xref: /haiku/src/system/libroot/posix/musl/math/jn.c (revision f504f61099b010fbfa94b1cc63d2e9072c7f7185)
1*f504f610SAugustin Cavalier /* origin: FreeBSD /usr/src/lib/msun/src/e_jn.c */
2*f504f610SAugustin Cavalier /*
3*f504f610SAugustin Cavalier  * ====================================================
4*f504f610SAugustin Cavalier  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5*f504f610SAugustin Cavalier  *
6*f504f610SAugustin Cavalier  * Developed at SunSoft, a Sun Microsystems, Inc. business.
7*f504f610SAugustin Cavalier  * Permission to use, copy, modify, and distribute this
8*f504f610SAugustin Cavalier  * software is freely granted, provided that this notice
9*f504f610SAugustin Cavalier  * is preserved.
10*f504f610SAugustin Cavalier  * ====================================================
11*f504f610SAugustin Cavalier  */
12*f504f610SAugustin Cavalier /*
13*f504f610SAugustin Cavalier  * jn(n, x), yn(n, x)
14*f504f610SAugustin Cavalier  * floating point Bessel's function of the 1st and 2nd kind
15*f504f610SAugustin Cavalier  * of order n
16*f504f610SAugustin Cavalier  *
17*f504f610SAugustin Cavalier  * Special cases:
18*f504f610SAugustin Cavalier  *      y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal;
19*f504f610SAugustin Cavalier  *      y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal.
20*f504f610SAugustin Cavalier  * Note 2. About jn(n,x), yn(n,x)
21*f504f610SAugustin Cavalier  *      For n=0, j0(x) is called,
22*f504f610SAugustin Cavalier  *      for n=1, j1(x) is called,
23*f504f610SAugustin Cavalier  *      for n<=x, forward recursion is used starting
24*f504f610SAugustin Cavalier  *      from values of j0(x) and j1(x).
25*f504f610SAugustin Cavalier  *      for n>x, a continued fraction approximation to
26*f504f610SAugustin Cavalier  *      j(n,x)/j(n-1,x) is evaluated and then backward
27*f504f610SAugustin Cavalier  *      recursion is used starting from a supposed value
28*f504f610SAugustin Cavalier  *      for j(n,x). The resulting value of j(0,x) is
29*f504f610SAugustin Cavalier  *      compared with the actual value to correct the
30*f504f610SAugustin Cavalier  *      supposed value of j(n,x).
31*f504f610SAugustin Cavalier  *
32*f504f610SAugustin Cavalier  *      yn(n,x) is similar in all respects, except
33*f504f610SAugustin Cavalier  *      that forward recursion is used for all
34*f504f610SAugustin Cavalier  *      values of n>1.
35*f504f610SAugustin Cavalier  */
36*f504f610SAugustin Cavalier 
37*f504f610SAugustin Cavalier #include "libm.h"
38*f504f610SAugustin Cavalier 
39*f504f610SAugustin Cavalier static const double invsqrtpi = 5.64189583547756279280e-01; /* 0x3FE20DD7, 0x50429B6D */
40*f504f610SAugustin Cavalier 
jn(int n,double x)41*f504f610SAugustin Cavalier double jn(int n, double x)
42*f504f610SAugustin Cavalier {
43*f504f610SAugustin Cavalier 	uint32_t ix, lx;
44*f504f610SAugustin Cavalier 	int nm1, i, sign;
45*f504f610SAugustin Cavalier 	double a, b, temp;
46*f504f610SAugustin Cavalier 
47*f504f610SAugustin Cavalier 	EXTRACT_WORDS(ix, lx, x);
48*f504f610SAugustin Cavalier 	sign = ix>>31;
49*f504f610SAugustin Cavalier 	ix &= 0x7fffffff;
50*f504f610SAugustin Cavalier 
51*f504f610SAugustin Cavalier 	if ((ix | (lx|-lx)>>31) > 0x7ff00000) /* nan */
52*f504f610SAugustin Cavalier 		return x;
53*f504f610SAugustin Cavalier 
