xref: /haiku/src/system/libroot/posix/stdlib/strtod.c (revision 323b65468e5836bb27a5e373b14027d902349437)
1 /* [zooey]:
2  * This implementation is broken, as e.g. strtod("1.7E+064", ...) yields an
3  * incorrect (inaccurate) result.
4  * For libroot, we use the glibc version instead.
5  * This file is still used in the kernel, however, since I didn't dare
6  * introducing a glibc-based source into the kernel.
7  * So, currently we have to live with the fact that strtod() in our kernel
8  * gives somewhat inaccurate results.
9  */
10 
11 /*-
12  * Copyright (c) 1993
13  *	The Regents of the University of California.  All rights reserved.
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  * 3. All advertising materials mentioning features or use of this software
24  *    must display the following acknowledgement:
25  *	This product includes software developed by the University of
26  *	California, Berkeley and its contributors.
27  * 4. Neither the name of the University nor the names of its contributors
28  *    may be used to endorse or promote products derived from this software
29  *    without specific prior written permission.
30  *
31  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41  * SUCH DAMAGE.
42  */
43 
44 
45 /****************************************************************
46  *
47  * The author of this software is David M. Gay.
48  *
49  * Copyright (c) 1991 by AT&T.
50  *
51  * Permission to use, copy, modify, and distribute this software for any
52  * purpose without fee is hereby granted, provided that this entire notice
53  * is included in all copies of any software which is or includes a copy
54  * or modification of this software and in all copies of the supporting
55  * documentation for such software.
56  *
57  * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED
58  * WARRANTY.  IN PARTICULAR, NEITHER THE AUTHOR NOR AT&T MAKES ANY
59  * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY
60  * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE.
61  *
62  ***************************************************************/
63 
64 /* Please send bug reports to
65 	David M. Gay
66 	AT&T Bell Laboratories, Room 2C-463
67 	600 Mountain Avenue
68 	Murray Hill, NJ 07974-2070
69 	U.S.A.
70 	dmg@research.att.com or research!dmg
71  */
72 
73 /* strtod for IEEE-, VAX-, and IBM-arithmetic machines.
74  *
75  * This strtod returns a nearest machine number to the input decimal
76  * string (or sets errno to ERANGE).  With IEEE arithmetic, ties are
77  * broken by the IEEE round-even rule.  Otherwise ties are broken by
78  * biased rounding (add half and chop).
79  *
80  * Inspired loosely by William D. Clinger's paper "How to Read Floating
81  * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101].
82  *
83  * Modifications:
84  *
85  *	1. We only require IEEE, IBM, or VAX double-precision
86  *		arithmetic (not IEEE double-extended).
87  *	2. We get by with floating-point arithmetic in a case that
88  *		Clinger missed -- when we're computing d * 10^n
89  *		for a small integer d and the integer n is not too
90  *		much larger than 22 (the maximum integer k for which
91  *		we can represent 10^k exactly), we may be able to
92  *		compute (d*10^k) * 10^(e-k) with just one roundoff.
93  *	3. Rather than a bit-at-a-time adjustment of the binary
94  *		result in the hard case, we use floating-point
95  *		arithmetic to determine the adjustment to within
96  *		one bit; only in really hard cases do we need to
97  *		compute a second residual.
98  *	4. Because of 3., we don't need a large table of powers of 10
99  *		for ten-to-e (just some small tables, e.g. of 10^k
100  *		for 0 <= k <= 22).
101  */
102 
103 /*
104  * #define Sudden_Underflow for IEEE-format machines without gradual
105  *	underflow (i.e., that flush to zero on underflow).
106  * #define IBM for IBM mainframe-style floating-point arithmetic.
107  * #define VAX for VAX-style floating-point arithmetic.
108  * #define Unsigned_Shifts if >> does treats its left operand as unsigned.
109  * #define No_leftright to omit left-right logic in fast floating-point
110  *	computation of dtoa.
111  * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3.
112  * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines
113  *	that use extended-precision instructions to compute rounded
114  *	products and quotients) with IBM.
115  * #define ROUND_BIASED for IEEE-format with biased rounding.
116  * #define Inaccurate_Divide for IEEE-format with correctly rounded
117  *	products but inaccurate quotients, e.g., for Intel i860.
118  * #define Just_16 to store 16 bits per 32-bit Long when doing high-precision
119  *	integer arithmetic.  Whether this speeds things up or slows things
120  *	down depends on the machine and the number being converted.
121  * #define Bad_float_h if your system lacks a float.h or if it does not
122  *	define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP,
123  *	FLT_RADIX, FLT_ROUNDS, and DBL_MAX.
124  */
125 
126 #if defined(__i386__) || defined(__ia64__) || defined(__alpha__) || \
127     defined(__sparc64__) || defined(__powerpc__) || defined(__POWERPC__) || \
128     defined(__m68k__) || defined(__M68K__) || defined(__arm__) || \
129     defined(__ARM__) || defined(__mipsel__) || defined(__MIPSEL__)
130 #	include <sys/types.h>
131 #	if BYTE_ORDER == BIG_ENDIAN
132 #		define IEEE_BIG_ENDIAN
133 #	else
134 #		define IEEE_LITTLE_ENDIAN
135 #	endif
136 #endif /* defined(__i386__) ... */
137 
138 #include <inttypes.h>
139 
140 typedef	int32_t   Long;
141 typedef	u_int32_t ULong;
142 
143 #ifdef DEBUG
144 #	if	_KERNEL_MODE
145 #		include <KernelExport.h>
146 #		define Bug(x) {dprintf("%s\n", x);}
147 #	else
148 #		include <stdio.h>
149 #		define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);}
150 #	endif
151 #endif
152 
153 #include <locale.h>
154 #include <stdlib.h>
155 #include <string.h>
156 
157 #include <errno.h>
158 #include <ctype.h>
159 
160 #include <errno_private.h>
161 
162 #ifdef Bad_float_h
163 #undef __STDC__
164 #ifdef IEEE_BIG_ENDIAN
165 #	define IEEE_ARITHMETIC
166 #endif
167 #ifdef IEEE_LITTLE_ENDIAN
168 #	define IEEE_ARITHMETIC
169 #endif
170 #ifdef IEEE_ARITHMETIC
171 #	define DBL_DIG 15
172 #	define DBL_MAX_10_EXP 308
173 #	define DBL_MAX_EXP 1024
174 #	define FLT_RADIX 2
175 #	define FLT_ROUNDS 1
176 #	define DBL_MAX 1.7976931348623157e+308
177 #endif
178 
179 #ifdef IBM
180 #	define DBL_DIG 16
181 #	define DBL_MAX_10_EXP 75
182 #	define DBL_MAX_EXP 63
183 #	define FLT_RADIX 16
184 #	define FLT_ROUNDS 0
185 #	define DBL_MAX 7.2370055773322621e+75
186 #endif
187 
188 #ifdef VAX
189 #	define DBL_DIG 16
190 #	define DBL_MAX_10_EXP 38
191 #	define DBL_MAX_EXP 127
192 #	define FLT_RADIX 2
193 #	define FLT_ROUNDS 1
194 #	define DBL_MAX 1.7014118346046923e+38
195 #endif
196 
197 #ifndef LONG_MAX
198 #	define LONG_MAX 2147483647
199 #endif
200 #else
201 #	include "float.h"
202 #endif
203 #ifndef __MATH_H__
204 #	include "math.h"
205 #endif
206 
207 #ifdef __cplusplus
208 extern "C" {
209 #endif
210 
211 #ifdef Unsigned_Shifts
212 #	define Sign_Extend(a,b) if (b < 0) a |= 0xffff0000;
213 #else
214 #	define Sign_Extend(a,b) /*no-op*/
215 #endif
216 
217 #if defined(IEEE_LITTLE_ENDIAN) + defined(IEEE_BIG_ENDIAN) + defined(VAX) + \
218     defined(IBM) != 1
219 #error Only one of IEEE_LITTLE_ENDIAN, IEEE_BIG_ENDIAN, VAX, or IBM should be defined.
220 #endif
221 
222 union doubleasulongs {
223 	double x;
224 	ULong w[2];
225 };
226 
227 #ifdef IEEE_LITTLE_ENDIAN
228 #	define word0(x) (((union doubleasulongs *)&x)->w)[1]
229 #	define word1(x) (((union doubleasulongs *)&x)->w)[0]
230 #else
231 #	define word0(x) (((union doubleasulongs *)&x)->w)[0]
232 #	define word1(x) (((union doubleasulongs *)&x)->w)[1]
233 #endif
234 
235 /* The following definition of Storeinc is appropriate for MIPS processors.
