xref: /haiku/src/system/libroot/posix/musl/math/tan.c (revision f504f61099b010fbfa94b1cc63d2e9072c7f7185)
1*f504f610SAugustin Cavalier /* origin: FreeBSD /usr/src/lib/msun/src/s_tan.c */
2*f504f610SAugustin Cavalier /*
3*f504f610SAugustin Cavalier  * ====================================================
4*f504f610SAugustin Cavalier  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5*f504f610SAugustin Cavalier  *
6*f504f610SAugustin Cavalier  * Developed at SunPro, a Sun Microsystems, Inc. business.
7*f504f610SAugustin Cavalier  * Permission to use, copy, modify, and distribute this
8*f504f610SAugustin Cavalier  * software is freely granted, provided that this notice
9*f504f610SAugustin Cavalier  * is preserved.
10*f504f610SAugustin Cavalier  * ====================================================
11*f504f610SAugustin Cavalier  */
12*f504f610SAugustin Cavalier /* tan(x)
13*f504f610SAugustin Cavalier  * Return tangent function of x.
14*f504f610SAugustin Cavalier  *
15*f504f610SAugustin Cavalier  * kernel function:
16*f504f610SAugustin Cavalier  *      __tan           ... tangent function on [-pi/4,pi/4]
17*f504f610SAugustin Cavalier  *      __rem_pio2      ... argument reduction routine
18*f504f610SAugustin Cavalier  *
19*f504f610SAugustin Cavalier  * Method.
20*f504f610SAugustin Cavalier  *      Let S,C and T denote the sin, cos and tan respectively on
21*f504f610SAugustin Cavalier  *      [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
22*f504f610SAugustin Cavalier  *      in [-pi/4 , +pi/4], and let n = k mod 4.
23*f504f610SAugustin Cavalier  *      We have
24*f504f610SAugustin Cavalier  *
25*f504f610SAugustin Cavalier  *          n        sin(x)      cos(x)        tan(x)
26*f504f610SAugustin Cavalier  *     ----------------------------------------------------------
27*f504f610SAugustin Cavalier  *          0          S           C             T
28*f504f610SAugustin Cavalier  *          1          C          -S            -1/T
29*f504f610SAugustin Cavalier  *          2         -S          -C             T
30*f504f610SAugustin Cavalier  *          3         -C           S            -1/T
31*f504f610SAugustin Cavalier  *     ----------------------------------------------------------
32*f504f610SAugustin Cavalier  *
33*f504f610SAugustin Cavalier  * Special cases:
34*f504f610SAugustin Cavalier  *      Let trig be any of sin, cos, or tan.
35*f504f610SAugustin Cavalier  *      trig(+-INF)  is NaN, with signals;
36*f504f610SAugustin Cavalier  *      trig(NaN)    is that NaN;
37*f504f610SAugustin Cavalier  *
38*f504f610SAugustin Cavalier  * Accuracy:
39*f504f610SAugustin Cavalier  *      TRIG(x) returns trig(x) nearly rounded
40*f504f610SAugustin Cavalier  */
41*f504f610SAugustin Cavalier 
42*f504f610SAugustin Cavalier #include "libm.h"
43*f504f610SAugustin Cavalier 
tan(double x)44*f504f610SAugustin Cavalier double tan(double x)
45*f504f610SAugustin Cavalier {
46*f504f610SAugustin Cavalier 	double y[2];
47*f504f610SAugustin Cavalier 	uint32_t ix;
48*f504f610SAugustin Cavalier 	unsigned n;
49*f504f610SAugustin Cavalier 
50*f504f610SAugustin Cavalier 	GET_HIGH_WORD(ix, x);
51*f504f610SAugustin Cavalier 	ix &= 0x7fffffff;
52*f504f610SAugustin Cavalier 
53*f504f610SAugustin Cavalier 	/* |x| ~< pi/4 */
54*f504f610SAugustin Cavalier 	if (ix <= 0x3fe921fb) {
55*f504f610SAugustin Cavalier 		if (ix < 0x3e400000) { /* |x| < 2**-27 */
56*f504f610SAugustin Cavalier 			/* raise inexact if x!=0 and underflow if subnormal */
57*f504f610SAugustin Cavalier 			FORCE_EVAL(ix < 0x00100000 ? x/0x1p120f : x+0x1p120f);
58*f504f610SAugustin Cavalier 			return x;
59*f504f610SAugustin Cavalier 		}
60*f504f610SAugustin Cavalier 		return __tan(x, 0.0, 0);
61*f504f610SAugustin Cavalier 	}
62*f504f610SAugustin Cavalier 
63*f504f610SAugustin Cavalier 	/* tan(Inf or NaN) is NaN */
64*f504f610SAugustin Cavalier 	if (ix >= 0x7ff00000)
65*f504f610SAugustin Cavalier 		return x - x;
66*f504f610SAugustin Cavalier 
67*f504f610SAugustin Cavalier 	/* argument reduction */
68*f504f610SAugustin Cavalier 	n = __rem_pio2(x, y);
69*f504f610SAugustin Cavalier 	return __tan(y[0], y[1], n&1);
70*f504f610SAugustin Cavalier }
71