xref: /haiku/src/system/libroot/posix/stdlib/strtod.c (revision 4f00613311d0bd6b70fa82ce19931c41f071ea4e)
1 /*-
2  * Copyright (c) 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  */
33 
34 
35 /****************************************************************
36  *
37  * The author of this software is David M. Gay.
38  *
39  * Copyright (c) 1991 by AT&T.
40  *
41  * Permission to use, copy, modify, and distribute this software for any
42  * purpose without fee is hereby granted, provided that this entire notice
43  * is included in all copies of any software which is or includes a copy
44  * or modification of this software and in all copies of the supporting
45  * documentation for such software.
46  *
47  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
48  * WARRANTY.  IN PARTICULAR, NEITHER THE AUTHOR NOR AT&T MAKES ANY
49  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
50  * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
51  *
52  ***************************************************************/
53 
54 /* Please send bug reports to
55 	David M. Gay
56 	AT&T Bell Laboratories, Room 2C-463
57 	600 Mountain Avenue
58 	Murray Hill, NJ 07974-2070
59 	U.S.A.
60 	dmg@research.att.com or research!dmg
61  */
62 
63 /* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
64  *
65  * This strtod returns a nearest machine number to the input decimal
66  * string (or sets errno to ERANGE).  With IEEE arithmetic, ties are
67  * broken by the IEEE round-even rule.  Otherwise ties are broken by
68  * biased rounding (add half and chop).
69  *
70  * Inspired loosely by William D. Clinger's paper "How to Read Floating
71  * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101].
72  *
73  * Modifications:
74  *
75  *	1. We only require IEEE, IBM, or VAX double-precision
76  *		arithmetic (not IEEE double-extended).
77  *	2. We get by with floating-point arithmetic in a case that
78  *		Clinger missed -- when we're computing d * 10^n
79  *		for a small integer d and the integer n is not too
80  *		much larger than 22 (the maximum integer k for which
81  *		we can represent 10^k exactly), we may be able to
82  *		compute (d*10^k) * 10^(e-k) with just one roundoff.
83  *	3. Rather than a bit-at-a-time adjustment of the binary
84  *		result in the hard case, we use floating-point
85  *		arithmetic to determine the adjustment to within
86  *		one bit; only in really hard cases do we need to
87  *		compute a second residual.
88  *	4. Because of 3., we don't need a large table of powers of 10
89  *		for ten-to-e (just some small tables, e.g. of 10^k
90  *		for 0 <= k <= 22).
91  */
92 
93 /*
94  * #define Sudden_Underflow for IEEE-format machines without gradual
95  *	underflow (i.e., that flush to zero on underflow).
96  * #define IBM for IBM mainframe-style floating-point arithmetic.
97  * #define VAX for VAX-style floating-point arithmetic.
98  * #define Unsigned_Shifts if >> does treats its left operand as unsigned.
99  * #define No_leftright to omit left-right logic in fast floating-point
100  *	computation of dtoa.
101  * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3.
102  * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
103  *	that use extended-precision instructions to compute rounded
104  *	products and quotients) with IBM.
105  * #define ROUND_BIASED for IEEE-format with biased rounding.
106  * #define Inaccurate_Divide for IEEE-format with correctly rounded
107  *	products but inaccurate quotients, e.g., for Intel i860.
108  * #define Just_16 to store 16 bits per 32-bit Long when doing high-precision
109  *	integer arithmetic.  Whether this speeds things up or slows things
110  *	down depends on the machine and the number being converted.
111  * #define Bad_float_h if your system lacks a float.h or if it does not
112  *	define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
113  *	FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
114  */
115 
116 #if defined(__i386__) || defined(__ia64__) || defined(__alpha__) || \
117     defined(__sparc64__) || defined(__powerpc__) || defined(__POWERPC__)
118 #	include <sys/types.h>
119 #	if BYTE_ORDER == BIG_ENDIAN
120 #		define IEEE_BIG_ENDIAN
121 #	else
122 #		define IEEE_LITTLE_ENDIAN
123 #	endif
124 #endif /* defined(__i386__) ... */
125 
126 #include <inttypes.h>
127 
128 typedef	int32_t   Long;
129 typedef	u_int32_t ULong;
130 
131 #ifdef DEBUG
132 #	include <stdio.h>
133 #	define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);}
134 #endif
135 
136 #include <locale.h>
137 #include <stdlib.h>
138 #include <string.h>
139 
140 #include <errno.h>
141 #include <ctype.h>
142 
143 #ifdef Bad_float_h
144 #undef __STDC__
145 #ifdef IEEE_BIG_ENDIAN
146 #	define IEEE_ARITHMETIC
147 #endif
148 #ifdef IEEE_LITTLE_ENDIAN
149 #	define IEEE_ARITHMETIC
150 #endif
151 #ifdef IEEE_ARITHMETIC
152 #	define DBL_DIG 15
153 #	define DBL_MAX_10_EXP 308
154 #	define DBL_MAX_EXP 1024
155 #	define FLT_RADIX 2
156 #	define FLT_ROUNDS 1
157 #	define DBL_MAX 1.7976931348623157e+308
158 #endif
159 
160 #ifdef IBM
161 #	define DBL_DIG 16
162 #	define DBL_MAX_10_EXP 75
163 #	define DBL_MAX_EXP 63
164 #	define FLT_RADIX 16
165 #	define FLT_ROUNDS 0
166 #	define DBL_MAX 7.2370055773322621e+75
167 #endif
168 
169 #ifdef VAX
170 #	define DBL_DIG 16
171 #	define DBL_MAX_10_EXP 38
172 #	define DBL_MAX_EXP 127
173 #	define FLT_RADIX 2
174 #	define FLT_ROUNDS 1
175 #	define DBL_MAX 1.7014118346046923e+38
176 #endif
177 
178 #ifndef LONG_MAX
179 #	define LONG_MAX 2147483647
180 #endif
181 #else
182 #	include "float.h"
183 #endif
184 #ifndef __MATH_H__
185 #	include "math.h"
186 #endif
187 
188 #ifdef __cplusplus
189 extern "C" {
190 #endif
191 
192 #ifdef Unsigned_Shifts
193 #	define Sign_Extend(a,b) if (b < 0) a |= 0xffff0000;
194 #else
195 #	define Sign_Extend(a,b) /*no-op*/
196 #endif
197 
198 #if defined(IEEE_LITTLE_ENDIAN) + defined(IEEE_BIG_ENDIAN) + defined(VAX) + \
199     defined(IBM) != 1
200 #error Only one of IEEE_LITTLE_ENDIAN, IEEE_BIG_ENDIAN, VAX, or IBM should be defined.
201 #endif
202 
203 union doubleasulongs {
204 	double x;
205 	ULong w[2];
206 };
207 
208 #ifdef IEEE_LITTLE_ENDIAN
209 #	define word0(x) (((union doubleasulongs *)&x)->w)[1]
210 #	define word1(x) (((union doubleasulongs *)&x)->w)[0]
211 #else
212 #	define word0(x) (((union doubleasulongs *)&x)->w)[0]
213 #	define word1(x) (((union doubleasulongs *)&x)->w)[1]
214 #endif
215 
216 /* The following definition of Storeinc is appropriate for MIPS processors.
217  * An alternative that might be better on some machines is
218  * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
219  */
220 #if defined(IEEE_LITTLE_ENDIAN) + defined(VAX)
221 #	define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \
222 		((unsigned short *)a)[0] = (unsigned short)c, a++)
223 #else
224 #	define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \
225 		((unsigned short *)a)[1] = (unsigned short)c, a++)
226 #endif
227 
228 /* #define P DBL_MANT_DIG */
229 /* Ten_pmax = floor(P*log(2)/log(5)) */
230 /* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
231 /* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
232 /* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
233 
234 #if defined(IEEE_LITTLE_ENDIAN) + defined(IEEE_BIG_ENDIAN)
235 #define Exp_shift  20
236 #define Exp_shift1 20
237 #define Exp_msk1    0x100000
238 #define Exp_msk11   0x100000
239 #define Exp_mask  0x7ff00000
240 #define P 53
241 #define Bias 1023
242 #define IEEE_Arith
243 #define Emin (-1022)
244 #define Exp_1  0x3ff00000
245 #define Exp_11 0x3ff00000
246 #define Ebits 11
247 #define Frac_mask  0xfffff
248 #define Frac_mask1 0xfffff
249 #define Ten_pmax 22
250 #define Bletch 0x10
251 #define Bndry_mask  0xfffff
252 #define Bndry_mask1 0xfffff
253 #define LSB 1
254 #define Sign_bit 0x80000000
255 #define Log2P 1
256 #define Tiny0 0
257 #define Tiny1 1
258 #define Quick_max 14
259 #define Int_max 14
260 #define Infinite(x) (word0(x) == 0x7ff00000) /* sufficient test for here */
261 #else
262 #undef  Sudden_Underflow
263 #define Sudden_Underflow
264 #ifdef IBM
265 #define Exp_shift  24
266 #define Exp_shift1 24
267 #define Exp_msk1   0x1000000
268 #define Exp_msk11  0x1000000
269 #define Exp_mask  0x7f000000
270 #define P 14
271 #define Bias 65
272 #define Exp_1  0x41000000
273 #define Exp_11 0x41000000
274 #define Ebits 8	/* exponent has 7 bits, but 8 is the right value in b2d */
275 #define Frac_mask  0xffffff
276 #define Frac_mask1 0xffffff
277 #define Bletch 4
278 #define Ten_pmax 22
279 #define Bndry_mask  0xefffff
280 #define Bndry_mask1 0xffffff
281 #define LSB 1
282 #define Sign_bit 0x80000000
283 #define Log2P 4
284 #define Tiny0 0x100000
285 #define Tiny1 0
286 #define Quick_max 14
287 #define Int_max 15
288 #else /* VAX */
289 #define Exp_shift  23
290 #define Exp_shift1 7
291 #define Exp_msk1    0x80
292 #define Exp_msk11   0x800000
293 #define Exp_mask  0x7f80
294 #define P 56
295 #define Bias 129
296 #define Exp_1  0x40800000
297 #define Exp_11 0x4080
298 #define Ebits 8
299 #define Frac_mask  0x7fffff
300 #define Frac_mask1 0xffff007f
301 #define Ten_pmax 24
302 #define Bletch 2
303 #define Bndry_mask  0xffff007f
304 #define Bndry_mask1 0xffff007f
305 #define LSB 0x10000
306 #define Sign_bit 0x8000
307 #define Log2P 1
308 #define Tiny0 0x80
309 #define Tiny1 0
310 #define Quick_max 15
311 #define Int_max 15
312 #endif
313 #endif
314 
315 #ifndef IEEE_Arith
316 #define ROUND_BIASED
317 #endif
318 
319 #ifdef RND_PRODQUOT
320 #define rounded_product(a,b) a = rnd_prod(a, b)
321 #define rounded_quotient(a,b) a = rnd_quot(a, b)
322 extern double rnd_prod(double, double), rnd_quot(double, double);
323 #else
324 #define rounded_product(a,b) a *= b
325 #define rounded_quotient(a,b) a /= b
326 #endif
327 
328 #define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
329 #define Big1 0xffffffff
330 
331 #ifndef Just_16
332 /* When Pack_32 is not defined, we store 16 bits per 32-bit Long.
