1 /* Extended regular expression matching and search library. 2 Copyright (C) 2002-2018 Free Software Foundation, Inc. 3 This file is part of the GNU C Library. 4 Contributed by Isamu Hasegawa <isamu@yamato.ibm.com>. 5 6 The GNU C Library is free software; you can redistribute it and/or 7 modify it under the terms of the GNU Lesser General Public 8 License as published by the Free Software Foundation; either 9 version 2.1 of the License, or (at your option) any later version. 10 11 The GNU C Library is distributed in the hope that it will be useful, 12 but WITHOUT ANY WARRANTY; without even the implied warranty of 13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 Lesser General Public License for more details. 15 16 You should have received a copy of the GNU Lesser General Public 17 License along with the GNU C Library; if not, see 18 <https://www.gnu.org/licenses/>. */ 19 20 static void re_string_construct_common (const char *str, Idx len, 21 re_string_t *pstr, 22 RE_TRANSLATE_TYPE trans, bool icase, 23 const re_dfa_t *dfa); 24 static re_dfastate_t *create_ci_newstate (const re_dfa_t *dfa, 25 const re_node_set *nodes, 26 re_hashval_t hash); 27 static re_dfastate_t *create_cd_newstate (const re_dfa_t *dfa, 28 const re_node_set *nodes, 29 unsigned int context, 30 re_hashval_t hash); 31 static reg_errcode_t re_string_realloc_buffers (re_string_t *pstr, 32 Idx new_buf_len); 33 #ifdef RE_ENABLE_I18N 34 static void build_wcs_buffer (re_string_t *pstr); 35 static reg_errcode_t build_wcs_upper_buffer (re_string_t *pstr); 36 #endif /* RE_ENABLE_I18N */ 37 static void build_upper_buffer (re_string_t *pstr); 38 static void re_string_translate_buffer (re_string_t *pstr); 39 static unsigned int re_string_context_at (const re_string_t *input, Idx idx, 40 int eflags) __attribute__ ((pure)); 41 42 /* Functions for string operation. */ 43 44 /* This function allocate the buffers. It is necessary to call 45 re_string_reconstruct before using the object. */ 46 47 static reg_errcode_t 48 __attribute_warn_unused_result__ 49 re_string_allocate (re_string_t *pstr, const char *str, Idx len, Idx init_len, 50 RE_TRANSLATE_TYPE trans, bool icase, const re_dfa_t *dfa) 51 { 52 reg_errcode_t ret; 53 Idx init_buf_len; 54 55 /* Ensure at least one character fits into the buffers. */ 56 if (init_len < dfa->mb_cur_max) 57 init_len = dfa->mb_cur_max; 58 init_buf_len = (len + 1 < init_len) ? len + 1: init_len; 59 re_string_construct_common (str, len, pstr, trans, icase, dfa); 60 61 ret = re_string_realloc_buffers (pstr, init_buf_len); 62 if (BE (ret != REG_NOERROR, 0)) 63 return ret; 64 65 pstr->word_char = dfa->word_char; 66 pstr->word_ops_used = dfa->word_ops_used; 67 pstr->mbs = pstr->mbs_allocated ? pstr->mbs : (unsigned char *) str; 68 pstr->valid_len = (pstr->mbs_allocated || dfa->mb_cur_max > 1) ? 0 : len; 69 pstr->valid_raw_len = pstr->valid_len; 70 return REG_NOERROR; 71 } 72 73 /* This function allocate the buffers, and initialize them. */ 74 75 static reg_errcode_t 76 __attribute_warn_unused_result__ 77 re_string_construct (re_string_t *pstr, const char *str, Idx len, 78 RE_TRANSLATE_TYPE trans, bool icase, const re_dfa_t *dfa) 79 { 80 reg_errcode_t ret; 81 memset (pstr, '\0', sizeof (re_string_t)); 82 re_string_construct_common (str, len, pstr, trans, icase, dfa); 83 84 if (len > 0) 85 { 86 ret = re_string_realloc_buffers (pstr, len + 1); 87 if (BE (ret != REG_NOERROR, 0)) 88 return ret; 89 } 90 pstr->mbs = pstr->mbs_allocated ? pstr->mbs : (unsigned char *) str; 91 92 if (icase) 93 { 94 #ifdef RE_ENABLE_I18N 95 if (dfa->mb_cur_max > 1) 96 { 97 while (1) 98 { 99 ret = build_wcs_upper_buffer (pstr); 100 if (BE (ret != REG_NOERROR, 0)) 101 return ret; 102 if (pstr->valid_raw_len >= len) 103 break; 104 if (pstr->bufs_len > pstr->valid_len + dfa->mb_cur_max) 105 break; 106 ret = re_string_realloc_buffers (pstr, pstr->bufs_len * 2); 107 if (BE (ret != REG_NOERROR, 0)) 108 return ret; 109 } 110 } 111 else 112 #endif /* RE_ENABLE_I18N */ 113 build_upper_buffer (pstr); 114 } 115 else 116 { 117 #ifdef RE_ENABLE_I18N 118 if (dfa->mb_cur_max > 1) 119 build_wcs_buffer (pstr); 120 else 121 #endif /* RE_ENABLE_I18N */ 122 { 123 if (trans != NULL) 124 re_string_translate_buffer (pstr); 125 else 126 { 127 pstr->valid_len = pstr->bufs_len; 128 pstr->valid_raw_len = pstr->bufs_len; 129 } 130 } 131 } 132 133 return REG_NOERROR; 134 } 135 136 /* Helper functions for re_string_allocate, and re_string_construct. */ 137 138 static reg_errcode_t 139 __attribute_warn_unused_result__ 140 re_string_realloc_buffers (re_string_t *pstr, Idx new_buf_len) 141 { 142 #ifdef RE_ENABLE_I18N 143 if (pstr->mb_cur_max > 1) 144 { 145 wint_t *new_wcs; 146 147 /* Avoid overflow in realloc. */ 148 const size_t max_object_size = MAX (sizeof (wint_t), sizeof (Idx)); 149 if (BE (MIN (IDX_MAX, SIZE_MAX / max_object_size) < new_buf_len, 0)) 150 return REG_ESPACE; 151 152 new_wcs = re_realloc (pstr->wcs, wint_t, new_buf_len); 153 if (BE (new_wcs == NULL, 0)) 154 return REG_ESPACE; 155 pstr->wcs = new_wcs; 156 if (pstr->offsets != NULL) 157 { 158 Idx *new_offsets = re_realloc (pstr->offsets, Idx, new_buf_len); 159 if (BE (new_offsets == NULL, 0)) 160 return REG_ESPACE; 161 pstr->offsets = new_offsets; 162 } 163 } 164 #endif /* RE_ENABLE_I18N */ 165 if (pstr->mbs_allocated) 166 { 167 unsigned char *new_mbs = re_realloc (pstr->mbs, unsigned char, 168 new_buf_len); 169 if (BE (new_mbs == NULL, 0)) 170 return REG_ESPACE; 171 pstr->mbs = new_mbs; 172 } 173 pstr->bufs_len = new_buf_len; 174 return REG_NOERROR; 175 } 176 177 178 static void 179 re_string_construct_common (const char *str, Idx len, re_string_t *pstr, 180 RE_TRANSLATE_TYPE trans, bool icase, 181 const re_dfa_t *dfa) 182 { 183 pstr->raw_mbs = (const unsigned char *) str; 184 pstr->len = len; 185 pstr->raw_len = len; 186 pstr->trans = trans; 187 pstr->icase = icase; 188 pstr->mbs_allocated = (trans != NULL || icase); 189 pstr->mb_cur_max = dfa->mb_cur_max; 190 pstr->is_utf8 = dfa->is_utf8; 191 pstr->map_notascii = dfa->map_notascii; 192 pstr->stop = pstr->len; 193 pstr->raw_stop = pstr->stop; 194 } 195 196 #ifdef RE_ENABLE_I18N 197 198 /* Build wide character buffer PSTR->WCS. 199 If the byte sequence of the string are: 200 <mb1>(0), <mb1>(1), <mb2>(0), <mb2>(1), <sb3> 201 Then wide character buffer will be: 202 <wc1> , WEOF , <wc2> , WEOF , <wc3> 203 We use WEOF for padding, they indicate that the position isn't 204 a first byte of a multibyte character. 