;
5507 
5508 		put_fd(descriptor);
5509 	}
5510 
5511 	if (status == FSSH_B_OK && originalStat != NULL)
5512 		fssh_memcpy(originalStat, stat, statSize);
5513 
5514 	return status;
5515 }
5516 
5517 
5518 /**	\brief Writes stat data of an entity specified by a FD + path pair.
5519  *
5520  *	If only \a fd is given, the stat operation associated with the type
5521  *	of the FD (node, attr, attr dir etc.) is performed. If only \a path is
5522  *	given, this path identifies the entry for whose node to write the
5523  *	stat data. If both \a fd and \a path are given and the path is absolute,
5524  *	\a fd is ignored; a relative path is reckoned off of the directory (!)
5525  *	identified by \a fd and specifies the entry whose stat data shall be
5526  *	written.
5527  *
5528  *	\param fd The FD. May be < 0.
5529  *	\param path The absolute or relative path. Must not be \c NULL.
5530  *	\param traverseLeafLink If \a path is given, \c true specifies that the
5531  *		   function shall not stick to symlinks, but traverse them.
5532  *	\param stat The buffer containing the stat data to be written.
5533  *	\param statSize The size of the supplied stat buffer.
5534  *	\param statMask A mask specifying which parts of the stat data shall be
5535  *		   written.
5536  *	\return \c FSSH_B_OK, if the the stat data have been written successfully,
5537  *			another error code otherwise.
5538  */
5539 
5540 fssh_status_t
5541 _kern_write_stat(int fd, const char *path, bool traverseLeafLink,
5542 	const fssh_struct_stat *stat, fssh_size_t statSize, int statMask)
5543 {
5544 	fssh_struct_stat completeStat;
5545 
5546 	if (statSize > sizeof(fssh_struct_stat))
5547 		return FSSH_B_BAD_VALUE;
5548 
5549 	// this supports different stat extensions
5550 	if (statSize < sizeof(fssh_struct_stat)) {
5551 		fssh_memset((uint8_t *)&completeStat + statSize, 0, sizeof(fssh_struct_stat) - statSize);
5552 		fssh_memcpy(&completeStat, stat, statSize);
5553 		stat = &completeStat;
5554 	}
5555 
5556 	fssh_status_t status;
5557 
5558 	if (path) {
5559 		// path given: write the stat of the node referred to by (fd, path)
5560 		KPath pathBuffer(path, false, FSSH_B_PATH_NAME_LENGTH + 1);
5561 		if (pathBuffer.InitCheck() != FSSH_B_OK)
5562 			return FSSH_B_NO_MEMORY;
5563 
5564 		status = common_path_write_stat(fd, pathBuffer.LockBuffer(),
5565 			traverseLeafLink, stat, statMask, true);
5566 	} else {
5567 		// no path given: get the FD and use the FD operation
5568 		struct file_descriptor *descriptor
5569 			= get_fd(get_current_io_context(true), fd);
5570 		if (descriptor == NULL)
5571 			return FSSH_B_FILE_ERROR;
5572 
5573 		if (descriptor->ops->fd_write_stat)
5574 			status = descriptor->ops->fd_write_stat(descriptor, stat, statMask);
5575 		else
5576 			status = FSSH_EOPNOTSUPP;
5577 
5578 		put_fd(descriptor);
5579 	}
5580 
5581 	return status;
5582 }
5583 
5584 
5585 int
5586 _kern_open_attr_dir(int fd, const char *path)
5587 {
5588 	KPath pathBuffer(FSSH_B_PATH_NAME_LENGTH + 1);
5589 	if (pathBuffer.InitCheck() != FSSH_B_OK)
5590 		return FSSH_B_NO_MEMORY;
5591 
5592 	if (path != NULL)
5593 		pathBuffer.SetTo(path);
5594 
5595 	return attr_dir_open(fd, path ? pathBuffer.LockBuffer() : NULL, true);
5596 }
5597 
5598 
5599 int
5600 _kern_create_attr(int fd, const char *name, uint32_t type, int openMode)
5601 {
5602 	return attr_create(fd, name, type, openMode, true);
5603 }
5604 
5605 
5606 int