333  * This makes some inner loops simpler and sometimes saves work
334  * during multiplications, but it often seems to make things slightly
335  * slower.  Hence the default is now to store 32 bits per Long.
336  */
337 #ifndef Pack_32
338 #define Pack_32
339 #endif
340 #endif
341 
342 #define Kmax 15
343 
344 #ifdef __cplusplus
345 extern "C" double strtod(const char *s00, char **se);
346 extern "C" char *__dtoa(double d, int mode, int ndigits,
347 			int *decpt, int *sign, char **rve, char **resultp);
348 #endif
349 
350 struct
351 Bigint {
352 	struct Bigint *next;
353 	int k, maxwds, sign, wds;
354 	ULong x[1];
355 };
356 
357 typedef struct Bigint Bigint;
358 
359 static Bigint *
360 Balloc(int k)
361 {
362 	int x;
363 	Bigint *rv;
364 
365 	x = 1 << k;
366 	rv = (Bigint *)malloc(sizeof(Bigint) + (x-1)*sizeof(Long));
367 	rv->k = k;
368 	rv->maxwds = x;
369 	rv->sign = rv->wds = 0;
370 	return rv;
371 }
372 
373 
374 static void
375 Bfree(Bigint *v)
376 {
377 	free(v);
378 }
379 
380 
381 #define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \
382 	y->wds*sizeof(Long) + 2*sizeof(int))
383 
384 
385 static Bigint *
386 multadd(Bigint *b, int m, int a)	/* multiply by m and add a */
387 {
388 	int i, wds;
389 	ULong *x, y;
390 #ifdef Pack_32
391 	ULong xi, z;
392 #endif
393 	Bigint *b1;
394 
395 	wds = b->wds;
396 	x = b->x;
397 	i = 0;
398 	do {
399 #ifdef Pack_32
400 		xi = *x;
401 		y = (xi & 0xffff) * m + a;
402 		z = (xi >> 16) * m + (y >> 16);
403 		a = (int)(z >> 16);
404 		*x++ = (z << 16) + (y & 0xffff);
405 #else
406 		y = *x * m + a;
407 		a = (int)(y >> 16);
408 		*x++ = y & 0xffff;
409 #endif
410 	} while (++i < wds);
411 	if (a) {
412 		if (wds >= b->maxwds) {
413 			b1 = Balloc(b->k+1);
414 			Bcopy(b1, b);
415 			Bfree(b);
416 			b = b1;
417 			}
418 		b->x[wds++] = a;
419 		b->wds = wds;
420 	}
421 	return b;
422 }
423 
424 
425 static Bigint *
426 s2b(const char *s, int nd0, int nd, ULong y9)
427 {
428 	Bigint *b;
429 	int i, k;
430 	Long x, y;
431 
432 	x = (nd + 8) / 9;
433 	for (k = 0, y = 1; x > y; y <<= 1, k++) ;
434 #ifdef Pack_32
435 	b = Balloc(k);
436 	b->x[0] = y9;
437 	b->wds = 1;
438 #else
439 	b = Balloc(k+1);
440 	b->x[0] = y9 & 0xffff;
441 	b->wds = (b->x[1] = y9 >> 16) ? 2 : 1;
442 #endif
443 
444 	i = 9;
445 	if (9 < nd0) {
446 		s += 9;
447 		do
448 			b = multadd(b, 10, *s++ - '0');
449 		while (++i < nd0);
450 		s++;
451 	} else
452 		s += 10;
453 	for (; i < nd; i++)
454 		b = multadd(b, 10, *s++ - '0');
455 	return b;
456 }
457 
458 
459 static int
460 hi0bits(ULong x)
461 {
462 	int k = 0;
463 
464 	if (!(x & 0xffff0000)) {
465 		k = 16;
466 		x <<= 16;
467 	}
468 	if (!(x & 0xff000000)) {
469 		k += 8;
470 		x <<= 8;
471 	}
472 	if (!(x & 0xf0000000)) {
473 		k += 4;
474 		x <<= 4;
475 	}
476 	if (!(x & 0xc0000000)) {
477 		k += 2;
478 		x <<= 2;
479 	}
480 	if (!(x & 0x80000000)) {
481 		k++;
482 		if (!(x & 0x40000000))
483 			return 32;
484 	}
485 	return k;
486 }
487 
488 
489 static int
490 lo0bits(ULong *y)
491 {
492 	int k;
493 	ULong x = *y;
494 
495 	if (x & 7) {
496 		if (x & 1)
497 			return 0;
498 		if (x & 2) {
499 			*y = x >> 1;
500 			return 1;
501 		}
502 		*y = x >> 2;
503 		return 2;
504 	}
505 	k = 0;
506 	if (!(x & 0xffff)) {
507 		k = 16;
508 		x >>= 16;
509 	}
510 	if (!(x & 0xff)) {
511 		k += 8;
512 		x >>= 8;
513 	}
514 	if (!(x & 0xf)) {
515 		k += 4;
516 		x >>= 4;
517 	}
518 	if (!(x & 0x3)) {
519 		k += 2;
520 		x >>= 2;
521 	}
522 	if (!(x & 1)) {
523 		k++;
524 		x >>= 1;
525 		if (!x & 1)
526 			return 32;
527 	}
528 	*y = x;
529 	return k;
530 }
531 
532 
533 static Bigint *
534 i2b(int i)
535 {
536 	Bigint *b;
537 
538 	b = Balloc(1);
539 	b->x[0] = i;
540 	b->wds = 1;
541 	return b;
542 }
543 
544 
545 static Bigint *
546 mult(Bigint *a, Bigint *b)
547 {
548 	Bigint *c;
549 	int k, wa, wb, wc;
550 	ULong carry, y, z;
551 	ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0;
552 #ifdef Pack_32
553 	ULong z2;
554 #endif
555 
556 	if (a->wds < b->wds) {
557 		c = a;
558 		a = b;
559 		b = c;
560 	}
561 	k = a->k;
562 	wa = a->wds;
563 	wb = b->wds;
564 	wc = wa + wb;
565 	if (wc > a->maxwds)
566 		k++;
567 	c = Balloc(k);
568 	for (x = c->x, xa = x + wc; x < xa; x++)
569 		*x = 0;
570 	xa = a->x;
571 	xae = xa + wa;
572 	xb = b->x;
573 	xbe = xb + wb;
574 	xc0 = c->x;
575 #ifdef Pack_32
576 	for (; xb < xbe; xb++, xc0++) {
577 		if ( (y = *xb & 0xffff) ) {
578 			x = xa;
579 			xc = xc0;
580 			carry = 0;
581 			do {
582 				z = (*x & 0xffff) * y + (*xc & 0xffff) + carry;
583 				carry = z >> 16;
584 				z2 = (*x++ >> 16) * y + (*xc >> 16) + carry;
585 				carry = z2 >> 16;
586 				Storeinc(xc, z2, z);
587 			} while (x < xae);
588 			*xc = carry;
589 		}
590 		if ( (y = *xb >> 16) ) {
591 			x = xa;
592 			xc = xc0;
593 			carry = 0;
594 			z2 = *xc;
595 			do {
596 				z = (*x & 0xffff) * y + (*xc >> 16) + carry;
597 				carry = z >> 16;
598 				Storeinc(xc, z, z2);
599 				z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry;
600 				carry = z2 >> 16;
601 			} while (x < xae);
602 			*xc = z2;
603 		}
604 	}
605 #else
606 	for (; xb < xbe; xc0++) {
607 		if (y = *xb++) {
608 			x = xa;
609 			xc = xc0;
610 			carry = 0;
611 			do {
612 				z = *x++ * y + *xc + carry;
613 				carry = z >> 16;
614 				*xc++ = z & 0xffff;
615 			} while (x < xae);
616 			*xc = carry;
617 		}
618 	}
619 #endif
620 	for (xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ;
621 	c->wds = wc;
622 	return c;
623 }
624 
625 
626 static Bigint *p5s;
627 
628 
629 static Bigint *
630 pow5mult(Bigint *b, int k)
631 {
632 	Bigint *b1, *p5, *p51;
633 	int i;
634 	static int p05[3] = { 5, 25, 125 };
635 
636 	if ( (i = k & 3) )
637 		b = multadd(b, p05[i-1], 0);
638 
639 	if (!(k >>= 2))
640 		return b;
641 	if (!(p5 = p5s)) {
642 		/* first time */
643 		p5 = p5s = i2b(625);
644 		p5->next = 0;
645 	}
646 	for (;;) {
647 		if (k & 1) {
648 			b1 = mult(b, p5);
649 			Bfree(b);
650 			b = b1;
651 		}
652 		if (!(k >>= 1))
653 			break;
654 		if (!(p51 = p5->next)) {
655 			p51 = p5->next = mult(p5,p5);
656 			p51->next = 0;
657 		}
658 		p5 = p51;
659 	}
660 	return b;
661 }
662 
663 
664 static Bigint *
665 lshift(Bigint *b, int k)
666 {
667 	int i, k1, n, n1;
668 	Bigint *b1;
669 	ULong *x, *x1, *xe, z;
670 