54*f504f610SAugustin Cavalier 	/* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
55*f504f610SAugustin Cavalier 	 * Thus, J(-n,x) = J(n,-x)
56*f504f610SAugustin Cavalier 	 */
57*f504f610SAugustin Cavalier 	/* nm1 = |n|-1 is used instead of |n| to handle n==INT_MIN */
58*f504f610SAugustin Cavalier 	if (n == 0)
59*f504f610SAugustin Cavalier 		return j0(x);
60*f504f610SAugustin Cavalier 	if (n < 0) {
61*f504f610SAugustin Cavalier 		nm1 = -(n+1);
62*f504f610SAugustin Cavalier 		x = -x;
63*f504f610SAugustin Cavalier 		sign ^= 1;
64*f504f610SAugustin Cavalier 	} else
65*f504f610SAugustin Cavalier 		nm1 = n-1;
66*f504f610SAugustin Cavalier 	if (nm1 == 0)
67*f504f610SAugustin Cavalier 		return j1(x);
68*f504f610SAugustin Cavalier 
69*f504f610SAugustin Cavalier 	sign &= n;  /* even n: 0, odd n: signbit(x) */
70*f504f610SAugustin Cavalier 	x = fabs(x);
71*f504f610SAugustin Cavalier 	if ((ix|lx) == 0 || ix == 0x7ff00000)  /* if x is 0 or inf */
72*f504f610SAugustin Cavalier 		b = 0.0;
73*f504f610SAugustin Cavalier 	else if (nm1 < x) {
74*f504f610SAugustin Cavalier 		/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
75*f504f610SAugustin Cavalier 		if (ix >= 0x52d00000) { /* x > 2**302 */
76*f504f610SAugustin Cavalier 			/* (x >> n**2)
77*f504f610SAugustin Cavalier 			 *      Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
78*f504f610SAugustin Cavalier 			 *      Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
79*f504f610SAugustin Cavalier 			 *      Let s=sin(x), c=cos(x),
80*f504f610SAugustin Cavalier 			 *          xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
81*f504f610SAugustin Cavalier 			 *
82*f504f610SAugustin Cavalier 			 *             n    sin(xn)*sqt2    cos(xn)*sqt2
83*f504f610SAugustin Cavalier 			 *          ----------------------------------
84*f504f610SAugustin Cavalier 			 *             0     s-c             c+s
85*f504f610SAugustin Cavalier 			 *             1    -s-c            -c+s
86*f504f610SAugustin Cavalier 			 *             2    -s+c            -c-s
87*f504f610SAugustin Cavalier 			 *             3     s+c             c-s
88*f504f610SAugustin Cavalier 			 */
89*f504f610SAugustin Cavalier 			switch(nm1&3) {
90*f504f610SAugustin Cavalier 			case 0: temp = -cos(x)+sin(x); break;
91*f504f610SAugustin Cavalier 			case 1: temp = -cos(x)-sin(x); break;
92*f504f610SAugustin Cavalier 			case 2: temp =  cos(x)-sin(x); break;
93*f504f610SAugustin Cavalier 			default:
94*f504f610SAugustin Cavalier 			case 3: temp =  cos(x)+sin(x); break;
95*f504f610SAugustin Cavalier 			}
96*f504f610SAugustin Cavalier 			b = invsqrtpi*temp/sqrt(x);
97*f504f610SAugustin Cavalier 		} else {
98*f504f610SAugustin Cavalier 			a = j0(x);
99*f504f610SAugustin Cavalier 			b = j1(x);
100*f504f610SAugustin Cavalier 			for (i=0; i<nm1; ) {
101*f504f610SAugustin Cavalier 				i++;
102*f504f610SAugustin Cavalier 				temp = b;
103*f504f610SAugustin Cavalier 				b = b*(2.0*i/x) - a; /* avoid underflow */
104*f504f610SAugustin Cavalier 				a = temp;
105*f504f610SAugustin Cavalier 			}
106*f504f610SAugustin Cavalier 		}
107*f504f610SAugustin Cavalier 	} else {
108*f504f610SAugustin Cavalier 		if (ix < 0x3e100000) { /* x < 2**-29 */
109*f504f610SAugustin Cavalier 			/* x is tiny, return the first Taylor expansion of J(n,x)
110*f504f610SAugustin Cavalier 			 * J(n,x) = 1/n!*(x/2)^n  - ...