5607 _kern_open_attr(int fd, const char *name, int openMode)
5608 {
5609 	return attr_open(fd, name, openMode, true);
5610 }
5611 
5612 
5613 fssh_status_t
5614 _kern_remove_attr(int fd, const char *name)
5615 {
5616 	return attr_remove(fd, name, true);
5617 }
5618 
5619 
5620 fssh_status_t
5621 _kern_rename_attr(int fromFile, const char *fromName, int toFile, const char *toName)
5622 {
5623 	return attr_rename(fromFile, fromName, toFile, toName, true);
5624 }
5625 
5626 
5627 int
5628 _kern_open_index_dir(fssh_dev_t device)
5629 {
5630 	return index_dir_open(device, true);
5631 }
5632 
5633 
5634 fssh_status_t
5635 _kern_create_index(fssh_dev_t device, const char *name, uint32_t type, uint32_t flags)
5636 {
5637 	return index_create(device, name, type, flags, true);
5638 }
5639 
5640 
5641 fssh_status_t
5642 _kern_read_index_stat(fssh_dev_t device, const char *name, fssh_struct_stat *stat)
5643 {
5644 	return index_name_read_stat(device, name, stat, true);
5645 }
5646 
5647 
5648 fssh_status_t
5649 _kern_remove_index(fssh_dev_t device, const char *name)
5650 {
5651 	return index_remove(device, name, true);
5652 }
5653 
5654 
5655 fssh_status_t
5656 _kern_getcwd(char *buffer, fssh_size_t size)
5657 {
5658 	TRACE(("_kern_getcwd: buf %p, %ld\n", buffer, size));
5659 
5660 	// Call vfs to get current working directory
5661 	return get_cwd(buffer, size, true);
5662 }
5663 
5664 
5665 fssh_status_t
5666 _kern_setcwd(int fd, const char *path)
5667 {
5668 	KPath pathBuffer(FSSH_B_PATH_NAME_LENGTH + 1);
5669 	if (pathBuffer.InitCheck() != FSSH_B_OK)
5670 		return FSSH_B_NO_MEMORY;
5671 
5672 	if (path != NULL)
5673 		pathBuffer.SetTo(path);
5674 
5675 	return set_cwd(fd, path != NULL ? pathBuffer.LockBuffer() : NULL, true);
5676 }
5677 
5678 
5679 fssh_status_t
5680 _kern_initialize_volume(const char* fsName, const char *partition,
5681 	const char *name, const char *parameters)
5682 {
5683 	if (!fsName || ! partition)
5684 		return FSSH_B_BAD_VALUE;
5685 
5686 	// The partition argument should point to a real file/device.
5687 
5688 	// open partition
5689 	int fd = fssh_open(partition, FSSH_O_RDWR);
5690 	if (fd < 0)
5691 		return fssh_errno;
5692 
5693 	// get the file system module
5694 	fssh_file_system_module_info* fsModule = get_file_system(fsName);
5695 	if (fsModule == NULL) {
5696 		fssh_close(fd);
5697 		return FSSH_ENODEV;
5698 	}
5699 
5700 	// initialize
5701 	fssh_status_t status;
5702 	if (fsModule->initialize) {
5703 		status = (*fsModule->initialize)(fd, -1, name, parameters, 0, -1);
5704 			// We've got no partition or job IDs -- the FS will hopefully
5705 			// ignore that.
5706 			// TODO: Get the actual size!
5707 	} else
5708 		status = FSSH_B_NOT_SUPPORTED;
5709 
5710 	// put the file system module, close partition
5711 	put_file_system(fsModule);
5712 	fssh_close(fd);
5713 
5714 	return status;
5715 }
5716 
5717 
5718 fssh_status_t
5719 _kern_entry_ref_to_path(fssh_dev_t device, fssh_ino_t inode, const char *leaf,
5720 	char* path, fssh_size_t pathLength)
5721 {
5722 	return vfs_entry_ref_to_path(device, inode, leaf, true, path, pathLength);
5723 }
5724 
5725 
5726 int
5727 _kern_open_query(fssh_dev_t device, const char *query, fssh_size_t queryLength,
5728 	uint32_t flags, fssh_port_id port, int32_t token)
5729 {
5730 	return query_open(device, query, flags, port, token, false);
5731 }
5732 
5733 
5734 }	// namespace FSShell
5735 
5736 
5737 #include "vfs_request_io.cpp"
5738