xref: /haiku/src/system/libroot/posix/musl/math/erff.c (revision 072d3935c2497638e9c2502f574c133caeba9d3d)
1 /* origin: FreeBSD /usr/src/lib/msun/src/s_erff.c */
2 /*
3  * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
4  */
5 /*
6  * ====================================================
7  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
8  *
9  * Developed at SunPro, a Sun Microsystems, Inc. business.
10  * Permission to use, copy, modify, and distribute this
11  * software is freely granted, provided that this notice
12  * is preserved.
13  * ====================================================
14  */
15 
16 #include "libm.h"
17 
18 static const float
19 erx  =  8.4506291151e-01, /* 0x3f58560b */
20 /*
21  * Coefficients for approximation to  erf on [0,0.84375]
22  */
23 efx8 =  1.0270333290e+00, /* 0x3f8375d4 */
24 pp0  =  1.2837916613e-01, /* 0x3e0375d4 */
25 pp1  = -3.2504209876e-01, /* 0xbea66beb */
26 pp2  = -2.8481749818e-02, /* 0xbce9528f */
27 pp3  = -5.7702702470e-03, /* 0xbbbd1489 */
28 pp4  = -2.3763017452e-05, /* 0xb7c756b1 */
29 qq1  =  3.9791721106e-01, /* 0x3ecbbbce */
30 qq2  =  6.5022252500e-02, /* 0x3d852a63 */
31 qq3  =  5.0813062117e-03, /* 0x3ba68116 */
32 qq4  =  1.3249473704e-04, /* 0x390aee49 */
33 qq5  = -3.9602282413e-06, /* 0xb684e21a */
34 /*
35  * Coefficients for approximation to  erf  in [0.84375,1.25]
36  */
37 pa0  = -2.3621185683e-03, /* 0xbb1acdc6 */
38 pa1  =  4.1485610604e-01, /* 0x3ed46805 */
39 pa2  = -3.7220788002e-01, /* 0xbebe9208 */
40 pa3  =  3.1834661961e-01, /* 0x3ea2fe54 */
41 pa4  = -1.1089469492e-01, /* 0xbde31cc2 */
42 pa5  =  3.5478305072e-02, /* 0x3d1151b3 */
43 pa6  = -2.1663755178e-03, /* 0xbb0df9c0 */
44 qa1  =  1.0642088205e-01, /* 0x3dd9f331 */
45 qa2  =  5.4039794207e-01, /* 0x3f0a5785 */
46 qa3  =  7.1828655899e-02, /* 0x3d931ae7 */
47 qa4  =  1.2617121637e-01, /* 0x3e013307 */
48 qa5  =  1.3637083583e-02, /* 0x3c5f6e13 */
49 qa6  =  1.1984500103e-02, /* 0x3c445aa3 */
50 /*
51  * Coefficients for approximation to  erfc in [1.25,1/0.35]
52  */
53 ra0  = -9.8649440333e-03, /* 0xbc21a093 */
54 ra1  = -6.9385856390e-01, /* 0xbf31a0b7 */
55 ra2  = -1.0558626175e+01, /* 0xc128f022 */
56 ra3  = -6.2375331879e+01, /* 0xc2798057 */
57 ra4  = -1.6239666748e+02, /* 0xc322658c */
58 ra5  = -1.8460508728e+02, /* 0xc3389ae7 */
59 ra6  = -8.1287437439e+01, /* 0xc2a2932b */
60 ra7  = -9.8143291473e+00, /* 0xc11d077e */
61 sa1  =  1.9651271820e+01, /* 0x419d35ce */
62 sa2  =  1.3765776062e+02, /* 0x4309a863 */
63 sa3  =  4.3456588745e+02, /* 0x43d9486f */
64 sa4  =  6.4538726807e+02, /* 0x442158c9 */
65 sa5  =  4.2900814819e+02, /* 0x43d6810b */
66 sa6  =  1.0863500214e+02, /* 0x42d9451f */
67 sa7  =  6.5702495575e+00, /* 0x40d23f7c */
68 sa8  = -6.0424413532e-02, /* 0xbd777f97 */
69 /*
70  * Coefficients for approximation to  erfc in [1/.35,28]
71  */
72 rb0  = -9.8649431020e-03, /* 0xbc21a092 */
73 rb1  = -7.9928326607e-01, /* 0xbf4c9dd4 */
74 rb2  = -1.7757955551e+01, /* 0xc18e104b */
75 rb3  = -1.6063638306e+02, /* 0xc320a2ea */
76 rb4  = -6.3756646729e+02, /* 0xc41f6441 */
