1 /* Extended regular expression matching and search library, 2 version 0.12. 3 (Implements POSIX draft P1003.2/D11.2, except for some of the 4 internationalization features.) 5 Copyright (C) 1993-1999, 2000, 2001 Free Software Foundation, Inc. 6 7 The GNU C Library is free software; you can redistribute it and/or 8 modify it under the terms of the GNU Library General Public License as 9 published by the Free Software Foundation; either version 2 of the 10 License, or (at your option) any later version. 11 12 The GNU C Library is distributed in the hope that it will be useful, 13 but WITHOUT ANY WARRANTY; without even the implied warranty of 14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 15 Library General Public License for more details. 16 17 You should have received a copy of the GNU Library General Public 18 License along with the GNU C Library; see the file COPYING.LIB. If not, 19 write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, 20 Boston, MA 02111-1307, USA. */ 21 22 /* AIX requires this to be the first thing in the file. */ 23 #if defined _AIX && !defined REGEX_MALLOC 24 #pragma alloca 25 #endif 26 27 #undef _GNU_SOURCE 28 #define _GNU_SOURCE 29 30 #ifdef HAVE_CONFIG_H 31 # include <config.h> 32 #endif 33 34 #ifndef PARAMS 35 # if defined __GNUC__ || (defined __STDC__ && __STDC__) 36 # define PARAMS(args) args 37 # else 38 # define PARAMS(args) () 39 # endif /* GCC. */ 40 #endif /* Not PARAMS. */ 41 42 #if defined STDC_HEADERS && !defined emacs 43 # include <stddef.h> 44 #else 45 /* We need this for `regex.h', and perhaps for the Emacs include files. */ 46 # include <sys/types.h> 47 #endif 48 49 #define WIDE_CHAR_SUPPORT (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC) 50 51 /* For platform which support the ISO C amendement 1 functionality we 52 support user defined character classes. */ 53 #if defined _LIBC || WIDE_CHAR_SUPPORT 54 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */ 55 # include <wchar.h> 56 # include <wctype.h> 57 #endif 58 59 /* This is for multi byte string support. */ 60 #ifdef MBS_SUPPORT 61 # define CHAR_TYPE wchar_t 62 # define US_CHAR_TYPE wchar_t/* unsigned character type */ 63 # define COMPILED_BUFFER_VAR wc_buffer 64 # define OFFSET_ADDRESS_SIZE 1 /* the size which STORE_NUMBER macro use */ 65 # define CHAR_CLASS_SIZE ((__alignof__(wctype_t)+sizeof(wctype_t))/sizeof(CHAR_TYPE)+1) 66 # define PUT_CHAR(c) \ 67 do { \ 68 if (MB_CUR_MAX == 1) \ 69 putchar (c); \ 70 else \ 71 printf ("%C", (wint_t) c); /* Should we use wide stream?? */ \ 72 } while (0) 73 # define TRUE 1 74 # define FALSE 0 75 #else 76 # define CHAR_TYPE char 77 # define US_CHAR_TYPE unsigned char /* unsigned character type */ 78 # define COMPILED_BUFFER_VAR bufp->buffer 79 # define OFFSET_ADDRESS_SIZE 2 80 # define PUT_CHAR(c) putchar (c) 81 #endif /* MBS_SUPPORT */ 82 83 #ifdef _LIBC 84 /* We have to keep the namespace clean. */ 85 # define regfree(preg) __regfree (preg) 86 # define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef) 87 # define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags) 88 # define regerror(errcode, preg, errbuf, errbuf_size) \ 89 __regerror(errcode, preg, errbuf, errbuf_size) 90 # define re_set_registers(bu, re, nu, st, en) \ 91 __re_set_registers (bu, re, nu, st, en) 92 # define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \ 93 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop) 94 # define re_match(bufp, string, size, pos, regs) \ 95 __re_match (bufp, string, size, pos, regs) 96 # define re_search(bufp, string, size, startpos, range, regs) \ 97 __re_search (bufp, string, size, startpos, range, regs) 98 # define re_compile_pattern(pattern, length, bufp) \ 99 __re_compile_pattern (pattern, length, bufp) 100 # define re_set_syntax(syntax) __re_set_syntax (syntax) 101 # define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \ 102 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop) 103 # define re_compile_fastmap(bufp) __re_compile_fastmap (bufp) 104 105 # define btowc __btowc 106 107 /* We are also using some library internals. */ 108 # include <locale/localeinfo.h> 109 # include <locale/elem-hash.h> 110 # include <langinfo.h> 111 # include <locale/coll-lookup.h> 112 #endif 113 114 /* This is for other GNU distributions with internationalized messages. */ 115 #if HAVE_LIBINTL_H || defined _LIBC 116 # include <libintl.h> 117 # ifdef _LIBC 118 # undef gettext 119 # define gettext(msgid) __dcgettext ("libc", msgid, LC_MESSAGES) 120 # endif 121 #else 122 # define gettext(msgid) (msgid) 123 #endif 124 125 #ifndef gettext_noop 126 /* This define is so xgettext can find the internationalizable 127 strings. */ 128 # define gettext_noop(String) String 129 #endif 130 131 /* The `emacs' switch turns on certain matching commands 132 that make sense only in Emacs. */ 133 #ifdef emacs 134 135 # include "lisp.h" 136 # include "buffer.h" 137 # include "syntax.h" 138 139 #else /* not emacs */ 140 141 /* If we are not linking with Emacs proper, 142 we can't use the relocating allocator 143 even if config.h says that we can. */ 144 # undef REL_ALLOC 145 146 # if defined STDC_HEADERS || defined _LIBC 147 # include <stdlib.h> 148 # else 149 char *malloc (); 150 char *realloc (); 151 # endif 152 153 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow. 154 If nothing else has been done, use the method below. */ 155 # ifdef INHIBIT_STRING_HEADER 156 # if !(defined HAVE_BZERO && defined HAVE_BCOPY) 157 # if !defined bzero && !defined bcopy 158 # undef INHIBIT_STRING_HEADER 159 # endif 160 # endif 161 # endif 162 163 /* This is the normal way of making sure we have a bcopy and a bzero. 164 This is used in most programs--a few other programs avoid this 165 by defining INHIBIT_STRING_HEADER. */ 166 # ifndef INHIBIT_STRING_HEADER 167 # if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC 168 # include <string.h> 169 # ifndef bzero 170 # ifndef _LIBC 171 # define bzero(s, n) (memset (s, '\0', n), (s)) 172 # else 173 # define bzero(s, n) __bzero (s, n) 174 # endif 175 # endif 176 # else 177 # include <strings.h> 178 # ifndef memcmp 179 # define memcmp(s1, s2, n) bcmp (s1, s2, n) 180 # endif 181 # ifndef memcpy 182 # define memcpy(d, s, n) (bcopy (s, d, n), (d)) 183 # endif 184 # endif 185 # endif 186 187 /* Define the syntax stuff for \<, \>, etc. */ 188 189 /* This must be nonzero for the wordchar and notwordchar pattern 190 commands in re_match_2. */ 191 # ifndef Sword 192 # define Sword 1 193 # endif 194 195 # ifdef SWITCH_ENUM_BUG 196 # define SWITCH_ENUM_CAST(x) ((int)(x)) 197 # else 198 # define SWITCH_ENUM_CAST(x) (x) 199 # endif 200 201 #endif /* not emacs */ 202 203 #if defined _LIBC || HAVE_LIMITS_H 204 # include <limits.h> 205 #endif 206 207 #ifndef MB_LEN_MAX 208 # define MB_LEN_MAX 1 209 #endif 210 211 /* Get the interface, including the syntax bits. */ 212 #include <regex.h> 213 214 /* isalpha etc. are used for the character classes. */ 215 #include <ctype.h> 216 217 /* Jim Meyering writes: 218 219 "... Some ctype macros are valid only for character codes that 220 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when 221 using /bin/cc or gcc but without giving an ansi option). So, all 222 ctype uses should be through macros like ISPRINT... If 223 STDC_HEADERS is defined, then autoconf has verified that the ctype 224 macros don't need to be guarded with references to isascii. ... 225 Defining isascii to 1 should let any compiler worth its salt 226 eliminate the && through constant folding." 227 Solaris defines some of these symbols so we must undefine them first. */ 228 229 #undef ISASCII 230 #if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII) 231 # define ISASCII(c) 1 232 #else 233 # define ISASCII(c) isascii(c) 234 #endif 235 236 #ifdef isblank 237 # define ISBLANK(c) (ISASCII (c) && isblank (c)) 238 #else 239 # define ISBLANK(c) ((c) == ' ' || (c) == '\t') 240 #endif 241 #ifdef isgraph 242 # define ISGRAPH(c) (ISASCII (c) && isgraph (c)) 243 #else 244 # define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c)) 245 #endif 246 247 #undef ISPRINT 248 #define ISPRINT(c) (ISASCII (c) && isprint (c)) 249 #define ISDIGIT(c) (ISASCII (c) && isdigit (c)) 250 #define ISALNUM(c) (ISASCII (c) && isalnum (c)) 251 #define ISALPHA(c) (ISASCII (c) && isalpha (c)) 252 #define ISCNTRL(c) (ISASCII (c) && iscntrl (c)) 253 #define ISLOWER(c) (ISASCII (c) && islower (c)) 254 #define ISPUNCT(c) (ISASCII (c) && ispunct (c)) 255 #define ISSPACE(c) (ISASCII (c) && isspace (c)) 256 #define ISUPPER(c) (ISASCII (c) && isupper (c)) 257 #define ISXDIGIT(c) (ISASCII (c) && isxdigit (c)) 258 259 #ifdef _tolower 260 # define TOLOWER(c) _tolower(c) 261 #else 262 # define TOLOWER(c) tolower(c) 263 #endif 264 265 #ifndef NULL 266 # define NULL (void *)0 267 #endif 268 269 /* We remove any previous definition of `SIGN_EXTEND_CHAR', 270 since ours (we hope) works properly with all combinations of 271 machines, compilers, `char' and `unsigned char' argument types. 272 (Per Bothner suggested the basic approach.) */ 273 #undef SIGN_EXTEND_CHAR 274 #if __STDC__ 275 # define SIGN_EXTEND_CHAR(c) ((signed char) (c)) 276 #else /* not __STDC__ */ 277 /* As in Harbison and Steele. */ 278 # define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128) 279 #endif 280 281 #ifndef emacs 282 /* How many characters in the character set. */ 283 # define CHAR_SET_SIZE 256 284 285 # ifdef SYNTAX_TABLE 286 287 extern char *re_syntax_table; 288 289 # else /* not SYNTAX_TABLE */ 290 291 static char re_syntax_table[CHAR_SET_SIZE]; 292 293 static void init_syntax_once PARAMS ((void)); 294 295 static void 296 init_syntax_once () 297 { 298 register int c; 299 static int done = 0; 300 301 if (done) 302 return; 303 bzero (re_syntax_table, sizeof re_syntax_table); 304 305 for (c = 0; c < CHAR_SET_SIZE; ++c) 306 if (ISALNUM (c)) 307 re_syntax_table[c] = Sword; 308 309 re_syntax_table['_'] = Sword; 310 311 done = 1; 312 } 313 314 # endif /* not SYNTAX_TABLE */ 315 316 # define SYNTAX(c) re_syntax_table[(unsigned char) (c)] 317 318 #endif /* emacs */ 319 320 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we 321 use `alloca' instead of `malloc'. This is because using malloc in 322 re_search* or re_match* could cause memory leaks when C-g is used in 323 Emacs; also, malloc is slower and causes storage fragmentation. On 324 the other hand, malloc is more portable, and easier to debug. 