xref: /haiku/src/system/libroot/posix/stdlib/random.c (revision 820dca4df6c7bf955c46e8f6521b9408f50b2900)
1 /*
2  * Copyright (c) 1983, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  * 1. Redistributions of source code must retain the above copyright
9  *    notice, this list of conditions and the following disclaimer.
10  * 2. Redistributions in binary form must reproduce the above copyright
11  *    notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  * 3. All advertising materials mentioning features or use of this software
14  *    must display the following acknowledgement:
15  *	This product includes software developed by the University of
16  *	California, Berkeley and its contributors.
17  * 4. Neither the name of the University nor the names of its contributors
18  *    may be used to endorse or promote products derived from this software
19  *    without specific prior written permission.
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
22  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
25  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
26  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
27  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
28  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
29  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
30  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
31  * SUCH DAMAGE.
32  *
33  * $FreeBSD: src/lib/libc/stdlib/random.c,v 1.13 2000/01/27 23:06:49 jasone Exp $
34  *
35  */
36 
37 #include <stdio.h>
38 #include <stdlib.h>
39 
40 
41 /* An improved random number generation package.  In addition to the standard
42  * rand()/srand() like interface, this package also has a special state info
43  * interface.  The initstate() routine is called with a seed, an array of
44  * bytes, and a count of how many bytes are being passed in; this array is
45  * then initialized to contain information for random number generation with
46  * that much state information.  Good sizes for the amount of state
47  * information are 32, 64, 128, and 256 bytes.  The state can be switched by
48  * calling the setstate() routine with the same array as was initiallized
49  * with initstate().  By default, the package runs with 128 bytes of state
50  * information and generates far better random numbers than a linear
51  * congruential generator.  If the amount of state information is less than
52  * 32 bytes, a simple linear congruential R.N.G. is used.
53  *
54  * Internally, the state information is treated as an array of longs; the
55  * zeroeth element of the array is the type of R.N.G. being used (small
56  * integer); the remainder of the array is the state information for the
57  * R.N.G.  Thus, 32 bytes of state information will give 7 longs worth of
58  * state information, which will allow a degree seven polynomial.  (Note:
59  * the zeroeth word of state information also has some other information
60  * stored in it -- see setstate() for details).
61  *
62  * The random number generation technique is a linear feedback shift register
63  * approach, employing trinomials (since there are fewer terms to sum up that
64  * way).  In this approach, the least significant bit of all the numbers in
65  * the state table will act as a linear feedback shift register, and will
66  * have period 2^deg - 1 (where deg is the degree of the polynomial being
67  * used, assuming that the polynomial is irreducible and primitive).  The
68  * higher order bits will have longer periods, since their values are also
69  * influenced by pseudo-random carries out of the lower bits.  The total
70  * period of the generator is approximately deg*(2**deg - 1); thus doubling
71  * the amount of state information has a vast influence on the period of the
72  * generator.  Note: the deg*(2**deg - 1) is an approximation only good for
73  * large deg, when the period of the shift register is the dominant factor.
74  * With deg equal to seven, the period is actually much longer than the
75  * 7*(2**7 - 1) predicted by this formula.
76  *
77  * Modified 28 December 1994 by Jacob S. Rosenberg.
78  * The following changes have been made:
79  * All references to the type u_int have been changed to unsigned long.
80  * All references to type int have been changed to type long.  Other
81  * cleanups have been made as well.  A warning for both initstate and
82  * setstate has been inserted to the effect that on Sparc platforms
83  * the 'arg_state' variable must be forced to begin on word boundaries.
84  * This can be easily done by casting a long integer array to char *.
85  * The overall logic has been left STRICTLY alone.  This software was
86  * tested on both a VAX and Sun SpacsStation with exactly the same
87  * results.  The new version and the original give IDENTICAL results.