111*f504f610SAugustin Cavalier 			 */
112*f504f610SAugustin Cavalier 			if (nm1 > 32)  /* underflow */
113*f504f610SAugustin Cavalier 				b = 0.0;
114*f504f610SAugustin Cavalier 			else {
115*f504f610SAugustin Cavalier 				temp = x*0.5;
116*f504f610SAugustin Cavalier 				b = temp;
117*f504f610SAugustin Cavalier 				a = 1.0;
118*f504f610SAugustin Cavalier 				for (i=2; i<=nm1+1; i++) {
119*f504f610SAugustin Cavalier 					a *= (double)i; /* a = n! */
120*f504f610SAugustin Cavalier 					b *= temp;      /* b = (x/2)^n */
121*f504f610SAugustin Cavalier 				}
122*f504f610SAugustin Cavalier 				b = b/a;
123*f504f610SAugustin Cavalier 			}
124*f504f610SAugustin Cavalier 		} else {
125*f504f610SAugustin Cavalier 			/* use backward recurrence */
126*f504f610SAugustin Cavalier 			/*                      x      x^2      x^2
127*f504f610SAugustin Cavalier 			 *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
128*f504f610SAugustin Cavalier 			 *                      2n  - 2(n+1) - 2(n+2)
129*f504f610SAugustin Cavalier 			 *
130*f504f610SAugustin Cavalier 			 *                      1      1        1
131*f504f610SAugustin Cavalier 			 *  (for large x)   =  ----  ------   ------   .....
132*f504f610SAugustin Cavalier 			 *                      2n   2(n+1)   2(n+2)
133*f504f610SAugustin Cavalier 			 *                      -- - ------ - ------ -
134*f504f610SAugustin Cavalier 			 *                       x     x         x
135*f504f610SAugustin Cavalier 			 *
136*f504f610SAugustin Cavalier 			 * Let w = 2n/x and h=2/x, then the above quotient
137*f504f610SAugustin Cavalier 			 * is equal to the continued fraction:
138*f504f610SAugustin Cavalier 			 *                  1
139*f504f610SAugustin Cavalier 			 *      = -----------------------
140*f504f610SAugustin Cavalier 			 *                     1
141*f504f610SAugustin Cavalier 			 *         w - -----------------
142*f504f610SAugustin Cavalier 			 *                        1
143*f504f610SAugustin Cavalier 			 *              w+h - ---------
144*f504f610SAugustin Cavalier 			 *                     w+2h - ...
145*f504f610SAugustin Cavalier 			 *
146*f504f610SAugustin Cavalier 			 * To determine how many terms needed, let
147*f504f610SAugustin Cavalier 			 * Q(0) = w, Q(1) = w(w+h) - 1,
148*f504f610SAugustin Cavalier 			 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
149*f504f610SAugustin Cavalier 			 * When Q(k) > 1e4      good for single
150*f504f610SAugustin Cavalier 			 * When Q(k) > 1e9      good for double
151*f504f610SAugustin Cavalier 			 * When Q(k) > 1e17     good for quadruple
152*f504f610SAugustin Cavalier 			 */
153*f504f610SAugustin Cavalier 			/* determine k */
154*f504f610SAugustin Cavalier 			double t,q0,q1,w,h,z,tmp,nf;
155*f504f610SAugustin Cavalier 			int k;
156*f504f610SAugustin Cavalier 
157*f504f610SAugustin Cavalier 			nf = nm1 + 1.0;
158*f504f610SAugustin Cavalier 			w = 2*nf/x;
159*f504f610SAugustin Cavalier 			h = 2/x;
160*f504f610SAugustin Cavalier 			z = w+h;
161*f504f610SAugustin Cavalier 			q0 = w;
162*f504f610SAugustin Cavalier 			q1 = w*z - 1.0;
163*f504f610SAugustin Cavalier 			k = 1;
164*f504f610SAugustin Cavalier 			while (q1 < 1.0e9) {
165*f504f610SAugustin Cavalier 				k += 1;
166*f504f610SAugustin Cavalier 				z += h;
167*f504f610SAugustin Cavalier 				tmp = z*q1 - q0;
168*f504f610SAugustin Cavalier 				q0 = q1;
169*f504f610SAugustin Cavalier 				q1 = tmp;
170*f504f610SAugustin Cavalier 			}
171*f504f610SAugustin Cavalier 			for (t=0.0, i=k; i>=0; i--)
172*f504f610SAugustin Cavalier 				t = 1/(2*(i+nf)/x - t);
173*f504f610SAugustin Cavalier 			a = t;
174*f504f610SAugustin Cavalier 			b = 1.0;
175*f504f610SAugustin Cavalier 			/*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
176*f504f610SAugustin Cavalier 			 *  Hence, if n*(log(2n/x)) > ...