671 #ifdef Pack_32
672 	n = k >> 5;
673 #else
674 	n = k >> 4;
675 #endif
676 	k1 = b->k;
677 	n1 = n + b->wds + 1;
678 	for (i = b->maxwds; n1 > i; i <<= 1)
679 		k1++;
680 	b1 = Balloc(k1);
681 	x1 = b1->x;
682 	for (i = 0; i < n; i++)
683 		*x1++ = 0;
684 	x = b->x;
685 	xe = x + b->wds;
686 #ifdef Pack_32
687 	if (k &= 0x1f) {
688 		k1 = 32 - k;
689 		z = 0;
690 		do {
691 			*x1++ = *x << k | z;
692 			z = *x++ >> k1;
693 		} while (x < xe);
694 		if ( (*x1 = z) )
695 			++n1;
696 	}
697 #else
698 	if (k &= 0xf) {
699 		k1 = 16 - k;
700 		z = 0;
701 		do {
702 			*x1++ = *x << k  & 0xffff | z;
703 			z = *x++ >> k1;
704 		} while (x < xe);
705 		if (*x1 = z)
706 			++n1;
707 	}
708 #endif
709 	else
710 		do
711 			*x1++ = *x++;
712 		while (x < xe);
713 	b1->wds = n1 - 1;
714 	Bfree(b);
715 	return b1;
716 }
717 
718 
719 static int
720 cmp(Bigint *a, Bigint *b)
721 {
722 	ULong *xa, *xa0, *xb, *xb0;
723 	int i, j;
724 
725 	i = a->wds;
726 	j = b->wds;
727 #ifdef DEBUG
728 	if (i > 1 && !a->x[i-1])
729 		Bug("cmp called with a->x[a->wds-1] == 0");
730 	if (j > 1 && !b->x[j-1])
731 		Bug("cmp called with b->x[b->wds-1] == 0");
732 #endif
733 	if (i -= j)
734 		return i;
735 	xa0 = a->x;
736 	xa = xa0 + j;
737 	xb0 = b->x;
738 	xb = xb0 + j;
739 	for (;;) {
740 		if (*--xa != *--xb)
741 			return *xa < *xb ? -1 : 1;
742 		if (xa <= xa0)
743 			break;
744 	}
745 	return 0;
746 }
747 
748 
749 static Bigint *
750 diff(Bigint *a, Bigint *b)
751 {
752 	Bigint *c;
753 	int i, wa, wb;
754 	Long borrow, y;	/* We need signed shifts here. */
755 	ULong *xa, *xae, *xb, *xbe, *xc;
756 #ifdef Pack_32
757 	Long z;
758 #endif
759 
760 	i = cmp(a,b);
761 	if (!i) {
762 		c = Balloc(0);
763 		c->wds = 1;
764 		c->x[0] = 0;
765 		return c;
766 	}
767 	if (i < 0) {
768 		c = a;
769 		a = b;
770 		b = c;
771 		i = 1;
772 	} else
773 		i = 0;
774 	c = Balloc(a->k);
775 	c->sign = i;
776 	wa = a->wds;
777 	xa = a->x;
778 	xae = xa + wa;
779 	wb = b->wds;
780 	xb = b->x;
781 	xbe = xb + wb;
782 	xc = c->x;
783 	borrow = 0;
784 #ifdef Pack_32
785 	do {
786 		y = (*xa & 0xffff) - (*xb & 0xffff) + borrow;
787 		borrow = y >> 16;
788 		Sign_Extend(borrow, y);
789 		z = (*xa++ >> 16) - (*xb++ >> 16) + borrow;
790 		borrow = z >> 16;
791 		Sign_Extend(borrow, z);
792 		Storeinc(xc, z, y);
793 	} while (xb < xbe);
794 	while (xa < xae) {
795 		y = (*xa & 0xffff) + borrow;
796 		borrow = y >> 16;
797 		Sign_Extend(borrow, y);
798 		z = (*xa++ >> 16) + borrow;
799 		borrow = z >> 16;
800 		Sign_Extend(borrow, z);
801 		Storeinc(xc, z, y);
802 	}
803 #else
804 	do {
805 		y = *xa++ - *xb++ + borrow;
806 		borrow = y >> 16;
807 		Sign_Extend(borrow, y);
808 		*xc++ = y & 0xffff;
809 	} while (xb < xbe);
810 	while (xa < xae) {
811 		y = *xa++ + borrow;
812 		borrow = y >> 16;
813 		Sign_Extend(borrow, y);
814 		*xc++ = y & 0xffff;
815 	}
816 #endif
817 	while (!*--xc)
818 		wa--;
819 	c->wds = wa;
820 	return c;
821 }
822 
823 
824 static double
825 ulp(double x)
826 {
827 	Long L;
828 	double a;
829 
830 	L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1;
831 #ifndef Sudden_Underflow
832 	if (L > 0) {
833 #endif
834 #ifdef IBM
835 		L |= Exp_msk1 >> 4;
836 #endif
837 		word0(a) = L;
838 		word1(a) = 0;
839 #ifndef Sudden_Underflow
840 	} else {
841 		L = -L >> Exp_shift;
842 		if (L < Exp_shift) {
843 			word0(a) = 0x80000 >> L;
844 			word1(a) = 0;
845 		} else {
846 			word0(a) = 0;
847 			L -= Exp_shift;
848 			word1(a) = L >= 31 ? 1 : 1 << (31 - L);
849 		}
850 	}
851 #endif
852 	return a;
853 }
854 
855 
856 static double
857 b2d(Bigint *a, int *e)
858 {
859 	ULong *xa, *xa0, w, y, z;
860 	int k;
861 	double d;
862 #ifdef VAX
863 	ULong d0, d1;
864 #else
865 #define d0 word0(d)
866 #define d1 word1(d)
867 #endif
868 
869 	xa0 = a->x;
870 	xa = xa0 + a->wds;
871 	y = *--xa;
872 #ifdef DEBUG
873 	if (!y) Bug("zero y in b2d");
874 #endif
875 	k = hi0bits(y);
876 	*e = 32 - k;
877 #ifdef Pack_32
878 	if (k < Ebits) {
879 		d0 = Exp_1 | (y >> (Ebits - k));
880 		w = xa > xa0 ? *--xa : 0;
881 		d1 = (y << ((32-Ebits) + k)) | (w >> (Ebits - k));
882 		goto ret_d;
883 		}
884 	z = xa > xa0 ? *--xa : 0;
885 	if (k -= Ebits) {
886 		d0 = Exp_1 | (y << k) | (z >> (32 - k));
887 		y = xa > xa0 ? *--xa : 0;
888 		d1 = (z << k) | (y >> (32 - k));
889 	} else {
890 		d0 = Exp_1 | y;
891 		d1 = z;
892 	}
893 #else
894 	if (k < Ebits + 16) {
895 		z = xa > xa0 ? *--xa : 0;
896 		d0 = Exp_1 | y << k - Ebits | z >> Ebits + 16 - k;
897 		w = xa > xa0 ? *--xa : 0;
898 		y = xa > xa0 ? *--xa : 0;
899 		d1 = z << k + 16 - Ebits | w << k - Ebits | y >> 16 + Ebits - k;
900 		goto ret_d;
901 	}
902 	z = xa > xa0 ? *--xa : 0;
903 	w = xa > xa0 ? *--xa : 0;
904 	k -= Ebits + 16;
905 	d0 = Exp_1 | y << k + 16 | z << k | w >> 16 - k;
906 	y = xa > xa0 ? *--xa : 0;
907 	d1 = w << k + 16 | y << k;
908 #endif
909  ret_d:
910 #ifdef VAX
911 	word0(d) = d0 >> 16 | d0 << 16;
912 	word1(d) = d1 >> 16 | d1 << 16;
913 #else
914 #undef d0
915 #undef d1
916 #endif
917 	return d;
918 }
919 
920 
921 static Bigint *
922 d2b(double d, int *e, int *bits)
923 {
924 	Bigint *b;
925 	int de, i, k;
926 	ULong *x, y, z;
927 #ifdef VAX
928 	ULong d0, d1;
929 	d0 = word0(d) >> 16 | word0(d) << 16;
930 	d1 = word1(d) >> 16 | word1(d) << 16;
931 #else
932 #define d0 word0(d)
933 #define d1 word1(d)
934 #endif
935 
936 #ifdef Pack_32
937 	b = Balloc(1);
938 #else
939 	b = Balloc(2);
940 #endif
941 	x = b->x;
942 
943 	z = d0 & Frac_mask;
944 	d0 &= 0x7fffffff;	/* clear sign bit, which we ignore */
945 #ifdef Sudden_Underflow
946 	de = (int)(d0 >> Exp_shift);
947 #ifndef IBM
948 	z |= Exp_msk11;
949 #endif
950 #else
951 	if ( (de = (int)(d0 >> Exp_shift)) )
952 		z |= Exp_msk1;
953 #endif
954 #ifdef Pack_32
955 	if ( (y = d1) ) {
956 		if ( (k = lo0bits(&y)) ) {
957 			x[0] = y | (z << (32 - k));
958 			z >>= k;
959 			}
960 		else
961 			x[0] = y;
962 		i = b->wds = (x[1] = z) ? 2 : 1;
963 	} else {
964 #ifdef DEBUG
965 		if (!z)
966 			Bug("Zero passed to d2b");
967 #endif
968 		k = lo0bits(&z);
969 		x[0] = z;
970 		i = b->wds = 1;
971 		k += 32;
972 	}
973 #else
974 	if (y = d1) {
975 		if (k = lo0bits(&y))
976 			if (k >= 16) {
977 				x[0] = y | z << 32 - k & 0xffff;
978 				x[1] = z >> k - 16 & 0xffff;
979 				x[2] = z >> k;
980 				i = 2;
981 			} else {