88  * The new version is somewhat faster than the original.  As the
89  * documentation says:  "By default, the package runs with 128 bytes of
90  * state information and generates far better random numbers than a linear
91  * congruential generator.  If the amount of state information is less than
92  * 32 bytes, a simple linear congruential R.N.G. is used."  For a buffer of
93  * 128 bytes, this new version runs about 19 percent faster and for a 16
94  * byte buffer it is about 5 percent faster.
95  */
96 
97 /*
98  * For each of the currently supported random number generators, we have a
99  * break value on the amount of state information (you need at least this
100  * many bytes of state info to support this random number generator), a degree
101  * for the polynomial (actually a trinomial) that the R.N.G. is based on, and
102  * the separation between the two lower order coefficients of the trinomial.
103  */
104 #define	TYPE_0		0		/* linear congruential */
105 #define	BREAK_0		8
106 #define	DEG_0		0
107 #define	SEP_0		0
108 
109 #define	TYPE_1		1		/* x**7 + x**3 + 1 */
110 #define	BREAK_1		32
111 #define	DEG_1		7
112 #define	SEP_1		3
113 
114 #define	TYPE_2		2		/* x**15 + x + 1 */
115 #define	BREAK_2		64
116 #define	DEG_2		15
117 #define	SEP_2		1
118 
119 #define	TYPE_3		3		/* x**31 + x**3 + 1 */
120 #define	BREAK_3		128
121 #define	DEG_3		31
122 #define	SEP_3		3
123 
124 #define	TYPE_4		4		/* x**63 + x + 1 */
125 #define	BREAK_4		256
126 #define	DEG_4		63
127 #define	SEP_4		1
128 
129 /*
130  * Array versions of the above information to make code run faster --
131  * relies on fact that TYPE_i == i.
132  */
133 #define	MAX_TYPES	5		/* max number of types above */
134 
135 static long degrees[MAX_TYPES] = { DEG_0, DEG_1, DEG_2, DEG_3, DEG_4 };
136 static long seps [MAX_TYPES] = { SEP_0, SEP_1, SEP_2, SEP_3, SEP_4 };
137 
138 /*
139  * Initially, everything is set up as if from:
140  *
141  *	initstate(1, randtbl, 128);
142  *
143  * Note that this initialization takes advantage of the fact that srandom()
144  * advances the front and rear pointers 10*rand_deg times, and hence the
145  * rear pointer which starts at 0 will also end up at zero; thus the zeroeth
146  * element of the state information, which contains info about the current
147  * position of the rear pointer is just
148  *
149  *	MAX_TYPES * (rptr - state) + TYPE_3 == TYPE_3.
150  */
151 
152 static long randtbl[DEG_3 + 1] = {
153 	TYPE_3,
154 #ifdef  USE_WEAK_SEEDING
155 /* Historic implementation compatibility */
156 /* The random sequences do not vary much with the seed */
157 	0x9a319039, 0x32d9c024, 0x9b663182, 0x5da1f342, 0xde3b81e0, 0xdf0a6fb5,
158 	0xf103bc02, 0x48f340fb, 0x7449e56b, 0xbeb1dbb0, 0xab5c5918, 0x946554fd,
159 	0x8c2e680f, 0xeb3d799f, 0xb11ee0b7, 0x2d436b86, 0xda672e2a, 0x1588ca88,
160 	0xe369735d, 0x904f35f7, 0xd7158fd6, 0x6fa6f051, 0x616e6b96, 0xac94efdc,
161 	0x36413f93, 0xc622c298, 0xf5a42ab8, 0x8a88d77b, 0xf5ad9d0e, 0x8999220b,
162 	0x27fb47b9,
163 #else   /* !USE_WEAK_SEEDING */
164 	0x991539b1, 0x16a5bce3, 0x6774a4cd, 0x3e01511e, 0x4e508aaa, 0x61048c05,
165 	0xf5500617, 0x846b7115, 0x6a19892c, 0x896a97af, 0xdb48f936, 0x14898454,
166 	0x37ffd106, 0xb58bff9c, 0x59e17104, 0xcf918a49, 0x09378c83, 0x52c7a471,
167 	0x8d293ea9, 0x1f4fc301, 0xc3db71be, 0x39b44e1c, 0xf8a44ef9, 0x4c8b80b1,
168 	0x19edc328, 0x87bf4bdd, 0xc9b240e5, 0xe9ee4b1b, 0x4382aee7, 0x535b6b41,
169 	0xf3bec5da
170 #endif  /* !USE_WEAK_SEEDING */
171 };
172 
173 /*
174  * fptr and rptr are two pointers into the state info, a front and a rear
175  * pointer.  These two pointers are always rand_sep places aparts, as they
176  * cycle cyclically through the state information.  (Yes, this does mean we
177  * could get away with just one pointer, but the code for random() is more
178  * efficient this way).  The pointers are left positioned as they would be
179  * from the call
180  *
181  *	initstate(1, randtbl, 128);
182  *
183  * (The position of the rear pointer, rptr, is really 0 (as explained above
184  * in the initialization of randtbl) because the state table pointer is set
185  * to point to randtbl[1] (as explained below).
