xref: /haiku/src/system/runtime_loader/images.cpp (revision 7200c6f499191933e4b04e1f9c9a269d10fc92c0)
1 /*
2  * Copyright 2008-2009, Ingo Weinhold, ingo_weinhold@gmx.de.
3  * Copyright 2003-2009, Axel Dörfler, axeld@pinc-software.de.
4  * Distributed under the terms of the MIT License.
5  *
6  * Copyright 2002, Manuel J. Petit. All rights reserved.
7  * Copyright 2001, Travis Geiselbrecht. All rights reserved.
8  * Distributed under the terms of the NewOS License.
9  */
10 
11 #include "images.h"
12 
13 #include <stdio.h>
14 #include <stdlib.h>
15 #include <string.h>
16 
17 #include <syscalls.h>
18 #include <vm_defs.h>
19 
20 #include "add_ons.h"
21 #include "runtime_loader_private.h"
22 
23 
24 #define RLD_PROGRAM_BASE 0x00200000
25 	/* keep in sync with app ldscript */
26 
27 
28 bool gInvalidImageIDs;
29 
30 static image_queue_t sLoadedImages = {0, 0};
31 static image_queue_t sDisposableImages = {0, 0};
32 static uint32 sLoadedImageCount = 0;
33 
34 
35 //! Remaps the image ID of \a image after fork.
36 static status_t
37 update_image_id(image_t* image)
38 {
39 	int32 cookie = 0;
40 	image_info info;
41 	while (_kern_get_next_image_info(B_CURRENT_TEAM, &cookie, &info,
42 			sizeof(image_info)) == B_OK) {
43 		for (uint32 i = 0; i < image->num_regions; i++) {
44 			if (image->regions[i].vmstart == (addr_t)info.text) {
45 				image->id = info.id;
46 				return B_OK;
47 			}
48 		}
49 	}
50 
51 	FATAL("Could not update image ID %ld after fork()!\n", image->id);
52 	return B_ENTRY_NOT_FOUND;
53 }
54 
55 
56 static void
57 enqueue_image(image_queue_t* queue, image_t* image)
58 {
59 	image->next = NULL;
60 
61 	image->prev = queue->tail;
62 	if (queue->tail)
63 		queue->tail->next = image;
64 
65 	queue->tail = image;
66 	if (!queue->head)
67 		queue->head = image;
68 }
69 
70 
71 static void
72 dequeue_image(image_queue_t* queue, image_t* image)
73 {
74 	if (image->next)
75 		image->next->prev = image->prev;
76 	else
77 		queue->tail = image->prev;
78 
79 	if (image->prev)
80 		image->prev->next = image->next;
81 	else
82 		queue->head = image->next;
83 
84 	image->prev = NULL;
85 	image->next = NULL;
86 }
87 
88 
89 static image_t*
90 find_image_in_queue(image_queue_t* queue, const char* name, bool isPath,
91 	uint32 typeMask)
92 {
93 	for (image_t* image = queue->head; image; image = image->next) {
94 		const char* imageName = isPath ? image->path : image->name;
95 		int length = isPath ? sizeof(image->path) : sizeof(image->name);
96 
97 		if (!strncmp(imageName, name, length)
98 			&& (typeMask & IMAGE_TYPE_TO_MASK(image->type)) != 0) {
99 			return image;
100 		}
101 	}
102 
103 	return NULL;
104 }
105 
106 
107 static void
108 update_image_flags_recursively(image_t* image, uint32 flagsToSet,
109 	uint32 flagsToClear)
110 {
111 	image_t* queue[sLoadedImageCount];
112 	uint32 count = 0;
113 	uint32 index = 0;
114 	queue[count++] = image;
115 	image->flags |= RFLAG_VISITED;
116 
117 	while (index < count) {
118 		// pop next image
119 		image = queue[index++];
120 
121 		// push dependencies
122 		for (uint32 i = 0; i < image->num_needed; i++) {
123 			image_t* needed = image->needed[i];
124 			if ((needed->flags & RFLAG_VISITED) == 0) {
125 				queue[count++] = needed;
126 				needed->flags |= RFLAG_VISITED;
127 			}
128 		}
129 	}
130 
131 	// update flags
132 	for (uint32 i = 0; i < count; i++) {
133 		queue[i]->flags = (queue[i]->flags | flagsToSet)
134 			& ~(flagsToClear | RFLAG_VISITED);
135 	}
136 }
137 
138 
139 static uint32
140 topological_sort(image_t* image, uint32 slot, image_t** initList,
141 	uint32 sortFlag)
142 {
143 	uint32 i;
144 
145 	if (image->flags & sortFlag)
146 		return slot;
147 
148 	image->flags |= sortFlag; /* make sure we don't visit this one */
149 	for (i = 0; i < image->num_needed; i++)
150 		slot = topological_sort(image->needed[i], slot, initList, sortFlag);
151 
152 	initList[slot] = image;
153 	return slot + 1;
154 }
155 
156 
157 // #pragma mark -
158 
159 
160 image_t*
161 create_image(const char* name, const char* path, int regionCount)
162 {
163 	size_t allocSize = sizeof(image_t)
164 		+ (regionCount - 1) * sizeof(elf_region_t);
165 
166 	image_t* image = (image_t*)malloc(allocSize);
167 	if (image == NULL) {
168 		FATAL("no memory for image %s\n", path);
169 		return NULL;
170 	}
171 
172 	memset(image, 0, allocSize);
173 
174 	strlcpy(image->path, path, sizeof(image->path));
175 
176 	// Make the last component of the supplied name the image name.