982 				x[0] = y & 0xffff;
983 				x[1] = y >> 16 | z << 16 - k & 0xffff;
984 				x[2] = z >> k & 0xffff;
985 				x[3] = z >> k+16;
986 				i = 3;
987 			}
988 		else {
989 			x[0] = y & 0xffff;
990 			x[1] = y >> 16;
991 			x[2] = z & 0xffff;
992 			x[3] = z >> 16;
993 			i = 3;
994 		}
995 	} else {
996 #ifdef DEBUG
997 		if (!z)
998 			Bug("Zero passed to d2b");
999 #endif
1000 		k = lo0bits(&z);
1001 		if (k >= 16) {
1002 			x[0] = z;
1003 			i = 0;
1004 		} else {
1005 			x[0] = z & 0xffff;
1006 			x[1] = z >> 16;
1007 			i = 1;
1008 		}
1009 		k += 32;
1010 	}
1011 	while (!x[i])
1012 		--i;
1013 	b->wds = i + 1;
1014 #endif
1015 #ifndef Sudden_Underflow
1016 	if (de) {
1017 #endif
1018 #ifdef IBM
1019 		*e = (de - Bias - (P-1) << 2) + k;
1020 		*bits = 4*P + 8 - k - hi0bits(word0(d) & Frac_mask);
1021 #else
1022 		*e = de - Bias - (P-1) + k;
1023 		*bits = P - k;
1024 #endif
1025 #ifndef Sudden_Underflow
1026 	} else {
1027 		*e = de - Bias - (P-1) + 1 + k;
1028 #ifdef Pack_32
1029 		*bits = 32*i - hi0bits(x[i-1]);
1030 #else
1031 		*bits = (i+2)*16 - hi0bits(x[i]);
1032 #endif
1033 	}
1034 #endif
1035 	return b;
1036 }
1037 #undef d0
1038 #undef d1
1039 
1040 
1041 static double
1042 ratio(Bigint *a, Bigint *b)
1043 {
1044 	double da, db;
1045 	int k, ka, kb;
1046 
1047 	da = b2d(a, &ka);
1048 	db = b2d(b, &kb);
1049 #ifdef Pack_32
1050 	k = ka - kb + 32*(a->wds - b->wds);
1051 #else
1052 	k = ka - kb + 16*(a->wds - b->wds);
1053 #endif
1054 #ifdef IBM
1055 	if (k > 0) {
1056 		word0(da) += (k >> 2)*Exp_msk1;
1057 		if (k &= 3)
1058 			da *= 1 << k;
1059 	} else {
1060 		k = -k;
1061 		word0(db) += (k >> 2)*Exp_msk1;
1062 		if (k &= 3)
1063 			db *= 1 << k;
1064 	}
1065 #else
1066 	if (k > 0)
1067 		word0(da) += k*Exp_msk1;
1068 	else {
1069 		k = -k;
1070 		word0(db) += k*Exp_msk1;
1071 	}
1072 #endif
1073 	return da / db;
1074 }
1075 
1076 static double
1077 tens[] = {
1078 		1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
1079 		1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
1080 		1e20, 1e21, 1e22
1081 #ifdef VAX
1082 		, 1e23, 1e24
1083 #endif
1084 		};
1085 
1086 static double
1087 #ifdef IEEE_Arith
1088 bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 };
1089 static double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128, 1e-256 };
1090 #define n_bigtens 5
1091 #else
1092 #ifdef IBM
1093 bigtens[] = { 1e16, 1e32, 1e64 };
1094 static double tinytens[] = { 1e-16, 1e-32, 1e-64 };
1095 #define n_bigtens 3
1096 #else
1097 bigtens[] = { 1e16, 1e32 };
1098 static double tinytens[] = { 1e-16, 1e-32 };
1099 #define n_bigtens 2
1100 #endif
1101 #endif
1102 
1103 
1104 double
1105 strtod(const char * __restrict s00, char ** __restrict se)
1106 {
1107 	int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, dsign,
1108 		 e, e1, esign, i, j, k, nd, nd0, nf, nz, nz0, sign;
1109 	const char *s, *s0, *s1;
1110 	double aadj, aadj1, adj, rv, rv0;
1111 	Long L;
1112 	ULong y, z;
1113 	Bigint *bb, *bb1, *bd, *bd0, *bs, *delta;
1114 	char decimal_point = localeconv()->decimal_point[0];
1115 
1116 	sign = nz0 = nz = 0;
1117 	rv = 0.;
1118 	for (s = s00;;s++) switch(*s) {
1119 		case '-':
1120 			sign = 1;
1121 			/* no break */
1122 		case '+':
1123 			if (*++s)
1124 				goto break2;
1125 			/* no break */
1126 		case 0:
1127 			s = s00;
1128 			goto ret;
1129 		default:
1130 			if (isspace((unsigned char)*s))
1131 				continue;
1132 			goto break2;
1133 	}
1134  break2:
1135 	if (*s == '0') {
1136 		nz0 = 1;
1137 		while (*++s == '0') ;
1138 		if (!*s)
1139 			goto ret;
1140 	}
1141 	s0 = s;
1142 	y = z = 0;
1143 	for (nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++)
1144 		if (nd < 9)
1145 			y = 10*y + c - '0';
1146 		else if (nd < 16)
1147 			z = 10*z + c - '0';
1148 	nd0 = nd;
1149 	if ((char)c == decimal_point) {
1150 		c = *++s;
1151 		if (!nd) {
1152 			for (; c == '0'; c = *++s)
1153 				nz++;
1154 			if (c > '0' && c <= '9') {
1155 				s0 = s;
1156 				nf += nz;
1157 				nz = 0;
1158 				goto have_dig;
1159 			}
1160 			goto dig_done;
1161 		}
1162 		for (; c >= '0' && c <= '9'; c = *++s) {
1163  have_dig:
1164 			nz++;
1165 			if (c - '0' > 0) {
1166 				nf += nz;
1167 				for (i = 1; i < nz; i++)
1168 					if (nd++ < 9)
1169 						y *= 10;
1170 					else if (nd <= DBL_DIG + 1)
1171 						z *= 10;
1172 				if (nd++ < 9)
1173 					y = 10*y + c - '0';
1174 				else if (nd <= DBL_DIG + 1)
1175 					z = 10*z + c - '0';
1176 				nz = 0;
1177 			}
1178 		}
1179 	}
1180  dig_done:
1181 	e = 0;
1182 	if (c == 'e' || c == 'E') {
1183 		if (!nd && !nz && !nz0) {
1184 			s = s00;
1185 			goto ret;
1186 		}
1187 		s00 = s;
1188 		esign = 0;
1189 		switch(c = *++s) {
1190 			case '-':
1191 				esign = 1;
1192 			case '+':
1193 				c = *++s;
1194 		}
1195 		if (c >= '0' && c <= '9') {
1196 			while (c == '0')
1197 				c = *++s;
1198 			if (c > '0' && c <= '9') {
1199 				L = c - '0';
1200 				s1 = s;
1201 				while ((c = *++s) >= '0' && c <= '9')
1202 					L = 10*L + c - '0';
1203 				if (s - s1 > 8 || L > 19999)
1204 					/* Avoid confusion from exponents
1205 					 * so large that e might overflow.
1206 					 */
1207 					e = 19999; /* safe for 16 bit ints */
1208 				else
1209 					e = (int)L;
1210 				if (esign)
1211 					e = -e;
1212 			} else
1213 				e = 0;
1214 		} else
1215 			s = s00;
1216 	}
1217 	if (!nd) {
1218 		if (!nz && !nz0)
1219 			s = s00;
1220 		goto ret;
1221 	}
1222 	e1 = e -= nf;
1223 
1224 	/* Now we have nd0 digits, starting at s0, followed by a
1225 	 * decimal point, followed by nd-nd0 digits.  The number we're
1226 	 * after is the integer represented by those digits times
1227 	 * 10**e */
1228 
1229 	if (!nd0)
1230 		nd0 = nd;
1231 	k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1;
1232 	rv = y;
1233 	if (k > 9)
1234 		rv = tens[k - 9] * rv + z;
1235 	if (nd <= DBL_DIG
1236 #ifndef RND_PRODQUOT
1237 		&& FLT_ROUNDS == 1
1238 #endif
1239 			) {
1240 		if (!e)
1241 			goto ret;
1242 		if (e > 0) {
1243 			if (e <= Ten_pmax) {
1244 #ifdef VAX
1245 				goto vax_ovfl_check;
1246 #else
1247 				/* rv = */ rounded_product(rv, tens[e]);
1248 				goto ret;
1249 #endif
1250 				}
1251 			i = DBL_DIG - nd;
1252 			if (e <= Ten_pmax + i) {
1253 				/* A fancier test would sometimes let us do
1254 				 * this for larger i values.
