xref: /haiku/src/system/libroot/posix/musl/math/asin.c (revision 4b918abdb02a26a770d898594eaaccc6f1726e9b)
1  /* origin: FreeBSD /usr/src/lib/msun/src/e_asin.c */
2  /*
3   * ====================================================
4   * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
5   *
6   * Developed at SunSoft, a Sun Microsystems, Inc. business.
7   * Permission to use, copy, modify, and distribute this
8   * software is freely granted, provided that this notice
9   * is preserved.
10   * ====================================================
11   */
12  /* asin(x)
13   * Method :
14   *      Since  asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...
15   *      we approximate asin(x) on [0,0.5] by
16   *              asin(x) = x + x*x^2*R(x^2)
17   *      where
18   *              R(x^2) is a rational approximation of (asin(x)-x)/x^3
19   *      and its remez error is bounded by
20   *              |(asin(x)-x)/x^3 - R(x^2)| < 2^(-58.75)
21   *
22   *      For x in [0.5,1]
23   *              asin(x) = pi/2-2*asin(sqrt((1-x)/2))
24   *      Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2;
25   *      then for x>0.98
26   *              asin(x) = pi/2 - 2*(s+s*z*R(z))
27   *                      = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo)
28   *      For x<=0.98, let pio4_hi = pio2_hi/2, then
29   *              f = hi part of s;
30   *              c = sqrt(z) - f = (z-f*f)/(s+f)         ...f+c=sqrt(z)
31   *      and
32   *              asin(x) = pi/2 - 2*(s+s*z*R(z))
33   *                      = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo)
34   *                      = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c))
35   *
36   * Special cases:
37   *      if x is NaN, return x itself;
38   *      if |x|>1, return NaN with invalid signal.
39   *
40   */
41  
42  #include "libm.h"
43  
44  static const double
45  pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */
46  pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */
47  /* coefficients for R(x^2) */
48  pS0 =  1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */
49  pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */
50  pS2 =  2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */
51  pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */
52  pS4 =  7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */
53  pS5 =  3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */
54  qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */
55  qS2 =  2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */
56  qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */
57  qS4 =  7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */
58  
59  static double R(double z)
60  {
61  	double_t p, q;
62  	p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
63  	q = 1.0+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
64  	return p/q;
65  }
66  
67  double asin(double x)
68  {
69  	double z,r,s;
70  	uint32_t hx,ix;
71  
72  	GET_HIGH_WORD(hx, x);
73  	ix = hx & 0x7fffffff;
74  	/* |x| >= 1 or nan */
75  	if (ix >= 0x3ff00000) {
76  		uint32_t lx;
77  		GET_LOW_WORD(lx, x);
78  		if ((ix-0x3ff00000 | lx) == 0)
79  			/* asin(1) = +-pi/2 with inexact */
80  			return x*pio2_hi + 0x1p-120f;
81  		return 0/(x-x);
82  	}
83  	/* |x| < 0.5 */
84  	if (ix < 0x3fe00000) {
85  		/* if 0x1p-1022 <= |x| < 0x1p-26, avoid raising underflow */
86  		if (ix < 0x3e500000 && ix >= 0x00100000)
87  			return x;
88  		return x + x*R(x*x);
89  	}
90  	/* 1 > |x| >= 0.5 */
91  	z = (1 - fabs(x))*0.5;
92  	s = sqrt(z);
93  	r = R(z);
94  	if (ix >= 0x3fef3333) {  /* if |x| > 0.975 */
95  		x = pio2_hi-(2*(s+s*r)-pio2_lo);
96  	} else {
97  		double f,c;
98  		/* f+c = sqrt(z) */
99  		f = s;
100  		SET_LOW_WORD(f,0);
101  		c = (z-f*f)/(s+f);
102  		x = 0.5*pio2_hi - (2*s*r - (pio2_lo-2*c) - (0.5*pio2_hi-2*f));
103  	}
104  	if (hx >> 31)
105  		return -x;
106  	return x;
107  }
108