xref: /haiku/src/system/libroot/posix/stdlib/heapsort.c (revision 71452e98334eaac603bf542d159e24788a46bebb)
1 /*-
2  * Copyright (c) 1991, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This code is derived from software contributed to Berkeley by
6  * Ronnie Kon at Mindcraft Inc., Kevin Lew and Elmer Yglesias.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *	This product includes software developed by the University of
19  *	California, Berkeley and its contributors.
20  * 4. Neither the name of the University nor the names of its contributors
21  *    may be used to endorse or promote products derived from this software
22  *    without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
25  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
28  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
29  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
30  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
31  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
32  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
33  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
34  * SUCH DAMAGE.
35  */
36 
37 #if defined(LIBC_SCCS) && !defined(lint)
38 static char sccsid[] = "@(#)heapsort.c	8.1 (Berkeley) 6/4/93";
39 #endif /* LIBC_SCCS and not lint */
40 
41 #include <errno.h>
42 #include <stdlib.h>
43 
44 #include <errno_private.h>
45 
46 /*
47  * Swap two areas of size number of bytes.  Although qsort(3) permits random
48  * blocks of memory to be sorted, sorting pointers is almost certainly the
49  * common case (and, were it not, could easily be made so).  Regardless, it
50  * isn't worth optimizing; the SWAP's get sped up by the cache, and pointer
51  * arithmetic gets lost in the time required for comparison function calls.
52  */
53 #define	SWAP(a, b, count, size, tmp) { \
54 	count = size; \
55 	do { \
56 		tmp = *a; \
57 		*a++ = *b; \
58 		*b++ = tmp; \
59 	} while (--count); \
60 }
61 
62 /* Copy one block of size size to another. */
63 #define COPY(a, b, count, size, tmp1, tmp2) { \
64 	count = size; \
65 	tmp1 = a; \
66 	tmp2 = b; \
67 	do { \
68 		*tmp1++ = *tmp2++; \
69 	} while (--count); \
70 }
71 
72 /*
73  * Build the list into a heap, where a heap is defined such that for
74  * the records K1 ... KN, Kj/2 >= Kj for 1 <= j/2 <= j <= N.
75  *
76  * There two cases.  If j == nmemb, select largest of Ki and Kj.  If
77  * j < nmemb, select largest of Ki, Kj and Kj+1.
78  */
79 #define CREATE(initval, nmemb, par_i, child_i, par, child, size, count, tmp) { \
80 	for (par_i = initval; (child_i = par_i * 2) <= nmemb; \
81 	    par_i = child_i) { \
82 		child = base + child_i * size; \
83 		if (child_i < nmemb && compar(child, child + size) < 0) { \
84 			child += size; \
85 			++child_i; \
86 		} \
87 		par = base + par_i * size; \
88 		if (compar(child, par) <= 0) \
89 			break; \
90 		SWAP(par, child, count, size, tmp); \
91 	} \
92 }
93 
94 /*
95  * Select the top of the heap and 'heapify'.  Since by far the most expensive
96  * action is the call to the compar function, a considerable optimization
97  * in the average case can be achieved due to the fact that k, the displaced
98  * elememt, is ususally quite small, so it would be preferable to first
99  * heapify, always maintaining the invariant that the larger child is copied
100  * over its parent's record.
101  *
102  * Then, starting from the *bottom* of the heap, finding k's correct place,
103  * again maintianing the invariant.  As a result of the invariant no element
104  * is 'lost' when k is assigned its correct place in the heap.
105  *
106  * The time savings from this optimization are on the order of 15-20% for the
107  * average case. See Knuth, Vol. 3, page 158, problem 18.
108  *
109  * XXX Don't break the #define SELECT line, below.  Reiser cpp gets upset.
110  */
111 #define SELECT(par_i, child_i, nmemb, par, child, size, k, count, tmp1, tmp2) { \
112 	for (par_i = 1; (child_i = par_i * 2) <= nmemb; par_i = child_i) { \
113 		child = base + child_i * size; \
114 		if (child_i < nmemb && compar(child, child + size) < 0) { \
115 			child += size; \
116 			++child_i; \
117 		} \
118 		par = base + par_i * size; \
119 		COPY(par, child, count, size, tmp1, tmp2); \
120 	} \
121 	for (;;) { \
122 		child_i = par_i; \
123 		par_i = child_i / 2; \
124 		child = base + child_i * size; \
125 		par = base + par_i * size; \
126 		if (child_i == 1 || compar(k, par) < 0) { \
127 			COPY(child, k, count, size, tmp1, tmp2); \
128 			break; \
129 		} \
130 		COPY(child, par, count, size, tmp1, tmp2); \
131 	} \
132 }
133 
134 /*
135  * Heapsort -- Knuth, Vol. 3, page 145.  Runs in O (N lg N), both average
136  * and worst.  While heapsort is faster than the worst case of quicksort,
137  * the BSD quicksort does median selection so that the chance of finding
138  * a data set that will trigger the worst case is nonexistent.  Heapsort's
139  * only advantage over quicksort is that it requires little additional memory.
140  */
141 int
142 heapsort(void *vbase, size_t nmemb, size_t size, int (*compar)(void const *, void const *))
143 {
144 	size_t cnt;
145 	size_t i;
146 	size_t j;
147 	size_t l;
148 	char tmp;
149 	char *tmp1;
150 	char *tmp2;
151 	char *base;
152 	char *k;
153 	char *p;
154 	char *t;
155 
156 	if (nmemb <= 1) {
157 		return (0);
158 	}
159 
160 	if (!size) {
161 //		__set_errno(EINVAL);
162 		return (-1);
163 	}
164 
165 	if ((k = malloc(size)) == NULL) {
166 		return (-1);
167 	}
168 
169 	/*
170 	 * Items are numbered from 1 to nmemb, so offset from size bytes
171 	 * below the starting address.
172 	 */
173 	base = (char *)vbase - size;
174 
175 	for (l = nmemb / 2 + 1; --l;)
176 		CREATE(l, nmemb, i, j, t, p, size, cnt, tmp);
177 
178 	/*
179 	 * For each element of the heap, save the largest element into its
180 	 * final slot, save the displaced element (k), then recreate the
181 	 * heap.
182 	 */
183 	while (nmemb > 1) {
184 		COPY(k, base + nmemb * size, cnt, size, tmp1, tmp2);
185 		COPY(base + nmemb * size, base + size, cnt, size, tmp1, tmp2);
186 		--nmemb;
187 		SELECT(i, j, nmemb, t, p, size, k, cnt, tmp1, tmp2);
188 	}
189 	free(k);
190 	return (0);
191 }
192