1255 				 */
1256 				e -= i;
1257 				rv *= tens[i];
1258 #ifdef VAX
1259 				/* VAX exponent range is so narrow we must
1260 				 * worry about overflow here...
1261 				 */
1262  vax_ovfl_check:
1263 				word0(rv) -= P*Exp_msk1;
1264 				/* rv = */ rounded_product(rv, tens[e]);
1265 				if ((word0(rv) & Exp_mask)
1266 				 > Exp_msk1*(DBL_MAX_EXP+Bias-1-P))
1267 					goto ovfl;
1268 				word0(rv) += P*Exp_msk1;
1269 #else
1270 				/* rv = */ rounded_product(rv, tens[e]);
1271 #endif
1272 				goto ret;
1273 			}
1274 		}
1275 #ifndef Inaccurate_Divide
1276 		else if (e >= -Ten_pmax) {
1277 			/* rv = */ rounded_quotient(rv, tens[-e]);
1278 			goto ret;
1279 		}
1280 #endif
1281 	}
1282 	e1 += nd - k;
1283 
1284 	/* Get starting approximation = rv * 10**e1 */
1285 
1286 	if (e1 > 0) {
1287 		if ( (i = e1 & 15) )
1288 			rv *= tens[i];
1289 		if ( (e1 &= ~15) ) {
1290 			if (e1 > DBL_MAX_10_EXP) {
1291  ovfl:
1292 				errno = ERANGE;
1293 				rv = HUGE_VAL;
1294 				goto ret;
1295 			}
1296 			if (e1 >>= 4) {
1297 				for (j = 0; e1 > 1; j++, e1 >>= 1)
1298 					if (e1 & 1)
1299 						rv *= bigtens[j];
1300 			/* The last multiplication could overflow. */
1301 				word0(rv) -= P*Exp_msk1;
1302 				rv *= bigtens[j];
1303 				if ((z = word0(rv) & Exp_mask)
1304 				 > Exp_msk1*(DBL_MAX_EXP+Bias-P))
1305 					goto ovfl;
1306 				if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) {
1307 					/* set to largest number */
1308 					/* (Can't trust DBL_MAX) */
1309 					word0(rv) = Big0;
1310 					word1(rv) = Big1;
1311 					}
1312 				else
1313 					word0(rv) += P*Exp_msk1;
1314 			}
1315 		}
1316 	} else if (e1 < 0) {
1317 		e1 = -e1;
1318 		if ( (i = e1 & 15) )
1319 			rv /= tens[i];
1320 		if ( (e1 &= ~15) ) {
1321 			e1 >>= 4;
1322 			for (j = 0; e1 > 1; j++, e1 >>= 1)
1323 				if (e1 & 1)
1324 					rv *= tinytens[j];
1325 			/* The last multiplication could underflow. */
1326 			rv0 = rv;
1327 			rv *= tinytens[j];
1328 			if (!rv) {
1329 				rv = 2.*rv0;
1330 				rv *= tinytens[j];
1331 				if (!rv) {
1332  undfl:
1333 					rv = 0.;
1334 					errno = ERANGE;
1335 					goto ret;
1336 					}
1337 				word0(rv) = Tiny0;
1338 				word1(rv) = Tiny1;
1339 				/* The refinement below will clean
1340 				 * this approximation up.
1341 				 */
1342 			}
1343 		}
1344 	}
1345 
1346 	/* Now the hard part -- adjusting rv to the correct value.*/
1347 
1348 	/* Put digits into bd: true value = bd * 10^e */
1349 
1350 	bd0 = s2b(s0, nd0, nd, y);
1351 
1352 	for (;;) {
1353 		bd = Balloc(bd0->k);
1354 		Bcopy(bd, bd0);
1355 		bb = d2b(rv, &bbe, &bbbits);	/* rv = bb * 2^bbe */
1356 		bs = i2b(1);
1357 
1358 		if (e >= 0) {
1359 			bb2 = bb5 = 0;
1360 			bd2 = bd5 = e;
1361 		} else {
1362 			bb2 = bb5 = -e;
1363 			bd2 = bd5 = 0;
1364 		}
1365 		if (bbe >= 0)
1366 			bb2 += bbe;
1367 		else
1368 			bd2 -= bbe;
1369 		bs2 = bb2;
1370 #ifdef Sudden_Underflow
1371 #ifdef IBM
1372 		j = 1 + 4*P - 3 - bbbits + ((bbe + bbbits - 1) & 3);
1373 #else
1374 		j = P + 1 - bbbits;
1375 #endif
1376 #else
1377 		i = bbe + bbbits - 1;	/* logb(rv) */
1378 		if (i < Emin)	/* denormal */
1379 			j = bbe + (P-Emin);
1380 		else
1381 			j = P + 1 - bbbits;
1382 #endif
1383 		bb2 += j;
1384 		bd2 += j;
1385 		i = bb2 < bd2 ? bb2 : bd2;
1386 		if (i > bs2)
1387 			i = bs2;
1388 		if (i > 0) {
1389 			bb2 -= i;
1390 			bd2 -= i;
1391 			bs2 -= i;
1392 			}
1393 		if (bb5 > 0) {
1394 			bs = pow5mult(bs, bb5);
1395 			bb1 = mult(bs, bb);
1396 			Bfree(bb);
1397 			bb = bb1;
1398 			}
1399 		if (bb2 > 0)
1400 			bb = lshift(bb, bb2);
1401 		if (bd5 > 0)
1402 			bd = pow5mult(bd, bd5);
1403 		if (bd2 > 0)
1404 			bd = lshift(bd, bd2);
1405 		if (bs2 > 0)
1406 			bs = lshift(bs, bs2);
1407 		delta = diff(bb, bd);
1408 		dsign = delta->sign;
1409 		delta->sign = 0;
1410 		i = cmp(delta, bs);
1411 		if (i < 0) {
1412 			/* Error is less than half an ulp -- check for
1413 			 * special case of mantissa a power of two.
1414 			 */
1415 			if (dsign || word1(rv) || word0(rv) & Bndry_mask)
1416 				break;
1417 			delta = lshift(delta,Log2P);
1418 			if (cmp(delta, bs) > 0)
1419 				goto drop_down;
1420 			break;
1421 		}
1422 		if (i == 0) {
1423 			/* exactly half-way between */
1424 			if (dsign) {
1425 				if ((word0(rv) & Bndry_mask1) == Bndry_mask1
1426 				 &&  word1(rv) == 0xffffffff) {
1427 					/*boundary case -- increment exponent*/
1428 					word0(rv) = (word0(rv) & Exp_mask)
1429 						+ Exp_msk1
1430 #ifdef IBM
1431 						| Exp_msk1 >> 4
1432 #endif
1433 						;
1434 					word1(rv) = 0;
1435 					break;
1436 				}
1437 			} else if (!(word0(rv) & Bndry_mask) && !word1(rv)) {
1438  drop_down:
1439 				/* boundary case -- decrement exponent */
1440 #ifdef Sudden_Underflow
1441 				L = word0(rv) & Exp_mask;
1442 #ifdef IBM
1443 				if (L <  Exp_msk1)
1444 #else
1445 				if (L <= Exp_msk1)
1446 #endif
1447 					goto undfl;
1448 				L -= Exp_msk1;
1449 #else
1450 				L = (word0(rv) & Exp_mask) - Exp_msk1;
1451 #endif
1452 				word0(rv) = L | Bndry_mask1;
1453 				word1(rv) = 0xffffffff;
1454 #ifdef IBM
1455 				goto cont;
1456 #else
1457 				break;
1458 #endif
1459 			}
1460 #ifndef ROUND_BIASED
1461 			if (!(word1(rv) & LSB))
1462 				break;
1463 #endif
1464 			if (dsign)
1465 				rv += ulp(rv);
1466 #ifndef ROUND_BIASED
1467 			else {
1468 				rv -= ulp(rv);
1469 #ifndef Sudden_Underflow
1470 				if (!rv)
1471 					goto undfl;
1472 #endif
1473 			}
1474 #endif
1475 			break;
1476 		}
1477 		if ((aadj = ratio(delta, bs)) <= 2.) {
1478 			if (dsign)
1479 				aadj = aadj1 = 1.;
1480 			else if (word1(rv) || word0(rv) & Bndry_mask) {
1481 #ifndef Sudden_Underflow
1482 				if (word1(rv) == Tiny1 && !word0(rv))
1483 					goto undfl;
1484 #endif
1485 				aadj = 1.;
1486 				aadj1 = -1.;
1487 			} else {
1488 				/* special case -- power of FLT_RADIX to be */
1489 				/* rounded down... */
1490 
1491 				if (aadj < 2./FLT_RADIX)
1492 					aadj = 1./FLT_RADIX;
1493 				else
1494 					aadj *= 0.5;
1495 				aadj1 = -aadj;
1496 			}
1497 		} else {
1498 			aadj *= 0.5;
1499 			aadj1 = dsign ? aadj : -aadj;
1500 #ifdef Check_FLT_ROUNDS
1501 			switch(FLT_ROUNDS) {
1502 				case 2: /* towards +infinity */
1503 					aadj1 -= 0.5;
1504 					break;
1505 				case 0: /* towards 0 */
1506 				case 3: /* towards -infinity */
1507 					aadj1 += 0.5;
1508 			}
1509 #else
1510 			if (FLT_ROUNDS == 0)
1511 				aadj1 += 0.5;
1512 #endif
1513 		}
1514 		y = word0(rv) & Exp_mask;
1515 
1516 		/* Check for overflow */
1517 
1518 		if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) {
1519 			rv0 = rv;
1520 			word0(rv) -= P*Exp_msk1;
1521 			adj = aadj1 * ulp(rv);
1522 			rv += adj;
1523 			if ((word0(rv) & Exp_mask) >=
1524 					Exp_msk1*(DBL_MAX_EXP+Bias-P)) {
1525 				if (word0(rv0) == Big0 && word1(rv0) == Big1)
1526 					goto ovfl;
1527 				word0(rv) = Big0;
1528 				word1(rv) = Big1;
1529 				goto cont;
1530 			} else
1531 				word0(rv) += P*Exp_msk1;
1532 		} else {
1533 #ifdef Sudden_Underflow
1534 			if ((word0(rv) & Exp_mask) <= P*Exp_msk1) {
1535 				rv0 = rv;
1536 				word0(rv) += P*Exp_msk1;
1537 				adj = aadj1 * ulp(rv);
1538 				rv += adj;
1539 #ifdef IBM
1540 				if ((word0(rv) & Exp_mask) <  P*Exp_msk1)
1541 #else
1542 				if ((word0(rv) & Exp_mask) <= P*Exp_msk1)
1543 #endif
1544 				{
1545 					if (word0(rv0) == Tiny0
1546 					 && word1(rv0) == Tiny1)
1547 						goto undfl;
1548 					word0(rv) = Tiny0;
1549 					word1(rv) = Tiny1;
1550 					goto cont;
1551 				} else
1552 					word0(rv) -= P*Exp_msk1;
1553 			} else {
1554 				adj = aadj1 * ulp(rv);
1555 				rv += adj;
1556 			}
1557 #else
1558 			/* Compute adj so that the IEEE rounding rules will
1559 			 * correctly round rv + adj in some half-way cases.
