xref: /haiku/src/system/libroot/posix/musl/math/tan.c (revision 02354704729d38c3b078c696adc1bbbd33cbcf72)
1 /* origin: FreeBSD /usr/src/lib/msun/src/s_tan.c */
2 /*
3  * ====================================================
4  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5  *
6  * Developed at SunPro, a Sun Microsystems, Inc. business.
7  * Permission to use, copy, modify, and distribute this
8  * software is freely granted, provided that this notice
9  * is preserved.
10  * ====================================================
11  */
12 /* tan(x)
13  * Return tangent function of x.
14  *
15  * kernel function:
16  *      __tan           ... tangent function on [-pi/4,pi/4]
17  *      __rem_pio2      ... argument reduction routine
18  *
19  * Method.
20  *      Let S,C and T denote the sin, cos and tan respectively on
21  *      [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
22  *      in [-pi/4 , +pi/4], and let n = k mod 4.
23  *      We have
24  *
25  *          n        sin(x)      cos(x)        tan(x)
26  *     ----------------------------------------------------------
27  *          0          S           C             T
28  *          1          C          -S            -1/T
29  *          2         -S          -C             T
30  *          3         -C           S            -1/T
31  *     ----------------------------------------------------------
32  *
33  * Special cases:
34  *      Let trig be any of sin, cos, or tan.
35  *      trig(+-INF)  is NaN, with signals;
36  *      trig(NaN)    is that NaN;
37  *
38  * Accuracy:
39  *      TRIG(x) returns trig(x) nearly rounded
40  */
41 
42 #include "libm.h"
43 
44 double tan(double x)
45 {
46 	double y[2];
47 	uint32_t ix;
48 	unsigned n;
49 
50 	GET_HIGH_WORD(ix, x);
51 	ix &= 0x7fffffff;
52 
53 	/* |x| ~< pi/4 */
54 	if (ix <= 0x3fe921fb) {
55 		if (ix < 0x3e400000) { /* |x| < 2**-27 */
56 			/* raise inexact if x!=0 and underflow if subnormal */
57 			FORCE_EVAL(ix < 0x00100000 ? x/0x1p120f : x+0x1p120f);
58 			return x;
59 		}
60 		return __tan(x, 0.0, 0);
61 	}
62 
63 	/* tan(Inf or NaN) is NaN */
64 	if (ix >= 0x7ff00000)
65 		return x - x;
66 
67 	/* argument reduction */
68 	n = __rem_pio2(x, y);
69 	return __tan(y[0], y[1], n&1);
70 }
71