177 	// If present, DT_SONAME will replace this name.
178 	const char* lastSlash = strrchr(name, '/');
179 	if (lastSlash != NULL)
180 		strlcpy(image->name, lastSlash + 1, sizeof(image->name));
181 	else
182 		strlcpy(image->name, name, sizeof(image->name));
183 
184 	image->ref_count = 1;
185 	image->num_regions = regionCount;
186 
187 	return image;
188 }
189 
190 
191 void
192 delete_image_struct(image_t* image)
193 {
194 #ifdef DEBUG
195 	size_t size = sizeof(image_t)
196 		+ (image->num_regions - 1) * sizeof(elf_region_t);
197 	memset(image->needed, 0xa5, sizeof(image->needed[0]) * image->num_needed);
198 #endif
199 	free(image->needed);
200 	free(image->versions);
201 
202 	while (RuntimeLoaderSymbolPatcher* patcher
203 			= image->defined_symbol_patchers) {
204 		image->defined_symbol_patchers = patcher->next;
205 		delete patcher;
206 	}
207 	while (RuntimeLoaderSymbolPatcher* patcher
208 			= image->undefined_symbol_patchers) {
209 		image->undefined_symbol_patchers = patcher->next;
210 		delete patcher;
211 	}
212 
213 #ifdef DEBUG
214 	// overwrite images to make sure they aren't accidently reused anywhere
215 	memset(image, 0xa5, size);
216 #endif
217 	free(image);
218 }
219 
220 
221 void
222 delete_image(image_t* image)
223 {
224 	if (image == NULL)
225 		return;
226 
227 	_kern_unregister_image(image->id);
228 		// registered in load_container()
229 
230 	delete_image_struct(image);
231 }
232 
233 
234 void
235 put_image(image_t* image)
236 {
237 	// If all references to the image are gone, add it to the disposable list
238 	// and remove all dependencies
239 
240 	if (atomic_add(&image->ref_count, -1) == 1) {
241 		size_t i;
242 
243 		dequeue_image(&sLoadedImages, image);
244 		enqueue_image(&sDisposableImages, image);
245 		sLoadedImageCount--;
246 
247 		for (i = 0; i < image->num_needed; i++)
248 			put_image(image->needed[i]);
249 	}
250 }
251 
252 
253 status_t
254 map_image(int fd, char const* path, image_t* image, bool fixed)
255 {
256 	// cut the file name from the path as base name for the created areas
257 	const char* baseName = strrchr(path, '/');
258 	if (baseName != NULL)
259 		baseName++;
260 	else
261 		baseName = path;
262 
263 	for (uint32 i = 0; i < image->num_regions; i++) {
264 		char regionName[B_OS_NAME_LENGTH];
265 		addr_t loadAddress;
266 		uint32 addressSpecifier;
267 
268 		// for BeOS compatibility: if we load an old BeOS executable, we
269 		// have to relocate it, if possible - we recognize it because the
270 		// vmstart is set to 0 (hopefully always)
271 		if (fixed && image->regions[i].vmstart == 0)
272 			fixed = false;
273 
274 		snprintf(regionName, sizeof(regionName), "%s_seg%lu%s",
275 			baseName, i, (image->regions[i].flags & RFLAG_RW) ? "rw" : "ro");