1560 			 * If rv * ulp(rv) is denormalized (i.e.,
1561 			 * y <= (P-1)*Exp_msk1), we must adjust aadj to avoid
1562 			 * trouble from bits lost to denormalization;
1563 			 * example: 1.2e-307 .
1564 			 */
1565 			if (y <= (P-1)*Exp_msk1 && aadj >= 1.) {
1566 				aadj1 = (double)(int)(aadj + 0.5);
1567 				if (!dsign)
1568 					aadj1 = -aadj1;
1569 			}
1570 			adj = aadj1 * ulp(rv);
1571 			rv += adj;
1572 #endif
1573 		}
1574 		z = word0(rv) & Exp_mask;
1575 		if (y == z) {
1576 			/* Can we stop now? */
1577 			L = aadj;
1578 			aadj -= L;
1579 			/* The tolerances below are conservative. */
1580 			if (dsign || word1(rv) || word0(rv) & Bndry_mask) {
1581 				if (aadj < .4999999 || aadj > .5000001)
1582 					break;
1583 			} else if (aadj < .4999999/FLT_RADIX)
1584 				break;
1585 		}
1586  cont:
1587 		Bfree(bb);
1588 		Bfree(bd);
1589 		Bfree(bs);
1590 		Bfree(delta);
1591 	}
1592 	Bfree(bb);
1593 	Bfree(bd);
1594 	Bfree(bs);
1595 	Bfree(bd0);
1596 	Bfree(delta);
1597  ret:
1598 	if (se)
1599 		*se = (char *)s;
1600 	return sign ? -rv : rv;
1601 }
1602 
1603 
1604 double __strtod_internal(const char *number, char **_end, int group);
1605 
1606 double
1607 __strtod_internal(const char *number, char **_end, int group)
1608 {
1609 	// ToDo: group is currently not supported!
1610 	(void)group;
1611 
1612 	return strtod(number, _end);
1613 }
1614 
1615 // XXX this is not correct
1616 
1617 long double __strtold_internal(const char *number, char **_end, int group);
1618 
1619 long double
1620 __strtold_internal(const char *number, char **_end, int group)
1621 {
1622 	return __strtod_internal(number, _end, group);
1623 }
1624 
1625 float __strtof_internal(const char *number, char **_end, int group);
1626 
1627 float
1628 __strtof_internal(const char *number, char **_end, int group)
1629 {
1630 	return __strtod_internal(number, _end, group);
1631 }
1632 
1633 
1634 /* removed from the build, is only used by __dtoa() */
1635 #if 0
1636 static int
1637 quorem(Bigint *b, Bigint *S)
1638 {
1639 	int n;
1640 	Long borrow, y;
1641 	ULong carry, q, ys;
1642 	ULong *bx, *bxe, *sx, *sxe;
1643 #ifdef Pack_32
1644 	Long z;
1645 	ULong si, zs;
1646 #endif
1647 
1648 	n = S->wds;
1649 #ifdef DEBUG
1650 	/*debug*/ if (b->wds > n)
1651 	/*debug*/	Bug("oversize b in quorem");
1652 #endif
1653 	if (b->wds < n)
1654 		return 0;
1655 	sx = S->x;
1656 	sxe = sx + --n;
1657 	bx = b->x;
1658 	bxe = bx + n;
1659 	q = *bxe / (*sxe + 1);	/* ensure q <= true quotient */
1660 #ifdef DEBUG
1661 	/*debug*/ if (q > 9)
1662 	/*debug*/	Bug("oversized quotient in quorem");
1663 #endif
1664 	if (q) {
1665 		borrow = 0;
1666 		carry = 0;
1667 		do {
1668 #ifdef Pack_32
1669 			si = *sx++;
1670 			ys = (si & 0xffff) * q + carry;
1671 			zs = (si >> 16) * q + (ys >> 16);
1672 			carry = zs >> 16;
1673 			y = (*bx & 0xffff) - (ys & 0xffff) + borrow;
1674 			borrow = y >> 16;
1675 			Sign_Extend(borrow, y);
1676 			z = (*bx >> 16) - (zs & 0xffff) + borrow;
1677 			borrow = z >> 16;
1678 			Sign_Extend(borrow, z);
1679 			Storeinc(bx, z, y);
1680 #else
1681 			ys = *sx++ * q + carry;
1682 			carry = ys >> 16;
1683 			y = *bx - (ys & 0xffff) + borrow;
1684 			borrow = y >> 16;
1685 			Sign_Extend(borrow, y);
1686 			*bx++ = y & 0xffff;
1687 #endif
1688 		} while (sx <= sxe);
1689 		if (!*bxe) {
1690 			bx = b->x;
1691 			while (--bxe > bx && !*bxe)
1692 				--n;
1693 			b->wds = n;
1694 		}
1695 	}
1696 	if (cmp(b, S) >= 0) {
1697 		q++;
1698 		borrow = 0;
1699 		carry = 0;
1700 		bx = b->x;
1701 		sx = S->x;
1702 		do {
1703 #ifdef Pack_32
1704 			si = *sx++;
1705 			ys = (si & 0xffff) + carry;
1706 			zs = (si >> 16) + (ys >> 16);
1707 			carry = zs >> 16;
1708 			y = (*bx & 0xffff) - (ys & 0xffff) + borrow;
1709 			borrow = y >> 16;
1710 			Sign_Extend(borrow, y);
1711 			z = (*bx >> 16) - (zs & 0xffff) + borrow;
1712 			borrow = z >> 16;
1713 			Sign_Extend(borrow, z);
1714 			Storeinc(bx, z, y);
1715 #else
1716 			ys = *sx++ + carry;
1717 			carry = ys >> 16;
1718 			y = *bx - (ys & 0xffff) + borrow;
1719 			borrow = y >> 16;
1720 			Sign_Extend(borrow, y);
1721 			*bx++ = y & 0xffff;
1722 #endif
1723 		} while (sx <= sxe);
1724 		bx = b->x;
1725 		bxe = bx + n;
1726 		if (!*bxe) {
1727 			while (--bxe > bx && !*bxe)
1728 				--n;
1729 			b->wds = n;
1730 		}
1731 	}
1732 	return q;
1733 }
1734 #endif	/* removed from the build, is only used by __dtoa() */
1735 
1736 /* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
1737  *
1738  * Inspired by "How to Print Floating-Point Numbers Accurately" by
1739  * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 92-101].
1740  *
1741  * Modifications:
1742  *	1. Rather than iterating, we use a simple numeric overestimate
1743  *	   to determine k = floor(log10(d)).  We scale relevant
1744  *	   quantities using O(log2(k)) rather than O(k) multiplications.
1745  *	2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
1746  *	   try to generate digits strictly left to right.  Instead, we
1747  *	   compute with fewer bits and propagate the carry if necessary
1748  *	   when rounding the final digit up.  This is often faster.
1749  *	3. Under the assumption that input will be rounded nearest,
1750  *	   mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
1751  *	   That is, we allow equality in stopping tests when the
1752  *	   round-nearest rule will give the same floating-point value
1753  *	   as would satisfaction of the stopping test with strict
1754  *	   inequality.
1755  *	4. We remove common factors of powers of 2 from relevant
1756  *	   quantities.
1757  *	5. When converting floating-point integers less than 1e16,
1758  *	   we use floating-point arithmetic rather than resorting
1759  *	   to multiple-precision integers.
1760  *	6. When asked to produce fewer than 15 digits, we first try
1761  *	   to get by with floating-point arithmetic; we resort to
1762  *	   multiple-precision integer arithmetic only if we cannot
1763  *	   guarantee that the floating-point calculation has given
1764  *	   the correctly rounded result.  For k requested digits and
1765  *	   "uniformly" distributed input, the probability is
1766  *	   something like 10^(k-15) that we must resort to the Long
1767  *	   calculation.
1768  */
1769 
1770 #if 0
1771 char *
1772 __dtoa(double d, int mode, int ndigits, int *decpt, int *sign, char **rve,
1773 	 char **resultp)
1774 {
1775  /*	Arguments ndigits, decpt, sign are similar to those
1776 	of ecvt and fcvt; trailing zeros are suppressed from
1777 	the returned string.  If not null, *rve is set to point
1778 	to the end of the return value.  If d is +-Infinity or NaN,
1779 	then *decpt is set to 9999.
