xref: /haiku/src/system/libroot/posix/glibc/stdlib/random_r.c (revision e81a954787e50e56a7f06f72705b7859b6ab06d1)
1 /*
2    Copyright (C) 1995 Free Software Foundation
3 
4    The GNU C Library is free software; you can redistribute it and/or
5    modify it under the terms of the GNU Lesser General Public
6    License as published by the Free Software Foundation; either
7    version 2.1 of the License, or (at your option) any later version.
8 
9    The GNU C Library is distributed in the hope that it will be useful,
10    but WITHOUT ANY WARRANTY; without even the implied warranty of
11    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
12    Lesser General Public License for more details.
13 
14    You should have received a copy of the GNU Lesser General Public
15    License along with the GNU C Library; if not, write to the Free
16    Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
17    02111-1307 USA.  */
18 
19 /*
20    Copyright (C) 1983 Regents of the University of California.
21    All rights reserved.
22 
23    Redistribution and use in source and binary forms, with or without
24    modification, are permitted provided that the following conditions
25    are met:
26 
27    1. Redistributions of source code must retain the above copyright
28       notice, this list of conditions and the following disclaimer.
29    2. Redistributions in binary form must reproduce the above copyright
30       notice, this list of conditions and the following disclaimer in the
31       documentation and/or other materials provided with the distribution.
32    4. Neither the name of the University nor the names of its contributors
33       may be used to endorse or promote products derived from this software
34       without specific prior written permission.
35 
36    THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
37    ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
38    IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
39    ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
40    FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
41    DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
42    OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
43    HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
44    LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
45    OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
46    SUCH DAMAGE.*/
47 
48 /*
49  * This is derived from the Berkeley source:
50  *	@(#)random.c	5.5 (Berkeley) 7/6/88
51  * It was reworked for the GNU C Library by Roland McGrath.
52  * Rewritten to be reentrant by Ulrich Drepper, 1995
53  */
54 
55 #include <errno.h>
56 #include <limits.h>
57 #include <stddef.h>
58 #include <stdlib.h>
59 
60 
61 /* An improved random number generation package.  In addition to the standard
62    rand()/srand() like interface, this package also has a special state info
63    interface.  The initstate() routine is called with a seed, an array of
64    bytes, and a count of how many bytes are being passed in; this array is
65    then initialized to contain information for random number generation with
66    that much state information.  Good sizes for the amount of state
67    information are 32, 64, 128, and 256 bytes.  The state can be switched by
68    calling the setstate() function with the same array as was initialized
69    with initstate().  By default, the package runs with 128 bytes of state
70    information and generates far better random numbers than a linear
71    congruential generator.  If the amount of state information is less than
72    32 bytes, a simple linear congruential R.N.G. is used.  Internally, the
73    state information is treated as an array of longs; the zeroth element of
74    the array is the type of R.N.G. being used (small integer); the remainder
75    of the array is the state information for the R.N.G.  Thus, 32 bytes of
76    state information will give 7 longs worth of state information, which will
77    allow a degree seven polynomial.  (Note: The zeroth word of state
78    information also has some other information stored in it; see setstate
79    for details).  The random number generation technique is a linear feedback
80    shift register approach, employing trinomials (since there are fewer terms
81    to sum up that way).  In this approach, the least significant bit of all
82    the numbers in the state table will act as a linear feedback shift register,
83    and will have period 2^deg - 1 (where deg is the degree of the polynomial
84    being used, assuming that the polynomial is irreducible and primitive).
85    The higher order bits will have longer periods, since their values are
86    also influenced by pseudo-random carries out of the lower bits.  The
87    total period of the generator is approximately deg*(2**deg - 1); thus
88    doubling the amount of state information has a vast influence on the
89    period of the generator.  Note: The deg*(2**deg - 1) is an approximation
90    only good for large deg, when the period of the shift register is the
91    dominant factor.  With deg equal to seven, the period is actually much
92    longer than the 7*(2**7 - 1) predicted by this formula.  */
93 
94 
95 
96 /* For each of the currently supported random number generators, we have a
97    break value on the amount of state information (you need at least this many
98    bytes of state info to support this random number generator), a degree for
99    the polynomial (actually a trinomial) that the R.N.G. is based on, and
100    separation between the two lower order coefficients of the trinomial.  */
101 
102 /* Linear congruential.  */
103 #define	TYPE_0		0
104 #define	BREAK_0		8
105 #define	DEG_0		0
106 #define	SEP_0		0
107 
108 /* x**7 + x**3 + 1.  */
109 #define	TYPE_1		1
110 #define	BREAK_1		32
111 #define	DEG_1		7
112 #define	SEP_1		3
113 
114 /* x**15 + x + 1.  */
115 #define	TYPE_2		2
116 #define	BREAK_2		64
117 #define	DEG_2		15
118 #define	SEP_2		1
119 
120 /* x**31 + x**3 + 1.  */
121 #define	TYPE_3		3
122 #define	BREAK_3		128
123 #define	DEG_3		31
124 #define	SEP_3		3
125 
126 /* x**63 + x + 1.  */
127 #define	TYPE_4		4
128 #define	BREAK_4		256
129 #define	DEG_4		63
130 #define	SEP_4		1
131 
132 
133 /* Array versions of the above information to make code run faster.