186  */
187 static long *fptr = &randtbl[SEP_3 + 1];
188 static long *rptr = &randtbl[1];
189 
190 /*
191  * The following things are the pointer to the state information table, the
192  * type of the current generator, the degree of the current polynomial being
193  * used, and the separation between the two pointers.  Note that for efficiency
194  * of random(), we remember the first location of the state information, not
195  * the zeroeth.  Hence it is valid to access state[-1], which is used to
196  * store the type of the R.N.G.  Also, we remember the last location, since
197  * this is more efficient than indexing every time to find the address of
198  * the last element to see if the front and rear pointers have wrapped.
199  */
200 static long *state = &randtbl[1];
201 static long rand_type = TYPE_3;
202 static long rand_deg = DEG_3;
203 static long rand_sep = SEP_3;
204 static long *end_ptr = &randtbl[DEG_3 + 1];
205 
206 static inline long good_rand(long);
207 
208 static inline long good_rand(long x)
209 {
210 #ifdef  USE_WEAK_SEEDING
211 /*
212  * Historic implementation compatibility.
213  * The random sequences do not vary much with the seed,
214  * even with overflowing.
215  */
216 	return (1103515245 * x + 12345);
217 #else   /* !USE_WEAK_SEEDING */
218 /*
219  * Compute x = (7^5 * x) mod (2^31 - 1)
220  * wihout overflowing 31 bits:
221  *      (2^31 - 1) = 127773 * (7^5) + 2836
222  * From "Random number generators: good ones are hard to find",
223  * Park and Miller, Communications of the ACM, vol. 31, no. 10,
224  * October 1988, p. 1195.
225  */
226 	register long hi, lo;
227 
228 	hi = x / 127773;
229 	lo = x % 127773;
230 	x = 16807 * lo - 2836 * hi;
231 	if (x <= 0)
232 		x += 0x7fffffff;
233 	return (x);
234 #endif  /* !USE_WEAK_SEEDING */
235 }
236 
237 /*
238  * srandom:
239  *
240  * Initialize the random number generator based on the given seed.  If the
241  * type is the trivial no-state-information type, just remember the seed.
242  * Otherwise, initializes state[] based on the given "seed" via a linear
243  * congruential generator.  Then, the pointers are set to known locations
244  * that are exactly rand_sep places apart.  Lastly, it cycles the state
245  * information a given number of times to get rid of any initial dependencies
246  * introduced by the L.C.R.N.G.  Note that the initialization of randtbl[]
247  * for default usage relies on values produced by this routine.
248  */
249 void
250 srandom(unsigned int x)
251 {
252 	long i;
253 
254 	if (rand_type == TYPE_0) {
255 		state[0] = x;
256 	} else {
257 		state[0] = x;
258 		for (i = 1; i < rand_deg; i++) {
259 			state[i] = good_rand(state[i - 1]);
260 		}
261 		fptr = &state[rand_sep];
262 		rptr = &state[0];
263 		for (i = 0; i < 10 * rand_deg; i++) {
264 			(void)random();
265 		}
266 	}
267 }
268 
269 /*
270  * srandomdev:
271  *
272  * Many programs choose the seed value in a totally predictable manner.