1780 
1781 	mode:
1782 		0 ==> shortest string that yields d when read in
1783 			and rounded to nearest.
1784 		1 ==> like 0, but with Steele & White stopping rule;
1785 			e.g. with IEEE P754 arithmetic , mode 0 gives
1786 			1e23 whereas mode 1 gives 9.999999999999999e22.
1787 		2 ==> max(1,ndigits) significant digits.  This gives a
1788 			return value similar to that of ecvt, except
1789 			that trailing zeros are suppressed.
1790 		3 ==> through ndigits past the decimal point.  This
1791 			gives a return value similar to that from fcvt,
1792 			except that trailing zeros are suppressed, and
1793 			ndigits can be negative.
1794 		4-9 should give the same return values as 2-3, i.e.,
1795 			4 <= mode <= 9 ==> same return as mode
1796 			2 + (mode & 1).  These modes are mainly for
1797 			debugging; often they run slower but sometimes
1798 			faster than modes 2-3.
1799 		4,5,8,9 ==> left-to-right digit generation.
1800 		6-9 ==> don't try fast floating-point estimate
1801 			(if applicable).
1802 
1803 		Values of mode other than 0-9 are treated as mode 0.
1804 
1805 		Sufficient space is allocated to the return value
1806 		to hold the suppressed trailing zeros.
1807 	*/
1808 
1809 	int bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1,
1810 		j, j1, k, k0, k_check, leftright, m2, m5, s2, s5,
1811 		spec_case, try_quick;
1812 	Long L;
1813 #ifndef Sudden_Underflow
1814 	int denorm;
1815 	ULong x;
1816 #endif
1817 	Bigint *b, *b1, *delta, *mlo, *mhi, *S;
1818 	double d2, ds, eps;
1819 	char *s, *s0;
1820 
1821 	if (word0(d) & Sign_bit) {
1822 		/* set sign for everything, including 0's and NaNs */
1823 		*sign = 1;
1824 		word0(d) &= ~Sign_bit;	/* clear sign bit */
1825 	}
1826 	else
1827 		*sign = 0;
1828 
1829 #if defined(IEEE_Arith) + defined(VAX)
1830 #ifdef IEEE_Arith
1831 	if ((word0(d) & Exp_mask) == Exp_mask)
1832 #else
1833 	if (word0(d)  == 0x8000)
1834 #endif
1835 	{
1836 		/* Infinity or NaN */
1837 		*decpt = 9999;
1838 		s =
1839 #ifdef IEEE_Arith
1840 			!word1(d) && !(word0(d) & 0xfffff) ? "Infinity" :
1841 #endif
1842 				"NaN";
1843 		if (rve)
1844 			*rve =
1845 #ifdef IEEE_Arith
1846 				s[3] ? s + 8 :
1847 #endif
1848 						s + 3;
1849 		return s;
1850 	}
1851 #endif
1852 #ifdef IBM
1853 	d += 0; /* normalize */
1854 #endif
1855 	if (!d) {
1856 		*decpt = 1;
1857 		s = "0";
1858 		if (rve)
1859 			*rve = s + 1;
1860 		return s;
1861 	}
1862 
1863 	b = d2b(d, &be, &bbits);
1864 #ifdef Sudden_Underflow
1865 	i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1));
1866 #else
1867 	if ( (i = (int)((word0(d) >> Exp_shift1) & (Exp_mask>>Exp_shift1))) ) {
1868 #endif
1869 		d2 = d;
1870 		word0(d2) &= Frac_mask1;
1871 		word0(d2) |= Exp_11;
1872 #ifdef IBM
1873 		if ( (j = 11 - hi0bits(word0(d2) & Frac_mask)) )
1874 			d2 /= 1 << j;
1875 #endif
1876 
1877 		/* log(x)	~=~ log(1.5) + (x-1.5)/1.5
1878 		 * log10(x)	 =  log(x) / log(10)
1879 		 *		~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
1880 		 * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
1881 		 *
1882 		 * This suggests computing an approximation k to log10(d) by
1883 		 *
1884 		 * k = (i - Bias)*0.301029995663981
1885 		 *	+ ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
1886 		 *
1887 		 * We want k to be too large rather than too small.
1888 		 * The error in the first-order Taylor series approximation
1889 		 * is in our favor, so we just round up the constant enough
1890 		 * to compensate for any error in the multiplication of
1891 		 * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
1892 		 * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
1893 		 * adding 1e-13 to the constant term more than suffices.
1894 		 * Hence we adjust the constant term to 0.1760912590558.
1895 		 * (We could get a more accurate k by invoking log10,
1896 		 *  but this is probably not worthwhile.)
1897 		 */
1898 
1899 		i -= Bias;
1900 #ifdef IBM
1901 		i <<= 2;
1902 		i += j;
1903 #endif
1904 #ifndef Sudden_Underflow
1905 		denorm = 0;
1906 	} else {
1907 		/* d is denormalized */
1908 
1909 		i = bbits + be + (Bias + (P-1) - 1);
1910 		x = i > 32  ? ((word0(d) << (64 - i)) | (word1(d) >> (i - 32)))
1911 			    : (word1(d) << (32 - i));
1912 		d2 = x;
1913 		word0(d2) -= 31*Exp_msk1; /* adjust exponent */
1914 		i -= (Bias + (P-1) - 1) + 1;
1915 		denorm = 1;
1916 	}
1917 #endif
1918 	ds = (d2-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981;
1919 	k = (int)ds;
1920 	if (ds < 0. && ds != k)
1921 		k--;	/* want k = floor(ds) */
1922 	k_check = 1;
1923 	if (k >= 0 && k <= Ten_pmax) {
1924 		if (d < tens[k])
1925 			k--;
1926 		k_check = 0;
1927 	}
1928 	j = bbits - i - 1;
1929 	if (j >= 0) {
1930 		b2 = 0;
1931 		s2 = j;
1932 	} else {
1933 		b2 = -j;
1934 		s2 = 0;
1935 	}
1936 	if (k >= 0) {
1937 		b5 = 0;
1938 		s5 = k;
1939 		s2 += k;
1940 	} else {
1941 		b2 -= k;
1942 		b5 = -k;
1943 		s5 = 0;
1944 	}
1945 	if (mode < 0 || mode > 9)
1946 		mode = 0;
1947 	try_quick = 1;
1948 	if (mode > 5) {
1949 		mode -= 4;
1950 		try_quick = 0;
1951 	}
1952 	leftright = 1;
1953 	switch(mode) {
1954 		case 0:
1955 		case 1:
1956 			ilim = ilim1 = -1;
1957 			i = 18;
1958 			ndigits = 0;
1959 			break;
1960 		case 2:
1961 			leftright = 0;
1962 			/* no break */
1963 		case 4:
1964 			if (ndigits <= 0)
1965 				ndigits = 1;
1966 			ilim = ilim1 = i = ndigits;
1967 			break;
1968 		case 3:
1969 			leftright = 0;
1970 			/* no break */
1971 		case 5:
1972 			i = ndigits + k + 1;
1973 			ilim = i;
1974 			ilim1 = i - 1;
1975 			if (i <= 0)
1976 				i = 1;
1977 	}
1978 	*resultp = (char *) malloc(i + 1);
1979 	s = s0 = *resultp;
1980 
1981 	if (ilim >= 0 && ilim <= Quick_max && try_quick) {
1982 
1983 		/* Try to get by with floating-point arithmetic. */
1984 
1985 		i = 0;
1986 		d2 = d;
1987 		k0 = k;
1988 		ilim0 = ilim;
1989 		ieps = 2; /* conservative */
1990 		if (k > 0) {
1991 			ds = tens[k&0xf];
1992 			j = k >> 4;
1993 			if (j & Bletch) {
1994 				/* prevent overflows */
1995 				j &= Bletch - 1;
1996 				d /= bigtens[n_bigtens-1];
1997 				ieps++;
1998 			}
1999 			for (; j; j >>= 1, i++)
2000 				if (j & 1) {
2001 					ieps++;
2002 					ds *= bigtens[i];
2003 				}
2004 			d /= ds;
2005 		} else if ( (j1 = -k) ) {
2006 			d *= tens[j1 & 0xf];
2007 			for (j = j1 >> 4; j; j >>= 1, i++)
2008 				if (j & 1) {
2009 					ieps++;
2010 					d *= bigtens[i];
2011 				}
2012 		}
2013 		if (k_check && d < 1. && ilim > 0) {
2014 			if (ilim1 <= 0)
2015 				goto fast_failed;
2016 			ilim = ilim1;
2017 			k--;
2018 			d *= 10.;
2019 			ieps++;
2020 		}
2021 		eps = ieps*d + 7.;
2022 		word0(eps) -= (P-1)*Exp_msk1;
2023 		if (ilim == 0) {
2024 			S = mhi = 0;
2025 			d -= 5.;
2026 			if (d > eps)
2027 				goto one_digit;
2028 			if (d < -eps)
2029 				goto no_digits;
2030 			goto fast_failed;
2031 		}
2032 #ifndef No_leftright
2033 		if (leftright) {
2034 			/* Use Steele & White method of only
2035 			 * generating digits needed.
