xref: /haiku/src/system/libroot/posix/musl/math/expl.c (revision 21258e2674226d6aa732321b6f8494841895af5f)
1 /* origin: OpenBSD /usr/src/lib/libm/src/ld80/e_expl.c */
2 /*
3  * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
4  *
5  * Permission to use, copy, modify, and distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17 /*
18  *      Exponential function, long double precision
19  *
20  *
21  * SYNOPSIS:
22  *
23  * long double x, y, expl();
24  *
25  * y = expl( x );
26  *
27  *
28  * DESCRIPTION:
29  *
30  * Returns e (2.71828...) raised to the x power.
31  *
32  * Range reduction is accomplished by separating the argument
33  * into an integer k and fraction f such that
34  *
35  *     x    k  f
36  *    e  = 2  e.
37  *
38  * A Pade' form of degree 5/6 is used to approximate exp(f) - 1
39  * in the basic range [-0.5 ln 2, 0.5 ln 2].
40  *
41  *
42  * ACCURACY:
43  *
44  *                      Relative error:
45  * arithmetic   domain     # trials      peak         rms
46  *    IEEE      +-10000     50000       1.12e-19    2.81e-20
47  *
48  *
49  * Error amplification in the exponential function can be
50  * a serious matter.  The error propagation involves
51  * exp( X(1+delta) ) = exp(X) ( 1 + X*delta + ... ),
52  * which shows that a 1 lsb error in representing X produces
53  * a relative error of X times 1 lsb in the function.
54  * While the routine gives an accurate result for arguments
55  * that are exactly represented by a long double precision
56  * computer number, the result contains amplified roundoff
57  * error for large arguments not exactly represented.
58  *
59  *
60  * ERROR MESSAGES:
61  *
62  *   message         condition      value returned
63  * exp underflow    x < MINLOG         0.0
64  * exp overflow     x > MAXLOG         MAXNUM
65  *
66  */
67 
68 #include "libm.h"
69 
70 #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
71 long double expl(long double x)
72 {
73 	return exp(x);
74 }
75 #elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
76 
77 static const long double P[3] = {
78  1.2617719307481059087798E-4L,
79  3.0299440770744196129956E-2L,
80  9.9999999999999999991025E-1L,
81 };
82 static const long double Q[4] = {
83  3.0019850513866445504159E-6L,
84  2.5244834034968410419224E-3L,
85  2.2726554820815502876593E-1L,
86  2.0000000000000000000897E0L,
87 };
88 static const long double
89 LN2HI = 6.9314575195312500000000E-1L,
90 LN2LO = 1.4286068203094172321215E-6L,
91 LOG2E = 1.4426950408889634073599E0L;
92 
93 long double expl(long double x)
94 {
95 	long double px, xx;
96 	int k;
97 
98 	if (isnan(x))
99 		return x;
100 	if (x > 11356.5234062941439488L) /* x > ln(2^16384 - 0.5) */
101 		return x * 0x1p16383L;
102 	if (x < -11399.4985314888605581L) /* x < ln(2^-16446) */
103 		return -0x1p-16445L/x;
104 
105 	/* Express e**x = e**f 2**k
106 	 *   = e**(f + k ln(2))
107 	 */
108 	px = floorl(LOG2E * x + 0.5);
109 	k = px;
110 	x -= px * LN2HI;
111 	x -= px * LN2LO;
112 
113 	/* rational approximation of the fractional part:
114 	 * e**x =  1 + 2x P(x**2)/(Q(x**2) - x P(x**2))
115 	 */
116 	xx = x * x;
117 	px = x * __polevll(xx, P, 2);
118 	x = px/(__polevll(xx, Q, 3) - px);
119 	x = 1.0 + 2.0 * x;
120 	return scalbnl(x, k);
121 }
122 #elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
123 // TODO: broken implementation to make things compile
124 long double expl(long double x)
125 {
126 	return exp(x);
127 }
128 #endif
129