177*f504f610SAugustin Cavalier 			 *  single 8.8722839355e+01
178*f504f610SAugustin Cavalier 			 *  double 7.09782712893383973096e+02
179*f504f610SAugustin Cavalier 			 *  long double 1.1356523406294143949491931077970765006170e+04
180*f504f610SAugustin Cavalier 			 *  then recurrent value may overflow and the result is
181*f504f610SAugustin Cavalier 			 *  likely underflow to zero
182*f504f610SAugustin Cavalier 			 */
183*f504f610SAugustin Cavalier 			tmp = nf*log(fabs(w));
184*f504f610SAugustin Cavalier 			if (tmp < 7.09782712893383973096e+02) {
185*f504f610SAugustin Cavalier 				for (i=nm1; i>0; i--) {
186*f504f610SAugustin Cavalier 					temp = b;
187*f504f610SAugustin Cavalier 					b = b*(2.0*i)/x - a;
188*f504f610SAugustin Cavalier 					a = temp;
189*f504f610SAugustin Cavalier 				}
190*f504f610SAugustin Cavalier 			} else {
191*f504f610SAugustin Cavalier 				for (i=nm1; i>0; i--) {
192*f504f610SAugustin Cavalier 					temp = b;
193*f504f610SAugustin Cavalier 					b = b*(2.0*i)/x - a;
194*f504f610SAugustin Cavalier 					a = temp;
195*f504f610SAugustin Cavalier 					/* scale b to avoid spurious overflow */
196*f504f610SAugustin Cavalier 					if (b > 0x1p500) {
197*f504f610SAugustin Cavalier 						a /= b;
198*f504f610SAugustin Cavalier 						t /= b;
199*f504f610SAugustin Cavalier 						b  = 1.0;
200*f504f610SAugustin Cavalier 					}
201*f504f610SAugustin Cavalier 				}
202*f504f610SAugustin Cavalier 			}
203*f504f610SAugustin Cavalier 			z = j0(x);
204*f504f610SAugustin Cavalier 			w = j1(x);
205*f504f610SAugustin Cavalier 			if (fabs(z) >= fabs(w))
206*f504f610SAugustin Cavalier 				b = t*z/b;
207*f504f610SAugustin Cavalier 			else
208*f504f610SAugustin Cavalier 				b = t*w/a;
209*f504f610SAugustin Cavalier 		}
210*f504f610SAugustin Cavalier 	}
211*f504f610SAugustin Cavalier 	return sign ? -b : b;
212*f504f610SAugustin Cavalier }
213*f504f610SAugustin Cavalier 
214*f504f610SAugustin Cavalier 
yn(int n,double x)215*f504f610SAugustin Cavalier double yn(int n, double x)
216*f504f610SAugustin Cavalier {
217*f504f610SAugustin Cavalier 	uint32_t ix, lx, ib;
218*f504f610SAugustin Cavalier 	int nm1, sign, i;
219*f504f610SAugustin Cavalier 	double a, b, temp;
220*f504f610SAugustin Cavalier 
221*f504f610SAugustin Cavalier 	EXTRACT_WORDS(ix, lx, x);
222*f504f610SAugustin Cavalier 	sign = ix>>31;
223*f504f610SAugustin Cavalier 	ix &= 0x7fffffff;
224*f504f610SAugustin Cavalier 
225*f504f610SAugustin Cavalier 	if ((ix | (lx|-lx)>>31) > 0x7ff00000) /* nan */
226*f504f610SAugustin Cavalier 		return x;
227*f504f610SAugustin Cavalier 	if (sign && (ix|lx)!=0) /* x < 0 */
228*f504f610SAugustin Cavalier 		return 0/0.0;
229*f504f610SAugustin Cavalier 	if (ix == 0x7ff00000)
230*f504f610SAugustin Cavalier 		return 0.0;