325 326 Because we sometimes use alloca, some routines have to be macros, 327 not functions -- `alloca'-allocated space disappears at the end of the 328 function it is called in. */ 329 330 #ifdef REGEX_MALLOC 331 332 # define REGEX_ALLOCATE malloc 333 # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize) 334 # define REGEX_FREE free 335 336 #else /* not REGEX_MALLOC */ 337 338 /* Emacs already defines alloca, sometimes. */ 339 # ifndef alloca 340 341 /* Make alloca work the best possible way. */ 342 # ifdef __GNUC__ 343 # define alloca __builtin_alloca 344 # else /* not __GNUC__ */ 345 # if HAVE_ALLOCA_H 346 # include <alloca.h> 347 # endif /* HAVE_ALLOCA_H */ 348 # endif /* not __GNUC__ */ 349 350 # endif /* not alloca */ 351 352 # define REGEX_ALLOCATE alloca 353 354 /* Assumes a `char *destination' variable. */ 355 # define REGEX_REALLOCATE(source, osize, nsize) \ 356 (destination = (char *) alloca (nsize), \ 357 memcpy (destination, source, osize)) 358 359 /* No need to do anything to free, after alloca. */ 360 # define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */ 361 362 #endif /* not REGEX_MALLOC */ 363 364 /* Define how to allocate the failure stack. */ 365 366 #if defined REL_ALLOC && defined REGEX_MALLOC 367 368 # define REGEX_ALLOCATE_STACK(size) \ 369 r_alloc (&failure_stack_ptr, (size)) 370 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \ 371 r_re_alloc (&failure_stack_ptr, (nsize)) 372 # define REGEX_FREE_STACK(ptr) \ 373 r_alloc_free (&failure_stack_ptr) 374 375 #else /* not using relocating allocator */ 376 377 # ifdef REGEX_MALLOC 378 379 # define REGEX_ALLOCATE_STACK malloc 380 # define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize) 381 # define REGEX_FREE_STACK free 382 383 # else /* not REGEX_MALLOC */ 384 385 # define REGEX_ALLOCATE_STACK alloca 386 387 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \ 388 REGEX_REALLOCATE (source, osize, nsize) 389 /* No need to explicitly free anything. */ 390 # define REGEX_FREE_STACK(arg) 391 392 # endif /* not REGEX_MALLOC */ 393 #endif /* not using relocating allocator */ 394 395 396 /* True if `size1' is non-NULL and PTR is pointing anywhere inside 397 `string1' or just past its end. This works if PTR is NULL, which is 398 a good thing. */ 399 #define FIRST_STRING_P(ptr) \ 400 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1) 401 402 /* (Re)Allocate N items of type T using malloc, or fail. */ 403 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t))) 404 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t))) 405 #define RETALLOC_IF(addr, n, t) \ 406 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t) 407 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t))) 408 409 #define BYTEWIDTH 8 /* In bits. */ 410 411 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0)) 412 413 #undef MAX 414 #undef MIN 415 #define MAX(a, b) ((a) > (b) ? (a) : (b)) 416 #define MIN(a, b) ((a) < (b) ? (a) : (b)) 417 418 typedef char boolean; 419 #define false 0 420 #define true 1 421 422 static int re_match_2_internal PARAMS ((struct re_pattern_buffer *bufp, 423 const char *string1, int size1, 424 const char *string2, int size2, 425 int pos, 426 struct re_registers *regs, 427 int stop)); 428 429 /* These are the command codes that appear in compiled regular 430 expressions. Some opcodes are followed by argument bytes. A 431 command code can specify any interpretation whatsoever for its 432 arguments. Zero bytes may appear in the compiled regular expression. */ 433 434 typedef enum 435 { 436 no_op = 0, 437 438 /* Succeed right away--no more backtracking. */ 439 succeed, 440 441 /* Followed by one byte giving n, then by n literal bytes. */ 442 exactn, 443 444 #ifdef MBS_SUPPORT 445 /* Same as exactn, but contains binary data. */ 446 exactn_bin, 447 #endif 448 449 /* Matches any (more or less) character. */ 450 anychar, 451 452 /* Matches any one char belonging to specified set. First 453 following byte is number of bitmap bytes. Then come bytes 454 for a bitmap saying which chars are in. Bits in each byte 455 are ordered low-bit-first. A character is in the set if its 456 bit is 1. A character too large to have a bit in the map is 457 automatically not in the set. */ 458 /* ifdef MBS_SUPPORT, following element is length of character 459 classes, length of collating symbols, length of equivalence 460 classes, length of character ranges, and length of characters. 461 Next, character class element, collating symbols elements, 462 equivalence class elements, range elements, and character 463 elements follow. 464 See regex_compile function. */ 465 charset, 466 467 /* Same parameters as charset, but match any character that is 468 not one of those specified. */ 469 charset_not, 470 471 /* Start remembering the text that is matched, for storing in a 472 register. Followed by one byte with the register number, in 473 the range 0 to one less than the pattern buffer's re_nsub 474 field. Then followed by one byte with the number of groups 475 inner to this one. (This last has to be part of the 476 start_memory only because we need it in the on_failure_jump 477 of re_match_2.) */ 478 start_memory, 479 480 /* Stop remembering the text that is matched and store it in a 481 memory register. Followed by one byte with the register 482 number, in the range 0 to one less than `re_nsub' in the 483 pattern buffer, and one byte with the number of inner groups, 484 just like `start_memory'. (We need the number of inner 485 groups here because we don't have any easy way of finding the 486 corresponding start_memory when we're at a stop_memory.) */ 487 stop_memory, 488 489 /* Match a duplicate of something remembered. Followed by one 490 byte containing the register number. */ 491 duplicate, 492 493 /* Fail unless at beginning of line. */ 494 begline, 495 496 /* Fail unless at end of line. */ 497 endline, 498 499 /* Succeeds if at beginning of buffer (if emacs) or at beginning 500 of string to be matched (if not). */ 501 begbuf, 502 503 /* Analogously, for end of buffer/string. */ 504 endbuf, 505 506 /* Followed by two byte relative address to which to jump. */ 507 jump, 508 509 /* Same as jump, but marks the end of an alternative. */ 510 jump_past_alt, 511 512 /* Followed by two-byte relative address of place to resume at 513 in case of failure. */ 514 /* ifdef MBS_SUPPORT, the size of address is 1. */ 515 on_failure_jump, 516 517 /* Like on_failure_jump, but pushes a placeholder instead of the 518 current string position when executed. */ 519 on_failure_keep_string_jump, 520 521 /* Throw away latest failure point and then jump to following 522 two-byte relative address. */ 523 /* ifdef MBS_SUPPORT, the size of address is 1. */ 524 pop_failure_jump, 525 526 /* Change to pop_failure_jump if know won't have to backtrack to 527 match; otherwise change to jump. This is used to jump 528 back to the beginning of a repeat. If what follows this jump 529 clearly won't match what the repeat does, such that we can be 530 sure that there is no use backtracking out of repetitions 531 already matched, then we change it to a pop_failure_jump. 532 Followed by two-byte address. */ 533 /* ifdef MBS_SUPPORT, the size of address is 1. */ 534 maybe_pop_jump, 535 536 /* Jump to following two-byte address, and push a dummy failure 537 point. This failure point will be thrown away if an attempt 538 is made to use it for a failure. A `+' construct makes this 539 before the first repeat. Also used as an intermediary kind 540 of jump when compiling an alternative. */ 541 /* ifdef MBS_SUPPORT, the size of address is 1. */ 542 dummy_failure_jump, 543 544 /* Push a dummy failure point and continue. Used at the end of 545 alternatives. */ 546 push_dummy_failure, 547 548 /* Followed by two-byte relative address and two-byte number n. 549 After matching N times, jump to the address upon failure. */ 550 /* ifdef MBS_SUPPORT, the size of address is 1. */ 551 succeed_n, 552 553 /* Followed by two-byte relative address, and two-byte number n. 554 Jump to the address N times, then fail. */ 555 /* ifdef MBS_SUPPORT, the size of address is 1. */ 556 jump_n, 557 558 /* Set the following two-byte relative address to the 559 subsequent two-byte number. The address *includes* the two 560 bytes of number. */ 561 /* ifdef MBS_SUPPORT, the size of address is 1. */ 562 set_number_at, 563 564 wordchar, /* Matches any word-constituent character. */ 565 notwordchar, /* Matches any char that is not a word-constituent. */ 566 567 wordbeg, /* Succeeds if at word beginning. */ 568 wordend, /* Succeeds if at word end. */ 569 570 wordbound, /* Succeeds if at a word boundary. */ 571 notwordbound /* Succeeds if not at a word boundary. */ 572 573 #ifdef emacs 574 ,before_dot, /* Succeeds if before point. */ 575 at_dot, /* Succeeds if at point. */ 576 after_dot, /* Succeeds if after point. */ 577 578 /* Matches any character whose syntax is specified. Followed by 579 a byte which contains a syntax code, e.g., Sword. */ 580 syntaxspec, 581 582 /* Matches any character whose syntax is not that specified. */ 583 notsyntaxspec 584 #endif /* emacs */ 585 } re_opcode_t; 586 587 /* Common operations on the compiled pattern. */ 588 589 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */ 590 /* ifdef MBS_SUPPORT, we store NUMBER in 1 element. */ 591 592 #ifdef MBS_SUPPORT 593 # define STORE_NUMBER(destination, number) \ 594 do { \ 595 *(destination) = (US_CHAR_TYPE)(number); \ 596 } while (0) 597 #else 598 # define STORE_NUMBER(destination, number) \ 599 do { \ 600 (destination)[0] = (number) & 0377; \ 601 (destination)[1] = (number) >> 8; \ 602 } while (0) 603 #endif /* MBS_SUPPORT */ 604 605 /* Same as STORE_NUMBER, except increment DESTINATION to 606 the byte after where the number is stored. Therefore, DESTINATION 607 must be an lvalue. */ 608 /* ifdef MBS_SUPPORT, we store NUMBER in 1 element. */ 609 610 #define STORE_NUMBER_AND_INCR(destination, number) \ 611 do { \ 612 STORE_NUMBER (destination, number); \ 613 (destination) += OFFSET_ADDRESS_SIZE; \ 614 } while (0) 615 616 /* Put into DESTINATION a number stored in two contiguous bytes starting 617 at SOURCE. */ 618 /* ifdef MBS_SUPPORT, we store NUMBER in 1 element. */ 619 620 #ifdef MBS_SUPPORT 621 # define EXTRACT_NUMBER(destination, source) \ 622 do { \ 623 (destination) = *(source); \ 624 } while (0) 625 #else 626 # define EXTRACT_NUMBER(destination, source) \ 627 do { \ 628 (destination) = *(source) & 0377; \ 629 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \ 630 } while (0) 631 #endif 632 633 #ifdef DEBUG 634 static void extract_number _RE_ARGS ((int *dest, US_CHAR_TYPE *source)); 635 static void 636 extract_number (dest, source) 637 int *dest; 638 US_CHAR_TYPE *source; 639 { 640 #ifdef MBS_SUPPORT 641 *dest = *source; 642 #else 643 int temp = SIGN_EXTEND_CHAR (*(source + 1)); 644 *dest = *source & 0377; 645 *dest += temp << 8; 646 #endif 647 } 648 649 # ifndef EXTRACT_MACROS /* To debug the macros. */ 650 # undef EXTRACT_NUMBER 651 # define EXTRACT_NUMBER(dest, src) extract_number (&dest, src) 652 # endif /* not EXTRACT_MACROS */ 653 654 #endif /* DEBUG */ 655 656 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number. 