236  * An alternative that might be better on some machines is
237  * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff)
238  */
239 #if defined(IEEE_LITTLE_ENDIAN) + defined(VAX)
240 #	define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \
241 		((unsigned short *)a)[0] = (unsigned short)c, a++)
242 #else
243 #	define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \
244 		((unsigned short *)a)[1] = (unsigned short)c, a++)
245 #endif
246 
247 /* #define P DBL_MANT_DIG */
248 /* Ten_pmax = floor(P*log(2)/log(5)) */
249 /* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */
250 /* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */
251 /* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */
252 
253 #if defined(IEEE_LITTLE_ENDIAN) + defined(IEEE_BIG_ENDIAN)
254 #define Exp_shift  20
255 #define Exp_shift1 20
256 #define Exp_msk1    0x100000
257 #define Exp_msk11   0x100000
258 #define Exp_mask  0x7ff00000
259 #define P 53
260 #define Bias 1023
261 #define IEEE_Arith
262 #define Emin (-1022)
263 #define Exp_1  0x3ff00000
264 #define Exp_11 0x3ff00000
265 #define Ebits 11
266 #define Frac_mask  0xfffff
267 #define Frac_mask1 0xfffff
268 #define Ten_pmax 22
269 #define Bletch 0x10
270 #define Bndry_mask  0xfffff
271 #define Bndry_mask1 0xfffff
272 #define LSB 1
273 #define Sign_bit 0x80000000
274 #define Log2P 1
275 #define Tiny0 0
276 #define Tiny1 1
277 #define Quick_max 14
278 #define Int_max 14
279 #define Infinite(x) (word0(x) == 0x7ff00000) /* sufficient test for here */
280 #else
281 #undef  Sudden_Underflow
282 #define Sudden_Underflow
283 #ifdef IBM
284 #define Exp_shift  24
285 #define Exp_shift1 24
286 #define Exp_msk1   0x1000000
287 #define Exp_msk11  0x1000000
288 #define Exp_mask  0x7f000000
289 #define P 14
290 #define Bias 65
291 #define Exp_1  0x41000000
292 #define Exp_11 0x41000000
293 #define Ebits 8	/* exponent has 7 bits, but 8 is the right value in b2d */
294 #define Frac_mask  0xffffff
295 #define Frac_mask1 0xffffff
296 #define Bletch 4
297 #define Ten_pmax 22
298 #define Bndry_mask  0xefffff
299 #define Bndry_mask1 0xffffff
300 #define LSB 1
301 #define Sign_bit 0x80000000
302 #define Log2P 4
303 #define Tiny0 0x100000
304 #define Tiny1 0
305 #define Quick_max 14
306 #define Int_max 15
307 #else /* VAX */
308 #define Exp_shift  23
309 #define Exp_shift1 7
310 #define Exp_msk1    0x80
311 #define Exp_msk11   0x800000
312 #define Exp_mask  0x7f80
313 #define P 56
314 #define Bias 129
315 #define Exp_1  0x40800000
316 #define Exp_11 0x4080
317 #define Ebits 8
318 #define Frac_mask  0x7fffff
319 #define Frac_mask1 0xffff007f
320 #define Ten_pmax 24
321 #define Bletch 2
322 #define Bndry_mask  0xffff007f
323 #define Bndry_mask1 0xffff007f
324 #define LSB 0x10000
325 #define Sign_bit 0x8000
326 #define Log2P 1
327 #define Tiny0 0x80
328 #define Tiny1 0
329 #define Quick_max 15
330 #define Int_max 15
331 #endif
332 #endif
333 
334 #ifndef IEEE_Arith
335 #define ROUND_BIASED
336 #endif
337 
338 #ifdef RND_PRODQUOT
339 #define rounded_product(a,b) a = rnd_prod(a, b)
340 #define rounded_quotient(a,b) a = rnd_quot(a, b)
341 extern double rnd_prod(double, double), rnd_quot(double, double);
342 #else
343 #define rounded_product(a,b) a *= b
344 #define rounded_quotient(a,b) a /= b
345 #endif
346 
347 #define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1))
348 #define Big1 0xffffffff
349 
350 #ifndef Just_16
351 /* When Pack_32 is not defined, we store 16 bits per 32-bit Long.
352  * This makes some inner loops simpler and sometimes saves work
353  * during multiplications, but it often seems to make things slightly
354  * slower.  Hence the default is now to store 32 bits per Long.
355  */
356 #ifndef Pack_32
357 #define Pack_32
358 #endif
359 #endif
360 
361 #define Kmax 15
362 
363 #ifdef __cplusplus
364 extern "C" double strtod(const char *s00, char **se);
365 extern "C" char *__dtoa(double d, int mode, int ndigits,
366 			int *decpt, int *sign, char **rve, char **resultp);
367 #endif
368 
369 struct
370 Bigint {
371 	struct Bigint *next;
372 	int k, maxwds, sign, wds;
373 	ULong x[1];
374 };
375 
376 typedef struct Bigint Bigint;
377 
378 static Bigint *
379 Balloc(int k)
380 {
381 	int x;
382 	Bigint *rv;
383 
384 	x = 1 << k;
385 	rv = (Bigint *)malloc(sizeof(Bigint) + (x-1)*sizeof(Long));
386 	rv->k = k;
387 	rv->maxwds = x;
388 	rv->sign = rv->wds = 0;
389 	return rv;
390 }
391 
392 
393 static void
394 Bfree(Bigint *v)
395 {
396 	free(v);
397 }
398 
399 
400 #define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \
401 	y->wds*sizeof(Long) + 2*sizeof(int))
402 
403 
404 static Bigint *
405 multadd(Bigint *b, int m, int a)	/* multiply by m and add a */
406 {
407 	int i, wds;
408 	ULong *x, y;
409 #ifdef Pack_32
410 	ULong xi, z;
411 #endif
412 	Bigint *b1;
413 
414 	wds = b->wds;
415 	x = b->x;
416 	i = 0;
417 	do {
418 #ifdef Pack_32
419 		xi = *x;
420 		y = (xi & 0xffff) * m + a;
421 		z = (xi >> 16) * m + (y >> 16);
422 		a = (int)(z >> 16);
423 		*x++ = (z << 16) + (y & 0xffff);
424 #else
425 		y = *x * m + a;
426 		a = (int)(y >> 16);
427 		*x++ = y & 0xffff;
428 #endif
429 	} while (++i < wds);
430 	if (a) {
431 		if (wds >= b->maxwds) {
432 			b1 = Balloc(b->k+1);
433 			Bcopy(b1, b);
434 			Bfree(b);
435 			b = b1;
436 			}
437 		b->x[wds++] = a;
438 		b->wds = wds;
439 	}
440 	return b;
441 }
442 
443 
444 static Bigint *
445 s2b(const char *s, int nd0, int nd, ULong y9)
446 {
447 	Bigint *b;
448 	int i, k;
449 	Long x, y;
450 
451 	x = (nd + 8) / 9;
452 	for (k = 0, y = 1; x > y; y <<= 1, k++) ;
453 #ifdef Pack_32
454 	b = Balloc(k);
455 	b->x[0] = y9;
456 	b->wds = 1;
457 #else
458 	b = Balloc(k+1);
459 	b->x[0] = y9 & 0xffff;
460 	b->wds = (b->x[1] = y9 >> 16) ? 2 : 1;
461 #endif
462 
463 	i = 9;
464 	if (9 < nd0) {
465 		s += 9;
466 		do
467 			b = multadd(b, 10, *s++ - '0');
468 		while (++i < nd0);
469 		s++;
470 	} else
471 		s += 10;
472 	for (; i < nd; i++)
473 		b = multadd(b, 10, *s++ - '0');
474 	return b;
475 }
476 
477 
478 static int
479 hi0bits(ULong x)
480 {
481 	int k = 0;
482 
483 	if (!(x & 0xffff0000)) {
484 		k = 16;
485 		x <<= 16;
486 	}
487 	if (!(x & 0xff000000)) {
488 		k += 8;
489 		x <<= 8;
490 	}
491 	if (!(x & 0xf0000000)) {
492 		k += 4;
493 		x <<= 4;
494 	}
495 	if (!(x & 0xc0000000)) {
496 		k += 2;
497 		x <<= 2;
498 	}
499 	if (!(x & 0x80000000)) {
500 		k++;
501 		if (!(x & 0x40000000))
502 			return 32;
503 	}
504 	return k;
505 }
506 
507 
508 static int
509 lo0bits(ULong *y)
510 {
511 	int k;
512 	ULong x = *y;
513 
514 	if (x & 7) {
515 		if (x & 1)
516 			return 0;
517 		if (x & 2) {
518 			*y = x >> 1;
519 			return 1;
520 		}
521 		*y = x >> 2;
522 		return 2;
523 	}
524 	k = 0;
525 	if (!(x & 0xffff)) {
526 		k = 16;
527 		x >>= 16;
528 	}
529 	if (!(x & 0xff)) {
530 		k += 8;
531 		x >>= 8;
532 	}
533 	if (!(x & 0xf)) {
534 		k += 4;
535 		x >>= 4;
536 	}
537 	if (!(x & 0x3)) {
538 		k += 2;
539 		x >>= 2;
540 	}
541 	if (!(x & 1)) {
542 		k++;
543 		x >>= 1;
544 		if (!x & 1)
545 			return 32;
546 	}
547 	*y = x;
548 	return k;
549 }
550 
551 
552 static Bigint *
553 i2b(int i)
554 {
555 	Bigint *b;
556 
557 	b = Balloc(1);
558 	b->x[0] = i;
559 	b->wds = 1;
560 	return b;
561 }
562 
563 
564 static Bigint *
565 mult(Bigint *a, Bigint *b)
566 {
567 	Bigint *c;
568 	int k, wa, wb, wc;
569 	ULong carry, y, z;
570 	ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0;
571 #ifdef Pack_32
572 	ULong z2;
573 #endif
574 