205 206 Note that this function assumes PSTR->VALID_LEN elements are already 207 built and starts from PSTR->VALID_LEN. */ 208 209 static void 210 build_wcs_buffer (re_string_t *pstr) 211 { 212 #ifdef _LIBC 213 unsigned char buf[MB_LEN_MAX]; 214 assert (MB_LEN_MAX >= pstr->mb_cur_max); 215 #else 216 unsigned char buf[64]; 217 #endif 218 mbstate_t prev_st; 219 Idx byte_idx, end_idx, remain_len; 220 size_t mbclen; 221 222 /* Build the buffers from pstr->valid_len to either pstr->len or 223 pstr->bufs_len. */ 224 end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len; 225 for (byte_idx = pstr->valid_len; byte_idx < end_idx;) 226 { 227 wchar_t wc; 228 const char *p; 229 230 remain_len = end_idx - byte_idx; 231 prev_st = pstr->cur_state; 232 /* Apply the translation if we need. */ 233 if (BE (pstr->trans != NULL, 0)) 234 { 235 int i, ch; 236 237 for (i = 0; i < pstr->mb_cur_max && i < remain_len; ++i) 238 { 239 ch = pstr->raw_mbs [pstr->raw_mbs_idx + byte_idx + i]; 240 buf[i] = pstr->mbs[byte_idx + i] = pstr->trans[ch]; 241 } 242 p = (const char *) buf; 243 } 244 else 245 p = (const char *) pstr->raw_mbs + pstr->raw_mbs_idx + byte_idx; 246 mbclen = __mbrtowc (&wc, p, remain_len, &pstr->cur_state); 247 if (BE (mbclen == (size_t) -1 || mbclen == 0 248 || (mbclen == (size_t) -2 && pstr->bufs_len >= pstr->len), 0)) 249 { 250 /* We treat these cases as a singlebyte character. */ 251 mbclen = 1; 252 wc = (wchar_t) pstr->raw_mbs[pstr->raw_mbs_idx + byte_idx]; 253 if (BE (pstr->trans != NULL, 0)) 254 wc = pstr->trans[wc]; 255 pstr->cur_state = prev_st; 256 } 257 else if (BE (mbclen == (size_t) -2, 0)) 258 { 259 /* The buffer doesn't have enough space, finish to build. */ 260 pstr->cur_state = prev_st; 261 break; 262 } 263 264 /* Write wide character and padding. */ 265 pstr->wcs[byte_idx++] = wc; 266 /* Write paddings. */ 267 for (remain_len = byte_idx + mbclen - 1; byte_idx < remain_len ;) 268 pstr->wcs[byte_idx++] = WEOF; 269 } 270 pstr->valid_len = byte_idx; 271 pstr->valid_raw_len = byte_idx; 272 } 273 274 /* Build wide character buffer PSTR->WCS like build_wcs_buffer, 275 but for REG_ICASE. */ 276 277 static reg_errcode_t 278 __attribute_warn_unused_result__ 279 build_wcs_upper_buffer (re_string_t *pstr) 280 { 281 mbstate_t prev_st; 282 Idx src_idx, byte_idx, end_idx, remain_len; 283 size_t mbclen; 284 #ifdef _LIBC 285 char buf[MB_LEN_MAX]; 286 assert (MB_LEN_MAX >= pstr->mb_cur_max); 287 #else 288 char buf[64]; 289 #endif 290 291 byte_idx = pstr->valid_len; 292 end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len; 293 294 /* The following optimization assumes that ASCII characters can be 295 mapped to wide characters with a simple cast. */ 296 if (! pstr->map_notascii && pstr->trans == NULL && !pstr->offsets_needed) 297 { 298 while (byte_idx < end_idx) 299 { 300 wchar_t wc; 301 302 if (isascii (pstr->raw_mbs[pstr->raw_mbs_idx + byte_idx]) 303 && mbsinit (&pstr->cur_state)) 304 { 305 /* In case of a singlebyte character. */ 306 pstr->mbs[byte_idx] 307 = toupper (pstr->raw_mbs[pstr->raw_mbs_idx + byte_idx]); 308 /* The next step uses the assumption that wchar_t is encoded 309 ASCII-safe: all ASCII values can be converted like this. */ 310 pstr->wcs[byte_idx] = (wchar_t) pstr->mbs[byte_idx]; 311 ++byte_idx; 312 continue; 313 } 314 315 remain_len = end_idx - byte_idx; 316 prev_st = pstr->cur_state; 317 mbclen = __mbrtowc (&wc, 318 ((const char *) pstr->raw_mbs + pstr->raw_mbs_idx 319 + byte_idx), remain_len, &pstr->cur_state); 320 if (BE (0 < mbclen && mbclen < (size_t) -2, 1)) 321 { 322 wchar_t wcu = __towupper (wc); 323 if (wcu != wc) 324 { 325 size_t mbcdlen; 326 327 mbcdlen = __wcrtomb (buf, wcu, &prev_st); 328 if (BE (mbclen == mbcdlen, 1)) 329 memcpy (pstr->mbs + byte_idx, buf, mbclen); 330 else 331 { 332 src_idx = byte_idx; 333 goto offsets_needed; 334 } 335 } 336 else 337 memcpy (pstr->mbs + byte_idx, 338 pstr->raw_mbs + pstr->raw_mbs_idx + byte_idx, mbclen); 339 pstr->wcs[byte_idx++] = wcu; 340 /* Write paddings. */ 341 for (remain_len = byte_idx + mbclen - 1; byte_idx < remain_len ;) 342 pstr->wcs[byte_idx++] = WEOF; 343 } 344 else if (mbclen == (size_t) -1 || mbclen == 0 345 || (mbclen == (size_t) -2 && pstr->bufs_len >= pstr->len)) 346 { 347 /* It is an invalid character, an incomplete character 348 at the end of the string, or '\0'. Just use the byte. */ 349 int ch = pstr->raw_mbs[pstr->raw_mbs_idx + byte_idx]; 350 pstr->mbs[byte_idx] = ch; 351 /* And also cast it to wide char. */ 352 pstr->wcs[byte_idx++] = (wchar_t) ch; 353 if (BE (mbclen == (size_t) -1, 0)) 354 pstr->cur_state = prev_st; 355 } 356 else 357 { 358 /* The buffer doesn't have enough space, finish to build. */ 359 pstr->cur_state = prev_st; 360 break; 361 } 362 } 363 pstr->valid_len = byte_idx; 364 pstr->valid_raw_len = byte_idx; 365 return REG_NOERROR; 366 } 367 else 368 for (src_idx = pstr->valid_raw_len; byte_idx < end_idx;) 369 { 370 wchar_t wc; 371 const char *p; 372 offsets_needed: 373 remain_len = end_idx - byte_idx; 374 prev_st = pstr->cur_state; 375 if (BE (pstr->trans != NULL, 0)) 376 { 377 int i, ch; 378 379 for (i = 0; i < pstr->mb_cur_max && i < remain_len; ++i) 380 { 381 ch = pstr->raw_mbs [pstr->raw_mbs_idx + src_idx + i]; 382 buf[i] = pstr->trans[ch]; 383 } 384 p = (const char *) buf; 385 } 386 else 387 p = (const char *) pstr->raw_mbs + pstr->raw_mbs_idx + src_idx; 388 mbclen = __mbrtowc (&wc, p, remain_len, &pstr->cur_state); 389 if (BE (0 < mbclen && mbclen < (size_t) -2, 1)) 390 { 391 wchar_t wcu = __towupper (wc); 392 if (wcu != wc) 393 { 394 size_t mbcdlen; 395 396 mbcdlen = __wcrtomb ((char *) buf, wcu, &prev_st); 397 if (BE (mbclen == mbcdlen, 1)) 398 memcpy (pstr->mbs + byte_idx, buf, mbclen); 399 else if (mbcdlen != (size_t) -1) 400 { 401 size_t i; 402 403 if (byte_idx + mbcdlen > pstr->bufs_len) 404 { 405 pstr->cur_state = prev_st; 406 break; 407 } 408 409 if (pstr->offsets == NULL) 410 { 411 pstr->offsets = re_malloc (Idx, pstr->bufs_len); 412 413 if (pstr->offsets == NULL) 414 return REG_ESPACE; 415 } 416 if (!pstr->offsets_needed) 417 { 418 for (i = 0; i < (size_t) byte_idx; ++i) 