657 SOURCE must be an lvalue. */ 658 659 #define EXTRACT_NUMBER_AND_INCR(destination, source) \ 660 do { \ 661 EXTRACT_NUMBER (destination, source); \ 662 (source) += OFFSET_ADDRESS_SIZE; \ 663 } while (0) 664 665 #ifdef DEBUG 666 static void extract_number_and_incr _RE_ARGS ((int *destination, 667 US_CHAR_TYPE **source)); 668 static void 669 extract_number_and_incr (destination, source) 670 int *destination; 671 US_CHAR_TYPE **source; 672 { 673 extract_number (destination, *source); 674 *source += OFFSET_ADDRESS_SIZE; 675 } 676 677 # ifndef EXTRACT_MACROS 678 # undef EXTRACT_NUMBER_AND_INCR 679 # define EXTRACT_NUMBER_AND_INCR(dest, src) \ 680 extract_number_and_incr (&dest, &src) 681 # endif /* not EXTRACT_MACROS */ 682 683 #endif /* DEBUG */ 684 685 /* If DEBUG is defined, Regex prints many voluminous messages about what 686 it is doing (if the variable `debug' is nonzero). If linked with the 687 main program in `iregex.c', you can enter patterns and strings 688 interactively. And if linked with the main program in `main.c' and 689 the other test files, you can run the already-written tests. */ 690 691 #ifdef DEBUG 692 693 /* We use standard I/O for debugging. */ 694 # include <stdio.h> 695 696 /* It is useful to test things that ``must'' be true when debugging. */ 697 # include <assert.h> 698 699 static int debug; 700 701 # define DEBUG_STATEMENT(e) e 702 # define DEBUG_PRINT1(x) if (debug) printf (x) 703 # define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2) 704 # define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3) 705 # define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4) 706 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \ 707 if (debug) print_partial_compiled_pattern (s, e) 708 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \ 709 if (debug) print_double_string (w, s1, sz1, s2, sz2) 710 711 712 /* Print the fastmap in human-readable form. */ 713 714 void 715 print_fastmap (fastmap) 716 char *fastmap; 717 { 718 unsigned was_a_range = 0; 719 unsigned i = 0; 720 721 while (i < (1 << BYTEWIDTH)) 722 { 723 if (fastmap[i++]) 724 { 725 was_a_range = 0; 726 putchar (i - 1); 727 while (i < (1 << BYTEWIDTH) && fastmap[i]) 728 { 729 was_a_range = 1; 730 i++; 731 } 732 if (was_a_range) 733 { 734 printf ("-"); 735 putchar (i - 1); 736 } 737 } 738 } 739 putchar ('\n'); 740 } 741 742 743 /* Print a compiled pattern string in human-readable form, starting at 744 the START pointer into it and ending just before the pointer END. */ 745 746 void 747 print_partial_compiled_pattern (start, end) 748 US_CHAR_TYPE *start; 749 US_CHAR_TYPE *end; 750 { 751 int mcnt, mcnt2; 752 US_CHAR_TYPE *p1; 753 US_CHAR_TYPE *p = start; 754 US_CHAR_TYPE *pend = end; 755 756 if (start == NULL) 757 { 758 printf ("(null)\n"); 759 return; 760 } 761 762 /* Loop over pattern commands. */ 763 while (p < pend) 764 { 765 #ifdef _LIBC 766 printf ("%td:\t", p - start); 767 #else 768 printf ("%ld:\t", (long int) (p - start)); 769 #endif 770 771 switch ((re_opcode_t) *p++) 772 { 773 case no_op: 774 printf ("/no_op"); 775 break; 776 777 case exactn: 778 mcnt = *p++; 779 printf ("/exactn/%d", mcnt); 780 do 781 { 782 putchar ('/'); 783 PUT_CHAR (*p++); 784 } 785 while (--mcnt); 786 break; 787 788 #ifdef MBS_SUPPORT 789 case exactn_bin: 790 mcnt = *p++; 791 printf ("/exactn_bin/%d", mcnt); 792 do 793 { 794 printf("/%lx", (long int) *p++); 795 } 796 while (--mcnt); 797 break; 798 #endif /* MBS_SUPPORT */ 799 800 case start_memory: 801 mcnt = *p++; 802 printf ("/start_memory/%d/%ld", mcnt, (long int) *p++); 803 break; 804 805 case stop_memory: 806 mcnt = *p++; 807 printf ("/stop_memory/%d/%ld", mcnt, (long int) *p++); 808 break; 809 810 case duplicate: 811 printf ("/duplicate/%ld", (long int) *p++); 812 break; 813 814 case anychar: 815 printf ("/anychar"); 816 break; 817 818 case charset: 819 case charset_not: 820 { 821 #ifdef MBS_SUPPORT 822 int i, length; 823 wchar_t *workp = p; 824 printf ("/charset [%s", 825 (re_opcode_t) *(workp - 1) == charset_not ? "^" : ""); 826 p += 5; 827 length = *workp++; /* the length of char_classes */ 828 for (i=0 ; i<length ; i++) 829 printf("[:%lx:]", (long int) *p++); 830 length = *workp++; /* the length of collating_symbol */ 831 for (i=0 ; i<length ;) 832 { 833 printf("[."); 834 while(*p != 0) 835 PUT_CHAR((i++,*p++)); 836 i++,p++; 837 printf(".]"); 838 } 839 length = *workp++; /* the length of equivalence_class */ 840 for (i=0 ; i<length ;) 841 { 842 printf("[="); 843 while(*p != 0) 844 PUT_CHAR((i++,*p++)); 845 i++,p++; 846 printf("=]"); 847 } 848 length = *workp++; /* the length of char_range */ 849 for (i=0 ; i<length ; i++) 850 { 851 wchar_t range_start = *p++; 852 wchar_t range_end = *p++; 853 if (MB_CUR_MAX == 1) 854 printf("%c-%c", (char) range_start, (char) range_end); 855 else 856 printf("%C-%C", (wint_t) range_start, (wint_t) range_end); 857 } 858 length = *workp++; /* the length of char */ 859 for (i=0 ; i<length ; i++) 860 if (MB_CUR_MAX == 1) 861 putchar (*p++); 862 else 863 printf("%C", (wint_t) *p++); 864 putchar (']'); 865 #else 866 register int c, last = -100; 867 register int in_range = 0; 868 869 printf ("/charset [%s", 870 (re_opcode_t) *(p - 1) == charset_not ? "^" : ""); 871 872 assert (p + *p < pend); 873 874 for (c = 0; c < 256; c++) 875 if (c / 8 < *p 876 && (p[1 + (c/8)] & (1 << (c % 8)))) 877 { 878 /* Are we starting a range? */ 879 if (last + 1 == c && ! in_range) 880 { 881 putchar ('-'); 882 in_range = 1; 883 } 884 /* Have we broken a range? */ 885 else if (last + 1 != c && in_range) 886 { 887 putchar (last); 888 in_range = 0; 889 } 890 891 if (! in_range) 892 putchar (c); 893 894 last = c; 895 } 896 897 if (in_range) 898 putchar (last); 899 900 putchar (']'); 901 902 p += 1 + *p; 903 #endif /* MBS_SUPPORT */ 904 } 905 break; 906 907 case begline: 908 printf ("/begline"); 909 break; 910 911 case endline: 912 printf ("/endline"); 913 break; 914 915 case on_failure_jump: 916 extract_number_and_incr (&mcnt, &p); 917 #ifdef _LIBC 918 printf ("/on_failure_jump to %td", p + mcnt - start); 919 #else 920 printf ("/on_failure_jump to %ld", (long int) (p + mcnt - start)); 921 #endif 922 break; 923 924 case on_failure_keep_string_jump: 925 extract_number_and_incr (&mcnt, &p); 926 #ifdef _LIBC 927 printf ("/on_failure_keep_string_jump to %td", p + mcnt - start); 928 #else 929 printf ("/on_failure_keep_string_jump to %ld", 930 (long int) (p + mcnt - start)); 931 #endif 932 break; 933 934 case dummy_failure_jump: 935 extract_number_and_incr (&mcnt, &p); 936 #ifdef _LIBC 937 printf ("/dummy_failure_jump to %td", p + mcnt - start); 938 #else 939 printf ("/dummy_failure_jump to %ld", (long int) (p + mcnt - start)); 940 #endif 941 break; 942 943 case push_dummy_failure: 944 printf ("/push_dummy_failure"); 945 break; 946 947 case maybe_pop_jump: 948 extract_number_and_incr (&mcnt, &p); 949 #ifdef _LIBC 950 printf ("/maybe_pop_jump to %td", p + mcnt - start); 951 #else 952 printf ("/maybe_pop_jump to %ld", (long int) (p + mcnt - start)); 953 #endif 954 break; 955 956 case pop_failure_jump: 957 extract_number_and_incr (&mcnt, &p); 958 #ifdef _LIBC 959 printf ("/pop_failure_jump to %td", p + mcnt - start); 960 #else 961 printf ("/pop_failure_jump to %ld", (long int) (p + mcnt - start)); 962 #endif 963 break; 964 965 case jump_past_alt: 966 extract_number_and_incr (&mcnt, &p); 967 #ifdef _LIBC 968 printf ("/jump_past_alt to %td", p + mcnt - start); 969 #else 970 printf ("/jump_past_alt to %ld", (long int) (p + mcnt - start)); 971 #endif 972 break; 973 974 case jump: 975 extract_number_and_incr (&mcnt, &p); 976 #ifdef _LIBC 977 printf ("/jump to %td", p + mcnt - start); 978 #else 979 printf ("/jump to %ld", (long int) (p + mcnt - start)); 980 #endif 981 break; 982 983 case succeed_n: 984 extract_number_and_incr (&mcnt, &p); 985 p1 = p + mcnt; 986 extract_number_and_incr (&mcnt2, &p); 987 #ifdef _LIBC 988 printf ("/succeed_n to %td, %d times", p1 - start, mcnt2); 989 #else 990 printf ("/succeed_n to %ld, %d times", 991 (long int) (p1 - start), mcnt2); 992 #endif 993 break; 994 995 case jump_n: 996 extract_number_and_incr (&mcnt, &p); 997 p1 = p + mcnt; 998 extract_number_and_incr (&mcnt2, &p); 999 printf ("/jump_n to %d, %d times", p1 - start, mcnt2); 1000 break; 1001 1002 case set_number_at: 1003 extract_number_and_incr (&mcnt, &p); 1004 p1 = p + mcnt; 1005 extract_number_and_incr (&mcnt2, &p); 1006 #ifdef _LIBC 1007 printf ("/set_number_at location %td to %d", p1 - start, mcnt2); 1008 #else 1009 printf ("/set_number_at location %ld to %d", 1010 (long int) (p1 - start), mcnt2); 1011 #endif 1012 break; 1013 1014 case wordbound: 1015 printf ("/wordbound"); 1016 break; 1017 1018 case notwordbound: 1019 printf ("/notwordbound"); 1020 break; 1021 1022 case wordbeg: 1023 printf ("/wordbeg"); 1024 break; 1025 1026 case wordend: 1027 printf ("/wordend"); 1028 break; 1029 1030 # ifdef emacs 1031 case before_dot: 1032 printf ("/before_dot"); 1033 break; 1034 1035 case at_dot: 1036 printf ("/at_dot"); 1037 break; 1038 1039 case after_dot: 1040 printf ("/after_dot"); 1041 break; 1042 1043 case syntaxspec: 1044 printf ("/syntaxspec"); 1045 mcnt = *p++; 1046 printf ("/%d", mcnt); 1047 break; 1048 1049 case notsyntaxspec: 1050 printf ("/notsyntaxspec"); 1051 mcnt = *p++; 1052 printf ("/%d", mcnt); 1053 break; 1054 # endif /* emacs */ 1055 1056 case wordchar: 1057 printf ("/wordchar"); 1058 break; 1059 1060 case notwordchar: 1061 printf ("/notwordchar"); 1062 break; 1063 1064 case begbuf: 1065 printf ("/begbuf"); 1066 break; 1067 1068 case endbuf: 1069 printf ("/endbuf"); 1070 break; 1071 1072 default: 1073 printf ("?%ld", (long int) *(p-1)); 1074 } 1075 1076 putchar ('\n'); 1077 } 1078 1079 #ifdef _LIBC 1080 printf ("%td:\tend of pattern.\n", p - start); 1081 #else 1082 printf ("%ld:\tend of pattern.\n", (long int) (p - start)); 1083 #endif 1084 } 1085 1086 1087 void 1088 print_compiled_pattern (bufp) 1089 struct re_pattern_buffer *bufp; 1090 { 1091 US_CHAR_TYPE *buffer = (US_CHAR_TYPE*) bufp->buffer; 1092 1093 print_partial_compiled_pattern (buffer, buffer 1094 + bufp->used / sizeof(US_CHAR_TYPE)); 1095 printf ("%ld bytes used/%ld bytes allocated.\n", 1096 bufp->used, bufp->allocated); 1097 1098 if (bufp->fastmap_accurate && bufp->fastmap) 1099 { 1100 printf ("fastmap: "); 1101 print_fastmap (bufp->fastmap); 1102 } 1103 1104 #ifdef _LIBC 1105 printf ("re_nsub: %Zd\t", bufp->re_nsub); 1106 #else 1107 printf ("re_nsub: %ld\t", (long int) bufp->re_nsub); 1108 #endif 1109 printf ("regs_alloc: %d\t", bufp->regs_allocated); 1110 printf ("can_be_null: %d\t", bufp->can_be_null); 1111 printf ("newline_anchor: %d\n", bufp->newline_anchor); 1112 printf ("no_sub: %d\t", bufp->no_sub); 1113 printf ("not_bol: %d\t", bufp->not_bol); 1114 printf ("not_eol: %d\t", bufp->not_eol); 1115 printf ("syntax: %lx\n", bufp->syntax); 1116 /* Perhaps we should print the translate table? */ 1117 } 1118 1119 1120 void 1121 print_double_string (where, string1, size1, string2, size2) 1122 const CHAR_TYPE *where; 1123 const CHAR_TYPE *string1; 1124 const CHAR_TYPE *string2; 1125 int size1; 1126 int size2; 1127 { 1128 int this_char; 1129 1130 if (where == NULL) 1131 printf ("(null)"); 1132 else 1133 { 1134 if (FIRST_STRING_P (where)) 1135 { 1136 for (this_char = where - string1; this_char < size1; this_char++) 1137 PUT_CHAR (string1[this_char]); 1138 1139 where = string2; 1140 } 1141 1142 for (this_char = where - string2; this_char < size2; this_char++) 1143 PUT_CHAR (string2[this_char]); 1144 } 1145 } 1146 1147 void 1148 printchar (c) 1149 int c; 1150 { 1151 putc (c, stderr); 1152 } 1153 1154 #else /* not DEBUG */ 1155 1156 # undef assert 1157 # define assert(e) 1158 1159 # define DEBUG_STATEMENT(e) 1160 # define DEBUG_PRINT1(x) 1161 # define DEBUG_PRINT2(x1, x2) 1162 # define DEBUG_PRINT3(x1, x2, x3) 1163 # define DEBUG_PRINT4(x1, x2, x3, x4) 1164 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) 1165 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) 1166 1167 #endif /* not DEBUG */ 1168 1169 #ifdef MBS_SUPPORT 1170 /* This convert a multibyte string to a wide character string. 