575 	if (a->wds < b->wds) {
576 		c = a;
577 		a = b;
578 		b = c;
579 	}
580 	k = a->k;
581 	wa = a->wds;
582 	wb = b->wds;
583 	wc = wa + wb;
584 	if (wc > a->maxwds)
585 		k++;
586 	c = Balloc(k);
587 	for (x = c->x, xa = x + wc; x < xa; x++)
588 		*x = 0;
589 	xa = a->x;
590 	xae = xa + wa;
591 	xb = b->x;
592 	xbe = xb + wb;
593 	xc0 = c->x;
594 #ifdef Pack_32
595 	for (; xb < xbe; xb++, xc0++) {
596 		if ( (y = *xb & 0xffff) ) {
597 			x = xa;
598 			xc = xc0;
599 			carry = 0;
600 			do {
601 				z = (*x & 0xffff) * y + (*xc & 0xffff) + carry;
602 				carry = z >> 16;
603 				z2 = (*x++ >> 16) * y + (*xc >> 16) + carry;
604 				carry = z2 >> 16;
605 				Storeinc(xc, z2, z);
606 			} while (x < xae);
607 			*xc = carry;
608 		}
609 		if ( (y = *xb >> 16) ) {
610 			x = xa;
611 			xc = xc0;
612 			carry = 0;
613 			z2 = *xc;
614 			do {
615 				z = (*x & 0xffff) * y + (*xc >> 16) + carry;
616 				carry = z >> 16;
617 				Storeinc(xc, z, z2);
618 				z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry;
619 				carry = z2 >> 16;
620 			} while (x < xae);
621 			*xc = z2;
622 		}
623 	}
624 #else
625 	for (; xb < xbe; xc0++) {
626 		if (y = *xb++) {
627 			x = xa;
628 			xc = xc0;
629 			carry = 0;
630 			do {
631 				z = *x++ * y + *xc + carry;
632 				carry = z >> 16;
633 				*xc++ = z & 0xffff;
634 			} while (x < xae);
635 			*xc = carry;
636 		}
637 	}
638 #endif
639 	for (xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ;
640 	c->wds = wc;
641 	return c;
642 }
643 
644 
645 static Bigint *p5s;
646 
647 
648 static Bigint *
649 pow5mult(Bigint *b, int k)
650 {
651 	Bigint *b1, *p5, *p51;
652 	int i;
653 	static int p05[3] = { 5, 25, 125 };
654 
655 	if ( (i = k & 3) )
656 		b = multadd(b, p05[i-1], 0);
657 
658 	if (!(k >>= 2))
659 		return b;
660 	if (!(p5 = p5s)) {
661 		/* first time */
662 		p5 = p5s = i2b(625);
663 		p5->next = 0;
664 	}
665 	for (;;) {
666 		if (k & 1) {
667 			b1 = mult(b, p5);
668 			Bfree(b);
669 			b = b1;
670 		}
671 		if (!(k >>= 1))
672 			break;
673 		if (!(p51 = p5->next)) {
674 			p51 = p5->next = mult(p5,p5);
675 			p51->next = 0;
676 		}
677 		p5 = p51;
678 	}
679 	return b;
680 }
681 
682 
683 static Bigint *
684 lshift(Bigint *b, int k)
685 {
686 	int i, k1, n, n1;
687 	Bigint *b1;
688 	ULong *x, *x1, *xe, z;
689 
690 #ifdef Pack_32
691 	n = k >> 5;
692 #else
693 	n = k >> 4;
694 #endif
695 	k1 = b->k;
696 	n1 = n + b->wds + 1;
697 	for (i = b->maxwds; n1 > i; i <<= 1)
698 		k1++;
699 	b1 = Balloc(k1);
700 	x1 = b1->x;
701 	for (i = 0; i < n; i++)
702 		*x1++ = 0;
703 	x = b->x;
704 	xe = x + b->wds;
705 #ifdef Pack_32
706 	if (k &= 0x1f) {
707 		k1 = 32 - k;
708 		z = 0;
709 		do {
710 			*x1++ = *x << k | z;
711 			z = *x++ >> k1;
712 		} while (x < xe);
713 		if ( (*x1 = z) )
714 			++n1;
715 	}
716 #else
717 	if (k &= 0xf) {
718 		k1 = 16 - k;
719 		z = 0;
720 		do {
721 			*x1++ = *x << k  & 0xffff | z;
722 			z = *x++ >> k1;
723 		} while (x < xe);
724 		if (*x1 = z)
725 			++n1;
726 	}
727 #endif
728 	else
729 		do
730 			*x1++ = *x++;
731 		while (x < xe);
732 	b1->wds = n1 - 1;
733 	Bfree(b);
734 	return b1;
735 }
736 
737 
738 static int
739 cmp(Bigint *a, Bigint *b)
740 {
741 	ULong *xa, *xa0, *xb, *xb0;
742 	int i, j;
743 
744 	i = a->wds;
745 	j = b->wds;
746 #ifdef DEBUG
747 	if (i > 1 && !a->x[i-1])
748 		Bug("cmp called with a->x[a->wds-1] == 0");
749 	if (j > 1 && !b->x[j-1])
750 		Bug("cmp called with b->x[b->wds-1] == 0");
751 #endif
752 	if (i -= j)
753 		return i;
754 	xa0 = a->x;
755 	xa = xa0 + j;
756 	xb0 = b->x;
757 	xb = xb0 + j;
758 	for (;;) {
759 		if (*--xa != *--xb)
760 			return *xa < *xb ? -1 : 1;
761 		if (xa <= xa0)
762 			break;
763 	}
764 	return 0;
765 }
766 
767 
768 static Bigint *
769 diff(Bigint *a, Bigint *b)
770 {
771 	Bigint *c;
772 	int i, wa, wb;
773 	Long borrow, y;	/* We need signed shifts here. */
774 	ULong *xa, *xae, *xb, *xbe, *xc;
775 #ifdef Pack_32
776 	Long z;
777 #endif
778 
779 	i = cmp(a,b);
780 	if (!i) {
781 		c = Balloc(0);
782 		c->wds = 1;
783 		c->x[0] = 0;
784 		return c;
785 	}
786 	if (i < 0) {
787 		c = a;
788 		a = b;
789 		b = c;
790 		i = 1;
791 	} else
792 		i = 0;
793 	c = Balloc(a->k);
794 	c->sign = i;
795 	wa = a->wds;
796 	xa = a->x;
797 	xae = xa + wa;
798 	wb = b->wds;
799 	xb = b->x;
800 	xbe = xb + wb;
801 	xc = c->x;
802 	borrow = 0;
803 #ifdef Pack_32
804 	do {
805 		y = (*xa & 0xffff) - (*xb & 0xffff) + borrow;
806 		borrow = y >> 16;
807 		Sign_Extend(borrow, y);
808 		z = (*xa++ >> 16) - (*xb++ >> 16) + borrow;
809 		borrow = z >> 16;
810 		Sign_Extend(borrow, z);
811 		Storeinc(xc, z, y);
812 	} while (xb < xbe);
813 	while (xa < xae) {
814 		y = (*xa & 0xffff) + borrow;
815 		borrow = y >> 16;
816 		Sign_Extend(borrow, y);
817 		z = (*xa++ >> 16) + borrow;
818 		borrow = z >> 16;
819 		Sign_Extend(borrow, z);
820 		Storeinc(xc, z, y);
821 	}
822 #else
823 	do {
824 		y = *xa++ - *xb++ + borrow;
825 		borrow = y >> 16;
826 		Sign_Extend(borrow, y);
827 		*xc++ = y & 0xffff;
828 	} while (xb < xbe);
829 	while (xa < xae) {
830 		y = *xa++ + borrow;
831 		borrow = y >> 16;
832 		Sign_Extend(borrow, y);
833 		*xc++ = y & 0xffff;
834 	}
835 #endif
836 	while (!*--xc)
837 		wa--;
838 	c->wds = wa;
839 	return c;
840 }
841 
842 
843 static double
844 ulp(double x)
845 {
846 	Long L;
847 	double a;
848 
849 	L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1;
850 #ifndef Sudden_Underflow
851 	if (L > 0) {
852 #endif
853 #ifdef IBM
854 		L |= Exp_msk1 >> 4;
855 #endif
856 		word0(a) = L;
857 		word1(a) = 0;
858 #ifndef Sudden_Underflow
859 	} else {
860 		L = -L >> Exp_shift;
861 		if (L < Exp_shift) {
862 			word0(a) = 0x80000 >> L;
863 			word1(a) = 0;
864 		} else {
865 			word0(a) = 0;
866 			L -= Exp_shift;
867 			word1(a) = L >= 31 ? 1 : 1 << (31 - L);
868 		}
869 	}
870 #endif
871 	return a;
872 }
873 
874 
875 static double
876 b2d(Bigint *a, int *e)
877 {
878 	ULong *xa, *xa0, w, y, z;
879 	int k;
880 	double d;
881 #ifdef VAX
882 	ULong d0, d1;
883 #else
884 #define d0 word0(d)
885 #define d1 word1(d)
886 #endif
887 
888 	xa0 = a->x;
889 	xa = xa0 + a->wds;
890 	y = *--xa;
891 #ifdef DEBUG
892 	if (!y) Bug("zero y in b2d");
893 #endif
894 	k = hi0bits(y);
895 	*e = 32 - k;
896 #ifdef Pack_32
897 	if (k < Ebits) {
898 		d0 = Exp_1 | (y >> (Ebits - k));
899 		w = xa > xa0 ? *--xa : 0;
900 		d1 = (y << ((32-Ebits) + k)) | (w >> (Ebits - k));
901 		goto ret_d;
902 		}
903 	z = xa > xa0 ? *--xa : 0;
904 	if (k -= Ebits) {
905 		d0 = Exp_1 | (y << k) | (z >> (32 - k));
906 		y = xa > xa0 ? *--xa : 0;
907 		d1 = (z << k) | (y >> (32 - k));
908 	} else {
909 		d0 = Exp_1 | y;
910 		d1 = z;
911 	}
912 #else
913 	if (k < Ebits + 16) {
914 		z = xa > xa0 ? *--xa : 0;
915 		d0 = Exp_1 | y << k - Ebits | z >> Ebits + 16 - k;
916 		w = xa > xa0 ? *--xa : 0;
917 		y = xa > xa0 ? *--xa : 0;
918 		d1 = z << k + 16 - Ebits | w << k - Ebits | y >> 16 + Ebits - k;
919 		goto ret_d;
920 	}
921 	z = xa > xa0 ? *--xa : 0;
922 	w = xa > xa0 ? *--xa : 0;
923 	k -= Ebits + 16;
924 	d0 = Exp_1 | y << k + 16 | z << k | w >> 16 - k;
925 	y = xa > xa0 ? *--xa : 0;
926 	d1 = w << k + 16 | y << k;
927 #endif
928  ret_d:
929 #ifdef VAX
930 	word0(d) = d0 >> 16 | d0 << 16;
931 	word1(d) = d1 >> 16 | d1 << 16;
932 #else
933 #undef d0
934 #undef d1
935 #endif
936 	return d;
937 }
938 
939 
940 static Bigint *
941 d2b(double d, int *e, int *bits)
942 {
943 	Bigint *b;
944 	int de, i, k;
945 	ULong *x, y, z;
946 #ifdef VAX