419 pstr->offsets[i] = i; 420 pstr->offsets_needed = 1; 421 } 422 423 memcpy (pstr->mbs + byte_idx, buf, mbcdlen); 424 pstr->wcs[byte_idx] = wcu; 425 pstr->offsets[byte_idx] = src_idx; 426 for (i = 1; i < mbcdlen; ++i) 427 { 428 pstr->offsets[byte_idx + i] 429 = src_idx + (i < mbclen ? i : mbclen - 1); 430 pstr->wcs[byte_idx + i] = WEOF; 431 } 432 pstr->len += mbcdlen - mbclen; 433 if (pstr->raw_stop > src_idx) 434 pstr->stop += mbcdlen - mbclen; 435 end_idx = (pstr->bufs_len > pstr->len) 436 ? pstr->len : pstr->bufs_len; 437 byte_idx += mbcdlen; 438 src_idx += mbclen; 439 continue; 440 } 441 else 442 memcpy (pstr->mbs + byte_idx, p, mbclen); 443 } 444 else 445 memcpy (pstr->mbs + byte_idx, p, mbclen); 446 447 if (BE (pstr->offsets_needed != 0, 0)) 448 { 449 size_t i; 450 for (i = 0; i < mbclen; ++i) 451 pstr->offsets[byte_idx + i] = src_idx + i; 452 } 453 src_idx += mbclen; 454 455 pstr->wcs[byte_idx++] = wcu; 456 /* Write paddings. */ 457 for (remain_len = byte_idx + mbclen - 1; byte_idx < remain_len ;) 458 pstr->wcs[byte_idx++] = WEOF; 459 } 460 else if (mbclen == (size_t) -1 || mbclen == 0 461 || (mbclen == (size_t) -2 && pstr->bufs_len >= pstr->len)) 462 { 463 /* It is an invalid character or '\0'. Just use the byte. */ 464 int ch = pstr->raw_mbs[pstr->raw_mbs_idx + src_idx]; 465 466 if (BE (pstr->trans != NULL, 0)) 467 ch = pstr->trans [ch]; 468 pstr->mbs[byte_idx] = ch; 469 470 if (BE (pstr->offsets_needed != 0, 0)) 471 pstr->offsets[byte_idx] = src_idx; 472 ++src_idx; 473 474 /* And also cast it to wide char. */ 475 pstr->wcs[byte_idx++] = (wchar_t) ch; 476 if (BE (mbclen == (size_t) -1, 0)) 477 pstr->cur_state = prev_st; 478 } 479 else 480 { 481 /* The buffer doesn't have enough space, finish to build. */ 482 pstr->cur_state = prev_st; 483 break; 484 } 485 } 486 pstr->valid_len = byte_idx; 487 pstr->valid_raw_len = src_idx; 488 return REG_NOERROR; 489 } 490 491 /* Skip characters until the index becomes greater than NEW_RAW_IDX. 492 Return the index. */ 493 494 static Idx 495 re_string_skip_chars (re_string_t *pstr, Idx new_raw_idx, wint_t *last_wc) 496 { 497 mbstate_t prev_st; 498 Idx rawbuf_idx; 499 size_t mbclen; 500 wint_t wc = WEOF; 501 502 /* Skip the characters which are not necessary to check. */ 503 for (rawbuf_idx = pstr->raw_mbs_idx + pstr->valid_raw_len; 504 rawbuf_idx < new_raw_idx;) 505 { 506 wchar_t wc2; 507 Idx remain_len = pstr->raw_len - rawbuf_idx; 508 prev_st = pstr->cur_state; 509 mbclen = __mbrtowc (&wc2, (const char *) pstr->raw_mbs + rawbuf_idx, 510 remain_len, &pstr->cur_state); 511 if (BE (mbclen == (size_t) -2 || mbclen == (size_t) -1 || mbclen == 0, 0)) 512 { 513 /* We treat these cases as a single byte character. */ 514 if (mbclen == 0 || remain_len == 0) 515 wc = L'\0'; 516 else 517 wc = *(unsigned char *) (pstr->raw_mbs + rawbuf_idx); 518 mbclen = 1; 519 pstr->cur_state = prev_st; 520 } 521 else 522 wc = wc2; 523 /* Then proceed the next character. */ 524 rawbuf_idx += mbclen; 525 } 526 *last_wc = wc; 527 return rawbuf_idx; 528 } 529 #endif /* RE_ENABLE_I18N */ 530 531 /* Build the buffer PSTR->MBS, and apply the translation if we need. 532 This function is used in case of REG_ICASE. */ 533 534 static void 535 build_upper_buffer (re_string_t *pstr) 536 { 537 Idx char_idx, end_idx; 538 end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len; 539 540 for (char_idx = pstr->valid_len; char_idx < end_idx; ++char_idx) 541 { 542 int ch = pstr->raw_mbs[pstr->raw_mbs_idx + char_idx]; 543 if (BE (pstr->trans != NULL, 0)) 544 ch = pstr->trans[ch]; 545 pstr->mbs[char_idx] = toupper (ch); 546 } 547 pstr->valid_len = char_idx; 548 pstr->valid_raw_len = char_idx; 549 } 550 551 /* Apply TRANS to the buffer in PSTR. */ 552 553 static void 554 re_string_translate_buffer (re_string_t *pstr) 555 { 556 Idx buf_idx, end_idx; 557 end_idx = (pstr->bufs_len > pstr->len) ? pstr->len : pstr->bufs_len; 558 559 for (buf_idx = pstr->valid_len; buf_idx < end_idx; ++buf_idx) 560 { 561 int ch = pstr->raw_mbs[pstr->raw_mbs_idx + buf_idx]; 562 pstr->mbs[buf_idx] = pstr->trans[ch]; 563 } 564 565 pstr->valid_len = buf_idx; 566 pstr->valid_raw_len = buf_idx; 567 } 568 569 /* This function re-construct the buffers. 570 Concretely, convert to wide character in case of pstr->mb_cur_max > 1, 571 convert to upper case in case of REG_ICASE, apply translation. */ 572 573 static reg_errcode_t 574 __attribute_warn_unused_result__ 575 re_string_reconstruct (re_string_t *pstr, Idx idx, int eflags) 576 { 577 Idx offset; 578 579 if (BE (pstr->raw_mbs_idx <= idx, 0)) 580 offset = idx - pstr->raw_mbs_idx; 581 else 582 { 583 /* Reset buffer. */ 584 #ifdef RE_ENABLE_I18N 585 if (pstr->mb_cur_max > 1) 586 memset (&pstr->cur_state, '\0', sizeof (mbstate_t)); 587 #endif /* RE_ENABLE_I18N */ 588 pstr->len = pstr->raw_len; 589 pstr->stop = pstr->raw_stop; 590 pstr->valid_len = 0; 591 pstr->raw_mbs_idx = 0; 592 pstr->valid_raw_len = 0; 593 pstr->offsets_needed = 0; 594 pstr->tip_context = ((eflags & REG_NOTBOL) ? CONTEXT_BEGBUF 595 : CONTEXT_NEWLINE | CONTEXT_BEGBUF); 596 if (!pstr->mbs_allocated) 597 pstr->mbs = (unsigned char *) pstr->raw_mbs; 598 offset = idx; 599 } 600 601 if (BE (offset != 0, 1)) 602 { 603 /* Should the already checked characters be kept? */ 604 if (BE (offset < pstr->valid_raw_len, 1)) 605 { 606 /* Yes, move them to the front of the buffer. */ 607 #ifdef RE_ENABLE_I18N 608 if (BE (pstr->offsets_needed, 0)) 609 { 610 Idx low = 0, high = pstr->valid_len, mid; 611 do 612 { 613 mid = (high + low) / 2; 614 if (pstr->offsets[mid] > offset) 615 high = mid; 616 else if (pstr->offsets[mid] < offset) 617 low = mid + 1; 618 else 619 break; 620 } 621 while (low < high); 622 if (pstr->offsets[mid] < offset) 623 ++mid; 624 pstr->tip_context = re_string_context_at (pstr, mid - 1, 625 eflags); 626 /* This can be quite complicated, so handle specially 627 only the common and easy case where the character with 628 different length representation of lower and upper 629 case is present at or after offset. */ 630 if (pstr->valid_len > offset 631 && mid == offset && pstr->offsets[mid] == offset) 632 { 633 memmove (pstr->wcs, pstr->wcs + offset, 634 (pstr->valid_len - offset) * sizeof (wint_t)); 635 memmove (pstr->mbs, pstr->mbs + offset, pstr->valid_len - offset); 636 pstr->valid_len -= offset; 637 pstr->valid_raw_len -= offset; 638 for (low = 0; low < pstr->valid_len; low++) 639 pstr->offsets[low] = pstr->offsets[low + offset] - offset; 640 } 641 else 642 { 643 /* Otherwise, just find out how long the partial multibyte 644 character at offset is and fill it with WEOF/255. */ 645 pstr->len = pstr->raw_len - idx + offset; 646 pstr->stop = pstr->raw_stop - idx + offset; 647 pstr->offsets_needed = 0; 648 while (mid > 0 && pstr->offsets[mid - 1] == offset) 649 --mid; 650 while (mid < pstr->valid_len) 651 if (pstr->wcs[mid] != WEOF) 652 break; 653 else 654 ++mid; 655 if (mid == pstr->valid_len) 656 pstr->valid_len = 0; 657 else 658 { 659 pstr->valid_len = pstr->offsets[mid] - offset; 660 if (pstr->valid_len) 661 { 662 for (low = 0; low < pstr->valid_len; ++low) 663 pstr->wcs[low] = WEOF; 664 memset (pstr->mbs, 255, pstr->valid_len); 665 } 666 } 667 pstr->valid_raw_len = pstr->valid_len; 668 } 669 } 670 else 671 #endif 672 { 673 pstr->tip_context = re_string_context_at (pstr, offset - 1, 674 eflags); 675 #ifdef RE_ENABLE_I18N 676 if (pstr->mb_cur_max > 1) 677 memmove (pstr->wcs, pstr->wcs + offset, 678 (pstr->valid_len - offset) * sizeof (wint_t)); 679 #endif /* RE_ENABLE_I18N */ 680 if (BE (pstr->mbs_allocated, 0)) 681 memmove (pstr->mbs, pstr->mbs + offset, 682 pstr->valid_len - offset); 683 pstr->valid_len -= offset; 684 pstr->valid_raw_len -= offset; 685 #if defined DEBUG && DEBUG 686 assert (pstr->valid_len > 0); 687 #endif 688 } 689 } 690 else 691 { 692 #ifdef RE_ENABLE_I18N 693 /* No, skip all characters until IDX. */ 694 Idx prev_valid_len = pstr->valid_len; 695 696 if (BE (pstr->offsets_needed, 0)) 697 { 698 pstr->len = pstr->raw_len - idx + offset; 699 pstr->stop = pstr->raw_stop - idx + offset; 700 pstr->offsets_needed = 0; 701 } 702 #endif 703 pstr->valid_len = 0; 704 #ifdef RE_ENABLE_I18N 705 if (pstr->mb_cur_max > 1) 706 { 707 Idx wcs_idx; 708 wint_t wc = WEOF; 709 710 if (pstr->is_utf8) 711 { 712 const unsigned char *raw, *p, *end; 713 714 /* Special case UTF-8. Multi-byte chars start with any 715 byte other than 0x80 - 0xbf. */ 716 raw = pstr->raw_mbs + pstr->raw_mbs_idx; 717 end = raw + (offset - pstr->mb_cur_max); 718 if (end < pstr->raw_mbs) 719 end = pstr->raw_mbs; 720 p = raw + offset - 1; 721 #ifdef _LIBC 722 /* We know the wchar_t encoding is UCS4, so for the simple 723 case, ASCII characters, skip the conversion step. */ 724 if (isascii (*p) && BE (pstr->trans == NULL, 1)) 725 { 726 memset (&pstr->cur_state, '\0', sizeof (mbstate_t)); 727 /* pstr->valid_len = 0; */ 728 wc = (wchar_t) *p; 729 } 730 else 731 #endif 732 for (; p >= end; --p) 733 if ((*p & 0xc0) != 0x80) 734 { 735 mbstate_t cur_state; 736 wchar_t wc2; 737 Idx mlen = raw + pstr->len - p; 738 unsigned char buf[6]; 739 size_t mbclen; 740 741 const unsigned char *pp = p; 742 if (BE (pstr->trans != NULL, 0)) 743 { 744 int i = mlen < 6 ? mlen : 6; 745 while (--i >= 0) 746 buf[i] = pstr->trans[p[i]]; 747 pp = buf; 748 } 749 /* XXX Don't use mbrtowc, we know which conversion 750 to use (UTF-8 -> UCS4). */ 751 memset (&cur_state, 0, sizeof (cur_state)); 752 mbclen = __mbrtowc (&wc2, (const char *) pp, mlen, 753 &cur_state); 754 if (raw + offset - p <= mbclen 755 && mbclen < (size_t) -2) 756 { 757 memset (&pstr->cur_state, '\0', 758 sizeof (mbstate_t)); 759 pstr->valid_len = mbclen - (raw + offset - p); 760 wc = wc2; 761 } 762 break; 763 } 764 } 765 766 if (wc == WEOF) 767 pstr->valid_len = re_string_skip_chars (pstr, idx, &wc) - idx; 768 if (wc == WEOF) 769 pstr->tip_context 770 = re_string_context_at (pstr, prev_valid_len - 1, eflags); 771 else 772 pstr->tip_context = ((BE (pstr->word_ops_used != 0, 0) 773 && IS_WIDE_WORD_CHAR (wc)) 774 ? CONTEXT_WORD 775 : ((IS_WIDE_NEWLINE (wc) 776 && pstr->newline_anchor) 777 ? CONTEXT_NEWLINE : 0)); 778 if (BE (pstr->valid_len, 0)) 779 { 780 for (wcs_idx = 0; wcs_idx < pstr->valid_len; ++wcs_idx) 781 pstr->wcs[wcs_idx] = WEOF; 782 if (pstr->mbs_allocated) 783 memset (pstr->mbs, 255, pstr->valid_len); 784 } 785 pstr->valid_raw_len = pstr->valid_len; 786 } 787 else 788 #endif /* RE_ENABLE_I18N */ 789 { 790 int c = pstr->raw_mbs[pstr->raw_mbs_idx + offset - 1]; 791 pstr->valid_raw_len = 0; 792 if (pstr->trans) 793 c = pstr->trans[c]; 794 pstr->tip_context = (bitset_contain (pstr->word_char, c) 795 ? CONTEXT_WORD 796 : ((IS_NEWLINE (c) && pstr->newline_anchor) 797 ? CONTEXT_NEWLINE : 0)); 798 } 799 } 800 if (!BE (pstr->mbs_allocated, 0)) 801 pstr->mbs += offset; 802 } 803 pstr->raw_mbs_idx = idx; 804 pstr->len -= offset; 805 pstr->stop -= offset; 806 807 /* Then build the buffers. */ 808 #ifdef RE_ENABLE_I18N 809 if (pstr->mb_cur_max > 1) 810 { 811 if (pstr->icase) 812 { 813 reg_errcode_t ret = build_wcs_upper_buffer (pstr); 814 if (BE (ret != REG_NOERROR, 0)) 815 return ret; 816 } 817 else 818 build_wcs_buffer (pstr); 819 } 820 else 821 #endif /* RE_ENABLE_I18N */ 822 if (BE (pstr->mbs_allocated, 0)) 823 { 824 if (pstr->icase) 825 build_upper_buffer (pstr); 826 else if (pstr->trans != NULL) 827 re_string_translate_buffer (pstr); 828 } 829 else 830 pstr->valid_len = pstr->len; 831 832 pstr->cur_idx = 0; 833 return REG_NOERROR; 834 } 835 836 static unsigned char 837 __attribute__ ((pure)) 838 re_string_peek_byte_case (const re_string_t *pstr, Idx idx) 839 { 840 int ch; 841 Idx off; 842 843 /* Handle the common (easiest) cases first. */ 844 if (BE (!pstr->mbs_allocated, 1)) 845 return re_string_peek_byte (pstr, idx); 846 847 #ifdef RE_ENABLE_I18N 848 if (pstr->mb_cur_max > 1 849 && ! re_string_is_single_byte_char (pstr, pstr->cur_idx + idx)) 850 return re_string_peek_byte (pstr, idx); 851 #endif 852 853 off = pstr->cur_idx + idx; 854 #ifdef RE_ENABLE_I18N 855 if (pstr->offsets_needed) 856 off = pstr->offsets[off]; 857 #endif 858 859 ch = pstr->raw_mbs[pstr->raw_mbs_idx + off]; 860 861 #ifdef RE_ENABLE_I18N 862 /* Ensure that e.g. for tr_TR.UTF-8 BACKSLASH DOTLESS SMALL LETTER I 863 this function returns CAPITAL LETTER I instead of first byte of 864 DOTLESS SMALL LETTER I. The latter would confuse the parser, 865 since peek_byte_case doesn't advance cur_idx in any way. */ 866 if (pstr->offsets_needed && !isascii (ch)) 867 return re_string_peek_byte (pstr, idx); 868 #endif 869 870 return ch; 871 } 872 873 static unsigned char 874 re_string_fetch_byte_case (re_string_t *pstr) 875 { 876 if (BE (!pstr->mbs_allocated, 1)) 877 return re_string_fetch_byte (pstr); 878 879 #ifdef RE_ENABLE_I18N 880 if (pstr->offsets_needed) 881 { 882 Idx off; 883 int ch; 884 885 /* For tr_TR.UTF-8 [[:islower:]] there is 886 [[: CAPITAL LETTER I WITH DOT lower:]] in mbs. Skip 887 in that case the whole multi-byte character and return 888 the original letter. On the other side, with 889 [[: DOTLESS SMALL LETTER I return [[:I, as doing 890 anything else would complicate things too much. */ 891 892 if (!re_string_first_byte (pstr, pstr->cur_idx)) 893 return re_string_fetch_byte (pstr); 894 895 off = pstr->offsets[pstr->cur_idx]; 896 ch = pstr->raw_mbs[pstr->raw_mbs_idx + off]; 897 898 if (! isascii (ch)) 899 return re_string_fetch_byte (pstr); 900 901 re_string_skip_bytes (pstr, 902 re_string_char_size_at (pstr, pstr->cur_idx)); 903 return ch; 904 } 905 #endif 906 907 return pstr->raw_mbs[pstr->raw_mbs_idx + pstr->cur_idx++]; 908 } 909 910 static void 911 re_string_destruct (re_string_t *pstr) 912 { 913 #ifdef RE_ENABLE_I18N 914 re_free (pstr->wcs); 915 re_free (pstr->offsets); 916 #endif /* RE_ENABLE_I18N */ 917 if (pstr->mbs_allocated) 918 re_free (pstr->mbs); 919 } 920 921 /* Return the context at IDX in INPUT. */ 922 923 static unsigned int 924 re_string_context_at (const re_string_t *input, Idx idx, int eflags) 925 { 926 int c; 927 if (BE (idx < 0, 0)) 928 /* In this case, we use the value stored in input->tip_context, 929 since we can't know the character in input->mbs[-1] here. */ 930 return input->tip_context; 931 if (BE (idx == input->len, 0)) 932 return ((eflags & REG_NOTEOL) ? CONTEXT_ENDBUF 933 : CONTEXT_NEWLINE | CONTEXT_ENDBUF); 934 #ifdef RE_ENABLE_I18N 935 if (input->mb_cur_max > 1) 936 { 937 wint_t wc; 938 Idx wc_idx = idx; 939 while(input->wcs[wc_idx] == WEOF) 940 { 941 #if defined DEBUG && DEBUG 942 /* It must not happen. */ 943 assert (wc_idx >= 0); 944 #endif 945 --wc_idx; 946 if (wc_idx < 0) 947 return input->tip_context; 948 } 949 wc = input->wcs[wc_idx]; 950 if (BE (input->word_ops_used != 0, 0) && IS_WIDE_WORD_CHAR (wc)) 951 return CONTEXT_WORD; 952 return (IS_WIDE_NEWLINE (wc) && input->newline_anchor 953 ? CONTEXT_NEWLINE : 0); 954 } 955 else 956 #endif 957 { 958 c = re_string_byte_at (input, idx); 959 if (bitset_contain (input->word_char, c)) 960 return CONTEXT_WORD; 961 return IS_NEWLINE (c) && input->newline_anchor ? CONTEXT_NEWLINE : 0; 962 } 963 } 964 965 /* Functions for set operation. */ 966 967 static reg_errcode_t 968 __attribute_warn_unused_result__ 969 re_node_set_alloc (re_node_set *set, Idx size) 970 { 971 set->alloc = size; 972 set->nelem = 0; 973 set->elems = re_malloc (Idx, size); 974 if (BE (set->elems == NULL, 0) && (MALLOC_0_IS_NONNULL || size != 0)) 975 return REG_ESPACE; 976 return REG_NOERROR; 977 } 978 979 static reg_errcode_t 980 __attribute_warn_unused_result__ 981 re_node_set_init_1 (re_node_set *set, Idx elem) 982 { 983 set->alloc = 1; 984 set->nelem = 1; 985 set->elems = re_malloc (Idx, 1); 986 if (BE (set->elems == NULL, 0)) 987 { 988 set->alloc = set->nelem = 0; 989 return REG_ESPACE; 990 } 991 set->elems[0] = elem; 992 return REG_NOERROR; 993 } 994 995 static reg_errcode_t 996 __attribute_warn_unused_result__ 997 re_node_set_init_2 (re_node_set *set, Idx elem1, Idx elem2) 998 { 999 set->alloc = 2; 1000 set->elems = re_malloc (Idx, 2); 1001 if (BE (set->elems == NULL, 0)) 1002 return REG_ESPACE; 1003 if (elem1 == elem2) 1004 { 1005 set->nelem = 1; 1006 set->elems[0] = elem1; 1007 } 1008 else 1009 { 1010 set->nelem = 2; 1011 if (elem1 < elem2) 1012 { 1013 set->elems[0] = elem1; 1014 set->elems[1] = elem2; 1015 } 1016 else 1017 { 1018 set->elems[0] = elem2; 1019 set->elems[1] = elem1; 1020 } 1021 } 1022 return REG_NOERROR; 1023 } 1024 1025 static reg_errcode_t 1026 __attribute_warn_unused_result__ 1027 re_node_set_init_copy (re_node_set *dest, const re_node_set *src) 1028 { 1029 dest->nelem = src->nelem; 1030 if (src->nelem > 0) 1031 { 1032 dest->alloc = dest->nelem; 1033 dest->elems = re_malloc (Idx, dest->alloc); 1034 if (BE (dest->elems == NULL, 0)) 1035 { 1036 dest->alloc = dest->nelem = 0; 1037 return REG_ESPACE; 1038 } 1039 memcpy (dest->elems, src->elems, src->nelem * sizeof (Idx)); 1040 } 1041 else 1042 re_node_set_init_empty (dest); 1043 return REG_NOERROR; 1044 } 1045 1046 /* Calculate the intersection of the sets SRC1 and SRC2. And merge it to 1047 DEST. Return value indicate the error code or REG_NOERROR if succeeded. 1048 Note: We assume dest->elems is NULL, when dest->alloc is 0. */ 1049 1050 static reg_errcode_t 1051 __attribute_warn_unused_result__ 1052 re_node_set_add_intersect (re_node_set *dest, const re_node_set *src1, 1053 const re_node_set *src2) 1054 { 1055 Idx i1, i2, is, id, delta, sbase; 1056 if (src1->nelem == 0 || src2->nelem == 0) 1057 return REG_NOERROR; 1058 1059 /* We need dest->nelem + 2 * elems_in_intersection; this is a 1060 conservative estimate. */ 1061 if (src1->nelem + src2->nelem + dest->nelem > dest->alloc) 1062 { 1063 Idx new_alloc = src1->nelem + src2->nelem + dest->alloc; 1064 Idx *new_elems = re_realloc (dest->elems, Idx, new_alloc); 1065 if (BE (new_elems == NULL, 0)) 1066 return REG_ESPACE; 1067 dest->elems = new_elems; 1068 dest->alloc = new_alloc; 1069 } 1070 1071 /* Find the items in the intersection of SRC1 and SRC2, and copy 1072 into the top of DEST those that are not already in DEST itself. */ 1073 sbase = dest->nelem + src1->nelem + src2->nelem; 1074 i1 = src1->nelem - 1; 1075 i2 = src2->nelem - 1; 1076 id = dest->nelem - 1; 1077 for (;;) 1078 { 1079 if (src1->elems[i1] == src2->elems[i2]) 1080 { 1081 /* Try to find the item in DEST. Maybe we could binary search? */ 1082 while (id >= 0 && dest->elems[id] > src1->elems[i1]) 1083 --id; 1084 1085 if (id < 0 || dest->elems[id] != src1->elems[i1]) 1086 dest->elems[--sbase] = src1->elems[i1]; 1087 1088 if (--i1 < 0 || --i2 < 0) 1089 break; 1090 } 1091 1092 /* Lower the highest of the two items. */ 1093 else if (src1->elems[i1] < src2->elems[i2]) 1094 { 1095 if (--i2 < 0) 1096 break; 1097 } 1098 else 1099 { 1100 if (--i1 < 0) 1101 break; 1102 } 1103 } 1104 1105 id = dest->nelem - 1; 1106 is = dest->nelem + src1->nelem + src2->nelem - 1; 1107 delta = is - sbase + 1; 1108 1109 /* Now