1171 And write their correspondances to offset_buffer(see below) 1172 and write whether each wchar_t is binary data to is_binary. 1173 This assume invalid multibyte sequences as binary data. 1174 We assume offset_buffer and is_binary is already allocated 1175 enough space. */ 1176 1177 static size_t convert_mbs_to_wcs (CHAR_TYPE *dest, const unsigned char* src, 1178 size_t len, int *offset_buffer, 1179 char *is_binary); 1180 static size_t 1181 convert_mbs_to_wcs (dest, src, len, offset_buffer, is_binary) 1182 CHAR_TYPE *dest; 1183 const unsigned char* src; 1184 size_t len; /* the length of multibyte string. */ 1185 1186 /* It hold correspondances between src(char string) and 1187 dest(wchar_t string) for optimization. 1188 e.g. src = "xxxyzz" 1189 dest = {'X', 'Y', 'Z'} 1190 (each "xxx", "y" and "zz" represent one multibyte character 1191 corresponding to 'X', 'Y' and 'Z'.) 1192 offset_buffer = {0, 0+3("xxx"), 0+3+1("y"), 0+3+1+2("zz")} 1193 = {0, 3, 4, 6} 1194 */ 1195 int *offset_buffer; 1196 char *is_binary; 1197 { 1198 wchar_t *pdest = dest; 1199 const unsigned char *psrc = src; 1200 size_t wc_count = 0; 1201 1202 if (MB_CUR_MAX == 1) 1203 { /* We don't need conversion. */ 1204 for ( ; wc_count < len ; ++wc_count) 1205 { 1206 *pdest++ = *psrc++; 1207 is_binary[wc_count] = FALSE; 1208 offset_buffer[wc_count] = wc_count; 1209 } 1210 offset_buffer[wc_count] = wc_count; 1211 } 1212 else 1213 { 1214 /* We need conversion. */ 1215 mbstate_t mbs; 1216 int consumed; 1217 size_t mb_remain = len; 1218 size_t mb_count = 0; 1219 1220 /* Initialize the conversion state. */ 1221 memset (&mbs, 0, sizeof (mbstate_t)); 1222 1223 offset_buffer[0] = 0; 1224 for( ; mb_remain > 0 ; ++wc_count, ++pdest, mb_remain -= consumed, 1225 psrc += consumed) 1226 { 1227 consumed = mbrtowc (pdest, psrc, mb_remain, &mbs); 1228 1229 if (consumed <= 0) 1230 /* failed to convert. maybe src contains binary data. 1231 So we consume 1 byte manualy. */ 1232 { 1233 *pdest = *psrc; 1234 consumed = 1; 1235 is_binary[wc_count] = TRUE; 1236 } 1237 else 1238 is_binary[wc_count] = FALSE; 1239 /* In sjis encoding, we use yen sign as escape character in 1240 place of reverse solidus. So we convert 0x5c(yen sign in 1241 sjis) to not 0xa5(yen sign in UCS2) but 0x5c(reverse 1242 solidus in UCS2). */ 1243 if (consumed == 1 && (int) *psrc == 0x5c && (int) *pdest == 0xa5) 1244 *pdest = (wchar_t) *psrc; 1245 1246 offset_buffer[wc_count + 1] = mb_count += consumed; 1247 } 1248 } 1249 1250 return wc_count; 1251 } 1252 1253 #endif /* MBS_SUPPORT */ 1254 1255 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can 1256 also be assigned to arbitrarily: each pattern buffer stores its own 1257 syntax, so it can be changed between regex compilations. */ 1258 /* This has no initializer because initialized variables in Emacs 1259 become read-only after dumping. */ 1260 reg_syntax_t re_syntax_options; 1261 1262 1263 /* Specify the precise syntax of regexps for compilation. This provides 1264 for compatibility for various utilities which historically have 1265 different, incompatible syntaxes. 1266 1267 The argument SYNTAX is a bit mask comprised of the various bits 1268 defined in regex.h. We return the old syntax. */ 1269 1270 reg_syntax_t 1271 re_set_syntax (syntax) 1272 reg_syntax_t syntax; 1273 { 1274 reg_syntax_t ret = re_syntax_options; 1275 1276 re_syntax_options = syntax; 1277 #ifdef DEBUG 1278 if (syntax & RE_DEBUG) 1279 debug = 1; 1280 else if (debug) /* was on but now is not */ 1281 debug = 0; 1282 #endif /* DEBUG */ 1283 return ret; 1284 } 1285 #ifdef _LIBC 1286 weak_alias (__re_set_syntax, re_set_syntax) 1287 #endif 1288 1289 /* This table gives an error message for each of the error codes listed 1290 in regex.h. Obviously the order here has to be same as there. 1291 POSIX doesn't require that we do anything for REG_NOERROR, 1292 but why not be nice? */ 1293 1294 static const char re_error_msgid[] = 1295 { 1296 #define REG_NOERROR_IDX 0 1297 gettext_noop ("Success") /* REG_NOERROR */ 1298 "\0" 1299 #define REG_NOMATCH_IDX (REG_NOERROR_IDX + sizeof "Success") 1300 gettext_noop ("No match") /* REG_NOMATCH */ 1301 "\0" 1302 #define REG_BADPAT_IDX (REG_NOMATCH_IDX + sizeof "No match") 1303 gettext_noop ("Invalid regular expression") /* REG_BADPAT */ 1304 "\0" 1305 #define REG_ECOLLATE_IDX (REG_BADPAT_IDX + sizeof "Invalid regular expression") 1306 gettext_noop ("Invalid collation character") /* REG_ECOLLATE */ 1307 "\0" 1308 #define REG_ECTYPE_IDX (REG_ECOLLATE_IDX + sizeof "Invalid collation character") 1309 gettext_noop ("Invalid character class name") /* REG_ECTYPE */ 1310 "\0" 1311 #define REG_EESCAPE_IDX (REG_ECTYPE_IDX + sizeof "Invalid character class name") 1312 gettext_noop ("Trailing backslash") /* REG_EESCAPE */ 1313 "\0" 1314 #define REG_ESUBREG_IDX (REG_EESCAPE_IDX + sizeof "Trailing backslash") 1315 gettext_noop ("Invalid back reference") /* REG_ESUBREG */ 1316 "\0" 1317 #define REG_EBRACK_IDX (REG_ESUBREG_IDX + sizeof "Invalid back reference") 1318 gettext_noop ("Unmatched [ or [^") /* REG_EBRACK */ 1319 "\0" 1320 #define REG_EPAREN_IDX (REG_EBRACK_IDX + sizeof "Unmatched [ or [^") 1321 gettext_noop ("Unmatched ( or \\(") /* REG_EPAREN */ 1322 "\0" 1323 #define REG_EBRACE_IDX (REG_EPAREN_IDX + sizeof "Unmatched ( or \\(") 1324 gettext_noop ("Unmatched \\{") /* REG_EBRACE */ 1325 "\0" 1326 #define REG_BADBR_IDX (REG_EBRACE_IDX + sizeof "Unmatched \\{") 1327 gettext_noop ("Invalid content of \\{\\}") /* REG_BADBR */ 1328 "\0" 1329 #define REG_ERANGE_IDX (REG_BADBR_IDX + sizeof "Invalid content of \\{\\}") 1330 gettext_noop ("Invalid range end") /* REG_ERANGE */ 1331 "\0" 1332 #define REG_ESPACE_IDX (REG_ERANGE_IDX + sizeof "Invalid range end") 1333 gettext_noop ("Memory exhausted") /* REG_ESPACE */ 1334 "\0" 1335 #define REG_BADRPT_IDX (REG_ESPACE_IDX + sizeof "Memory exhausted") 1336 gettext_noop ("Invalid preceding regular expression") /* REG_BADRPT */ 1337 "\0" 1338 #define REG_EEND_IDX (REG_BADRPT_IDX + sizeof "Invalid preceding regular expression") 1339 gettext_noop ("Premature end of regular expression") /* REG_EEND */ 1340 "\0" 1341 #define REG_ESIZE_IDX (REG_EEND_IDX + sizeof "Premature end of regular expression") 1342 gettext_noop ("Regular expression too big") /* REG_ESIZE */ 1343 "\0" 1344 #define REG_ERPAREN_IDX (REG_ESIZE_IDX + sizeof "Regular expression too big") 1345 gettext_noop ("Unmatched ) or \\)") /* REG_ERPAREN */ 1346 }; 1347 1348 static const size_t re_error_msgid_idx[] = 1349 { 1350 REG_NOERROR_IDX, 1351 REG_NOMATCH_IDX, 1352 REG_BADPAT_IDX, 1353 REG_ECOLLATE_IDX, 1354 REG_ECTYPE_IDX, 1355 REG_EESCAPE_IDX, 1356 REG_ESUBREG_IDX, 1357 REG_EBRACK_IDX, 1358 REG_EPAREN_IDX, 1359 REG_EBRACE_IDX, 1360 REG_BADBR_IDX, 1361 REG_ERANGE_IDX, 1362 REG_ESPACE_IDX, 1363 REG_BADRPT_IDX, 1364 REG_EEND_IDX, 1365 REG_ESIZE_IDX, 1366 REG_ERPAREN_IDX 1367 }; 1368 1369 /* Avoiding alloca during matching, to placate r_alloc. */ 1370 1371 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the 1372 searching and matching functions should not call alloca. On some 1373 systems, alloca is implemented in terms of malloc, and if we're 1374 using the relocating allocator routines, then malloc could cause a 1375 relocation, which might (if the strings being searched are in the 1376 ralloc heap) shift the data out from underneath the regexp 1377 routines. 1378 1379 Here's another reason to avoid allocation: Emacs 1380 processes input from X in a signal handler; processing X input may 1381 call malloc; if input arrives while a matching routine is calling 1382 malloc, then we're scrod. But Emacs can't just block input while 1383 calling matching routines; then we don't notice interrupts when 1384 they come in. So, Emacs blocks input around all regexp calls 1385 except the matching calls, which it leaves unprotected, in the 1386 faith that they will not malloc. */ 1387 1388 /* Normally, this is fine. */ 1389 #define MATCH_MAY_ALLOCATE 1390 1391 /* When using GNU C, we are not REALLY using the C alloca, no matter 1392 what config.h may say. So don't take precautions for it. */ 1393 #ifdef __GNUC__ 1394 # undef C_ALLOCA 1395 #endif 1396 1397 /* The match routines may not allocate if (1) they would do it with malloc 1398 and (2) it's not safe for them to use malloc. 1399 Note that if REL_ALLOC is defined, matching would not use malloc for the 1400 failure stack, but we would still use it for the register vectors; 1401 so REL_ALLOC should not affect this. */ 1402 #if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs 1403 # undef MATCH_MAY_ALLOCATE 1404 #endif 1405 1406 1407 /* Failure stack declarations and macros; both re_compile_fastmap and 1408 re_match_2 use a failure stack. These have to be macros because of 1409 REGEX_ALLOCATE_STACK. */ 1410 1411 1412 /* Number of failure points for which to initially allocate space 1413 when matching. If this number is exceeded, we allocate more 1414 space, so it is not a hard limit. */ 1415 #ifndef INIT_FAILURE_ALLOC 1416 # define INIT_FAILURE_ALLOC 5 1417 #endif 1418 1419 /* Roughly the maximum number of failure points on the stack. Would be 1420 exactly that if always used MAX_FAILURE_ITEMS items each time we failed. 1421 This is a variable only so users of regex can assign to it; we never 1422 change it ourselves. */ 1423 1424 #ifdef INT_IS_16BIT 1425 1426 # if defined MATCH_MAY_ALLOCATE 1427 /* 4400 was enough to cause a crash on Alpha OSF/1, 1428 whose default stack limit is 2mb. */ 1429 long int re_max_failures = 4000; 1430 # else 1431 long int re_max_failures = 2000; 1432 # endif 1433 1434 union fail_stack_elt 1435 { 1436 US_CHAR_TYPE *pointer; 1437 long int integer; 1438 }; 1439 1440 typedef union fail_stack_elt fail_stack_elt_t; 1441 1442 typedef struct 1443 { 1444 fail_stack_elt_t *stack; 1445 unsigned long int size; 1446 unsigned long int avail; /* Offset of next open position. */ 1447 } fail_stack_type; 1448 1449 #else /* not INT_IS_16BIT */ 1450 1451 # if defined MATCH_MAY_ALLOCATE 1452 /* 4400 was enough to cause a crash on Alpha OSF/1, 1453 whose default stack limit is 2mb. */ 1454 int re_max_failures = 4000; 1455 # else 1456 int re_max_failures = 2000; 1457 # endif 1458 1459 union fail_stack_elt 1460 { 1461 US_CHAR_TYPE *pointer; 1462 int integer; 1463 }; 1464 1465 typedef union fail_stack_elt fail_stack_elt_t; 1466 1467 typedef struct 1468 { 1469 fail_stack_elt_t *stack; 1470 unsigned size; 1471 unsigned avail; /* Offset of next open position. */ 1472 } fail_stack_type; 1473 1474 #endif /* INT_IS_16BIT */ 1475 1476 #define FAIL_STACK_EMPTY() (fail_stack.avail == 0) 1477 #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0) 1478 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size) 1479 1480 1481 /* Define macros to initialize and free the failure stack. 