2036 			 */
2037 			eps = 0.5/tens[ilim-1] - eps;
2038 			for (i = 0;;) {
2039 				L = d;
2040 				d -= L;
2041 				*s++ = '0' + (int)L;
2042 				if (d < eps)
2043 					goto ret1;
2044 				if (1. - d < eps)
2045 					goto bump_up;
2046 				if (++i >= ilim)
2047 					break;
2048 				eps *= 10.;
2049 				d *= 10.;
2050 			}
2051 		} else {
2052 #endif
2053 			/* Generate ilim digits, then fix them up. */
2054 			eps *= tens[ilim-1];
2055 			for (i = 1;; i++, d *= 10.) {
2056 				L = d;
2057 				d -= L;
2058 				*s++ = '0' + (int)L;
2059 				if (i == ilim) {
2060 					if (d > 0.5 + eps)
2061 						goto bump_up;
2062 					else if (d < 0.5 - eps) {
2063 						while (*--s == '0');
2064 						s++;
2065 						goto ret1;
2066 					}
2067 					break;
2068 				}
2069 			}
2070 #ifndef No_leftright
2071 		}
2072 #endif
2073  fast_failed:
2074 		s = s0;
2075 		d = d2;
2076 		k = k0;
2077 		ilim = ilim0;
2078 	}
2079 
2080 	/* Do we have a "small" integer? */
2081 
2082 	if (be >= 0 && k <= Int_max) {
2083 		/* Yes. */
2084 		ds = tens[k];
2085 		if (ndigits < 0 && ilim <= 0) {
2086 			S = mhi = 0;
2087 			if (ilim < 0 || d <= 5*ds)
2088 				goto no_digits;
2089 			goto one_digit;
2090 		}
2091 		for (i = 1;; i++) {
2092 			L = d / ds;
2093 			d -= L*ds;
2094 #ifdef Check_FLT_ROUNDS
2095 			/* If FLT_ROUNDS == 2, L will usually be high by 1 */
2096 			if (d < 0) {
2097 				L--;
2098 				d += ds;
2099 			}
2100 #endif
2101 			*s++ = '0' + (int)L;
2102 			if (i == ilim) {
2103 				d += d;
2104 				if (d > ds || (d == ds && L & 1)) {
2105  bump_up:
2106 					while (*--s == '9')
2107 						if (s == s0) {
2108 							k++;
2109 							*s = '0';
2110 							break;
2111 						}
2112 					++*s++;
2113 				}
2114 				break;
2115 			}
2116 			if (!(d *= 10.))
2117 				break;
2118 		}
2119 		goto ret1;
2120 	}
2121 
2122 	m2 = b2;
2123 	m5 = b5;
2124 	mhi = mlo = 0;
2125 	if (leftright) {
2126 		if (mode < 2) {
2127 			i =
2128 #ifndef Sudden_Underflow
2129 				denorm ? be + (Bias + (P-1) - 1 + 1) :
2130 #endif
2131 #ifdef IBM
2132 				1 + 4*P - 3 - bbits + ((bbits + be - 1) & 3);
2133 #else
2134 				1 + P - bbits;
2135 #endif
2136 		} else {
2137 			j = ilim - 1;
2138 			if (m5 >= j)
2139 				m5 -= j;
2140 			else {
2141 				s5 += j -= m5;
2142 				b5 += j;
2143 				m5 = 0;
2144 			}
2145 			if ((i = ilim) < 0) {
2146 				m2 -= i;
2147 				i = 0;
2148 			}
2149 		}
2150 		b2 += i;
2151 		s2 += i;
2152 		mhi = i2b(1);
2153 	}
2154 	if (m2 > 0 && s2 > 0) {
2155 		i = m2 < s2 ? m2 : s2;
2156 		b2 -= i;
2157 		m2 -= i;
2158 		s2 -= i;
2159 	}
2160 	if (b5 > 0) {
2161 		if (leftright) {
2162 			if (m5 > 0) {
2163 				mhi = pow5mult(mhi, m5);
2164 				b1 = mult(mhi, b);
2165 				Bfree(b);
2166 				b = b1;
2167 				}
2168 			if ( (j = b5 - m5) )
2169 				b = pow5mult(b, j);
2170 		} else
2171 			b = pow5mult(b, b5);
2172 	}
2173 	S = i2b(1);
2174 	if (s5 > 0)
2175 		S = pow5mult(S, s5);
2176 
2177 	/* Check for special case that d is a normalized power of 2. */
2178 
2179 	if (mode < 2) {
2180 		if (!word1(d) && !(word0(d) & Bndry_mask)
2181 #ifndef Sudden_Underflow
2182 		 && word0(d) & Exp_mask
2183 #endif
2184 				) {
2185 			/* The special case */
2186 			b2 += Log2P;
2187 			s2 += Log2P;
2188 			spec_case = 1;
2189 		} else
2190 			spec_case = 0;
2191 	}
2192 
2193 	/* Arrange for convenient computation of quotients:
2194 	 * shift left if necessary so divisor has 4 leading 0 bits.
2195 	 *
2196 	 * Perhaps we should just compute leading 28 bits of S once
2197 	 * and for all and pass them and a shift to quorem, so it
2198 	 * can do shifts and ors to compute the numerator for q.
2199 	 */
2200 #ifdef Pack_32
2201 	if ( (i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0x1f) )
2202 		i = 32 - i;
2203 #else
2204 	if ( (i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0xf) )
2205 		i = 16 - i;
2206 #endif
2207 	if (i > 4) {
2208 		i -= 4;
2209 		b2 += i;
2210 		m2 += i;
2211 		s2 += i;
2212 	} else if (i < 4) {
2213 		i += 28;
2214 		b2 += i;
2215 		m2 += i;
2216 		s2 += i;
2217 	}
2218 	if (b2 > 0)
2219 		b = lshift(b, b2);
2220 	if (s2 > 0)
2221 		S = lshift(S, s2);
2222 	if (k_check) {
2223 		if (cmp(b,S) < 0) {
2224 			k--;
2225 			b = multadd(b, 10, 0);	/* we botched the k estimate */
2226 			if (leftright)
2227 				mhi = multadd(mhi, 10, 0);
2228 			ilim = ilim1;
2229 		}
2230 	}
2231 	if (ilim <= 0 && mode > 2) {
2232 		if (ilim < 0 || cmp(b,S = multadd(S,5,0)) <= 0) {
2233 			/* no digits, fcvt style */
2234  no_digits:
2235 			k = -1 - ndigits;
2236 			goto ret;
2237 		}
2238  one_digit:
2239 		*s++ = '1';
2240 		k++;
2241 		goto ret;
2242 	}
2243 	if (leftright) {
2244 		if (m2 > 0)
2245 			mhi = lshift(mhi, m2);
2246 
2247 		/* Compute mlo -- check for special case
2248 		 * that d is a normalized power of 2.
2249 		 */
2250 
2251 		mlo = mhi;
2252 		if (spec_case) {
2253 			mhi = Balloc(mhi->k);
2254 			Bcopy(mhi, mlo);
2255 			mhi = lshift(mhi, Log2P);
2256 		}
2257 
2258 		for (i = 1;;i++) {
2259 			dig = quorem(b,S) + '0';
2260 			/* Do we yet have the shortest decimal string
2261 			 * that will round to d?
2262 			 */
2263 			j = cmp(b, mlo);
2264 			delta = diff(S, mhi);
2265 			j1 = delta->sign ? 1 : cmp(b, delta);
2266 			Bfree(delta);
2267 #ifndef ROUND_BIASED
2268 			if (j1 == 0 && !mode && !(word1(d) & 1)) {
2269 				if (dig == '9')
2270 					goto round_9_up;
2271 				if (j > 0)
2272 					dig++;
2273 				*s++ = dig;
2274 				goto ret;
2275 			}
2276 #endif
2277 			if (j < 0 || (j == 0 && !mode
2278 #ifndef ROUND_BIASED
2279 							&& !(word1(d) & 1)
2280 #endif
2281 					)) {
2282 				if (j1 > 0) {
2283 					b = lshift(b, 1);
2284 					j1 = cmp(b, S);
2285 					if ((j1 > 0 || (j1 == 0 && dig & 1))
2286 					&& dig++ == '9')
2287 						goto round_9_up;
2288 				}
2289 				*s++ = dig;
2290 				goto ret;
2291 			}
2292 			if (j1 > 0) {
2293 				if (dig == '9') { /* possible if i == 1 */
2294  round_9_up:
2295 					*s++ = '9';
2296 					goto roundoff;
2297 				}
2298 				*s++ = dig + 1;
2299 				goto ret;
2300 			}
2301 			*s++ = dig;
2302 			if (i == ilim)
2303 				break;
2304 			b = multadd(b, 10, 0);
2305 			if (mlo == mhi)
2306 				mlo = mhi = multadd(mhi, 10, 0);
2307 			else {
2308 				mlo = multadd(mlo, 10, 0);
2309 				mhi = multadd(mhi, 10, 0);
2310 			}
2311 		}
2312 	} else
2313 		for (i = 1;; i++) {
2314 			*s++ = dig = quorem(b,S) + '0';
2315 			if (i >= ilim)
2316 				break;
2317 			b = multadd(b, 10, 0);
2318 		}
2319 
2320 	/* Round off last digit */
2321 
2322 	b = lshift(b, 1);
2323 	j = cmp(b, S);
2324 	if (j > 0 || (j == 0 && dig & 1)) {
2325  roundoff:
2326 		while (*--s == '9')
2327 			if (s == s0) {
2328 				k++;
2329 				*s++ = '1';
2330 				goto ret;
2331 			}
2332 		++*s++;
2333 	} else {
2334 		while (*--s == '0');
2335 		s++;
2336 	}
2337  ret:
2338 	Bfree(S);
2339 	if (mhi) {
2340 		if (mlo && mlo != mhi)
2341 			Bfree(mlo);
2342 		Bfree(mhi);
2343 	}
2344  ret1:
2345 	Bfree(b);
2346 	if (s == s0) {	/* don't return empty string */
2347 		*s++ = '0';
2348 		k = 0;
2349 	}
2350 	*s = 0;
2351 	*decpt = k + 1;
2352 	if (rve)
2353 		*rve = s;
2354 	return s0;
2355 }
2356 #endif	// 0 -> __dtoa() is removed from the build
2357 
2358 #ifdef __cplusplus
2359 }
2360 #endif
2361