231*f504f610SAugustin Cavalier 
232*f504f610SAugustin Cavalier 	if (n == 0)
233*f504f610SAugustin Cavalier 		return y0(x);
234*f504f610SAugustin Cavalier 	if (n < 0) {
235*f504f610SAugustin Cavalier 		nm1 = -(n+1);
236*f504f610SAugustin Cavalier 		sign = n&1;
237*f504f610SAugustin Cavalier 	} else {
238*f504f610SAugustin Cavalier 		nm1 = n-1;
239*f504f610SAugustin Cavalier 		sign = 0;
240*f504f610SAugustin Cavalier 	}
241*f504f610SAugustin Cavalier 	if (nm1 == 0)
242*f504f610SAugustin Cavalier 		return sign ? -y1(x) : y1(x);
243*f504f610SAugustin Cavalier 
244*f504f610SAugustin Cavalier 	if (ix >= 0x52d00000) { /* x > 2**302 */
245*f504f610SAugustin Cavalier 		/* (x >> n**2)
246*f504f610SAugustin Cavalier 		 *      Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
247*f504f610SAugustin Cavalier 		 *      Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
248*f504f610SAugustin Cavalier 		 *      Let s=sin(x), c=cos(x),
249*f504f610SAugustin Cavalier 		 *          xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
250*f504f610SAugustin Cavalier 		 *
251*f504f610SAugustin Cavalier 		 *             n    sin(xn)*sqt2    cos(xn)*sqt2
252*f504f610SAugustin Cavalier 		 *          ----------------------------------
253*f504f610SAugustin Cavalier 		 *             0     s-c             c+s
254*f504f610SAugustin Cavalier 		 *             1    -s-c            -c+s
255*f504f610SAugustin Cavalier 		 *             2    -s+c            -c-s
256*f504f610SAugustin Cavalier 		 *             3     s+c             c-s
257*f504f610SAugustin Cavalier 		 */
258*f504f610SAugustin Cavalier 		switch(nm1&3) {
259*f504f610SAugustin Cavalier 		case 0: temp = -sin(x)-cos(x); break;
260*f504f610SAugustin Cavalier 		case 1: temp = -sin(x)+cos(x); break;
261*f504f610SAugustin Cavalier 		case 2: temp =  sin(x)+cos(x); break;
262*f504f610SAugustin Cavalier 		default:
263*f504f610SAugustin Cavalier 		case 3: temp =  sin(x)-cos(x); break;
264*f504f610SAugustin Cavalier 		}
265*f504f610SAugustin Cavalier 		b = invsqrtpi*temp/sqrt(x);
266*f504f610SAugustin Cavalier 	} else {
267*f504f610SAugustin Cavalier 		a = y0(x);
268*f504f610SAugustin Cavalier 		b = y1(x);
269*f504f610SAugustin Cavalier 		/* quit if b is -inf */
270*f504f610SAugustin Cavalier 		GET_HIGH_WORD(ib, b);
271*f504f610SAugustin Cavalier 		for (i=0; i<nm1 && ib!=0xfff00000; ){
272*f504f610SAugustin Cavalier 			i++;
273*f504f610SAugustin Cavalier 			temp = b;
274*f504f610SAugustin Cavalier 			b = (2.0*i/x)*b - a;
275*f504f610SAugustin Cavalier 			GET_HIGH_WORD(ib, b);
276*f504f610SAugustin Cavalier 			a = temp;
277*f504f610SAugustin Cavalier 		}
278*f504f610SAugustin Cavalier 	}
279*f504f610SAugustin Cavalier 	return sign ? -b : b;
280*f504f610SAugustin Cavalier }
281