947 	ULong d0, d1;
948 	d0 = word0(d) >> 16 | word0(d) << 16;
949 	d1 = word1(d) >> 16 | word1(d) << 16;
950 #else
951 #define d0 word0(d)
952 #define d1 word1(d)
953 #endif
954 
955 #ifdef Pack_32
956 	b = Balloc(1);
957 #else
958 	b = Balloc(2);
959 #endif
960 	x = b->x;
961 
962 	z = d0 & Frac_mask;
963 	d0 &= 0x7fffffff;	/* clear sign bit, which we ignore */
964 #ifdef Sudden_Underflow
965 	de = (int)(d0 >> Exp_shift);
966 #ifndef IBM
967 	z |= Exp_msk11;
968 #endif
969 #else
970 	if ( (de = (int)(d0 >> Exp_shift)) )
971 		z |= Exp_msk1;
972 #endif
973 #ifdef Pack_32
974 	if ( (y = d1) ) {
975 		if ( (k = lo0bits(&y)) ) {
976 			x[0] = y | (z << (32 - k));
977 			z >>= k;
978 			}
979 		else
980 			x[0] = y;
981 		i = b->wds = (x[1] = z) ? 2 : 1;
982 	} else {
983 #ifdef DEBUG
984 		if (!z)
985 			Bug("Zero passed to d2b");
986 #endif
987 		k = lo0bits(&z);
988 		x[0] = z;
989 		i = b->wds = 1;
990 		k += 32;
991 	}
992 #else
993 	if (y = d1) {
994 		if (k = lo0bits(&y))
995 			if (k >= 16) {
996 				x[0] = y | z << 32 - k & 0xffff;
997 				x[1] = z >> k - 16 & 0xffff;
998 				x[2] = z >> k;
999 				i = 2;
1000 			} else {
1001 				x[0] = y & 0xffff;
1002 				x[1] = y >> 16 | z << 16 - k & 0xffff;
1003 				x[2] = z >> k & 0xffff;
1004 				x[3] = z >> k+16;
1005 				i = 3;
1006 			}
1007 		else {
1008 			x[0] = y & 0xffff;
1009 			x[1] = y >> 16;
1010 			x[2] = z & 0xffff;
1011 			x[3] = z >> 16;
1012 			i = 3;
1013 		}
1014 	} else {
1015 #ifdef DEBUG
1016 		if (!z)
1017 			Bug("Zero passed to d2b");
1018 #endif
1019 		k = lo0bits(&z);
1020 		if (k >= 16) {
1021 			x[0] = z;
1022 			i = 0;
1023 		} else {
1024 			x[0] = z & 0xffff;
1025 			x[1] = z >> 16;
1026 			i = 1;
1027 		}
1028 		k += 32;
1029 	}
1030 	while (!x[i])
1031 		--i;
1032 	b->wds = i + 1;
1033 #endif
1034 #ifndef Sudden_Underflow
1035 	if (de) {
1036 #endif
1037 #ifdef IBM
1038 		*e = (de - Bias - (P-1) << 2) + k;
1039 		*bits = 4*P + 8 - k - hi0bits(word0(d) & Frac_mask);
1040 #else
1041 		*e = de - Bias - (P-1) + k;
1042 		*bits = P - k;
1043 #endif
1044 #ifndef Sudden_Underflow
1045 	} else {
1046 		*e = de - Bias - (P-1) + 1 + k;
1047 #ifdef Pack_32
1048 		*bits = 32*i - hi0bits(x[i-1]);
1049 #else
1050 		*bits = (i+2)*16 - hi0bits(x[i]);
1051 #endif
1052 	}
1053 #endif
1054 	return b;
1055 }
1056 #undef d0
1057 #undef d1
1058 
1059 
1060 static double
1061 ratio(Bigint *a, Bigint *b)
1062 {
1063 	double da, db;
1064 	int k, ka, kb;
1065 
1066 	da = b2d(a, &ka);
1067 	db = b2d(b, &kb);
1068 #ifdef Pack_32
1069 	k = ka - kb + 32*(a->wds - b->wds);
1070 #else
1071 	k = ka - kb + 16*(a->wds - b->wds);
1072 #endif
1073 #ifdef IBM
1074 	if (k > 0) {
1075 		word0(da) += (k >> 2)*Exp_msk1;
1076 		if (k &= 3)
1077 			da *= 1 << k;
1078 	} else {
1079 		k = -k;
1080 		word0(db) += (k >> 2)*Exp_msk1;
1081 		if (k &= 3)
1082 			db *= 1 << k;
1083 	}
1084 #else
1085 	if (k > 0)
1086 		word0(da) += k*Exp_msk1;
1087 	else {
1088 		k = -k;
1089 		word0(db) += k*Exp_msk1;
1090 	}
1091 #endif
1092 	return da / db;
1093 }
1094 
1095 static double
1096 tens[] = {
1097 		1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
1098 		1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
1099 		1e20, 1e21, 1e22
1100 #ifdef VAX
1101 		, 1e23, 1e24
1102 #endif
1103 		};
1104 
1105 static double
1106 #ifdef IEEE_Arith
1107 bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 };
1108 static double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128, 1e-256 };
1109 #define n_bigtens 5
1110 #else
1111 #ifdef IBM
1112 bigtens[] = { 1e16, 1e32, 1e64 };
1113 static double tinytens[] = { 1e-16, 1e-32, 1e-64 };
1114 #define n_bigtens 3
1115 #else
1116 bigtens[] = { 1e16, 1e32 };
1117 static double tinytens[] = { 1e-16, 1e-32 };
1118 #define n_bigtens 2
1119 #endif
1120 #endif
1121 
1122 
1123 double
1124 strtod(const char * __restrict s00, char ** __restrict se)
1125 {
1126 	int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, dsign,
1127 		 e, e1, esign, i, j, k, nd, nd0, nf, nz, nz0, sign;
1128 	const char *s, *s0, *s1;
1129 	double aadj, aadj1, adj, rv, rv0;
1130 	Long L;
1131 	ULong y, z;
1132 	Bigint *bb, *bb1, *bd, *bd0, *bs, *delta;
1133 	char decimal_point = localeconv()->decimal_point[0];
1134 
1135 	sign = nz0 = nz = 0;
1136 	rv = 0.;
1137 	for (s = s00;;s++) switch(*s) {
1138 		case '-':
1139 			sign = 1;
1140 			/* no break */
1141 		case '+':
1142 			if (*++s)
1143 				goto break2;
1144 			/* no break */
1145 		case 0:
1146 			s = s00;
1147 			goto ret;
1148 		default:
1149 			if (isspace((unsigned char)*s))
1150 				continue;
1151 			goto break2;
1152 	}
1153  break2:
1154 	if (*s == '0') {
1155 		nz0 = 1;
1156 		while (*++s == '0') ;
1157 		if (!*s)
1158 			goto ret;
1159 	}
1160 	s0 = s;
1161 	y = z = 0;
1162 	for (nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++)
1163 		if (nd < 9)
1164 			y = 10*y + c - '0';
1165 		else if (nd < 16)
1166 			z = 10*z + c - '0';
1167 	nd0 = nd;
1168 	if ((char)c == decimal_point) {
1169 		c = *++s;
1170 		if (!nd) {
1171 			for (; c == '0'; c = *++s)
1172 				nz++;
1173 			if (c > '0' && c <= '9') {
1174 				s0 = s;
1175 				nf += nz;
1176 				nz = 0;
1177 				goto have_dig;
1178 			}
1179 			goto dig_done;
1180 		}
1181 		for (; c >= '0' && c <= '9'; c = *++s) {
1182  have_dig:
1183 			nz++;
1184 			if (c - '0' > 0) {
1185 				nf += nz;
1186 				for (i = 1; i < nz; i++)
1187 					if (nd++ < 9)
1188 						y *= 10;
1189 					else if (nd <= DBL_DIG + 1)
1190 						z *= 10;
1191 				if (nd++ < 9)
1192 					y = 10*y + c - '0';
1193 				else if (nd <= DBL_DIG + 1)
1194 					z = 10*z + c - '0';
1195 				nz = 0;
1196 			}
1197 		}
1198 	}
1199  dig_done:
1200 	e = 0;
1201 	if (c == 'e' || c == 'E') {
1202 		if (!nd && !nz && !nz0) {
1203 			s = s00;
1204 			goto ret;
1205 		}
1206 		s00 = s;
1207 		esign = 0;
1208 		switch(c = *++s) {
1209 			case '-':
1210 				esign = 1;
1211 			case '+':
1212 				c = *++s;
1213 		}
1214 		if (c >= '0' && c <= '9') {
1215 			while (c == '0')
1216 				c = *++s;
1217 			if (c > '0' && c <= '9') {
1218 				L = c - '0';
1219 				s1 = s;
1220 				while ((c = *++s) >= '0' && c <= '9')
1221 					L = 10*L + c - '0';
1222 				if (s - s1 > 8 || L > 19999)
1223 					/* Avoid confusion from exponents
1224 					 * so large that e might overflow.
1225 					 */
1226 					e = 19999; /* safe for 16 bit ints */
1227 				else
1228 					e = (int)L;
1229 				if (esign)
1230 					e = -e;
1231 			} else
1232 				e = 0;
1233 		} else
1234 			s = s00;
1235 	}
1236 	if (!nd) {
1237 		if (!nz && !nz0)
1238 			s = s00;
1239 		goto ret;
1240 	}
1241 	e1 = e -= nf;
1242 
1243 	/* Now we have nd0 digits, starting at s0, followed by a
1244 	 * decimal point, followed by nd-nd0 digits.  The number we're
1245 	 * after is the integer represented by those digits times
1246 	 * 10**e */
1247 
1248 	if (!nd0)
1249 		nd0 = nd;
1250 	k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1;
1251 	rv = y;
1252 	if (k > 9)
1253 		rv = tens[k - 9] * rv + z;
1254 	if (nd <= DBL_DIG
1255 #ifndef RND_PRODQUOT
1256 		&& FLT_ROUNDS == 1
1257 #endif
1258 			) {
1259 		if (!e)
1260 			goto ret;
1261 		if (e > 0) {
1262 			if (e <= Ten_pmax) {
1263 #ifdef VAX
1264 				goto vax_ovfl_check;
1265 #else
1266 				/* rv = */ rounded_product(rv, tens[e]);
1267 				goto ret;
1268 #endif
1269 				}
1270 			i = DBL_DIG - nd;
1271 			if (e <= Ten_pmax + i) {
1272 				/* A fancier test would sometimes let us do
1273 				 * this for larger i values.