77 rb5  = -1.0250950928e+03, /* 0xc480230b */
78 rb6  = -4.8351919556e+02, /* 0xc3f1c275 */
79 sb1  =  3.0338060379e+01, /* 0x41f2b459 */
80 sb2  =  3.2579251099e+02, /* 0x43a2e571 */
81 sb3  =  1.5367296143e+03, /* 0x44c01759 */
82 sb4  =  3.1998581543e+03, /* 0x4547fdbb */
83 sb5  =  2.5530502930e+03, /* 0x451f90ce */
84 sb6  =  4.7452853394e+02, /* 0x43ed43a7 */
85 sb7  = -2.2440952301e+01; /* 0xc1b38712 */
86 
87 static float erfc1(float x)
88 {
89 	float_t s,P,Q;
90 
91 	s = fabsf(x) - 1;
92 	P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
93 	Q = 1+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
94 	return 1 - erx - P/Q;
95 }
96 
97 static float erfc2(uint32_t ix, float x)
98 {
99 	float_t s,R,S;
100 	float z;
101 
102 	if (ix < 0x3fa00000)  /* |x| < 1.25 */
103 		return erfc1(x);
104 
105 	x = fabsf(x);
106 	s = 1/(x*x);
107 	if (ix < 0x4036db6d) {   /* |x| < 1/0.35 */
108 		R = ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
109 		     ra5+s*(ra6+s*ra7))))));
110 		S = 1.0f+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
111 		     sa5+s*(sa6+s*(sa7+s*sa8)))))));
112 	} else {                 /* |x| >= 1/0.35 */
113 		R = rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
114 		     rb5+s*rb6)))));
115 		S = 1.0f+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
116 		     sb5+s*(sb6+s*sb7))))));
117 	}
118 	GET_FLOAT_WORD(ix, x);
119 	SET_FLOAT_WORD(z, ix&0xffffe000);
120 	return expf(-z*z - 0.5625f) * expf((z-x)*(z+x) + R/S)/x;
121 }
122 
123 float erff(float x)
124 {
125 	float r,s,z,y;
126 	uint32_t ix;
127 	int sign;
128 
129 	GET_FLOAT_WORD(ix, x);
130 	sign = ix>>31;
131 	ix &= 0x7fffffff;
132 	if (ix >= 0x7f800000) {
133 		/* erf(nan)=nan, erf(+-inf)=+-1 */
134 		return 1-2*sign + 1/x;
135 	}
136 	if (ix < 0x3f580000) {  /* |x| < 0.84375 */
137 		if (ix < 0x31800000) {  /* |x| < 2**-28 */
138 			/*avoid underflow */
139 			return 0.125f*(8*x + efx8*x);
140 		}
141 		z = x*x;
142 		r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
143 		s = 1+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
144 		y = r/s;
145 		return x + x*y;
146 	}
147 	if (ix < 0x40c00000)  /* |x| < 6 */
148 		y = 1 - erfc2(ix,x);
149 	else
150 		y = 1 - 0x1p-120f;
151 	return sign ? -y : y;
152 }
153 
154 float erfcf(float x)
155 {
156 	float r,s,z,y;
157 	uint32_t ix;
158 	int sign;
159 
160 	GET_FLOAT_WORD(ix, x);
161 	sign = ix>>31;
162 	ix &= 0x7fffffff;
163 	if (ix >= 0x7f800000) {
164 		/* erfc(nan)=nan, erfc(+-inf)=0,2 */
165 		return 2*sign + 1/x;
166 	}
167 
168 	if (ix < 0x3f580000) {  /* |x| < 0.84375 */
169 		if (ix < 0x23800000)  /* |x| < 2**-56 */
170 			return 1.0f - x;
171 		z = x*x;
172 		r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
173 		s = 1.0f+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
174 		y = r/s;
175 		if (sign || ix < 0x3e800000)  /* x < 1/4 */
176 			return 1.0f - (x+x*y);
177 		return 0.5f - (x - 0.5f + x*y);
178 	}
179 	if (ix < 0x41e00000) {  /* |x| < 28 */
180 		return sign ? 2 - erfc2(ix,x) : erfc2(ix,x);
181 	}
182 	return sign ? 2 - 0x1p-120f : 0x1p-120f*0x1p-120f;
183 }
184