1482 Do `return -2' if the alloc fails. */ 1483 1484 #ifdef MATCH_MAY_ALLOCATE 1485 # define INIT_FAIL_STACK() \ 1486 do { \ 1487 fail_stack.stack = (fail_stack_elt_t *) \ 1488 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \ 1489 \ 1490 if (fail_stack.stack == NULL) \ 1491 return -2; \ 1492 \ 1493 fail_stack.size = INIT_FAILURE_ALLOC; \ 1494 fail_stack.avail = 0; \ 1495 } while (0) 1496 1497 # define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack) 1498 #else 1499 # define INIT_FAIL_STACK() \ 1500 do { \ 1501 fail_stack.avail = 0; \ 1502 } while (0) 1503 1504 # define RESET_FAIL_STACK() 1505 #endif 1506 1507 1508 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items. 1509 1510 Return 1 if succeeds, and 0 if either ran out of memory 1511 allocating space for it or it was already too large. 1512 1513 REGEX_REALLOCATE_STACK requires `destination' be declared. */ 1514 1515 #define DOUBLE_FAIL_STACK(fail_stack) \ 1516 ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS) \ 1517 ? 0 \ 1518 : ((fail_stack).stack = (fail_stack_elt_t *) \ 1519 REGEX_REALLOCATE_STACK ((fail_stack).stack, \ 1520 (fail_stack).size * sizeof (fail_stack_elt_t), \ 1521 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \ 1522 \ 1523 (fail_stack).stack == NULL \ 1524 ? 0 \ 1525 : ((fail_stack).size <<= 1, \ 1526 1))) 1527 1528 1529 /* Push pointer POINTER on FAIL_STACK. 1530 Return 1 if was able to do so and 0 if ran out of memory allocating 1531 space to do so. */ 1532 #define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \ 1533 ((FAIL_STACK_FULL () \ 1534 && !DOUBLE_FAIL_STACK (FAIL_STACK)) \ 1535 ? 0 \ 1536 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \ 1537 1)) 1538 1539 /* Push a pointer value onto the failure stack. 1540 Assumes the variable `fail_stack'. Probably should only 1541 be called from within `PUSH_FAILURE_POINT'. */ 1542 #define PUSH_FAILURE_POINTER(item) \ 1543 fail_stack.stack[fail_stack.avail++].pointer = (US_CHAR_TYPE *) (item) 1544 1545 /* This pushes an integer-valued item onto the failure stack. 1546 Assumes the variable `fail_stack'. Probably should only 1547 be called from within `PUSH_FAILURE_POINT'. */ 1548 #define PUSH_FAILURE_INT(item) \ 1549 fail_stack.stack[fail_stack.avail++].integer = (item) 1550 1551 /* Push a fail_stack_elt_t value onto the failure stack. 1552 Assumes the variable `fail_stack'. Probably should only 1553 be called from within `PUSH_FAILURE_POINT'. */ 1554 #define PUSH_FAILURE_ELT(item) \ 1555 fail_stack.stack[fail_stack.avail++] = (item) 1556 1557 /* These three POP... operations complement the three PUSH... operations. 1558 All assume that `fail_stack' is nonempty. */ 1559 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer 1560 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer 1561 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail] 1562 1563 /* Used to omit pushing failure point id's when we're not debugging. */ 1564 #ifdef DEBUG 1565 # define DEBUG_PUSH PUSH_FAILURE_INT 1566 # define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT () 1567 #else 1568 # define DEBUG_PUSH(item) 1569 # define DEBUG_POP(item_addr) 1570 #endif 1571 1572 1573 /* Push the information about the state we will need 1574 if we ever fail back to it. 1575 1576 Requires variables fail_stack, regstart, regend, reg_info, and 1577 num_regs_pushed be declared. DOUBLE_FAIL_STACK requires `destination' 1578 be declared. 1579 1580 Does `return FAILURE_CODE' if runs out of memory. */ 1581 1582 #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \ 1583 do { \ 1584 char *destination; \ 1585 /* Must be int, so when we don't save any registers, the arithmetic \ 1586 of 0 + -1 isn't done as unsigned. */ \ 1587 /* Can't be int, since there is not a shred of a guarantee that int \ 1588 is wide enough to hold a value of something to which pointer can \ 1589 be assigned */ \ 1590 active_reg_t this_reg; \ 1591 \ 1592 DEBUG_STATEMENT (failure_id++); \ 1593 DEBUG_STATEMENT (nfailure_points_pushed++); \ 1594 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \ 1595 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\ 1596 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\ 1597 \ 1598 DEBUG_PRINT2 (" slots needed: %ld\n", NUM_FAILURE_ITEMS); \ 1599 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \ 1600 \ 1601 /* Ensure we have enough space allocated for what we will push. */ \ 1602 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \ 1603 { \ 1604 if (!DOUBLE_FAIL_STACK (fail_stack)) \ 1605 return failure_code; \ 1606 \ 1607 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \ 1608 (fail_stack).size); \ 1609 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\ 1610 } \ 1611 \ 1612 /* Push the info, starting with the registers. */ \ 1613 DEBUG_PRINT1 ("\n"); \ 1614 \ 1615 if (1) \ 1616 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \ 1617 this_reg++) \ 1618 { \ 1619 DEBUG_PRINT2 (" Pushing reg: %lu\n", this_reg); \ 1620 DEBUG_STATEMENT (num_regs_pushed++); \ 1621 \ 1622 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \ 1623 PUSH_FAILURE_POINTER (regstart[this_reg]); \ 1624 \ 1625 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \ 1626 PUSH_FAILURE_POINTER (regend[this_reg]); \ 1627 \ 1628 DEBUG_PRINT2 (" info: %p\n ", \ 1629 reg_info[this_reg].word.pointer); \ 1630 DEBUG_PRINT2 (" match_null=%d", \ 1631 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \ 1632 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \ 1633 DEBUG_PRINT2 (" matched_something=%d", \ 1634 MATCHED_SOMETHING (reg_info[this_reg])); \ 1635 DEBUG_PRINT2 (" ever_matched=%d", \ 1636 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \ 1637 DEBUG_PRINT1 ("\n"); \ 1638 PUSH_FAILURE_ELT (reg_info[this_reg].word); \ 1639 } \ 1640 \ 1641 DEBUG_PRINT2 (" Pushing low active reg: %ld\n", lowest_active_reg);\ 1642 PUSH_FAILURE_INT (lowest_active_reg); \ 1643 \ 1644 DEBUG_PRINT2 (" Pushing high active reg: %ld\n", highest_active_reg);\ 1645 PUSH_FAILURE_INT (highest_active_reg); \ 1646 \ 1647 DEBUG_PRINT2 (" Pushing pattern %p:\n", pattern_place); \ 1648 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \ 1649 PUSH_FAILURE_POINTER (pattern_place); \ 1650 \ 1651 DEBUG_PRINT2 (" Pushing string %p: `", string_place); \ 1652 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \ 1653 size2); \ 1654 DEBUG_PRINT1 ("'\n"); \ 1655 PUSH_FAILURE_POINTER (string_place); \ 1656 \ 1657 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \ 1658 DEBUG_PUSH (failure_id); \ 1659 } while (0) 1660 1661 /* This is the number of items that are pushed and popped on the stack 1662 for each register. */ 1663 #define NUM_REG_ITEMS 3 1664 1665 /* Individual items aside from the registers. */ 1666 #ifdef DEBUG 1667 # define NUM_NONREG_ITEMS 5 /* Includes failure point id. */ 1668 #else 1669 # define NUM_NONREG_ITEMS 4 1670 #endif 1671 1672 /* We push at most this many items on the stack. */ 1673 /* We used to use (num_regs - 1), which is the number of registers 1674 this regexp will save; but that was changed to 5 1675 to avoid stack overflow for a regexp with lots of parens. */ 1676 #define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS) 1677 1678 /* We actually push this many items. */ 1679 #define NUM_FAILURE_ITEMS \ 1680 (((0 \ 1681 ? 0 : highest_active_reg - lowest_active_reg + 1) \ 1682 * NUM_REG_ITEMS) \ 1683 + NUM_NONREG_ITEMS) 1684 1685 /* How many items can still be added to the stack without overflowing it. */ 1686 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail) 1687 1688 1689 /* Pops what PUSH_FAIL_STACK pushes. 1690 1691 We restore into the parameters, all of which should be lvalues: 1692 STR -- the saved data position. 1693 PAT -- the saved pattern position. 1694 LOW_REG, HIGH_REG -- the highest and lowest active registers. 1695 REGSTART, REGEND -- arrays of string positions. 1696 REG_INFO -- array of information about each subexpression. 1697 1698 Also assumes the variables `fail_stack' and (if debugging), `bufp', 1699 `pend', `string1', `size1', `string2', and `size2'. */ 1700 #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\ 1701 { \ 1702 DEBUG_STATEMENT (unsigned failure_id;) \ 1703 active_reg_t this_reg; \ 1704 const US_CHAR_TYPE *string_temp; \ 1705 \ 1706 assert (!FAIL_STACK_EMPTY ()); \ 1707 \ 1708 /* Remove failure points and point to how many regs pushed. */ \ 1709 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \ 1710 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \ 1711 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \ 1712 \ 1713 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \ 1714 \ 1715 DEBUG_POP (&failure_id); \ 1716 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \ 1717 \ 1718 /* If the saved string location is NULL, it came from an \ 1719 on_failure_keep_string_jump opcode, and we want to throw away the \ 1720 saved NULL, thus retaining our current position in the string. */ \ 1721 string_temp = POP_FAILURE_POINTER (); \ 1722 if (string_temp != NULL) \ 1723 str = (const CHAR_TYPE *) string_temp; \ 1724 \ 1725 DEBUG_PRINT2 (" Popping string %p: `", str); \ 1726 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \ 1727 DEBUG_PRINT1 ("'\n"); \ 1728 \ 1729 pat = (US_CHAR_TYPE *) POP_FAILURE_POINTER (); \ 1730 DEBUG_PRINT2 (" Popping pattern %p:\n", pat); \ 1731 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \ 1732 \ 1733 /* Restore register info. */ \ 1734 high_reg = (active_reg_t) POP_FAILURE_INT (); \ 1735 DEBUG_PRINT2 (" Popping high active reg: %ld\n", high_reg); \ 1736 \ 1737 low_reg = (active_reg_t) POP_FAILURE_INT (); \ 1738 DEBUG_PRINT2 (" Popping low active reg: %ld\n", low_reg); \ 1739 \ 1740 if (1) \ 1741 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \ 1742 { \ 1743 DEBUG_PRINT2 (" Popping reg: %ld\n", this_reg); \ 1744 \ 1745 reg_info[this_reg].word = POP_FAILURE_ELT (); \ 1746 DEBUG_PRINT2 (" info: %p\n", \ 1747 reg_info[this_reg].word.pointer); \ 1748 \ 1749 regend[this_reg] = (const CHAR_TYPE *) POP_FAILURE_POINTER (); \ 1750 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \ 1751 \ 1752 regstart[this_reg] = (const CHAR_TYPE *) POP_FAILURE_POINTER ();\ 1753 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \ 1754 } \ 1755 else \ 1756 { \ 1757 for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \ 1758 { \ 1759 reg_info[this_reg].word.integer = 0; \ 1760 regend[this_reg] = 0; \ 1761 regstart[this_reg] = 0; \ 1762 } \ 1763 highest_active_reg = high_reg; \ 1764 } \ 1765 \ 1766 set_regs_matched_done = 0; \ 1767 DEBUG_STATEMENT (nfailure_points_popped++); \ 1768 } /* POP_FAILURE_POINT */ 1769 1770 1771 /* Structure for per-register (a.k.a. per-group) information. 1772 Other register information, such as the 1773 starting and ending positions (which are addresses), and the list of 1774 inner groups (which is a bits list) are maintained in separate 1775 variables. 