273  * This often causes problems.  We seed the generator using the much more
274  * secure urandom(4) interface.  Note that this particular seeding
275  * procedure can generate states which are impossible to reproduce by
276  * calling srandom() with any value, since the succeeding terms in the
277  * state buffer are no longer derived from the LC algorithm applied to
278  * a fixed seed.
279  */
280 #if 0
281 void
282 srandomdev()
283 {
284 	int fd, done;
285 	size_t len;
286 
287 	if (rand_type == TYPE_0)
288 		len = sizeof state[0];
289 	else
290 		len = rand_deg * sizeof state[0];
291 
292 	done = 0;
293 	fd = _open("/dev/urandom", O_RDONLY, 0);
294 	if (fd >= 0) {
295 		if (_read(fd, (void *) state, len) == (ssize_t) len)
296 			done = 1;
297 		_close(fd);
298 	}
299 
300 	if (!done) {
301 		struct timeval tv;
302 		unsigned long junk;
303 
304 		gettimeofday(&tv, NULL);
305 		srandom(getpid() ^ tv.tv_sec ^ tv.tv_usec ^ junk);
306 		return;
307 	}
308 
309 	if (rand_type != TYPE_0) {
310 		fptr = &state[rand_sep];
311 		rptr = &state[0];
312 	}
313 }
314 #endif
315 
316 /*
317  * initstate:
318  *
319  * Initialize the state information in the given array of n bytes for future
320  * random number generation.  Based on the number of bytes we are given, and
321  * the break values for the different R.N.G.'s, we choose the best (largest)
322  * one we can and set things up for it.  srandom() is then called to
323  * initialize the state information.
324  *
325  * Note that on return from srandom(), we set state[-1] to be the type
326  * multiplexed with the current value of the rear pointer; this is so
327  * successive calls to initstate() won't lose this information and will be
328  * able to restart with setstate().
329  *
330  * Note: the first thing we do is save the current state, if any, just like
331  * setstate() so that it doesn't matter when initstate is called.
332  *
333  * Returns a pointer to the old state.
334  *
335  * Note: The Sparc platform requires that arg_state begin on a long
336  * word boundary; otherwise a bus error will occur. Even so, lint will
337  * complain about mis-alignment, but you should disregard these messages.
338  */
339 char *
340 initstate(unsigned int seed, char *arg_state, size_t n)
341 {
342 	register char *ostate = (char *)(&state[-1]);
343 	register long *long_arg_state = (long *) arg_state;
344 
345 	if (rand_type == TYPE_0)
346 		state[-1] = rand_type;
347 	else
348 		state[-1] = MAX_TYPES * (rptr - state) + rand_type;
349 	if (n < BREAK_0) {
350 		(void)fprintf(stderr,
351 		    "random: not enough state (%ld bytes); ignored.\n", n);
352 		return(0);
353 	}
354 	if (n < BREAK_1) {
355 		rand_type = TYPE_0;
356 		rand_deg = DEG_0;
357 		rand_sep = SEP_0;
358 	} else if (n < BREAK_2) {
359 		rand_type = TYPE_1;
360 		rand_deg = DEG_1;
361 		rand_sep = SEP_1;
362 	} else if (n < BREAK_3) {
363 		rand_type = TYPE_2;
364 		rand_deg = DEG_2;
365 		rand_sep = SEP_2;
366 	} else if (n < BREAK_4) {
367 		rand_type = TYPE_3;
368 		rand_deg = DEG_3;
369 		rand_sep = SEP_3;
370 	} else {
371 		rand_type = TYPE_4;
372 		rand_deg = DEG_4;
373 		rand_sep = SEP_4;
374 	}
375 	state = (long *) (long_arg_state + 1); /* first location */
376 	end_ptr = &state[rand_deg];	/* must set end_ptr before srandom */
377 	srandom(seed);
378 	if (rand_type == TYPE_0)
379 		long_arg_state[0] = rand_type;
380 	else
381 		long_arg_state[0] = MAX_TYPES * (rptr - state) + rand_type;
382 	return(ostate);
383 }
384 
385 /*
386  * setstate:
387  *
388  * Restore the state from the given state array.