1274 				 */
1275 				e -= i;
1276 				rv *= tens[i];
1277 #ifdef VAX
1278 				/* VAX exponent range is so narrow we must
1279 				 * worry about overflow here...
1280 				 */
1281  vax_ovfl_check:
1282 				word0(rv) -= P*Exp_msk1;
1283 				/* rv = */ rounded_product(rv, tens[e]);
1284 				if ((word0(rv) & Exp_mask)
1285 				 > Exp_msk1*(DBL_MAX_EXP+Bias-1-P))
1286 					goto ovfl;
1287 				word0(rv) += P*Exp_msk1;
1288 #else
1289 				/* rv = */ rounded_product(rv, tens[e]);
1290 #endif
1291 				goto ret;
1292 			}
1293 		}
1294 #ifndef Inaccurate_Divide
1295 		else if (e >= -Ten_pmax) {
1296 			/* rv = */ rounded_quotient(rv, tens[-e]);
1297 			goto ret;
1298 		}
1299 #endif
1300 	}
1301 	e1 += nd - k;
1302 
1303 	/* Get starting approximation = rv * 10**e1 */
1304 
1305 	if (e1 > 0) {
1306 		if ( (i = e1 & 15) )
1307 			rv *= tens[i];
1308 		if ( (e1 &= ~15) ) {
1309 			if (e1 > DBL_MAX_10_EXP) {
1310  ovfl:
1311 				__set_errno(ERANGE);
1312 				rv = HUGE_VAL;
1313 				goto ret;
1314 			}
1315 			if (e1 >>= 4) {
1316 				for (j = 0; e1 > 1; j++, e1 >>= 1)
1317 					if (e1 & 1)
1318 						rv *= bigtens[j];
1319 			/* The last multiplication could overflow. */
1320 				word0(rv) -= P*Exp_msk1;
1321 				rv *= bigtens[j];
1322 				if ((z = word0(rv) & Exp_mask)
1323 				 > Exp_msk1*(DBL_MAX_EXP+Bias-P))
1324 					goto ovfl;
1325 				if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) {
1326 					/* set to largest number */
1327 					/* (Can't trust DBL_MAX) */
1328 					word0(rv) = Big0;
1329 					word1(rv) = Big1;
1330 					}
1331 				else
1332 					word0(rv) += P*Exp_msk1;
1333 			}
1334 		}
1335 	} else if (e1 < 0) {
1336 		e1 = -e1;
1337 		if ( (i = e1 & 15) )
1338 			rv /= tens[i];
1339 		if ( (e1 &= ~15) ) {
1340 			e1 >>= 4;
1341 			for (j = 0; e1 > 1; j++, e1 >>= 1)
1342 				if (e1 & 1)
1343 					rv *= tinytens[j];
1344 			/* The last multiplication could underflow. */
1345 			rv0 = rv;
1346 			rv *= tinytens[j];
1347 			if (!rv) {
1348 				rv = 2.*rv0;
1349 				rv *= tinytens[j];
1350 				if (!rv) {
1351  undfl:
1352 					rv = 0.;
1353 					__set_errno(ERANGE);
1354 					goto ret;
1355 					}
1356 				word0(rv) = Tiny0;
1357 				word1(rv) = Tiny1;
1358 				/* The refinement below will clean
1359 				 * this approximation up.
1360 				 */
1361 			}
1362 		}
1363 	}
1364 
1365 	/* Now the hard part -- adjusting rv to the correct value.*/
1366 
1367 	/* Put digits into bd: true value = bd * 10^e */
1368 
1369 	bd0 = s2b(s0, nd0, nd, y);
1370 
1371 	for (;;) {
1372 		bd = Balloc(bd0->k);
1373 		Bcopy(bd, bd0);
1374 		bb = d2b(rv, &bbe, &bbbits);	/* rv = bb * 2^bbe */
1375 		bs = i2b(1);
1376 
1377 		if (e >= 0) {
1378 			bb2 = bb5 = 0;
1379 			bd2 = bd5 = e;
1380 		} else {
1381 			bb2 = bb5 = -e;
1382 			bd2 = bd5 = 0;
1383 		}
1384 		if (bbe >= 0)
1385 			bb2 += bbe;
1386 		else
1387 			bd2 -= bbe;
1388 		bs2 = bb2;
1389 #ifdef Sudden_Underflow
1390 #ifdef IBM
1391 		j = 1 + 4*P - 3 - bbbits + ((bbe + bbbits - 1) & 3);
1392 #else
1393 		j = P + 1 - bbbits;
1394 #endif
1395 #else
1396 		i = bbe + bbbits - 1;	/* logb(rv) */
1397 		if (i < Emin)	/* denormal */
1398 			j = bbe + (P-Emin);
1399 		else
1400 			j = P + 1 - bbbits;
1401 #endif
1402 		bb2 += j;
1403 		bd2 += j;
1404 		i = bb2 < bd2 ? bb2 : bd2;
1405 		if (i > bs2)
1406 			i = bs2;
1407 		if (i > 0) {
1408 			bb2 -= i;
1409 			bd2 -= i;
1410 			bs2 -= i;
1411 			}
1412 		if (bb5 > 0) {
1413 			bs = pow5mult(bs, bb5);
1414 			bb1 = mult(bs, bb);
1415 			Bfree(bb);
1416 			bb = bb1;
1417 			}
1418 		if (bb2 > 0)
1419 			bb = lshift(bb, bb2);
1420 		if (bd5 > 0)
1421 			bd = pow5mult(bd, bd5);
1422 		if (bd2 > 0)
1423 			bd = lshift(bd, bd2);
1424 		if (bs2 > 0)
1425 			bs = lshift(bs, bs2);
1426 		delta = diff(bb, bd);
1427 		dsign = delta->sign;
1428 		delta->sign = 0;
1429 		i = cmp(delta, bs);
1430 		if (i < 0) {
1431 			/* Error is less than half an ulp -- check for
1432 			 * special case of mantissa a power of two.
1433 			 */
1434 			if (dsign || word1(rv) || word0(rv) & Bndry_mask)
1435 				break;
1436 			delta = lshift(delta,Log2P);
1437 			if (cmp(delta, bs) > 0)
1438 				goto drop_down;
1439 			break;
1440 		}
1441 		if (i == 0) {
1442 			/* exactly half-way between */
1443 			if (dsign) {
1444 				if ((word0(rv) & Bndry_mask1) == Bndry_mask1
1445 				 &&  word1(rv) == 0xffffffff) {
1446 					/*boundary case -- increment exponent*/
1447 					word0(rv) = (word0(rv) & Exp_mask)
1448 						+ Exp_msk1
1449 #ifdef IBM
1450 						| Exp_msk1 >> 4
1451 #endif
1452 						;
1453 					word1(rv) = 0;
1454 					break;
1455 				}
1456 			} else if (!(word0(rv) & Bndry_mask) && !word1(rv)) {
1457  drop_down:
1458 				/* boundary case -- decrement exponent */
1459 #ifdef Sudden_Underflow
1460 				L = word0(rv) & Exp_mask;
1461 #ifdef IBM
1462 				if (L <  Exp_msk1)
1463 #else
1464 				if (L <= Exp_msk1)
1465 #endif
1466 					goto undfl;
1467 				L -= Exp_msk1;
1468 #else
1469 				L = (word0(rv) & Exp_mask) - Exp_msk1;
1470 #endif
1471 				word0(rv) = L | Bndry_mask1;
1472 				word1(rv) = 0xffffffff;
1473 #ifdef IBM
1474 				goto cont;
1475 #else
1476 				break;
1477 #endif
1478 			}
1479 #ifndef ROUND_BIASED
1480 			if (!(word1(rv) & LSB))
1481 				break;
1482 #endif
1483 			if (dsign)
1484 				rv += ulp(rv);
1485 #ifndef ROUND_BIASED
1486 			else {
1487 				rv -= ulp(rv);
1488 #ifndef Sudden_Underflow
1489 				if (!rv)
1490 					goto undfl;
1491 #endif
1492 			}
1493 #endif
1494 			break;
1495 		}
1496 		if ((aadj = ratio(delta, bs)) <= 2.) {
1497 			if (dsign)
1498 				aadj = aadj1 = 1.;
1499 			else if (word1(rv) || word0(rv) & Bndry_mask) {
1500 #ifndef Sudden_Underflow
1501 				if (word1(rv) == Tiny1 && !word0(rv))
1502 					goto undfl;
1503 #endif
1504 				aadj = 1.;
1505 				aadj1 = -1.;
1506 			} else {
1507 				/* special case -- power of FLT_RADIX to be */
1508 				/* rounded down... */
1509 
1510 				if (aadj < 2./FLT_RADIX)
1511 					aadj = 1./FLT_RADIX;
1512 				else
1513 					aadj *= 0.5;
1514 				aadj1 = -aadj;
1515 			}
1516 		} else {
1517 			aadj *= 0.5;
1518 			aadj1 = dsign ? aadj : -aadj;
1519 #ifdef Check_FLT_ROUNDS
1520 			switch(FLT_ROUNDS) {
1521 				case 2: /* towards +infinity */
1522 					aadj1 -= 0.5;
1523 					break;
1524 				case 0: /* towards 0 */
1525 				case 3: /* towards -infinity */
1526 					aadj1 += 0.5;
1527 			}
1528 #else
1529 			if (FLT_ROUNDS == 0)
1530 				aadj1 += 0.5;
1531 #endif
1532 		}
1533 		y = word0(rv) & Exp_mask;
1534 
1535 		/* Check for overflow */
1536 
1537 		if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) {
1538 			rv0 = rv;
1539 			word0(rv) -= P*Exp_msk1;
1540 			adj = aadj1 * ulp(rv);
1541 			rv += adj;
1542 			if ((word0(rv) & Exp_mask) >=
1543 					Exp_msk1*(DBL_MAX_EXP+Bias-P)) {
1544 				if (word0(rv0) == Big0 && word1(rv0) == Big1)
1545 					goto ovfl;
1546 				word0(rv) = Big0;
1547 				word1(rv) = Big1;
1548 				goto cont;
1549 			} else
1550 				word0(rv) += P*Exp_msk1;
1551 		} else {
1552 #ifdef Sudden_Underflow
1553 			if ((word0(rv) & Exp_mask) <= P*Exp_msk1) {
1554 				rv0 = rv;
1555 				word0(rv) += P*Exp_msk1;
1556 				adj = aadj1 * ulp(rv);
1557 				rv += adj;
1558 #ifdef IBM
1559 				if ((word0(rv) & Exp_mask) <  P*Exp_msk1)
1560 #else
1561 				if ((word0(rv) & Exp_mask) <= P*Exp_msk1)
1562 #endif
1563 				{
1564 					if (word0(rv0) == Tiny0
1565 					 && word1(rv0) == Tiny1)
1566 						goto undfl;
1567 					word0(rv) = Tiny0;
1568 					word1(rv) = Tiny1;
1569 					goto cont;
1570 				} else
1571 					word0(rv) -= P*Exp_msk1;
1572 			} else {
1573 				adj = aadj1 * ulp(rv);
1574 				rv += adj;
1575 			}
1576 #else
1577 			/* Compute adj so that the IEEE rounding rules will
1578 			 * correctly round rv + adj in some half-way cases.
