1*f504f610SAugustin Cavalier /*
2*f504f610SAugustin Cavalier * Double-precision 2^x function.
3*f504f610SAugustin Cavalier *
4*f504f610SAugustin Cavalier * Copyright (c) 2018, Arm Limited.
5*f504f610SAugustin Cavalier * SPDX-License-Identifier: MIT
6*f504f610SAugustin Cavalier */
7*f504f610SAugustin Cavalier
8*f504f610SAugustin Cavalier #include <math.h>
9*f504f610SAugustin Cavalier #include <stdint.h>
10*f504f610SAugustin Cavalier #include "libm.h"
11*f504f610SAugustin Cavalier #include "exp_data.h"
12*f504f610SAugustin Cavalier
13*f504f610SAugustin Cavalier #define N (1 << EXP_TABLE_BITS)
14*f504f610SAugustin Cavalier #define Shift __exp_data.exp2_shift
15*f504f610SAugustin Cavalier #define T __exp_data.tab
16*f504f610SAugustin Cavalier #define C1 __exp_data.exp2_poly[0]
17*f504f610SAugustin Cavalier #define C2 __exp_data.exp2_poly[1]
18*f504f610SAugustin Cavalier #define C3 __exp_data.exp2_poly[2]
19*f504f610SAugustin Cavalier #define C4 __exp_data.exp2_poly[3]
20*f504f610SAugustin Cavalier #define C5 __exp_data.exp2_poly[4]
21*f504f610SAugustin Cavalier
22*f504f610SAugustin Cavalier /* Handle cases that may overflow or underflow when computing the result that
23*f504f610SAugustin Cavalier is scale*(1+TMP) without intermediate rounding. The bit representation of
24*f504f610SAugustin Cavalier scale is in SBITS, however it has a computed exponent that may have
25*f504f610SAugustin Cavalier overflown into the sign bit so that needs to be adjusted before using it as
26*f504f610SAugustin Cavalier a double. (int32_t)KI is the k used in the argument reduction and exponent
27*f504f610SAugustin Cavalier adjustment of scale, positive k here means the result may overflow and
28*f504f610SAugustin Cavalier negative k means the result may underflow. */
specialcase(double_t tmp,uint64_t sbits,uint64_t ki)29*f504f610SAugustin Cavalier static inline double specialcase(double_t tmp, uint64_t sbits, uint64_t ki)
30*f504f610SAugustin Cavalier {
31*f504f610SAugustin Cavalier double_t scale, y;
32*f504f610SAugustin Cavalier
33*f504f610SAugustin Cavalier if ((ki & 0x80000000) == 0) {
34*f504f610SAugustin Cavalier /* k > 0, the exponent of scale might have overflowed by 1. */
35*f504f610SAugustin Cavalier sbits -= 1ull << 52;
36*f504f610SAugustin Cavalier scale = asdouble(sbits);
37*f504f610SAugustin Cavalier y = 2 * (scale + scale * tmp);
38*f504f610SAugustin Cavalier return eval_as_double(y);
39*f504f610SAugustin Cavalier }
40*f504f610SAugustin Cavalier /* k < 0, need special care in the subnormal range. */
41*f504f610SAugustin Cavalier sbits += 1022ull << 52;
42*f504f610SAugustin Cavalier scale = asdouble(sbits);
43*f504f610SAugustin Cavalier y = scale + scale * tmp;
44*f504f610SAugustin Cavalier if (y < 1.0) {
45*f504f610SAugustin Cavalier /* Round y to the right precision before scaling it into the subnormal
46*f504f610SAugustin Cavalier range to avoid double rounding that can cause 0.5+E/2 ulp error where
47*f504f610SAugustin Cavalier E is the worst-case ulp error outside the subnormal range. So this
48*f504f610SAugustin Cavalier is only useful if the goal is better than 1 ulp worst-case error. */
49*f504f610SAugustin Cavalier double_t hi, lo;
50*f504f610SAugustin Cavalier lo = scale - y + scale * tmp;
51*f504f610SAugustin Cavalier hi = 1.0 + y;
52*f504f610SAugustin Cavalier lo = 1.0 - hi + y + lo;
53*f504f610SAugustin Cavalier y = eval_as_double(hi + lo) - 1.0;
54*f504f610SAugustin Cavalier /* Avoid -0.0 with downward rounding. */
55*f504f610SAugustin Cavalier if (WANT_ROUNDING && y == 0.0)
56*f504f610SAugustin Cavalier y = 0.0;
57*f504f610SAugustin Cavalier /* The underflow exception needs to be signaled explicitly. */
58*f504f610SAugustin Cavalier fp_force_eval(fp_barrier(0x1p-1022) * 0x1p-1022);
59*f504f610SAugustin Cavalier }
60*f504f610SAugustin Cavalier y = 0x1p-1022 * y;