copy. When DELTA becomes zero, the remaining 1110 DEST elements are already in place; this is more or 1111 less the same loop that is in re_node_set_merge. */ 1112 dest->nelem += delta; 1113 if (delta > 0 && id >= 0) 1114 for (;;) 1115 { 1116 if (dest->elems[is] > dest->elems[id]) 1117 { 1118 /* Copy from the top. */ 1119 dest->elems[id + delta--] = dest->elems[is--]; 1120 if (delta == 0) 1121 break; 1122 } 1123 else 1124 { 1125 /* Slide from the bottom. */ 1126 dest->elems[id + delta] = dest->elems[id]; 1127 if (--id < 0) 1128 break; 1129 } 1130 } 1131 1132 /* Copy remaining SRC elements. */ 1133 memcpy (dest->elems, dest->elems + sbase, delta * sizeof (Idx)); 1134 1135 return REG_NOERROR; 1136 } 1137 1138 /* Calculate the union set of the sets SRC1 and SRC2. And store it to 1139 DEST. Return value indicate the error code or REG_NOERROR if succeeded. */ 1140 1141 static reg_errcode_t 1142 __attribute_warn_unused_result__ 1143 re_node_set_init_union (re_node_set *dest, const re_node_set *src1, 1144 const re_node_set *src2) 1145 { 1146 Idx i1, i2, id; 1147 if (src1 != NULL && src1->nelem > 0 && src2 != NULL && src2->nelem > 0) 1148 { 1149 dest->alloc = src1->nelem + src2->nelem; 1150 dest->elems = re_malloc (Idx, dest->alloc); 1151 if (BE (dest->elems == NULL, 0)) 1152 return REG_ESPACE; 1153 } 1154 else 1155 { 1156 if (src1 != NULL && src1->nelem > 0) 1157 return re_node_set_init_copy (dest, src1); 1158 else if (src2 != NULL && src2->nelem > 0) 1159 return re_node_set_init_copy (dest, src2); 1160 else 1161 re_node_set_init_empty (dest); 1162 return REG_NOERROR; 1163 } 1164 for (i1 = i2 = id = 0 ; i1 < src1->nelem && i2 < src2->nelem ;) 1165 { 1166 if (src1->elems[i1] > src2->elems[i2]) 1167 { 1168 dest->elems[id++] = src2->elems[i2++]; 1169 continue; 1170 } 1171 if (src1->elems[i1] == src2->elems[i2]) 1172 ++i2; 1173 dest->elems[id++] = src1->elems[i1++]; 1174 } 1175 if (i1 < src1->nelem) 1176 { 1177 memcpy (dest->elems + id, src1->elems + i1, 1178 (src1->nelem - i1) * sizeof (Idx)); 1179 id += src1->nelem - i1; 1180 } 1181 else if (i2 < src2->nelem) 1182 { 1183 memcpy (dest->elems + id, src2->elems + i2, 1184 (src2->nelem - i2) * sizeof (Idx)); 1185 id += src2->nelem - i2; 1186 } 1187 dest->nelem = id; 1188 return REG_NOERROR; 1189 } 1190 1191 /* Calculate the union set of the sets DEST and SRC. And store it to 1192 DEST. Return value indicate the error code or REG_NOERROR if succeeded. */ 1193 1194 static reg_errcode_t 1195 __attribute_warn_unused_result__ 1196 re_node_set_merge (re_node_set *dest, const re_node_set *src) 1197 { 1198 Idx is, id, sbase, delta; 1199 if (src == NULL || src->nelem == 0) 1200 return REG_NOERROR; 1201 if (dest->alloc < 2 * src->nelem + dest->nelem) 1202 { 1203 Idx new_alloc = 2 * (src->nelem + dest->alloc); 1204 Idx *new_buffer = re_realloc (dest->elems, Idx, new_alloc); 1205 if (BE (new_buffer == NULL, 0)) 1206 return REG_ESPACE; 1207 dest->elems = new_buffer; 1208 dest->alloc = new_alloc; 1209 } 1210 1211 if (BE (dest->nelem == 0, 0)) 1212 { 1213 dest->nelem = src->nelem; 1214 memcpy (dest->elems, src->elems, src->nelem * sizeof (Idx)); 1215 return REG_NOERROR; 1216 } 1217 1218 /* Copy into the top of DEST the items of SRC that are not 1219 found in DEST. Maybe we could binary search in DEST? */ 1220 for (sbase = dest->nelem + 2 * src->nelem, 1221 is = src->nelem - 1, id = dest->nelem - 1; is >= 0 && id >= 0; ) 1222 { 1223 if (dest->elems[id] == src->elems[is]) 1224 is--, id--; 1225 else if (dest->elems[id] < src->elems[is]) 1226 dest->elems[--sbase] = src->elems[is--]; 1227 else /* if (dest->elems[id] > src->elems[is]) */ 1228 --id; 1229 } 1230 1231 if (is >= 0) 1232 { 1233 /* If DEST is exhausted, the remaining items of SRC must be unique. */ 1234 sbase -= is + 1; 1235 memcpy (dest->elems + sbase, src->elems, (is + 1) * sizeof (Idx)); 1236 } 1237 1238 id = dest->nelem - 1; 1239 is = dest->nelem + 2 * src->nelem - 1; 1240 delta = is - sbase + 1; 1241 if (delta == 0) 1242 return REG_NOERROR; 1243 1244 /* Now copy. When DELTA becomes zero, the remaining 1245 DEST elements are already in place. */ 1246 dest->nelem += delta; 1247 for (;;) 1248 { 1249 if (dest->elems[is] > dest->elems[id]) 1250 { 1251 /* Copy from the top. */ 1252 dest->elems[id + delta--] = dest->elems[is--]; 1253 if (delta == 0) 1254 break; 1255 } 1256 else 1257 { 1258 /* Slide from the bottom. */ 1259 dest->elems[id + delta] = dest->elems[id]; 1260 if (--id < 0) 1261 { 1262 /* Copy remaining SRC elements. */ 1263 memcpy (dest->elems, dest->elems + sbase, 1264 delta * sizeof (Idx)); 1265 break; 1266 } 1267 } 1268 } 1269 1270 return REG_NOERROR; 1271 } 1272 1273 /* Insert the new element ELEM to the re_node_set* SET. 1274 SET should not already have ELEM. 1275 Return true if successful. */ 1276 1277 static bool 1278 __attribute_warn_unused_result__ 1279 re_node_set_insert (re_node_set *set, Idx elem) 1280 { 1281 Idx idx; 1282 /* In case the set is empty. */ 1283 if (set->alloc == 0) 1284 return BE (re_node_set_init_1 (set, elem) == REG_NOERROR, 1); 1285 1286 if (BE (set->nelem, 0) == 0) 1287 { 1288 /* We already guaranteed above that set->alloc != 0. */ 1289 set->elems[0] = elem; 1290 ++set->nelem; 1291 return true; 1292 } 1293 1294 /* Realloc if we need. */ 1295 if (set->alloc == set->nelem) 1296 { 1297 Idx *new_elems; 1298 set->alloc = set->alloc * 2; 1299 new_elems = re_realloc (set->elems, Idx, set->alloc); 1300 if (BE (new_elems == NULL, 0)) 1301 return false; 1302 set->elems = new_elems; 1303 } 1304 1305 /* Move the elements which follows the new element. Test the 1306 first element separately to skip a check in the inner loop. */ 1307 if (elem < set->elems[0]) 1308 { 1309 idx = 0; 1310 for (idx = set->nelem; idx > 0; idx--) 1311 set->elems[idx] = set->elems[idx - 1]; 1312 } 1313 else 1314 { 1315 for (idx = set->nelem; set->elems[idx - 1] > elem; idx--) 1316 set->elems[idx] = set->elems[idx - 1]; 1317 } 1318 1319 /* Insert the new element. */ 1320 set->elems[idx] = elem; 1321 ++set->nelem; 1322 return true; 1323 } 1324 1325 /* Insert the new element ELEM to the re_node_set* SET. 1326 SET should not already have any element greater than or equal to ELEM. 1327 Return true if successful. */ 1328 1329 static bool 1330 __attribute_warn_unused_result__ 1331 re_node_set_insert_last (re_node_set *set, Idx elem) 1332 { 1333 /* Realloc if we need. */ 1334 if (set->alloc == set->nelem) 1335 { 1336 Idx *new_elems; 1337 set->alloc = (set->alloc + 1) * 2; 1338 new_elems = re_realloc (set->elems, Idx, set->alloc); 1339 if (BE (new_elems == NULL, 0)) 1340 return false; 1341 set->elems = new_elems; 1342 } 1343 1344 /* Insert the new element. */ 1345 set->elems[set->nelem++] = elem; 1346 return true; 1347 } 1348 1349 /* Compare two node sets SET1 and SET2. 