1776 1777 We are making a (strictly speaking) nonportable assumption here: that 1778 the compiler will pack our bit fields into something that fits into 1779 the type of `word', i.e., is something that fits into one item on the 1780 failure stack. */ 1781 1782 1783 /* Declarations and macros for re_match_2. */ 1784 1785 typedef union 1786 { 1787 fail_stack_elt_t word; 1788 struct 1789 { 1790 /* This field is one if this group can match the empty string, 1791 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */ 1792 #define MATCH_NULL_UNSET_VALUE 3 1793 unsigned match_null_string_p : 2; 1794 unsigned is_active : 1; 1795 unsigned matched_something : 1; 1796 unsigned ever_matched_something : 1; 1797 } bits; 1798 } register_info_type; 1799 1800 #define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p) 1801 #define IS_ACTIVE(R) ((R).bits.is_active) 1802 #define MATCHED_SOMETHING(R) ((R).bits.matched_something) 1803 #define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something) 1804 1805 1806 /* Call this when have matched a real character; it sets `matched' flags 1807 for the subexpressions which we are currently inside. Also records 1808 that those subexprs have matched. */ 1809 #define SET_REGS_MATCHED() \ 1810 do \ 1811 { \ 1812 if (!set_regs_matched_done) \ 1813 { \ 1814 active_reg_t r; \ 1815 set_regs_matched_done = 1; \ 1816 for (r = lowest_active_reg; r <= highest_active_reg; r++) \ 1817 { \ 1818 MATCHED_SOMETHING (reg_info[r]) \ 1819 = EVER_MATCHED_SOMETHING (reg_info[r]) \ 1820 = 1; \ 1821 } \ 1822 } \ 1823 } \ 1824 while (0) 1825 1826 /* Registers are set to a sentinel when they haven't yet matched. */ 1827 static CHAR_TYPE reg_unset_dummy; 1828 #define REG_UNSET_VALUE (®_unset_dummy) 1829 #define REG_UNSET(e) ((e) == REG_UNSET_VALUE) 1830 1831 /* Subroutine declarations and macros for regex_compile. */ 1832 1833 static reg_errcode_t regex_compile _RE_ARGS ((const char *pattern, size_t size, 1834 reg_syntax_t syntax, 1835 struct re_pattern_buffer *bufp)); 1836 static void store_op1 _RE_ARGS ((re_opcode_t op, US_CHAR_TYPE *loc, int arg)); 1837 static void store_op2 _RE_ARGS ((re_opcode_t op, US_CHAR_TYPE *loc, 1838 int arg1, int arg2)); 1839 static void insert_op1 _RE_ARGS ((re_opcode_t op, US_CHAR_TYPE *loc, 1840 int arg, US_CHAR_TYPE *end)); 1841 static void insert_op2 _RE_ARGS ((re_opcode_t op, US_CHAR_TYPE *loc, 1842 int arg1, int arg2, US_CHAR_TYPE *end)); 1843 static boolean at_begline_loc_p _RE_ARGS ((const CHAR_TYPE *pattern, 1844 const CHAR_TYPE *p, 1845 reg_syntax_t syntax)); 1846 static boolean at_endline_loc_p _RE_ARGS ((const CHAR_TYPE *p, 1847 const CHAR_TYPE *pend, 1848 reg_syntax_t syntax)); 1849 #ifdef MBS_SUPPORT 1850 static reg_errcode_t compile_range _RE_ARGS ((CHAR_TYPE range_start, 1851 const CHAR_TYPE **p_ptr, 1852 const CHAR_TYPE *pend, 1853 char *translate, 1854 reg_syntax_t syntax, 1855 US_CHAR_TYPE *b, 1856 CHAR_TYPE *char_set)); 1857 static void insert_space _RE_ARGS ((int num, CHAR_TYPE *loc, CHAR_TYPE *end)); 1858 #else 1859 static reg_errcode_t compile_range _RE_ARGS ((unsigned int range_start, 1860 const CHAR_TYPE **p_ptr, 1861 const CHAR_TYPE *pend, 1862 char *translate, 1863 reg_syntax_t syntax, 1864 US_CHAR_TYPE *b)); 1865 #endif /* MBS_SUPPORT */ 1866 1867 /* Fetch the next character in the uncompiled pattern---translating it 1868 if necessary. Also cast from a signed character in the constant 1869 string passed to us by the user to an unsigned char that we can use 1870 as an array index (in, e.g., `translate'). */ 1871 /* ifdef MBS_SUPPORT, we translate only if character <= 0xff, 1872 because it is impossible to allocate 4GB array for some encodings 1873 which have 4 byte character_set like UCS4. */ 1874 #ifndef PATFETCH 1875 # ifdef MBS_SUPPORT 1876 # define PATFETCH(c) \ 1877 do {if (p == pend) return REG_EEND; \ 1878 c = (US_CHAR_TYPE) *p++; \ 1879 if (translate && (c <= 0xff)) c = (US_CHAR_TYPE) translate[c]; \ 1880 } while (0) 1881 # else 1882 # define PATFETCH(c) \ 1883 do {if (p == pend) return REG_EEND; \ 1884 c = (unsigned char) *p++; \ 1885 if (translate) c = (unsigned char) translate[c]; \ 1886 } while (0) 1887 # endif /* MBS_SUPPORT */ 1888 #endif 1889 1890 /* Fetch the next character in the uncompiled pattern, with no 1891 translation. */ 1892 #define PATFETCH_RAW(c) \ 1893 do {if (p == pend) return REG_EEND; \ 1894 c = (US_CHAR_TYPE) *p++; \ 1895 } while (0) 1896 1897 /* Go backwards one character in the pattern. */ 1898 #define PATUNFETCH p-- 1899 1900 1901 /* If `translate' is non-null, return translate[D], else just D. We 1902 cast the subscript to translate because some data is declared as 1903 `char *', to avoid warnings when a string constant is passed. But 1904 when we use a character as a subscript we must make it unsigned. */ 1905 /* ifdef MBS_SUPPORT, we translate only if character <= 0xff, 1906 because it is impossible to allocate 4GB array for some encodings 1907 which have 4 byte character_set like UCS4. */ 1908 #ifndef TRANSLATE 1909 # ifdef MBS_SUPPORT 1910 # define TRANSLATE(d) \ 1911 ((translate && ((US_CHAR_TYPE) (d)) <= 0xff) \ 1912 ? (char) translate[(unsigned char) (d)] : (d)) 1913 #else 1914 # define TRANSLATE(d) \ 1915 (translate ? (char) translate[(unsigned char) (d)] : (d)) 1916 # endif /* MBS_SUPPORT */ 1917 #endif 1918 1919 1920 /* Macros for outputting the compiled pattern into `buffer'. */ 1921 1922 /* If the buffer isn't allocated when it comes in, use this. */ 1923 #define INIT_BUF_SIZE (32 * sizeof(US_CHAR_TYPE)) 1924 1925 /* Make sure we have at least N more bytes of space in buffer. */ 1926 #ifdef MBS_SUPPORT 1927 # define GET_BUFFER_SPACE(n) \ 1928 while (((unsigned long)b - (unsigned long)COMPILED_BUFFER_VAR \ 1929 + (n)*sizeof(CHAR_TYPE)) > bufp->allocated) \ 1930 EXTEND_BUFFER () 1931 #else 1932 # define GET_BUFFER_SPACE(n) \ 1933 while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated) \ 1934 EXTEND_BUFFER () 1935 #endif /* MBS_SUPPORT */ 1936 1937 /* Make sure we have one more byte of buffer space and then add C to it. */ 1938 #define BUF_PUSH(c) \ 1939 do { \ 1940 GET_BUFFER_SPACE (1); \ 1941 *b++ = (US_CHAR_TYPE) (c); \ 1942 } while (0) 1943 1944 1945 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */ 1946 #define BUF_PUSH_2(c1, c2) \ 1947 do { \ 1948 GET_BUFFER_SPACE (2); \ 1949 *b++ = (US_CHAR_TYPE) (c1); \ 1950 *b++ = (US_CHAR_TYPE) (c2); \ 1951 } while (0) 1952 1953 1954 /* As with BUF_PUSH_2, except for three bytes. */ 1955 #define BUF_PUSH_3(c1, c2, c3) \ 1956 do { \ 1957 GET_BUFFER_SPACE (3); \ 1958 *b++ = (US_CHAR_TYPE) (c1); \ 1959 *b++ = (US_CHAR_TYPE) (c2); \ 1960 *b++ = (US_CHAR_TYPE) (c3); \ 1961 } while (0) 1962 1963 /* Store a jump with opcode OP at LOC to location TO. We store a 1964 relative address offset by the three bytes the jump itself occupies. */ 1965 #define STORE_JUMP(op, loc, to) \ 1966 store_op1 (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE))) 1967 1968 /* Likewise, for a two-argument jump. */ 1969 #define STORE_JUMP2(op, loc, to, arg) \ 1970 store_op2 (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), arg) 1971 1972 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */ 1973 #define INSERT_JUMP(op, loc, to) \ 1974 insert_op1 (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), b) 1975 1976 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */ 1977 #define INSERT_JUMP2(op, loc, to, arg) \ 1978 insert_op2 (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)),\ 1979 arg, b) 1980 1981 1982 /* This is not an arbitrary limit: the arguments which represent offsets 1983 into the pattern are two bytes long. So if 2^16 bytes turns out to 1984 be too small, many things would have to change. */ 1985 /* Any other compiler which, like MSC, has allocation limit below 2^16 1986 bytes will have to use approach similar to what was done below for 1987 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up 1988 reallocating to 0 bytes. Such thing is not going to work too well. 1989 You have been warned!! */ 1990 #if defined _MSC_VER && !defined WIN32 1991 /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes. 1992 The REALLOC define eliminates a flurry of conversion warnings, 1993 but is not required. */ 1994 # define MAX_BUF_SIZE 65500L 1995 # define REALLOC(p,s) realloc ((p), (size_t) (s)) 1996 #else 1997 # define MAX_BUF_SIZE (1L << 16) 1998 # define REALLOC(p,s) realloc ((p), (s)) 1999 #endif 2000 2001 /* Extend the buffer by twice its current size via realloc and 2002 reset the pointers that pointed into the old block to point to the 2003 correct places in the new one. If extending the buffer results in it 2004 being larger than MAX_BUF_SIZE, then flag memory exhausted. */ 2005 #if __BOUNDED_POINTERS__ 2006 # define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated) 2007 # define MOVE_BUFFER_POINTER(P) \ 2008 (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr) 2009 # define ELSE_EXTEND_BUFFER_HIGH_BOUND \ 2010 else \ 2011 { \ 2012 SET_HIGH_BOUND (b); \ 2013 SET_HIGH_BOUND (begalt); \ 2014 if (fixup_alt_jump) \ 2015 SET_HIGH_BOUND (fixup_alt_jump); \ 2016 if (laststart) \ 2017 SET_HIGH_BOUND (laststart); \ 2018 if (pending_exact) \ 2019 SET_HIGH_BOUND (pending_exact); \ 2020 } 2021 #else 2022 # define MOVE_BUFFER_POINTER(P) (P) += incr 2023 # define ELSE_EXTEND_BUFFER_HIGH_BOUND 2024 #endif 2025 2026 #ifdef MBS_SUPPORT 2027 # define EXTEND_BUFFER() \ 2028 do { \ 2029 US_CHAR_TYPE *old_buffer = COMPILED_BUFFER_VAR; \ 2030 int wchar_count; \ 2031 if (bufp->allocated + sizeof(US_CHAR_TYPE) > MAX_BUF_SIZE) \ 2032 return REG_ESIZE; \ 2033 bufp->allocated <<= 1; \ 2034 if (bufp->allocated > MAX_BUF_SIZE) \ 2035 bufp->allocated = MAX_BUF_SIZE; \ 2036 /* How many characters the new buffer can have? */ \ 2037 wchar_count = bufp->allocated / sizeof(US_CHAR_TYPE); \ 2038 if (wchar_count == 0) wchar_count = 1; \ 2039 /* Truncate the buffer to CHAR_TYPE align. */ \ 2040 bufp->allocated = wchar_count * sizeof(US_CHAR_TYPE); \ 2041 RETALLOC (COMPILED_BUFFER_VAR, wchar_count, US_CHAR_TYPE); \ 2042 bufp->buffer = (char*)COMPILED_BUFFER_VAR; \ 2043 if (COMPILED_BUFFER_VAR == NULL) \ 2044 return REG_ESPACE; \ 2045 /* If the buffer moved, move all the pointers into it. */ \ 2046 if (old_buffer != COMPILED_BUFFER_VAR) \ 2047 { \ 2048 int incr = COMPILED_BUFFER_VAR - old_buffer; \ 2049 MOVE_BUFFER_POINTER (b); \ 2050 MOVE_BUFFER_POINTER (begalt); \ 2051 if (fixup_alt_jump) \ 2052 MOVE_BUFFER_POINTER (fixup_alt_jump); \ 2053 if (laststart) \ 2054 MOVE_BUFFER_POINTER (laststart); \ 2055 if (pending_exact) \ 2056 MOVE_BUFFER_POINTER (pending_exact); \ 2057 } \ 2058 ELSE_EXTEND_BUFFER_HIGH_BOUND \ 2059 } while (0) 2060 #else 2061 # define EXTEND_BUFFER() \ 2062 do { \ 2063 US_CHAR_TYPE *old_buffer = COMPILED_BUFFER_VAR; \ 2064 if (bufp->allocated == MAX_BUF_SIZE) \ 2065 return REG_ESIZE; \ 2066 bufp->allocated <<= 1; \ 2067 if (bufp->allocated > MAX_BUF_SIZE) \ 2068 bufp->allocated = MAX_BUF_SIZE; \ 2069 bufp->buffer = (US_CHAR_TYPE *) REALLOC (COMPILED_BUFFER_VAR, \ 2070 bufp->allocated); \ 2071 if (COMPILED_BUFFER_VAR == NULL) \ 2072 return REG_ESPACE; \ 2073 /* If the buffer moved, move all the pointers into it. */ \ 2074 if (old_buffer != COMPILED_BUFFER_VAR) \ 2075 { \ 2076 int incr = COMPILED_BUFFER_VAR - old_buffer; \ 2077 MOVE_BUFFER_POINTER (b); \ 2078 MOVE_BUFFER_POINTER (begalt); \ 2079 if (fixup_alt_jump) \ 2080 MOVE_BUFFER_POINTER (fixup_alt_jump); \ 2081 if (laststart) \ 2082 MOVE_BUFFER_POINTER (laststart); \ 2083 if (pending_exact) \ 2084 MOVE_BUFFER_POINTER (pending_exact); \ 2085 } \ 2086 