1579 			 * If rv * ulp(rv) is denormalized (i.e.,
1580 			 * y <= (P-1)*Exp_msk1), we must adjust aadj to avoid
1581 			 * trouble from bits lost to denormalization;
1582 			 * example: 1.2e-307 .
1583 			 */
1584 			if (y <= (P-1)*Exp_msk1 && aadj >= 1.) {
1585 				aadj1 = (double)(int)(aadj + 0.5);
1586 				if (!dsign)
1587 					aadj1 = -aadj1;
1588 			}
1589 			adj = aadj1 * ulp(rv);
1590 			rv += adj;
1591 #endif
1592 		}
1593 		z = word0(rv) & Exp_mask;
1594 		if (y == z) {
1595 			/* Can we stop now? */
1596 			L = aadj;
1597 			aadj -= L;
1598 			/* The tolerances below are conservative. */
1599 			if (dsign || word1(rv) || word0(rv) & Bndry_mask) {
1600 				if (aadj < .4999999 || aadj > .5000001)
1601 					break;
1602 			} else if (aadj < .4999999/FLT_RADIX)
1603 				break;
1604 		}
1605  cont:
1606 		Bfree(bb);
1607 		Bfree(bd);
1608 		Bfree(bs);
1609 		Bfree(delta);
1610 	}
1611 	Bfree(bb);
1612 	Bfree(bd);
1613 	Bfree(bs);
1614 	Bfree(bd0);
1615 	Bfree(delta);
1616  ret:
1617 	if (se)
1618 		*se = (char *)s;
1619 	return sign ? -rv : rv;
1620 }
1621 
1622 
1623 double __strtod_internal(const char *number, char **_end, int group);
1624 
1625 double
1626 __strtod_internal(const char *number, char **_end, int group)
1627 {
1628 	// ToDo: group is currently not supported!
1629 	(void)group;
1630 
1631 	return strtod(number, _end);
1632 }
1633 
1634 // XXX this is not correct
1635 
1636 long double __strtold_internal(const char *number, char **_end, int group);
1637 
1638 long double
1639 __strtold_internal(const char *number, char **_end, int group)
1640 {
1641 	return __strtod_internal(number, _end, group);
1642 }
1643 
1644 float __strtof_internal(const char *number, char **_end, int group);
1645 
1646 float
1647 __strtof_internal(const char *number, char **_end, int group)
1648 {
1649 	return __strtod_internal(number, _end, group);
1650 }
1651 
1652 
1653 /* removed from the build, is only used by __dtoa() */
1654 #if 0
1655 static int
1656 quorem(Bigint *b, Bigint *S)
1657 {
1658 	int n;
1659 	Long borrow, y;
1660 	ULong carry, q, ys;
1661 	ULong *bx, *bxe, *sx, *sxe;
1662 #ifdef Pack_32
1663 	Long z;
1664 	ULong si, zs;
1665 #endif
1666 
1667 	n = S->wds;
1668 #ifdef DEBUG
1669 	/*debug*/ if (b->wds > n)
1670 	/*debug*/	Bug("oversize b in quorem");
1671 #endif
1672 	if (b->wds < n)
1673 		return 0;
1674 	sx = S->x;
1675 	sxe = sx + --n;
1676 	bx = b->x;
1677 	bxe = bx + n;
1678 	q = *bxe / (*sxe + 1);	/* ensure q <= true quotient */
1679 #ifdef DEBUG
1680 	/*debug*/ if (q > 9)
1681 	/*debug*/	Bug("oversized quotient in quorem");
1682 #endif
1683 	if (q) {
1684 		borrow = 0;
1685 		carry = 0;
1686 		do {
1687 #ifdef Pack_32
1688 			si = *sx++;
1689 			ys = (si & 0xffff) * q + carry;
1690 			zs = (si >> 16) * q + (ys >> 16);
1691 			carry = zs >> 16;
1692 			y = (*bx & 0xffff) - (ys & 0xffff) + borrow;
1693 			borrow = y >> 16;
1694 			Sign_Extend(borrow, y);
1695 			z = (*bx >> 16) - (zs & 0xffff) + borrow;
1696 			borrow = z >> 16;
1697 			Sign_Extend(borrow, z);
1698 			Storeinc(bx, z, y);
1699 #else
1700 			ys = *sx++ * q + carry;
1701 			carry = ys >> 16;
1702 			y = *bx - (ys & 0xffff) + borrow;
1703 			borrow = y >> 16;
1704 			Sign_Extend(borrow, y);
1705 			*bx++ = y & 0xffff;
1706 #endif
1707 		} while (sx <= sxe);
1708 		if (!*bxe) {
1709 			bx = b->x;
1710 			while (--bxe > bx && !*bxe)
1711 				--n;
1712 			b->wds = n;
1713 		}
1714 	}
1715 	if (cmp(b, S) >= 0) {
1716 		q++;
1717 		borrow = 0;
1718 		carry = 0;
1719 		bx = b->x;
1720 		sx = S->x;
1721 		do {
1722 #ifdef Pack_32
1723 			si = *sx++;
1724 			ys = (si & 0xffff) + carry;
1725 			zs = (si >> 16) + (ys >> 16);
1726 			carry = zs >> 16;
1727 			y = (*bx & 0xffff) - (ys & 0xffff) + borrow;
1728 			borrow = y >> 16;
1729 			Sign_Extend(borrow, y);
1730 			z = (*bx >> 16) - (zs & 0xffff) + borrow;
1731 			borrow = z >> 16;
1732 			Sign_Extend(borrow, z);
1733 			Storeinc(bx, z, y);
1734 #else
1735 			ys = *sx++ + carry;
1736 			carry = ys >> 16;
1737 			y = *bx - (ys & 0xffff) + borrow;
1738 			borrow = y >> 16;
1739 			Sign_Extend(borrow, y);
1740 			*bx++ = y & 0xffff;
1741 #endif
1742 		} while (sx <= sxe);
1743 		bx = b->x;
1744 		bxe = bx + n;
1745 		if (!*bxe) {
1746 			while (--bxe > bx && !*bxe)
1747 				--n;
1748 			b->wds = n;
1749 		}
1750 	}
1751 	return q;
1752 }
1753 #endif	/* removed from the build, is only used by __dtoa() */
1754 
1755 /* dtoa for IEEE arithmetic (dmg): convert double to ASCII string.
1756  *
1757  * Inspired by "How to Print Floating-Point Numbers Accurately" by
1758  * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 92-101].
1759  *
1760  * Modifications:
1761  *	1. Rather than iterating, we use a simple numeric overestimate
1762  *	   to determine k = floor(log10(d)).  We scale relevant
1763  *	   quantities using O(log2(k)) rather than O(k) multiplications.
1764  *	2. For some modes > 2 (corresponding to ecvt and fcvt), we don't
1765  *	   try to generate digits strictly left to right.  Instead, we
1766  *	   compute with fewer bits and propagate the carry if necessary
1767  *	   when rounding the final digit up.  This is often faster.
1768  *	3. Under the assumption that input will be rounded nearest,
1769  *	   mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22.
1770  *	   That is, we allow equality in stopping tests when the
1771  *	   round-nearest rule will give the same floating-point value
1772  *	   as would satisfaction of the stopping test with strict
1773  *	   inequality.
1774  *	4. We remove common factors of powers of 2 from relevant
1775  *	   quantities.
1776  *	5. When converting floating-point integers less than 1e16,
1777  *	   we use floating-point arithmetic rather than resorting
1778  *	   to multiple-precision integers.
1779  *	6. When asked to produce fewer than 15 digits, we first try
1780  *	   to get by with floating-point arithmetic; we resort to
1781  *	   multiple-precision integer arithmetic only if we cannot
1782  *	   guarantee that the floating-point calculation has given
1783  *	   the correctly rounded result.  For k requested digits and
1784  *	   "uniformly" distributed input, the probability is
1785  *	   something like 10^(k-15) that we must resort to the Long
1786  *	   calculation.