389  *
390  * Note: it is important that we also remember the locations of the pointers
391  * in the current state information, and restore the locations of the pointers
392  * from the old state information.  This is done by multiplexing the pointer
393  * location into the zeroeth word of the state information.
394  *
395  * Note that due to the order in which things are done, it is OK to call
396  * setstate() with the same state as the current state.
397  *
398  * Returns a pointer to the old state information.
399  *
400  * Note: The Sparc platform requires that arg_state begin on a long
401  * word boundary; otherwise a bus error will occur. Even so, lint will
402  * complain about mis-alignment, but you should disregard these messages.
403  */
404 char *
405 setstate(arg_state)
406 	char *arg_state;		/* pointer to state array */
407 {
408 	register long *new_state = (long *) arg_state;
409 	register long type = new_state[0] % MAX_TYPES;
410 	register long rear = new_state[0] / MAX_TYPES;
411 	char *ostate = (char *)(&state[-1]);
412 
413 	if (rand_type == TYPE_0)
414 		state[-1] = rand_type;
415 	else
416 		state[-1] = MAX_TYPES * (rptr - state) + rand_type;
417 	switch(type) {
418 	case TYPE_0:
419 	case TYPE_1:
420 	case TYPE_2:
421 	case TYPE_3:
422 	case TYPE_4:
423 		rand_type = type;
424 		rand_deg = degrees[type];
425 		rand_sep = seps[type];
426 		break;
427 	default:
428 		(void)fprintf(stderr,
429 		    "random: state info corrupted; not changed.\n");
430 	}
431 	state = (long *) (new_state + 1);
432 	if (rand_type != TYPE_0) {
433 		rptr = &state[rear];
434 		fptr = &state[(rear + rand_sep) % rand_deg];
435 	}
436 	end_ptr = &state[rand_deg];		/* set end_ptr too */
437 	return(ostate);
438 }
439 
440 
441 /*
442  * random:
443  *
444  * If we are using the trivial TYPE_0 R.N.G., just do the old linear
445  * congruential bit.  Otherwise, we do our fancy trinomial stuff, which is
446  * the same in all the other cases due to all the global variables that have
447  * been set up.  The basic operation is to add the number at the rear pointer
448  * into the one at the front pointer.  Then both pointers are advanced to
449  * the next location cyclically in the table.  The value returned is the sum
450  * generated, reduced to 31 bits by throwing away the "least random" low bit.
451  *
452  * Note: the code takes advantage of the fact that both the front and
453  * rear pointers can't wrap on the same call by not testing the rear
454  * pointer if the front one has wrapped.
455  *
456  * Returns a 31-bit random number.
457  */
458 int
459 random(void)
460 {
461 	long i;
462 	long *f;
463 	long *r;
464 
465 	if (rand_type == TYPE_0) {
466 		i = state[0];
467 		state[0] = i = (good_rand(i)) & 0x7fffffff;
468 	} else {
469 		/*
470 		 * Use local variables rather than static variables for speed.
471 		 */
472 		f = fptr; r = rptr;
473 		*f += *r;
474 		i = (*f >> 1) & 0x7fffffff;	/* chucking least random bit */
475 		if (++f >= end_ptr) {
476 			f = state;
477 			++r;
478 		}
479 		else if (++r >= end_ptr) {
480 			r = state;
481 		}
482 
483 		fptr = f; rptr = r;
484 	}
485 	return(i);
486 }
487