ELSE_EXTEND_BUFFER_HIGH_BOUND \ 2087 } while (0) 2088 #endif /* MBS_SUPPORT */ 2089 2090 /* Since we have one byte reserved for the register number argument to 2091 {start,stop}_memory, the maximum number of groups we can report 2092 things about is what fits in that byte. */ 2093 #define MAX_REGNUM 255 2094 2095 /* But patterns can have more than `MAX_REGNUM' registers. We just 2096 ignore the excess. */ 2097 typedef unsigned regnum_t; 2098 2099 2100 /* Macros for the compile stack. */ 2101 2102 /* Since offsets can go either forwards or backwards, this type needs to 2103 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */ 2104 /* int may be not enough when sizeof(int) == 2. */ 2105 typedef long pattern_offset_t; 2106 2107 typedef struct 2108 { 2109 pattern_offset_t begalt_offset; 2110 pattern_offset_t fixup_alt_jump; 2111 pattern_offset_t inner_group_offset; 2112 pattern_offset_t laststart_offset; 2113 regnum_t regnum; 2114 } compile_stack_elt_t; 2115 2116 2117 typedef struct 2118 { 2119 compile_stack_elt_t *stack; 2120 unsigned size; 2121 unsigned avail; /* Offset of next open position. */ 2122 } compile_stack_type; 2123 2124 2125 #define INIT_COMPILE_STACK_SIZE 32 2126 2127 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0) 2128 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size) 2129 2130 /* The next available element. */ 2131 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail]) 2132 2133 2134 /* Set the bit for character C in a list. */ 2135 #define SET_LIST_BIT(c) \ 2136 (b[((unsigned char) (c)) / BYTEWIDTH] \ 2137 |= 1 << (((unsigned char) c) % BYTEWIDTH)) 2138 2139 2140 /* Get the next unsigned number in the uncompiled pattern. */ 2141 #define GET_UNSIGNED_NUMBER(num) \ 2142 { \ 2143 while (p != pend) \ 2144 { \ 2145 PATFETCH (c); \ 2146 if (! ('0' <= c && c <= '9')) \ 2147 break; \ 2148 if (num <= RE_DUP_MAX) \ 2149 { \ 2150 if (num < 0) \ 2151 num = 0; \ 2152 num = num * 10 + c - '0'; \ 2153 } \ 2154 } \ 2155 } 2156 2157 #if defined _LIBC || WIDE_CHAR_SUPPORT 2158 /* The GNU C library provides support for user-defined character classes 2159 and the functions from ISO C amendement 1. */ 2160 # ifdef CHARCLASS_NAME_MAX 2161 # define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX 2162 # else 2163 /* This shouldn't happen but some implementation might still have this 2164 problem. Use a reasonable default value. */ 2165 # define CHAR_CLASS_MAX_LENGTH 256 2166 # endif 2167 2168 # ifdef _LIBC 2169 # define IS_CHAR_CLASS(string) __wctype (string) 2170 # else 2171 # define IS_CHAR_CLASS(string) wctype (string) 2172 # endif 2173 #else 2174 # define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */ 2175 2176 # define IS_CHAR_CLASS(string) \ 2177 (STREQ (string, "alpha") || STREQ (string, "upper") \ 2178 || STREQ (string, "lower") || STREQ (string, "digit") \ 2179 || STREQ (string, "alnum") || STREQ (string, "xdigit") \ 2180 || STREQ (string, "space") || STREQ (string, "print") \ 2181 || STREQ (string, "punct") || STREQ (string, "graph") \ 2182 || STREQ (string, "cntrl") || STREQ (string, "blank")) 2183 #endif 2184 2185 #ifndef MATCH_MAY_ALLOCATE 2186 2187 /* If we cannot allocate large objects within re_match_2_internal, 2188 we make the fail stack and register vectors global. 2189 The fail stack, we grow to the maximum size when a regexp 2190 is compiled. 2191 The register vectors, we adjust in size each time we 2192 compile a regexp, according to the number of registers it needs. */ 2193 2194 static fail_stack_type fail_stack; 2195 2196 /* Size with which the following vectors are currently allocated. 2197 That is so we can make them bigger as needed, 2198 but never make them smaller. */ 2199 static int regs_allocated_size; 2200 2201 static const char ** regstart, ** regend; 2202 static const char ** old_regstart, ** old_regend; 2203 static const char **best_regstart, **best_regend; 2204 static register_info_type *reg_info; 2205 static const char **reg_dummy; 2206 static register_info_type *reg_info_dummy; 2207 2208 /* Make the register vectors big enough for NUM_REGS registers, 2209 but don't make them smaller. */ 2210 2211 static 2212 regex_grow_registers (num_regs) 2213 int num_regs; 2214 { 2215 if (num_regs > regs_allocated_size) 2216 { 2217 RETALLOC_IF (regstart, num_regs, const char *); 2218 RETALLOC_IF (regend, num_regs, const char *); 2219 RETALLOC_IF (old_regstart, num_regs, const char *); 2220 RETALLOC_IF (old_regend, num_regs, const char *); 2221 RETALLOC_IF (best_regstart, num_regs, const char *); 2222 RETALLOC_IF (best_regend, num_regs, const char *); 2223 RETALLOC_IF (reg_info, num_regs, register_info_type); 2224 RETALLOC_IF (reg_dummy, num_regs, const char *); 2225 RETALLOC_IF (reg_info_dummy, num_regs, register_info_type); 2226 2227 regs_allocated_size = num_regs; 2228 } 2229 } 2230 2231 #endif /* not MATCH_MAY_ALLOCATE */ 2232 2233 static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type 2234 compile_stack, 2235 regnum_t regnum)); 2236 2237 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX. 2238 Returns one of error codes defined in `regex.h', or zero for success. 2239 2240 Assumes the `allocated' (and perhaps `buffer') and `translate' 2241 fields are set in BUFP on entry. 2242 2243 If it succeeds, results are put in BUFP (if it returns an error, the 2244 contents of BUFP are undefined): 2245 `buffer' is the compiled pattern; 2246 `syntax' is set to SYNTAX; 2247 `used' is set to the length of the compiled pattern; 2248 `fastmap_accurate' is zero; 2249 `re_nsub' is the number of subexpressions in PATTERN; 2250 `not_bol' and `not_eol' are zero; 2251 2252 The `fastmap' and `newline_anchor' fields are neither 2253 examined nor set. */ 2254 2255 /* Return, freeing storage we allocated. */ 2256 #ifdef MBS_SUPPORT 2257 # define FREE_STACK_RETURN(value) \ 2258 return (free(pattern), free(mbs_offset), free(is_binary), free (compile_stack.stack), value) 2259 #else 2260 # define FREE_STACK_RETURN(value) \ 2261 return (free (compile_stack.stack), value) 2262 #endif /* MBS_SUPPORT */ 2263 2264 static reg_errcode_t 2265 #ifdef MBS_SUPPORT 2266 regex_compile (cpattern, csize, syntax, bufp) 2267 const char *cpattern; 2268 size_t csize; 2269 #else 2270 regex_compile (pattern, size, syntax, bufp) 2271 const char *pattern; 2272 size_t size; 2273 #endif /* MBS_SUPPORT */ 2274 reg_syntax_t syntax; 2275 struct re_pattern_buffer *bufp; 2276 { 2277 /* We fetch characters from PATTERN here. Even though PATTERN is 2278 `char *' (i.e., signed), we declare these variables as unsigned, so 2279 they can be reliably used as array indices. */ 2280 register US_CHAR_TYPE c, c1; 2281 2282 #ifdef MBS_SUPPORT 2283 /* A temporary space to keep wchar_t pattern and compiled pattern. */ 2284 CHAR_TYPE *pattern, *COMPILED_BUFFER_VAR; 2285 size_t size; 2286 /* offset buffer for optimizatoin. See convert_mbs_to_wc. */ 2287 int *mbs_offset = NULL; 2288 /* It hold whether each wchar_t is binary data or not. */ 2289 char *is_binary = NULL; 2290 /* A flag whether exactn is handling binary data or not. */ 2291 char is_exactn_bin = FALSE; 2292 #endif /* MBS_SUPPORT */ 2293 2294 /* A random temporary spot in PATTERN. */ 2295 const CHAR_TYPE *p1; 2296 2297 /* Points to the end of the buffer, where we should append. */ 2298 register US_CHAR_TYPE *b; 2299 2300 /* Keeps track of unclosed groups. */ 2301 compile_stack_type compile_stack; 2302 2303 /* Points to the current (ending) position in the pattern. */ 2304 #ifdef MBS_SUPPORT 2305 const CHAR_TYPE *p; 2306 const CHAR_TYPE *pend; 2307 #else 2308 const CHAR_TYPE *p = pattern; 2309 const CHAR_TYPE *pend = pattern + size; 2310 #endif /* MBS_SUPPORT */ 2311 2312 /* How to translate the characters in the pattern. */ 2313 RE_TRANSLATE_TYPE translate = bufp->translate; 2314 2315 /* Address of the count-byte of the most recently inserted `exactn' 2316 command. This makes it possible to tell if a new exact-match 2317 character can be added to that command or if the character requires 2318 a new `exactn' command. */ 2319 US_CHAR_TYPE *pending_exact = 0; 2320 2321 /* Address of start of the most recently finished expression. 2322 This tells, e.g., postfix * where to find the start of its 2323 operand. Reset at the beginning of groups and alternatives. */ 2324 US_CHAR_TYPE *laststart = 0; 2325 2326 /* Address of beginning of regexp, or inside of last group. */ 2327 US_CHAR_TYPE *begalt; 2328 2329 /* Address of the place where a forward jump should go to the end of 2330 the containing expression. Each alternative of an `or' -- except the 2331 last -- ends with a forward jump of this sort. */ 2332 US_CHAR_TYPE *fixup_alt_jump = 0; 2333 2334 /* Counts open-groups as they are encountered. Remembered for the 2335 matching close-group on the compile stack, so the same register 2336 number is put in the stop_memory as the start_memory. */ 2337 regnum_t regnum = 0; 2338 2339 #ifdef MBS_SUPPORT 2340 /* Initialize the wchar_t PATTERN and offset_buffer. */ 2341 p = pend = pattern = TALLOC(csize + 1, CHAR_TYPE); 2342 p[csize] = L'\0'; /* sentinel */ 2343 mbs_offset = TALLOC(csize + 1, int); 2344 is_binary = TALLOC(csize + 1, char); 2345 if (pattern == NULL || mbs_offset == NULL || is_binary == NULL) 2346 { 2347 if (pattern) free(pattern); 2348 if (mbs_offset) free(mbs_offset); 2349 if (is_binary) free(is_binary); 2350 return REG_ESPACE; 2351 } 2352 size = convert_mbs_to_wcs(pattern, cpattern, csize, mbs_offset, is_binary); 2353 pend = p + size; 2354 if (size < 0) 2355 { 2356 if (pattern) free(pattern); 2357 if (mbs_offset) free(mbs_offset); 2358 if (is_binary) free(is_binary); 2359 return REG_BADPAT; 2360 } 2361 #endif 2362 2363 #ifdef DEBUG 2364 DEBUG_PRINT1 ("\nCompiling pattern: "); 2365 if (debug) 2366 { 2367 unsigned debug_count; 2368 2369 for (debug_count = 0; debug_count < size; debug_count++) 2370 PUT_CHAR (pattern[debug_count]); 2371 putchar ('\n'); 2372 } 2373 #endif /* DEBUG */ 2374 2375 /* Initialize the compile stack. */ 2376 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t); 2377 if (compile_stack.stack == NULL) 2378 { 2379 #ifdef MBS_SUPPORT 2380 if (pattern) free(pattern); 2381 if (mbs_offset) free(mbs_offset); 2382 if (is_binary) free(is_binary); 2383 #endif 2384 return REG_ESPACE; 2385 } 2386 2387 compile_stack.size = INIT_COMPILE_STACK_SIZE; 2388 compile_stack.avail = 0; 2389 2390 /* Initialize the pattern buffer. */ 2391 bufp->syntax = syntax; 2392 bufp->fastmap_accurate = 0; 2393 bufp->not_bol = bufp->not_eol = 0; 2394 2395 /* Set `used' to zero, so that if we return an error, the pattern 2396 printer (for debugging) will think there's no pattern. We reset it 2397 at the end. */ 2398 bufp->used = 0; 2399 2400 /* Always count groups, whether or not bufp->no_sub is set. */ 2401 bufp->re_nsub = 0; 2402 2403 #if !defined emacs && !defined SYNTAX_TABLE 2404 /* Initialize the syntax table. */ 2405 init_syntax_once (); 2406 #endif 2407 2408 if (bufp->allocated == 0) 2409 { 2410 if (bufp->buffer) 2411 { /* If zero allocated, but buffer is non-null, try to realloc 2412 enough space. This loses if buffer's address is bogus, but 2413 that is the user's responsibility. */ 2414 #ifdef MBS_SUPPORT 