xref: /haiku/src/system/libroot/posix/musl/math/jnf.c (revision 072d3935c2497638e9c2502f574c133caeba9d3d)
1 /* origin: FreeBSD /usr/src/lib/msun/src/e_jnf.c */
2 /*
3  * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
4  */
5 /*
6  * ====================================================
7  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
8  *
9  * Developed at SunPro, a Sun Microsystems, Inc. business.
10  * Permission to use, copy, modify, and distribute this
11  * software is freely granted, provided that this notice
12  * is preserved.
13  * ====================================================
14  */
15 
16 #define _GNU_SOURCE
17 #include "libm.h"
18 
19 float jnf(int n, float x)
20 {
21 	uint32_t ix;
22 	int nm1, sign, i;
23 	float a, b, temp;
24 
25 	GET_FLOAT_WORD(ix, x);
26 	sign = ix>>31;
27 	ix &= 0x7fffffff;
28 	if (ix > 0x7f800000) /* nan */
29 		return x;
30 
31 	/* J(-n,x) = J(n,-x), use |n|-1 to avoid overflow in -n */
32 	if (n == 0)
33 		return j0f(x);
34 	if (n < 0) {
35 		nm1 = -(n+1);
36 		x = -x;
37 		sign ^= 1;
38 	} else
39 		nm1 = n-1;
40 	if (nm1 == 0)
41 		return j1f(x);
42 
43 	sign &= n;  /* even n: 0, odd n: signbit(x) */
44 	x = fabsf(x);
45 	if (ix == 0 || ix == 0x7f800000)  /* if x is 0 or inf */
46 		b = 0.0f;
47 	else if (nm1 < x) {
48 		/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
49 		a = j0f(x);
50 		b = j1f(x);
51 		for (i=0; i<nm1; ){
52 			i++;
53 			temp = b;
54 			b = b*(2.0f*i/x) - a;
55 			a = temp;
56 		}
57 	} else {
58 		if (ix < 0x35800000) { /* x < 2**-20 */
59 			/* x is tiny, return the first Taylor expansion of J(n,x)
60 			 * J(n,x) = 1/n!*(x/2)^n  - ...
61 			 */
62 			if (nm1 > 8)  /* underflow */
63 				nm1 = 8;
64 			temp = 0.5f * x;
65 			b = temp;
66 			a = 1.0f;
67 			for (i=2; i<=nm1+1; i++) {
68 				a *= (float)i;    /* a = n! */
69 				b *= temp;        /* b = (x/2)^n */
70 			}
71 			b = b/a;
72 		} else {
73 			/* use backward recurrence */
74 			/*                      x      x^2      x^2
75 			 *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
76 			 *                      2n  - 2(n+1) - 2(n+2)
77 			 *
78 			 *                      1      1        1
79 			 *  (for large x)   =  ----  ------   ------   .....
80 			 *                      2n   2(n+1)   2(n+2)
81 			 *                      -- - ------ - ------ -
82 			 *                       x     x         x
83 			 *
84 			 * Let w = 2n/x and h=2/x, then the above quotient
85 			 * is equal to the continued fraction:
86 			 *                  1
87 			 *      = -----------------------
88 			 *                     1
89 			 *         w - -----------------
90 			 *                        1
91 			 *              w+h - ---------
92 			 *                     w+2h - ...
93 			 *
94 			 * To determine how many terms needed, let
95 			 * Q(0) = w, Q(1) = w(w+h) - 1,
96 			 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
97 			 * When Q(k) > 1e4      good for single
98 			 * When Q(k) > 1e9      good for double
99 			 * When Q(k) > 1e17     good for quadruple
100 			 */
101 			/* determine k */
102 			float t,q0,q1,w,h,z,tmp,nf;
103 			int k;
104 
105 			nf = nm1+1.0f;
106 			w = 2*nf/x;
107 			h = 2/x;
108 			z = w+h;
109 			q0 = w;
110 			q1 = w*z - 1.0f;
111 			k = 1;
112 			while (q1 < 1.0e4f) {
113 				k += 1;
114 				z += h;
115 				tmp = z*q1 - q0;
116 				q0 = q1;
117 				q1 = tmp;
118 			}
119 			for (t=0.0f, i=k; i>=0; i--)
120 				t = 1.0f/(2*(i+nf)/x-t);
121 			a = t;
122 			b = 1.0f;
123 			/*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
124 			 *  Hence, if n*(log(2n/x)) > ...
125 			 *  single 8.8722839355e+01
126 			 *  double 7.09782712893383973096e+02
127 			 *  long double 1.1356523406294143949491931077970765006170e+04
128 			 *  then recurrent value may overflow and the result is
129 			 *  likely underflow to zero
130 			 */
131 			tmp = nf*logf(fabsf(w));
132 			if (tmp < 88.721679688f) {
133 				for (i=nm1; i>0; i--) {
134 					temp = b;
135 					b = 2.0f*i*b/x - a;
136 					a = temp;
137 				}
138 			} else {
139 				for (i=nm1; i>0; i--){
140 					temp = b;
141 					b = 2.0f*i*b/x - a;
142 					a = temp;
143 					/* scale b to avoid spurious overflow */
144 					if (b > 0x1p60f) {
145 						a /= b;
146 						t /= b;
147 						b = 1.0f;
148 					}
149 				}
150 			}
151 			z = j0f(x);
152 			w = j1f(x);
153 			if (fabsf(z) >= fabsf(w))
154 				b = t*z/b;
155 			else
156 				b = t*w/a;
157 		}
158 	}
159 	return sign ? -b : b;
160 }
161 
162 float ynf(int n, float x)
163 {
164 	uint32_t ix, ib;
165 	int nm1, sign, i;
166 	float a, b, temp;
167 
168 	GET_FLOAT_WORD(ix, x);
169 	sign = ix>>31;
170 	ix &= 0x7fffffff;
171 	if (ix > 0x7f800000) /* nan */
172 		return x;
173 	if (sign && ix != 0) /* x < 0 */
174 		return 0/0.0f;
175 	if (ix == 0x7f800000)
176 		return 0.0f;
177 
178 	if (n == 0)
179 		return y0f(x);
180 	if (n < 0) {
181 		nm1 = -(n+1);
182 		sign = n&1;
183 	} else {
184 		nm1 = n-1;
185 		sign = 0;
186 	}
187 	if (nm1 == 0)
188 		return sign ? -y1f(x) : y1f(x);
189 
190 	a = y0f(x);
191 	b = y1f(x);
192 	/* quit if b is -inf */
193 	GET_FLOAT_WORD(ib,b);
194 	for (i = 0; i < nm1 && ib != 0xff800000; ) {
195 		i++;
196 		temp = b;
197 		b = (2.0f*i/x)*b - a;
198 		GET_FLOAT_WORD(ib, b);
199 		a = temp;
200 	}
201 	return sign ? -b : b;
202 }
203