1787  */
1788 
1789 #if 0
1790 char *
1791 __dtoa(double d, int mode, int ndigits, int *decpt, int *sign, char **rve,
1792 	 char **resultp)
1793 {
1794  /*	Arguments ndigits, decpt, sign are similar to those
1795 	of ecvt and fcvt; trailing zeros are suppressed from
1796 	the returned string.  If not null, *rve is set to point
1797 	to the end of the return value.  If d is +-Infinity or NaN,
1798 	then *decpt is set to 9999.
1799 
1800 	mode:
1801 		0 ==> shortest string that yields d when read in
1802 			and rounded to nearest.
1803 		1 ==> like 0, but with Steele & White stopping rule;
1804 			e.g. with IEEE P754 arithmetic , mode 0 gives
1805 			1e23 whereas mode 1 gives 9.999999999999999e22.
1806 		2 ==> max(1,ndigits) significant digits.  This gives a
1807 			return value similar to that of ecvt, except
1808 			that trailing zeros are suppressed.
1809 		3 ==> through ndigits past the decimal point.  This
1810 			gives a return value similar to that from fcvt,
1811 			except that trailing zeros are suppressed, and
1812 			ndigits can be negative.
1813 		4-9 should give the same return values as 2-3, i.e.,
1814 			4 <= mode <= 9 ==> same return as mode
1815 			2 + (mode & 1).  These modes are mainly for
1816 			debugging; often they run slower but sometimes
1817 			faster than modes 2-3.
1818 		4,5,8,9 ==> left-to-right digit generation.
1819 		6-9 ==> don't try fast floating-point estimate
1820 			(if applicable).
1821 
1822 		Values of mode other than 0-9 are treated as mode 0.
1823 
1824 		Sufficient space is allocated to the return value
1825 		to hold the suppressed trailing zeros.
1826 	*/
1827 
1828 	int bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1,
1829 		j, j1, k, k0, k_check, leftright, m2, m5, s2, s5,
1830 		spec_case, try_quick;
1831 	Long L;
1832 #ifndef Sudden_Underflow
1833 	int denorm;
1834 	ULong x;
1835 #endif
1836 	Bigint *b, *b1, *delta, *mlo, *mhi, *S;
1837 	double d2, ds, eps;
1838 	char *s, *s0;
1839 
1840 	if (word0(d) & Sign_bit) {
1841 		/* set sign for everything, including 0's and NaNs */
1842 		*sign = 1;
1843 		word0(d) &= ~Sign_bit;	/* clear sign bit */
1844 	}
1845 	else
1846 		*sign = 0;
1847 
1848 #if defined(IEEE_Arith) + defined(VAX)
1849 #ifdef IEEE_Arith
1850 	if ((word0(d) & Exp_mask) == Exp_mask)
1851 #else
1852 	if (word0(d)  == 0x8000)
1853 #endif
1854 	{
1855 		/* Infinity or NaN */
1856 		*decpt = 9999;
1857 		s =
1858 #ifdef IEEE_Arith
1859 			!word1(d) && !(word0(d) & 0xfffff) ? "Infinity" :
1860 #endif
1861 				"NaN";
1862 		if (rve)
1863 			*rve =
1864 #ifdef IEEE_Arith
1865 				s[3] ? s + 8 :
1866 #endif
1867 						s + 3;
1868 		return s;
1869 	}
1870 #endif
1871 #ifdef IBM
1872 	d += 0; /* normalize */
1873 #endif
1874 	if (!d) {
1875 		*decpt = 1;
1876 		s = "0";
1877 		if (rve)
1878 			*rve = s + 1;
1879 		return s;
1880 	}
1881 
1882 	b = d2b(d, &be, &bbits);
1883 #ifdef Sudden_Underflow
1884 	i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1));
1885 #else
1886 	if ( (i = (int)((word0(d) >> Exp_shift1) & (Exp_mask>>Exp_shift1))) ) {
1887 #endif
1888 		d2 = d;
1889 		word0(d2) &= Frac_mask1;
1890 		word0(d2) |= Exp_11;
1891 #ifdef IBM
1892 		if ( (j = 11 - hi0bits(word0(d2) & Frac_mask)) )
1893 			d2 /= 1 << j;
1894 #endif
1895 
1896 		/* log(x)	~=~ log(1.5) + (x-1.5)/1.5
1897 		 * log10(x)	 =  log(x) / log(10)
1898 		 *		~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10))
1899 		 * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2)
1900 		 *
1901 		 * This suggests computing an approximation k to log10(d) by
1902 		 *
1903 		 * k = (i - Bias)*0.301029995663981
1904 		 *	+ ( (d2-1.5)*0.289529654602168 + 0.176091259055681 );
1905 		 *
1906 		 * We want k to be too large rather than too small.
1907 		 * The error in the first-order Taylor series approximation
1908 		 * is in our favor, so we just round up the constant enough
1909 		 * to compensate for any error in the multiplication of
1910 		 * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077,
1911 		 * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14,
1912 		 * adding 1e-13 to the constant term more than suffices.
1913 		 * Hence we adjust the constant term to 0.1760912590558.
1914 		 * (We could get a more accurate k by invoking log10,
1915 		 *  but this is probably not worthwhile.)
1916 		 */
1917 
1918 		i -= Bias;
1919 #ifdef IBM
1920 		i <<= 2;
1921 		i += j;
1922 #endif
1923 #ifndef Sudden_Underflow
1924 		denorm = 0;
1925 	} else {
1926 		/* d is denormalized */
1927 
1928 		i = bbits + be + (Bias + (P-1) - 1);
1929 		x = i > 32  ? ((word0(d) << (64 - i)) | (word1(d) >> (i - 32)))
1930 			    : (word1(d) << (32 - i));
1931 		d2 = x;
1932 		word0(d2) -= 31*Exp_msk1; /* adjust exponent */
1933 		i -= (Bias + (P-1) - 1) + 1;
1934 		denorm = 1;
1935 	}
1936 #endif
1937 	ds = (d2-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981;
1938 	k = (int)ds;
1939 	if (ds < 0. && ds != k)
1940 		k--;	/* want k = floor(ds) */
1941 	k_check = 1;
1942 	if (k >= 0 && k <= Ten_pmax) {
1943 		if (d < tens[k])
1944 			k--;
1945 		k_check = 0;
1946 	}
1947 	j = bbits - i - 1;
1948 	if (j >= 0) {
1949 		b2 = 0;
1950 		s2 = j;
1951 	} else {
1952 		b2 = -j;
1953 		s2 = 0;
1954 	}
1955 	if (k >= 0) {
1956 		b5 = 0;
1957 		s5 = k;
1958 		s2 += k;
1959 	} else {
1960 		b2 -= k;
1961 		b5 = -k;
1962 		s5 = 0;
1963 	}
1964 	if (mode < 0 || mode > 9)
1965 		mode = 0;
1966 	try_quick = 1;
1967 	if (mode > 5) {
1968 		mode -= 4;
1969 		try_quick = 0;
1970 	}
1971 	leftright = 1;
1972 	switch(mode) {
1973 		case 0:
1974 		case 1:
1975 			ilim = ilim1 = -1;
1976 			i = 18;
1977 			ndigits = 0;
1978 			break;
1979 		case 2:
1980 			leftright = 0;
1981 			/* no break */
1982 		case 4:
1983 			if (ndigits <= 0)
1984 				ndigits = 1;
1985 			ilim = ilim1 = i = ndigits;
1986 			break;
1987 		case 3:
1988 			leftright = 0;
1989 			/* no break */
1990 		case 5:
1991 			i = ndigits + k + 1;
1992 			ilim = i;
1993 			ilim1 = i - 1;
1994 			if (i <= 0)
1995 				i = 1;
1996 	}
1997 	*resultp = (char *) malloc(i + 1);
1998 	s = s0 = *resultp;
1999 
2000 	if (ilim >= 0 && ilim <= Quick_max && try_quick) {
2001 
2002 		/* Try to get by with floating-point arithmetic. */
2003 
2004 		i = 0;
2005 		d2 = d;
2006 		k0 = k;
2007 		ilim0 = ilim;
2008 		ieps = 2; /* conservative */
2009 		if (k > 0) {
2010 			ds = tens[k&0xf];
2011 			j = k >> 4;
2012 			if (j & Bletch) {
2013 				/* prevent overflows */
2014 				j &= Bletch - 1;
2015 				d /= bigtens[n_bigtens-1];
2016 				ieps++;
2017 			}
2018 			for (; j; j >>= 1, i++)
2019 				if (j & 1) {
2020 					ieps++;
2021 					ds *= bigtens[i];
2022 				}
2023 			d /= ds;
2024 		} else if ( (j1 = -k) ) {
2025 			d *= tens[j1 & 0xf];
2026 			for (j = j1 >> 4; j; j >>= 1, i++)
2027 				if (j & 1) {
2028 					ieps++;
2029 					d *= bigtens[i];
2030 				}
2031 		}
2032 		if (k_check && d < 1. && ilim > 0) {
2033 			if (ilim1 <= 0)
2034 				goto fast_failed;
2035 			ilim = ilim1;
2036 			k--;
2037 			d *= 10.;
2038 			ieps++;
2039 		}
2040 		eps = ieps*d + 7.;
2041 		word0(eps) -= (P-1)*Exp_msk1;
2042 		if (ilim == 0) {
2043 			S = mhi = 0;
2044 			d -= 5.;
2045 			if (d > eps)
2046 				goto one_digit;
2047 			if (d < -eps)
2048 				goto no_digits;
2049 			goto fast_failed;
2050 		}
2051 #ifndef No_leftright
2052 		if (leftright) {
2053 			/* Use Steele & White method of only
2054 			 * generating digits needed.