61*f504f610SAugustin Cavalier return eval_as_double(y);
62*f504f610SAugustin Cavalier }
63*f504f610SAugustin Cavalier
64*f504f610SAugustin Cavalier /* Top 12 bits of a double (sign and exponent bits). */
top12(double x)65*f504f610SAugustin Cavalier static inline uint32_t top12(double x)
66*f504f610SAugustin Cavalier {
67*f504f610SAugustin Cavalier return asuint64(x) >> 52;
68*f504f610SAugustin Cavalier }
69*f504f610SAugustin Cavalier
exp2(double x)70*f504f610SAugustin Cavalier double exp2(double x)
71*f504f610SAugustin Cavalier {
72*f504f610SAugustin Cavalier uint32_t abstop;
73*f504f610SAugustin Cavalier uint64_t ki, idx, top, sbits;
74*f504f610SAugustin Cavalier double_t kd, r, r2, scale, tail, tmp;
75*f504f610SAugustin Cavalier
76*f504f610SAugustin Cavalier abstop = top12(x) & 0x7ff;
77*f504f610SAugustin Cavalier if (predict_false(abstop - top12(0x1p-54) >= top12(512.0) - top12(0x1p-54))) {
78*f504f610SAugustin Cavalier if (abstop - top12(0x1p-54) >= 0x80000000)
79*f504f610SAugustin Cavalier /* Avoid spurious underflow for tiny x. */
80*f504f610SAugustin Cavalier /* Note: 0 is common input. */
81*f504f610SAugustin Cavalier return WANT_ROUNDING ? 1.0 + x : 1.0;
82*f504f610SAugustin Cavalier if (abstop >= top12(1024.0)) {
83*f504f610SAugustin Cavalier if (asuint64(x) == asuint64(-INFINITY))
84*f504f610SAugustin Cavalier return 0.0;
85*f504f610SAugustin Cavalier if (abstop >= top12(INFINITY))
86*f504f610SAugustin Cavalier return 1.0 + x;
87*f504f610SAugustin Cavalier if (!(asuint64(x) >> 63))
88*f504f610SAugustin Cavalier return __math_oflow(0);
89*f504f610SAugustin Cavalier else if (asuint64(x) >= asuint64(-1075.0))
90*f504f610SAugustin Cavalier return __math_uflow(0);
91*f504f610SAugustin Cavalier }
92*f504f610SAugustin Cavalier if (2 * asuint64(x) > 2 * asuint64(928.0))
93*f504f610SAugustin Cavalier /* Large x is special cased below. */
94*f504f610SAugustin Cavalier abstop = 0;
95*f504f610SAugustin Cavalier }
96*f504f610SAugustin Cavalier
97*f504f610SAugustin Cavalier /* exp2(x) = 2^(k/N) * 2^r, with 2^r in [2^(-1/2N),2^(1/2N)]. */
98*f504f610SAugustin Cavalier /* x = k/N + r, with int k and r in [-1/2N, 1/2N]. */
99*f504f610SAugustin Cavalier kd = eval_as_double(x + Shift);
100*f504f610SAugustin Cavalier ki = asuint64(kd); /* k. */
101*f504f610SAugustin Cavalier kd -= Shift; /* k/N for int k. */
102*f504f610SAugustin Cavalier r = x - kd;
103*f504f610SAugustin Cavalier /* 2^(k/N) ~= scale * (1 + tail). */
104*f504f610SAugustin Cavalier idx = 2 * (ki % N);
105*f504f610SAugustin Cavalier top = ki << (52 - EXP_TABLE_BITS);
106*f504f610SAugustin Cavalier tail = asdouble(T[idx]);
107*f504f610SAugustin Cavalier /* This is only a valid scale when -1023*N < k < 1024*N. */
108*f504f610SAugustin Cavalier sbits = T[idx + 1] + top;
109*f504f610SAugustin Cavalier /* exp2(x) = 2^(k/N) * 2^r ~= scale + scale * (tail + 2^r - 1). */
110*f504f610SAugustin Cavalier /* Evaluation is optimized assuming superscalar pipelined execution. */
111*f504f610SAugustin Cavalier r2 = r * r;
112*f504f610SAugustin Cavalier /* Without fma the worst case error is 0.5/N ulp larger. */
113*f504f610SAugustin Cavalier /* Worst case error is less than 0.5+0.86/N+(abs poly error * 2^53) ulp. */
114*f504f610SAugustin Cavalier tmp = tail + r * C1 + r2 * (C2 + r * C3) + r2 * r2 * (C4 + r * C5);
115*f504f610SAugustin Cavalier if (predict_false(abstop == 0))
116*f504f610SAugustin Cavalier return specialcase(tmp, sbits, ki);
117*f504f610SAugustin Cavalier scale = asdouble(sbits);
118*f504f610SAugustin Cavalier /* Note: tmp == 0 or |tmp| > 2^-65 and scale > 2^-928, so there
119*f504f610SAugustin Cavalier is no spurious underflow here even without fma. */
120*f504f610SAugustin Cavalier return eval_as_double(scale + scale * tmp);
121*f504f610SAugustin Cavalier }
122