1350 Return true if SET1 and SET2 are equivalent. */ 1351 1352 static bool 1353 __attribute__ ((pure)) 1354 re_node_set_compare (const re_node_set *set1, const re_node_set *set2) 1355 { 1356 Idx i; 1357 if (set1 == NULL || set2 == NULL || set1->nelem != set2->nelem) 1358 return false; 1359 for (i = set1->nelem ; --i >= 0 ; ) 1360 if (set1->elems[i] != set2->elems[i]) 1361 return false; 1362 return true; 1363 } 1364 1365 /* Return (idx + 1) if SET contains the element ELEM, return 0 otherwise. */ 1366 1367 static Idx 1368 __attribute__ ((pure)) 1369 re_node_set_contains (const re_node_set *set, Idx elem) 1370 { 1371 __re_size_t idx, right, mid; 1372 if (set->nelem <= 0) 1373 return 0; 1374 1375 /* Binary search the element. */ 1376 idx = 0; 1377 right = set->nelem - 1; 1378 while (idx < right) 1379 { 1380 mid = (idx + right) / 2; 1381 if (set->elems[mid] < elem) 1382 idx = mid + 1; 1383 else 1384 right = mid; 1385 } 1386 return set->elems[idx] == elem ? idx + 1 : 0; 1387 } 1388 1389 static void 1390 re_node_set_remove_at (re_node_set *set, Idx idx) 1391 { 1392 if (idx < 0 || idx >= set->nelem) 1393 return; 1394 --set->nelem; 1395 for (; idx < set->nelem; idx++) 1396 set->elems[idx] = set->elems[idx + 1]; 1397 } 1398 1399 1400 /* Add the token TOKEN to dfa->nodes, and return the index of the token. 1401 Or return -1 if an error occurred. */ 1402 1403 static Idx 1404 re_dfa_add_node (re_dfa_t *dfa, re_token_t token) 1405 { 1406 if (BE (dfa->nodes_len >= dfa->nodes_alloc, 0)) 1407 { 1408 size_t new_nodes_alloc = dfa->nodes_alloc * 2; 1409 Idx *new_nexts, *new_indices; 1410 re_node_set *new_edests, *new_eclosures; 1411 re_token_t *new_nodes; 1412 1413 /* Avoid overflows in realloc. */ 1414 const size_t max_object_size = MAX (sizeof (re_token_t), 1415 MAX (sizeof (re_node_set), 1416 sizeof (Idx))); 1417 if (BE (MIN (IDX_MAX, SIZE_MAX / max_object_size) < new_nodes_alloc, 0)) 1418 return -1; 1419 1420 new_nodes = re_realloc (dfa->nodes, re_token_t, new_nodes_alloc); 1421 if (BE (new_nodes == NULL, 0)) 1422 return -1; 1423 dfa->nodes = new_nodes; 1424 new_nexts = re_realloc (dfa->nexts, Idx, new_nodes_alloc); 1425 new_indices = re_realloc (dfa->org_indices, Idx, new_nodes_alloc); 1426 new_edests = re_realloc (dfa->edests, re_node_set, new_nodes_alloc); 1427 new_eclosures = re_realloc (dfa->eclosures, re_node_set, new_nodes_alloc); 1428 if (BE (new_nexts == NULL || new_indices == NULL 1429 || new_edests == NULL || new_eclosures == NULL, 0)) 1430 { 1431 re_free (new_nexts); 1432 re_free (new_indices); 1433 re_free (new_edests); 1434 re_free (new_eclosures); 1435 return -1; 1436 } 1437 dfa->nexts = new_nexts; 1438 dfa->org_indices = new_indices; 1439 dfa->edests = new_edests; 1440 dfa->eclosures = new_eclosures; 1441 dfa->nodes_alloc = new_nodes_alloc; 1442 } 1443 dfa->nodes[dfa->nodes_len] = token; 1444 dfa->nodes[dfa->nodes_len].constraint = 0; 1445 #ifdef RE_ENABLE_I18N 1446 dfa->nodes[dfa->nodes_len].accept_mb = 1447 ((token.type == OP_PERIOD && dfa->mb_cur_max > 1) 1448 || token.type == COMPLEX_BRACKET); 1449 #endif 1450 dfa->nexts[dfa->nodes_len] = -1; 1451 re_node_set_init_empty (dfa->edests + dfa->nodes_len); 1452 re_node_set_init_empty (dfa->eclosures + dfa->nodes_len); 1453 return dfa->nodes_len++; 1454 } 1455 1456 static re_hashval_t 1457 calc_state_hash (const re_node_set *nodes, unsigned int context) 1458 { 1459 re_hashval_t hash = nodes->nelem + context; 1460 Idx i; 1461 for (i = 0 ; i < nodes->nelem ; i++) 1462 hash += nodes->elems[i]; 1463 return hash; 1464 } 1465 1466 /* Search for the state whose node_set is equivalent to NODES. 1467 Return the pointer to the state, if we found it in the DFA. 1468 Otherwise create the new one and return it. In case of an error 1469 return NULL and set the error code in ERR. 1470 Note: - We assume NULL as the invalid state, then it is possible that 1471 return value is NULL and ERR is REG_NOERROR. 1472 - We never return non-NULL value in case of any errors, it is for 1473 optimization. */ 1474 1475 static re_dfastate_t * 1476 __attribute_warn_unused_result__ 1477 re_acquire_state (reg_errcode_t *err, const re_dfa_t *dfa, 1478 const re_node_set *nodes) 1479 { 1480 re_hashval_t hash; 1481 re_dfastate_t *new_state; 1482 struct re_state_table_entry *spot; 1483 Idx i; 1484 #if defined GCC_LINT || defined lint 1485 /* Suppress bogus uninitialized-variable warnings. */ 1486 *err = REG_NOERROR; 1487 #endif 1488 if (BE (nodes->nelem == 0, 0)) 1489 { 1490 *err = REG_NOERROR; 1491 return NULL; 1492 } 1493 hash = calc_state_hash (nodes, 0); 1494 spot = dfa->state_table + (hash & dfa->state_hash_mask); 1495 1496 for (i = 0 ; i < spot->num ; i++) 1497 { 1498 re_dfastate_t *state = spot->array[i]; 1499 if (hash != state->hash) 1500 continue; 1501 if (re_node_set_compare (&state->nodes, nodes)) 1502 return state; 1503 } 1504 1505 /* There are no appropriate state in the dfa, create the new one. */ 1506 new_state = create_ci_newstate (dfa, nodes, hash); 1507 if (BE (new_state == NULL, 0)) 1508 *err = REG_ESPACE; 1509 1510 return new_state; 1511 } 1512 1513 /* Search for the state whose node_set is equivalent to NODES and 1514 whose context is equivalent to CONTEXT. 1515 Return the pointer to the state, if we found it in the DFA. 1516 Otherwise create the new one and return it. In case of an error 1517 return NULL and set the error code in ERR. 1518 Note: - We assume NULL as the invalid state, then it is possible that 1519 return value is NULL and ERR is REG_NOERROR. 