276 
277 		if (image->dynamic_ptr && !fixed) {
278 			// relocatable image... we can afford to place wherever
279 			if (i == 0) {
280 				// but only the first segment gets a free ride
281 				loadAddress = RLD_PROGRAM_BASE;
282 				addressSpecifier = B_BASE_ADDRESS;
283 			} else {
284 				loadAddress = image->regions[i].vmstart
285 					+ image->regions[i-1].delta;
286 				addressSpecifier = B_EXACT_ADDRESS;
287 			}
288 		} else {
289 			// not relocatable, put it where it asks or die trying
290 			loadAddress = image->regions[i].vmstart;
291 			addressSpecifier = B_EXACT_ADDRESS;
292 		}
293 
294 		if (image->regions[i].flags & RFLAG_ANON) {
295 			image->regions[i].id = _kern_create_area(regionName,
296 				(void**)&loadAddress, addressSpecifier,
297 				image->regions[i].vmsize, B_NO_LOCK,
298 				B_READ_AREA | B_WRITE_AREA);
299 
300 			if (image->regions[i].id < 0)
301 				return image->regions[i].id;
302 
303 			image->regions[i].delta = loadAddress - image->regions[i].vmstart;
304 			image->regions[i].vmstart = loadAddress;
305 		} else {
306 			image->regions[i].id = _kern_map_file(regionName,
307 				(void**)&loadAddress, addressSpecifier,
308 				image->regions[i].vmsize, B_READ_AREA | B_WRITE_AREA,
309 				REGION_PRIVATE_MAP, false, fd,
310 				PAGE_BASE(image->regions[i].fdstart));
311 
312 			if (image->regions[i].id < 0)
313 				return image->regions[i].id;
314 
315 			TRACE(("\"%s\" at %p, 0x%lx bytes (%s)\n", path,
316 				(void *)loadAddress, image->regions[i].vmsize,
317 				image->regions[i].flags & RFLAG_RW ? "rw" : "read-only"));
318 
319 			image->regions[i].delta = loadAddress - image->regions[i].vmstart;
320 			image->regions[i].vmstart = loadAddress;
321 
322 			// handle trailer bits in data segment
323 			if (image->regions[i].flags & RFLAG_RW) {
324 				addr_t startClearing;
325 				addr_t toClear;
326 
327 				startClearing = image->regions[i].vmstart
328 					+ PAGE_OFFSET(image->regions[i].start)
329 					+ image->regions[i].size;
330 				toClear = image->regions[i].vmsize
331 					- PAGE_OFFSET(image->regions[i].start)
332 					- image->regions[i].size;
333 
334 				TRACE(("cleared 0x%lx and the following 0x%lx bytes\n",
335 					startClearing, toClear));
336 				memset((void *)startClearing, 0, toClear);
337 			}
338 		}
339 	}
340 
341 	if (image->dynamic_ptr)
342 		image->dynamic_ptr += image->regions[0].delta;
343 
344 	return B_OK;
345 }
346 
347 
348 void
349 unmap_image(image_t* image)
350 {
351 	for (uint32 i = 0; i < image->num_regions; i++) {
352 		_kern_delete_area(image->regions[i].id);
353 
354 		image->regions[i].id = -1;
355 	}
356 }
357 
358 
359 /*!	This function will change the protection of all read-only segments to really
360 	be read-only.