134    Relies on fact that TYPE_i == i.  */
135 
136 #define	MAX_TYPES	5	/* Max number of types above.  */
137 
138 struct random_poly_info
139 {
140   int seps[MAX_TYPES];
141   int degrees[MAX_TYPES];
142 };
143 
144 static const struct random_poly_info random_poly_info =
145 {
146   { SEP_0, SEP_1, SEP_2, SEP_3, SEP_4 },
147   { DEG_0, DEG_1, DEG_2, DEG_3, DEG_4 }
148 };
149 
150 
151 
152 
153 /* Initialize the random number generator based on the given seed.  If the
154    type is the trivial no-state-information type, just remember the seed.
155    Otherwise, initializes state[] based on the given "seed" via a linear
156    congruential generator.  Then, the pointers are set to known locations
157    that are exactly rand_sep places apart.  Lastly, it cycles the state
158    information a given number of times to get rid of any initial dependencies
159    introduced by the L.C.R.N.G.  Note that the initialization of randtbl[]
160    for default usage relies on values produced by this routine.  */
161 int
162 __srandom_r (seed, buf)
163      unsigned int seed;
164      struct random_data *buf;
165 {
166   int type;
167   int32_t *state;
168   long int i;
169   long int word;
170   int32_t *dst;
171   int kc;
172 
173   if (buf == NULL)
174     goto fail;
175   type = buf->rand_type;
176   if ((unsigned int) type >= MAX_TYPES)
177     goto fail;
178 
179   state = buf->state;
180   /* We must make sure the seed is not 0.  Take arbitrarily 1 in this case.  */
181   if (seed == 0)
182     seed = 1;
183   state[0] = seed;
184   if (type == TYPE_0)
185     goto done;
186 
187   dst = state;
188   word = seed;
189   kc = buf->rand_deg;
190   for (i = 1; i < kc; ++i)
191     {
192       /* This does:
193 	   state[i] = (16807 * state[i - 1]) % 2147483647;
194 	 but avoids overflowing 31 bits.  */
195       long int hi = word / 127773;
196       long int lo = word % 127773;
197       word = 16807 * lo - 2836 * hi;
198       if (word < 0)
199 	word += 2147483647;
200       *++dst = word;
201     }
202 
203   buf->fptr = &state[buf->rand_sep];
204   buf->rptr = &state[0];
205   kc *= 10;
206   while (--kc >= 0)
207     {
208       int32_t discard;
209       (void) __random_r (buf, &discard);
210     }
211 
212  done:
213   return 0;
214 
215  fail:
216   return -1;
217 }
218 
219 weak_alias (__srandom_r, srandom_r)
220 
221 /* Initialize the state information in the given array of N bytes for
222    future random number generation.  Based on the number of bytes we
223    are given, and the break values for the different R.N.G.'s, we choose
224    the best (largest) one we can and set things up for it.  srandom is
225    then called to initialize the state information.  Note that on return
226    from srandom, we set state[-1] to be the type multiplexed with the current
227    value of the rear pointer; this is so successive calls to initstate won't
228    lose this information and will be able to restart with setstate.
229    Note: The first thing we do is save the current state, if any, just like
230    setstate so that it doesn't matter when initstate is called.
231    Returns a pointer to the old state.  */
232 int
233 __initstate_r (seed, arg_state, n, buf)
234      unsigned int seed;
235      char *arg_state;
236      size_t n;
237      struct random_data *buf;
238 {
239   int type;
240   int degree;
241   int separation;
242   int32_t *state;
243 
244   if (buf == NULL)
245     goto fail;
246 
247   if (n >= BREAK_3)
248     type = n < BREAK_4 ? TYPE_3 : TYPE_4;
249   else if (n < BREAK_1)
250     {
251       if (n < BREAK_0)
252 	{
253 	  __set_errno (EINVAL);
254 	  goto fail;
255 	}
256       type = TYPE_0;
257     }
258   else
259     type = n < BREAK_2 ? TYPE_1 : TYPE_2;
260 
261   degree = random_poly_info.degrees[type];
262   separation = random_poly_info.seps[type];
263 
264   buf->rand_type = type;
265   buf->rand_sep = separation;
266   buf->rand_deg = degree;
267   state = &((int32_t *) arg_state)[1];	/* First location.  */
268   /* Must set END_PTR before srandom.  */
269   buf->end_ptr = &state[degree];
270 
271   buf->state = state;
272 
273   __srandom_r (seed, buf);
274 
275   state[-1] = TYPE_0;
276   if (type != TYPE_0)
277     state[-1] = (buf->rptr - state) * MAX_TYPES + type;
278 
279   return 0;
280 
281  fail:
282   __set_errno (EINVAL);
283   return -1;
284 }
285 
286 weak_alias (__initstate_r, initstate_r)
287 
288 /* Restore the state from the given state array.