2055 			 */
2056 			eps = 0.5/tens[ilim-1] - eps;
2057 			for (i = 0;;) {
2058 				L = d;
2059 				d -= L;
2060 				*s++ = '0' + (int)L;
2061 				if (d < eps)
2062 					goto ret1;
2063 				if (1. - d < eps)
2064 					goto bump_up;
2065 				if (++i >= ilim)
2066 					break;
2067 				eps *= 10.;
2068 				d *= 10.;
2069 			}
2070 		} else {
2071 #endif
2072 			/* Generate ilim digits, then fix them up. */
2073 			eps *= tens[ilim-1];
2074 			for (i = 1;; i++, d *= 10.) {
2075 				L = d;
2076 				d -= L;
2077 				*s++ = '0' + (int)L;
2078 				if (i == ilim) {
2079 					if (d > 0.5 + eps)
2080 						goto bump_up;
2081 					else if (d < 0.5 - eps) {
2082 						while (*--s == '0');
2083 						s++;
2084 						goto ret1;
2085 					}
2086 					break;
2087 				}
2088 			}
2089 #ifndef No_leftright
2090 		}
2091 #endif
2092  fast_failed:
2093 		s = s0;
2094 		d = d2;
2095 		k = k0;
2096 		ilim = ilim0;
2097 	}
2098 
2099 	/* Do we have a "small" integer? */
2100 
2101 	if (be >= 0 && k <= Int_max) {
2102 		/* Yes. */
2103 		ds = tens[k];
2104 		if (ndigits < 0 && ilim <= 0) {
2105 			S = mhi = 0;
2106 			if (ilim < 0 || d <= 5*ds)
2107 				goto no_digits;
2108 			goto one_digit;
2109 		}
2110 		for (i = 1;; i++) {
2111 			L = d / ds;
2112 			d -= L*ds;
2113 #ifdef Check_FLT_ROUNDS
2114 			/* If FLT_ROUNDS == 2, L will usually be high by 1 */
2115 			if (d < 0) {
2116 				L--;
2117 				d += ds;
2118 			}
2119 #endif
2120 			*s++ = '0' + (int)L;
2121 			if (i == ilim) {
2122 				d += d;
2123 				if (d > ds || (d == ds && L & 1)) {
2124  bump_up:
2125 					while (*--s == '9')
2126 						if (s == s0) {
2127 							k++;
2128 							*s = '0';
2129 							break;
2130 						}
2131 					++*s++;
2132 				}
2133 				break;
2134 			}
2135 			if (!(d *= 10.))
2136 				break;
2137 		}
2138 		goto ret1;
2139 	}
2140 
2141 	m2 = b2;
2142 	m5 = b5;
2143 	mhi = mlo = 0;
2144 	if (leftright) {
2145 		if (mode < 2) {
2146 			i =
2147 #ifndef Sudden_Underflow
2148 				denorm ? be + (Bias + (P-1) - 1 + 1) :
2149 #endif
2150 #ifdef IBM
2151 				1 + 4*P - 3 - bbits + ((bbits + be - 1) & 3);
2152 #else
2153 				1 + P - bbits;
2154 #endif
2155 		} else {
2156 			j = ilim - 1;
2157 			if (m5 >= j)
2158 				m5 -= j;
2159 			else {
2160 				s5 += j -= m5;
2161 				b5 += j;
2162 				m5 = 0;
2163 			}
2164 			if ((i = ilim) < 0) {
2165 				m2 -= i;
2166 				i = 0;
2167 			}
2168 		}
2169 		b2 += i;
2170 		s2 += i;
2171 		mhi = i2b(1);
2172 	}
2173 	if (m2 > 0 && s2 > 0) {
2174 		i = m2 < s2 ? m2 : s2;
2175 		b2 -= i;
2176 		m2 -= i;
2177 		s2 -= i;
2178 	}
2179 	if (b5 > 0) {
2180 		if (leftright) {
2181 			if (m5 > 0) {
2182 				mhi = pow5mult(mhi, m5);
2183 				b1 = mult(mhi, b);
2184 				Bfree(b);
2185 				b = b1;
2186 				}
2187 			if ( (j = b5 - m5) )
2188 				b = pow5mult(b, j);
2189 		} else
2190 			b = pow5mult(b, b5);
2191 	}
2192 	S = i2b(1);
2193 	if (s5 > 0)
2194 		S = pow5mult(S, s5);
2195 
2196 	/* Check for special case that d is a normalized power of 2. */
2197 
2198 	if (mode < 2) {
2199 		if (!word1(d) && !(word0(d) & Bndry_mask)
2200 #ifndef Sudden_Underflow
2201 		 && word0(d) & Exp_mask
2202 #endif
2203 				) {
2204 			/* The special case */
2205 			b2 += Log2P;
2206 			s2 += Log2P;
2207 			spec_case = 1;
2208 		} else
2209 			spec_case = 0;
2210 	}
2211 
2212 	/* Arrange for convenient computation of quotients:
2213 	 * shift left if necessary so divisor has 4 leading 0 bits.
2214 	 *
2215 	 * Perhaps we should just compute leading 28 bits of S once
2216 	 * and for all and pass them and a shift to quorem, so it
2217 	 * can do shifts and ors to compute the numerator for q.
2218 	 */
2219 #ifdef Pack_32
2220 	if ( (i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0x1f) )
2221 		i = 32 - i;
2222 #else
2223 	if ( (i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0xf) )
2224 		i = 16 - i;
2225 #endif
2226 	if (i > 4) {
2227 		i -= 4;
2228 		b2 += i;
2229 		m2 += i;
2230 		s2 += i;
2231 	} else if (i < 4) {
2232 		i += 28;
2233 		b2 += i;
2234 		m2 += i;
2235 		s2 += i;
2236 	}
2237 	if (b2 > 0)
2238 		b = lshift(b, b2);
2239 	if (s2 > 0)
2240 		S = lshift(S, s2);
2241 	if (k_check) {
2242 		if (cmp(b,S) < 0) {
2243 			k--;
2244 			b = multadd(b, 10, 0);	/* we botched the k estimate */
2245 			if (leftright)
2246 				mhi = multadd(mhi, 10, 0);
2247 			ilim = ilim1;
2248 		}
2249 	}
2250 	if (ilim <= 0 && mode > 2) {
2251 		if (ilim < 0 || cmp(b,S = multadd(S,5,0)) <= 0) {
2252 			/* no digits, fcvt style */
2253  no_digits:
2254 			k = -1 - ndigits;
2255 			goto ret;
2256 		}
2257  one_digit:
2258 		*s++ = '1';
2259 		k++;
2260 		goto ret;
2261 	}
2262 	if (leftright) {
2263 		if (m2 > 0)
2264 			mhi = lshift(mhi, m2);
2265 
2266 		/* Compute mlo -- check for special case
2267 		 * that d is a normalized power of 2.
2268 		 */
2269 
2270 		mlo = mhi;
2271 		if (spec_case) {
2272 			mhi = Balloc(mhi->k);
2273 			Bcopy(mhi, mlo);
2274 			mhi = lshift(mhi, Log2P);
2275 		}
2276 
2277 		for (i = 1;;i++) {
2278 			dig = quorem(b,S) + '0';
2279 			/* Do we yet have the shortest decimal string
2280 			 * that will round to d?
2281 			 */
2282 			j = cmp(b, mlo);
2283 			delta = diff(S, mhi);
2284 			j1 = delta->sign ? 1 : cmp(b, delta);
2285 			Bfree(delta);
2286 #ifndef ROUND_BIASED
2287 			if (j1 == 0 && !mode && !(word1(d) & 1)) {
2288 				if (dig == '9')
2289 					goto round_9_up;
2290 				if (j > 0)
2291 					dig++;
2292 				*s++ = dig;
2293 				goto ret;
2294 			}
2295 #endif
2296 			if (j < 0 || (j == 0 && !mode
2297 #ifndef ROUND_BIASED
2298 							&& !(word1(d) & 1)
2299 #endif
2300 					)) {
2301 				if (j1 > 0) {
2302 					b = lshift(b, 1);
2303 					j1 = cmp(b, S);
2304 					if ((j1 > 0 || (j1 == 0 && dig & 1))
2305 					&& dig++ == '9')
2306 						goto round_9_up;
2307 				}
2308 				*s++ = dig;
2309 				goto ret;
2310 			}
2311 			if (j1 > 0) {
2312 				if (dig == '9') { /* possible if i == 1 */
2313  round_9_up:
2314 					*s++ = '9';
2315 					goto roundoff;
2316 				}
2317 				*s++ = dig + 1;
2318 				goto ret;
2319 			}
2320 			*s++ = dig;
2321 			if (i == ilim)
2322 				break;
2323 			b = multadd(b, 10, 0);
2324 			if (mlo == mhi)
2325 				mlo = mhi = multadd(mhi, 10, 0);
2326 			else {
2327 				mlo = multadd(mlo, 10, 0);
2328 				mhi = multadd(mhi, 10, 0);
2329 			}
2330 		}
2331 	} else
2332 		for (i = 1;; i++) {
2333 			*s++ = dig = quorem(b,S) + '0';
2334 			if (i >= ilim)
2335 				break;
2336 			b = multadd(b, 10, 0);
2337 		}
2338 
2339 	/* Round off last digit */
2340 
2341 	b = lshift(b, 1);
2342 	j = cmp(b, S);
2343 	if (j > 0 || (j == 0 && dig & 1)) {
2344  roundoff:
2345 		while (*--s == '9')
2346 			if (s == s0) {
2347 				k++;
2348 				*s++ = '1';
2349 				goto ret;
2350 			}
2351 		++*s++;
2352 	} else {
2353 		while (*--s == '0');
2354 		s++;
2355 	}
2356  ret:
2357 	Bfree(S);
2358 	if (mhi) {
2359 		if (mlo && mlo != mhi)
2360 			Bfree(mlo);
2361 		Bfree(mhi);
2362 	}
2363  ret1:
2364 	Bfree(b);
2365 	if (s == s0) {	/* don't return empty string */
2366 		*s++ = '0';
2367 		k = 0;
2368 	}
2369 	*s = 0;
2370 	*decpt = k + 1;
2371 	if (rve)
2372 		*rve = s;
2373 	return s0;
2374 }
2375 #endif	// 0 -> __dtoa() is removed from the build
2376 
2377 #ifdef __cplusplus
2378 }
2379 #endif
2380