361 	The areas have to be read/write first, so that they can be relocated.
362 */
363 void
364 remap_images()
365 {
366 	for (image_t* image = sLoadedImages.head; image != NULL;
367 			image = image->next) {
368 		for (uint32 i = 0; i < image->num_regions; i++) {
369 			if ((image->regions[i].flags & RFLAG_RW) == 0
370 				&& (image->regions[i].flags & RFLAG_REMAPPED) == 0) {
371 				// we only need to do this once, so we remember those we've already mapped
372 				if (_kern_set_area_protection(image->regions[i].id,
373 						B_READ_AREA | B_EXECUTE_AREA) == B_OK) {
374 					image->regions[i].flags |= RFLAG_REMAPPED;
375 				}
376 			}
377 		}
378 	}
379 }
380 
381 
382 void
383 register_image(image_t* image, int fd, const char* path)
384 {
385 	struct stat stat;
386 	image_info info;
387 
388 	// TODO: set these correctly
389 	info.id = 0;
390 	info.type = image->type;
391 	info.sequence = 0;
392 	info.init_order = 0;
393 	info.init_routine = (void (*)())image->init_routine;
394 	info.term_routine = (void (*)())image->term_routine;
395 
396 	if (_kern_read_stat(fd, NULL, false, &stat, sizeof(struct stat)) == B_OK) {
397 		info.device = stat.st_dev;
398 		info.node = stat.st_ino;
399 	} else {
400 		info.device = -1;
401 		info.node = -1;
402 	}
403 
404 	strlcpy(info.name, path, sizeof(info.name));
405 	info.text = (void *)image->regions[0].vmstart;
406 	info.text_size = image->regions[0].vmsize;
407 	info.data = (void *)image->regions[1].vmstart;
408 	info.data_size = image->regions[1].vmsize;
409 	info.api_version = image->api_version;
410 	info.abi = image->abi;
411 	image->id = _kern_register_image(&info, sizeof(image_info));
412 }
413 
414 
415 //! After fork, we lazily rebuild the image IDs of all loaded images.
416 status_t
417 update_image_ids()
418 {
419 	for (image_t* image = sLoadedImages.head; image; image = image->next) {
420 		status_t status = update_image_id(image);
421 		if (status != B_OK)
422 			return status;
423 	}
424 	for (image_t* image = sDisposableImages.head; image; image = image->next) {
425 		status_t status = update_image_id(image);
426 		if (status != B_OK)
427 			return status;
428 	}
429 
430 	gInvalidImageIDs = false;
431 	return B_OK;
432 }
433 
434 
435 image_queue_t&
436 get_loaded_images()
437 {
438 	return sLoadedImages;
439 }
440 
441 
442 image_queue_t&
443 get_disposable_images()
444 {
445 	return sDisposableImages;
446 }
447 
448 
449 uint32
450 count_loaded_images()
451 {
452 	return sLoadedImageCount;
453 }
454 
455 
456 void
457 enqueue_loaded_image(image_t* image)
458 {
459 	enqueue_image(&sLoadedImages, image);
460 	sLoadedImageCount++;
461 }
462 
463 
464 void
465 dequeue_loaded_image(image_t* image)
466 {
467 	dequeue_image(&sLoadedImages, image);
468 	sLoadedImageCount--;
469 }
470 
471 
472 void
473 dequeue_disposable_image(image_t* image)
474 {
475 	dequeue_image(&sDisposableImages, image);
476 }
477 
478 
479 image_t*
480 find_loaded_image_by_name(char const* name, uint32 typeMask)
481 {
482 	bool isPath = strchr(name, '/') != NULL;
483 	return find_image_in_queue(&sLoadedImages, name, isPath, typeMask);
484 }
485 
486 
487 image_t*
488 find_loaded_image_by_id(image_id id, bool ignoreDisposable)
489 {
490 	if (gInvalidImageIDs) {
491 		// After fork, we lazily rebuild the image IDs of all loaded images
492 		update_image_ids();
493 	}
494 
495 	for (image_t* image = sLoadedImages.head; image; image = image->next) {
496 		if (image->id == id)
497 			return image;
498 	}
499 
500 	if (ignoreDisposable)
501 		return NULL;
502 
503 	for (image_t* image = sDisposableImages.head; image; image = image->next) {
504 		if (image->id == id)
505 			return image;
506 	}
507 
508 	return NULL;
509 }
510 
511 
512 void
513 set_image_flags_recursively(image_t* image, uint32 flags)
514 {
515 	update_image_flags_recursively(image, flags, 0);
516 }
517 
518 
519 void
520 clear_image_flags_recursively(image_t* image, uint32 flags)
521 {
522 	update_image_flags_recursively(image, 0, flags);
523 }
524 
525 
526 ssize_t
527 get_sorted_image_list(image_t* image, image_t*** _list, uint32 sortFlag)
528 {
529 	image_t** list;
530 
531 	list = (image_t**)malloc(sLoadedImageCount * sizeof(image_t*));
532 	if (list == NULL) {
533 		FATAL("memory shortage in get_sorted_image_list()");
534 		*_list = NULL;
535 		return B_NO_MEMORY;
536 	}
537 
538 	memset(list, 0, sLoadedImageCount * sizeof(image_t*));
539 
540 	*_list = list;
541 	return topological_sort(image, 0, list, sortFlag);
542 }
543