289    Note: It is important that we also remember the locations of the pointers
290    in the current state information, and restore the locations of the pointers
291    from the old state information.  This is done by multiplexing the pointer
292    location into the zeroth word of the state information. Note that due
293    to the order in which things are done, it is OK to call setstate with the
294    same state as the current state
295    Returns a pointer to the old state information.  */
296 int
297 __setstate_r (arg_state, buf)
298      char *arg_state;
299      struct random_data *buf;
300 {
301   int32_t *new_state = 1 + (int32_t *) arg_state;
302   int type;
303   int old_type;
304   int32_t *old_state;
305   int degree;
306   int separation;
307 
308   if (arg_state == NULL || buf == NULL)
309     goto fail;
310 
311   old_type = buf->rand_type;
312   old_state = buf->state;
313   if (old_type == TYPE_0)
314     old_state[-1] = TYPE_0;
315   else
316     old_state[-1] = (MAX_TYPES * (buf->rptr - old_state)) + old_type;
317 
318   type = new_state[-1] % MAX_TYPES;
319   if (type < TYPE_0 || type > TYPE_4)
320     goto fail;
321 
322   buf->rand_deg = degree = random_poly_info.degrees[type];
323   buf->rand_sep = separation = random_poly_info.seps[type];
324   buf->rand_type = type;
325 
326   if (type != TYPE_0)
327     {
328       int rear = new_state[-1] / MAX_TYPES;
329       buf->rptr = &new_state[rear];
330       buf->fptr = &new_state[(rear + separation) % degree];
331     }
332   buf->state = new_state;
333   /* Set end_ptr too.  */
334   buf->end_ptr = &new_state[degree];
335 
336   return 0;
337 
338  fail:
339   __set_errno (EINVAL);
340   return -1;
341 }
342 
343 weak_alias (__setstate_r, setstate_r)
344 
345 /* If we are using the trivial TYPE_0 R.N.G., just do the old linear
346    congruential bit.  Otherwise, we do our fancy trinomial stuff, which is the
347    same in all the other cases due to all the global variables that have been
348    set up.  The basic operation is to add the number at the rear pointer into
349    the one at the front pointer.  Then both pointers are advanced to the next
350    location cyclically in the table.  The value returned is the sum generated,
351    reduced to 31 bits by throwing away the "least random" low bit.
352    Note: The code takes advantage of the fact that both the front and
353    rear pointers can't wrap on the same call by not testing the rear
354    pointer if the front one has wrapped.  Returns a 31-bit random number.  */
355 
356 int
357 __random_r (buf, result)
358      struct random_data *buf;
359      int32_t *result;
360 {
361   int32_t *state;
362 
363   if (buf == NULL || result == NULL)
364     goto fail;
365 
366   state = buf->state;
367 
368   if (buf->rand_type == TYPE_0)
369     {
370       int32_t val = state[0];
371       val = ((state[0] * 1103515245) + 12345) & 0x7fffffff;
372       state[0] = val;
373       *result = val;
374     }
375   else
376     {
377       int32_t *fptr = buf->fptr;
378       int32_t *rptr = buf->rptr;
379       int32_t *end_ptr = buf->end_ptr;
380       int32_t val;
381 
382       val = *fptr += *rptr;
383       /* Chucking least random bit.  */
384       *result = (val >> 1) & 0x7fffffff;
385       ++fptr;
386       if (fptr >= end_ptr)
387 	{
388 	  fptr = state;
389 	  ++rptr;
390 	}
391       else
392 	{
393 	  ++rptr;
394 	  if (rptr >= end_ptr)
395 	    rptr = state;
396 	}
397       buf->fptr = fptr;
398       buf->rptr = rptr;
399     }
400   return 0;
401 
402  fail:
403   __set_errno (EINVAL);
404   return -1;
405 }
406 
407 weak_alias (__random_r, random_r)
408