1520 - We never return non-NULL value in case of any errors, it is for 1521 optimization. */ 1522 1523 static re_dfastate_t * 1524 __attribute_warn_unused_result__ 1525 re_acquire_state_context (reg_errcode_t *err, const re_dfa_t *dfa, 1526 const re_node_set *nodes, unsigned int context) 1527 { 1528 re_hashval_t hash; 1529 re_dfastate_t *new_state; 1530 struct re_state_table_entry *spot; 1531 Idx i; 1532 #if defined GCC_LINT || defined lint 1533 /* Suppress bogus uninitialized-variable warnings. */ 1534 *err = REG_NOERROR; 1535 #endif 1536 if (nodes->nelem == 0) 1537 { 1538 *err = REG_NOERROR; 1539 return NULL; 1540 } 1541 hash = calc_state_hash (nodes, context); 1542 spot = dfa->state_table + (hash & dfa->state_hash_mask); 1543 1544 for (i = 0 ; i < spot->num ; i++) 1545 { 1546 re_dfastate_t *state = spot->array[i]; 1547 if (state->hash == hash 1548 && state->context == context 1549 && re_node_set_compare (state->entrance_nodes, nodes)) 1550 return state; 1551 } 1552 /* There are no appropriate state in 'dfa', create the new one. */ 1553 new_state = create_cd_newstate (dfa, nodes, context, hash); 1554 if (BE (new_state == NULL, 0)) 1555 *err = REG_ESPACE; 1556 1557 return new_state; 1558 } 1559 1560 /* Finish initialization of the new state NEWSTATE, and using its hash value 1561 HASH put in the appropriate bucket of DFA's state table. Return value 1562 indicates the error code if failed. */ 1563 1564 static reg_errcode_t 1565 __attribute_warn_unused_result__ 1566 register_state (const re_dfa_t *dfa, re_dfastate_t *newstate, 1567 re_hashval_t hash) 1568 { 1569 struct re_state_table_entry *spot; 1570 reg_errcode_t err; 1571 Idx i; 1572 1573 newstate->hash = hash; 1574 err = re_node_set_alloc (&newstate->non_eps_nodes, newstate->nodes.nelem); 1575 if (BE (err != REG_NOERROR, 0)) 1576 return REG_ESPACE; 1577 for (i = 0; i < newstate->nodes.nelem; i++) 1578 { 1579 Idx elem = newstate->nodes.elems[i]; 1580 if (!IS_EPSILON_NODE (dfa->nodes[elem].type)) 1581 if (! re_node_set_insert_last (&newstate->non_eps_nodes, elem)) 1582 return REG_ESPACE; 1583 } 1584 1585 spot = dfa->state_table + (hash & dfa->state_hash_mask); 1586 if (BE (spot->alloc <= spot->num, 0)) 1587 { 1588 Idx new_alloc = 2 * spot->num + 2; 1589 re_dfastate_t **new_array = re_realloc (spot->array, re_dfastate_t *, 1590 new_alloc); 1591 if (BE (new_array == NULL, 0)) 1592 return REG_ESPACE; 1593 spot->array = new_array; 1594 spot->alloc = new_alloc; 1595 } 1596 spot->array[spot->num++] = newstate; 1597 return REG_NOERROR; 1598 } 1599 1600 static void 1601 free_state (re_dfastate_t *state) 1602 { 1603 re_node_set_free (&state->non_eps_nodes); 1604 re_node_set_free (&state->inveclosure); 1605 if (state->entrance_nodes != &state->nodes) 1606 { 1607 re_node_set_free (state->entrance_nodes); 1608 re_free (state->entrance_nodes); 1609 } 1610 re_node_set_free (&state->nodes); 1611 re_free (state->word_trtable); 1612 re_free (state->trtable); 1613 re_free (state); 1614 } 1615 1616 /* Create the new state which is independent of contexts. 1617 Return the new state if succeeded, otherwise return NULL. */ 1618 1619 static re_dfastate_t * 1620 __attribute_warn_unused_result__ 1621 create_ci_newstate (const re_dfa_t *dfa, const re_node_set *nodes, 1622 re_hashval_t hash) 1623 { 1624 Idx i; 1625 reg_errcode_t err; 1626 re_dfastate_t *newstate; 1627 1628 newstate = (re_dfastate_t *) calloc (sizeof (re_dfastate_t), 1); 1629 if (BE (newstate == NULL, 0)) 1630 return NULL; 1631 err = re_node_set_init_copy (&newstate->nodes, nodes); 1632 if (BE (err != REG_NOERROR, 0)) 1633 { 1634 re_free (newstate); 1635 return NULL; 1636 } 1637 1638 newstate->entrance_nodes = &newstate->nodes; 1639 for (i = 0 ; i < nodes->nelem ; i++) 1640 { 1641 re_token_t *node = dfa->nodes + nodes->elems[i]; 1642 re_token_type_t type = node->type; 1643 if (type == CHARACTER && !node->constraint) 1644 continue; 1645 #ifdef RE_ENABLE_I18N 1646 newstate->accept_mb |= node->accept_mb; 1647 #endif /* RE_ENABLE_I18N */ 1648 1649 /* If the state has the halt node, the state is a halt state. */ 1650 if (type == END_OF_RE) 1651 newstate->halt = 1; 1652 else if (type == OP_BACK_REF) 1653 newstate->has_backref = 1; 1654 else if (type == ANCHOR || node->constraint) 1655 newstate->has_constraint = 1; 1656 } 1657 err = register_state (dfa, newstate, hash); 1658 if (BE (err != REG_NOERROR, 0)) 1659 { 1660 free_state (newstate); 1661 newstate = NULL; 1662 } 1663 return newstate; 1664 } 1665 1666 /* Create the new state which is depend on the context CONTEXT. 1667 Return the new state if succeeded, otherwise return NULL. */ 1668 1669 static re_dfastate_t * 1670 __attribute_warn_unused_result__ 1671 create_cd_newstate (const re_dfa_t *dfa, const re_node_set *nodes, 1672 unsigned int context, re_hashval_t hash) 1673 { 1674 Idx i, nctx_nodes = 0; 1675 reg_errcode_t err; 1676 re_dfastate_t *newstate; 1677 1678 newstate = (re_dfastate_t *) calloc (sizeof (re_dfastate_t), 1); 1679 if (BE (newstate == NULL, 0)) 1680 return NULL; 1681 err = re_node_set_init_copy (&newstate->nodes, nodes); 1682 if (BE (err != REG_NOERROR, 0)) 1683 { 1684 re_free (newstate); 1685 return NULL; 1686 } 1687 1688 newstate->context = context; 1689 newstate->entrance_nodes = &newstate->nodes; 1690 1691 for (i = 0 ; i < nodes->nelem ; i++) 1692 { 1693 re_token_t *node = dfa->nodes + nodes->elems[i]; 1694 re_token_type_t type = node->type; 1695 unsigned int constraint = node->constraint; 1696 1697 if (type == CHARACTER && !constraint) 1698 continue; 1699 #ifdef RE_ENABLE_I18N 1700 newstate->accept_mb |= node->accept_mb; 1701 #endif /* RE_ENABLE_I18N */ 1702 1703 /* If the state has the halt node, the state is a halt state. */ 1704 if (type == END_OF_RE) 1705 newstate->halt = 1; 1706 else if (type == OP_BACK_REF) 1707 newstate->has_backref = 1; 1708 1709 if (constraint) 1710 { 1711 if (newstate->entrance_nodes == &newstate->nodes) 1712 { 1713 newstate->entrance_nodes = re_malloc (re_node_set, 1); 1714 if (BE (newstate->entrance_nodes == NULL, 0)) 1715 { 1716 free_state (newstate); 1717 return NULL; 1718 } 1719 if (re_node_set_init_copy (newstate->entrance_nodes, nodes) 1720 != REG_NOERROR) 1721 return NULL; 1722 nctx_nodes = 0; 1723 newstate->has_constraint = 1; 1724 } 1725 1726 if (NOT_SATISFY_PREV_CONSTRAINT (constraint,context)) 1727 { 1728 re_node_set_remove_at (&newstate->nodes, i - nctx_nodes); 1729 ++nctx_nodes; 1730 } 1731 } 1732 } 1733 err = register_state (dfa, newstate, hash); 1734 if (BE (err != REG_NOERROR, 0)) 1735 { 1736 free_state (newstate); 1737 newstate = NULL; 1738 } 1739 return newstate; 1740 } 1741