2415 /* Free bufp->buffer and allocate an array for wchar_t pattern 2416 buffer. */ 2417 free(bufp->buffer); 2418 COMPILED_BUFFER_VAR = TALLOC (INIT_BUF_SIZE/sizeof(US_CHAR_TYPE), 2419 US_CHAR_TYPE); 2420 #else 2421 RETALLOC (COMPILED_BUFFER_VAR, INIT_BUF_SIZE, US_CHAR_TYPE); 2422 #endif /* MBS_SUPPORT */ 2423 } 2424 else 2425 { /* Caller did not allocate a buffer. Do it for them. */ 2426 COMPILED_BUFFER_VAR = TALLOC (INIT_BUF_SIZE / sizeof(US_CHAR_TYPE), 2427 US_CHAR_TYPE); 2428 } 2429 2430 if (!COMPILED_BUFFER_VAR) FREE_STACK_RETURN (REG_ESPACE); 2431 #ifdef MBS_SUPPORT 2432 bufp->buffer = (char*)COMPILED_BUFFER_VAR; 2433 #endif /* MBS_SUPPORT */ 2434 bufp->allocated = INIT_BUF_SIZE; 2435 } 2436 #ifdef MBS_SUPPORT 2437 else 2438 COMPILED_BUFFER_VAR = (US_CHAR_TYPE*) bufp->buffer; 2439 #endif 2440 2441 begalt = b = COMPILED_BUFFER_VAR; 2442 2443 /* Loop through the uncompiled pattern until we're at the end. */ 2444 while (p != pend) 2445 { 2446 PATFETCH (c); 2447 2448 switch (c) 2449 { 2450 case '^': 2451 { 2452 if ( /* If at start of pattern, it's an operator. */ 2453 p == pattern + 1 2454 /* If context independent, it's an operator. */ 2455 || syntax & RE_CONTEXT_INDEP_ANCHORS 2456 /* Otherwise, depends on what's come before. */ 2457 || at_begline_loc_p (pattern, p, syntax)) 2458 BUF_PUSH (begline); 2459 else 2460 goto normal_char; 2461 } 2462 break; 2463 2464 2465 case '$': 2466 { 2467 if ( /* If at end of pattern, it's an operator. */ 2468 p == pend 2469 /* If context independent, it's an operator. */ 2470 || syntax & RE_CONTEXT_INDEP_ANCHORS 2471 /* Otherwise, depends on what's next. */ 2472 || at_endline_loc_p (p, pend, syntax)) 2473 BUF_PUSH (endline); 2474 else 2475 goto normal_char; 2476 } 2477 break; 2478 2479 2480 case '+': 2481 case '?': 2482 if ((syntax & RE_BK_PLUS_QM) 2483 || (syntax & RE_LIMITED_OPS)) 2484 goto normal_char; 2485 handle_plus: 2486 case '*': 2487 /* If there is no previous pattern... */ 2488 if (!laststart) 2489 { 2490 if (syntax & RE_CONTEXT_INVALID_OPS) 2491 FREE_STACK_RETURN (REG_BADRPT); 2492 else if (!(syntax & RE_CONTEXT_INDEP_OPS)) 2493 goto normal_char; 2494 } 2495 2496 { 2497 /* Are we optimizing this jump? */ 2498 boolean keep_string_p = false; 2499 2500 /* 1 means zero (many) matches is allowed. */ 2501 char zero_times_ok = 0, many_times_ok = 0; 2502 2503 /* If there is a sequence of repetition chars, collapse it 2504 down to just one (the right one). We can't combine 2505 interval operators with these because of, e.g., `a{2}*', 2506 which should only match an even number of `a's. */ 2507 2508 for (;;) 2509 { 2510 zero_times_ok |= c != '+'; 2511 many_times_ok |= c != '?'; 2512 2513 if (p == pend) 2514 break; 2515 2516 PATFETCH (c); 2517 2518 if (c == '*' 2519 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?'))) 2520 ; 2521 2522 else if (syntax & RE_BK_PLUS_QM && c == '\\') 2523 { 2524 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE); 2525 2526 PATFETCH (c1); 2527 if (!(c1 == '+' || c1 == '?')) 2528 { 2529 PATUNFETCH; 2530 PATUNFETCH; 2531 break; 2532 } 2533 2534 c = c1; 2535 } 2536 else 2537 { 2538 PATUNFETCH; 2539 break; 2540 } 2541 2542 /* If we get here, we found another repeat character. */ 2543 } 2544 2545 /* Star, etc. applied to an empty pattern is equivalent 2546 to an empty pattern. */ 2547 if (!laststart) 2548 break; 2549 2550 /* Now we know whether or not zero matches is allowed 2551 and also whether or not two or more matches is allowed. */ 2552 if (many_times_ok) 2553 { /* More than one repetition is allowed, so put in at the 2554 end a backward relative jump from `b' to before the next 2555 jump we're going to put in below (which jumps from 2556 laststart to after this jump). 2557 2558 But if we are at the `*' in the exact sequence `.*\n', 2559 insert an unconditional jump backwards to the ., 2560 instead of the beginning of the loop. This way we only 2561 push a failure point once, instead of every time 2562 through the loop. */ 2563 assert (p - 1 > pattern); 2564 2565 /* Allocate the space for the jump. */ 2566 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE); 2567 2568 /* We know we are not at the first character of the pattern, 2569 because laststart was nonzero. And we've already 2570 incremented `p', by the way, to be the character after 2571 the `*'. Do we have to do something analogous here 2572 for null bytes, because of RE_DOT_NOT_NULL? */ 2573 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.') 2574 && zero_times_ok 2575 && p < pend && TRANSLATE (*p) == TRANSLATE ('\n') 2576 && !(syntax & RE_DOT_NEWLINE)) 2577 { /* We have .*\n. */ 2578 STORE_JUMP (jump, b, laststart); 2579 keep_string_p = true; 2580 } 2581 else 2582 /* Anything else. */ 2583 STORE_JUMP (maybe_pop_jump, b, laststart - 2584 (1 + OFFSET_ADDRESS_SIZE)); 2585 2586 /* We've added more stuff to the buffer. */ 2587 b += 1 + OFFSET_ADDRESS_SIZE; 2588 } 2589 2590 /* On failure, jump from laststart to b + 3, which will be the 2591 end of the buffer after this jump is inserted. */ 2592 /* ifdef MBS_SUPPORT, 'b + 1 + OFFSET_ADDRESS_SIZE' instead of 2593 'b + 3'. */ 2594 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE); 2595 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump 2596 : on_failure_jump, 2597 laststart, b + 1 + OFFSET_ADDRESS_SIZE); 2598 pending_exact = 0; 2599 b += 1 + OFFSET_ADDRESS_SIZE; 2600 2601 if (!zero_times_ok) 2602 { 2603 /* At least one repetition is required, so insert a 2604 `dummy_failure_jump' before the initial 2605 `on_failure_jump' instruction of the loop. This 2606 effects a skip over that instruction the first time 2607 we hit that loop. */ 2608 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE); 2609 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 2610 2 + 2 * OFFSET_ADDRESS_SIZE); 2611 b += 1 + OFFSET_ADDRESS_SIZE; 2612 } 2613 } 2614 break; 2615 2616 2617 case '.': 2618 laststart = b; 2619 BUF_PUSH (anychar); 2620 break; 2621 2622 2623 case '[': 2624 { 2625 boolean had_char_class = false; 2626 #ifdef MBS_SUPPORT 2627 CHAR_TYPE range_start = 0xffffffff; 2628 #else 2629 unsigned int range_start = 0xffffffff; 2630 #endif 2631 if (p == pend) FREE_STACK_RETURN (REG_EBRACK); 2632 2633 #ifdef MBS_SUPPORT 2634 /* We assume a charset(_not) structure as a wchar_t array. 2635 charset[0] = (re_opcode_t) charset(_not) 2636 charset[1] = l (= length of char_classes) 2637 charset[2] = m (= length of collating_symbols) 2638 charset[3] = n (= length of equivalence_classes) 2639 charset[4] = o (= length of char_ranges) 2640 charset[5] = p (= length of chars) 2641 2642 charset[6] = char_class (wctype_t) 2643 charset[6+CHAR_CLASS_SIZE] = char_class (wctype_t) 2644 ... 2645 charset[l+5] = char_class (wctype_t) 2646 2647 charset[l+6] = collating_symbol (wchar_t) 2648 ... 2649 charset[l+m+5] = collating_symbol (wchar_t) 2650 ifdef _LIBC we use the index if 2651 _NL_COLLATE_SYMB_EXTRAMB instead of 2652 wchar_t string. 2653 2654 charset[l+m+6] = equivalence_classes (wchar_t) 2655 ... 2656 charset[l+m+n+5] = equivalence_classes (wchar_t) 2657 ifdef _LIBC we use the index in 2658 _NL_COLLATE_WEIGHT instead of 2659 wchar_t string. 2660 2661 charset[l+m+n+6] = range_start 2662 charset[l+m+n+7] = range_end 2663 ... 2664 charset[l+m+n+2o+4] = range_start 2665 charset[l+m+n+2o+5] = range_end 2666 ifdef _LIBC we use the value looked up 2667 in _NL_COLLATE_COLLSEQ instead of 2668 wchar_t character. 2669 2670 charset[l+m+n+2o+6] = char 2671 ... 2672 charset[l+m+n+2o+p+5] = char 2673 2674 */ 2675 2676 /* We need at least 6 spaces: the opcode, the length of 2677 char_classes, the length of collating_symbols, the length of 2678 equivalence_classes, the length of char_ranges, the length of 2679 chars. */ 2680 GET_BUFFER_SPACE (6); 2681 2682 /* Save b as laststart. And We use laststart as the pointer 2683 to the first element of the charset here. 2684 In other words, laststart[i] indicates charset[i]. */ 2685 laststart = b; 2686 2687 /* We test `*p == '^' twice, instead of using an if 2688 statement, so we only need one BUF_PUSH. */ 2689 BUF_PUSH (*p == '^' ? charset_not : charset); 2690 if (*p == '^') 2691 p++; 2692 2693 /* Push the length of char_classes, the length of 2694 collating_symbols, the length of equivalence_classes, the 2695 length of char_ranges and the length of chars. */ 2696 BUF_PUSH_3 (0, 0, 0); 2697 BUF_PUSH_2 (0, 0); 2698 2699 /* Remember the first position in the bracket expression. */ 2700 p1 = p; 2701 2702 /* charset_not matches newline according to a syntax bit. */ 2703 if ((re_opcode_t) b[-6] == charset_not 2704 && (syntax & RE_HAT_LISTS_NOT_NEWLINE)) 2705 { 2706 BUF_PUSH('\n'); 2707 laststart[5]++; /* Update the length of characters */ 2708 } 2709 2710 /* Read in characters and ranges, setting map bits. */ 2711 for (;;) 2712 { 2713 if (p == pend) FREE_STACK_RETURN (REG_EBRACK); 2714 2715 PATFETCH (c); 2716 2717 /* \ might escape characters inside [...] and [^...]. */ 2718 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\') 2719 { 2720 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE); 2721 2722 PATFETCH (c1); 2723 BUF_PUSH(c1); 2724 laststart[5]++; /* Update the length of chars */ 2725 range_start = c1; 2726 continue; 2727 } 2728 2729 /* Could be the end of the bracket expression. If it's 2730 not (i.e., when the bracket expression is `[]' so 2731 far), the ']' character bit gets set way below. */ 2732 if (c == ']' && p != p1 + 1) 2733 break; 2734 2735 /* Look ahead to see if it's a range when the last thing 2736 was a character class. */ 2737 if (had_char_class && c == '-' && *p != ']') 2738 FREE_STACK_RETURN (REG_ERANGE); 2739 2740 /* Look ahead to see if it's a range when the last thing 2741 was a character: if this is a hyphen not at the 2742 beginning or the end of a list, then it's the range 2743 operator. */ 2744 if (c == '-' 2745 && !(p - 2 >= pattern && p[-2] == '[') 2746 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^') 2747 && *p != ']') 2748 { 2749 reg_errcode_t ret; 2750 /* Allocate the space for range_start and range_end. */ 2751 GET_BUFFER_SPACE (2); 2752 /* Update the pointer to indicate end of buffer. */ 2753 b += 2; 2754 ret = compile_range (range_start, &p, pend, translate, 2755 syntax, b, laststart); 2756 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret); 2757 range_start = 0xffffffff; 2758 } 2759 else if (p[0] == '-' && p[1] != ']') 2760 { /* This handles ranges made up of characters only. */ 2761 reg_errcode_t ret; 2762 2763 /* Move past the `-'. */ 2764 PATFETCH (c1); 2765 /* Allocate the space for range_start and range_end. */ 2766 GET_BUFFER_SPACE (2); 2767 /* Update the pointer to indicate end of buffer. */ 2768 b += 2; 2769 ret = compile_range (c, &p, pend, translate, syntax, b, 2770 laststart); 2771 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret); 2772 range_start = 0xffffffff; 2773 } 2774 2775 /* See if we're at the beginning of a possible character 2776 class. */ 2777 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':') 2778 { /* Leave room for the null. */ 2779 char str[CHAR_CLASS_MAX_LENGTH + 1]; 2780 2781 PATFETCH (c); 2782 c1 = 0; 2783 2784 /* If pattern is `[[:'. */ 2785 if (p == pend) FREE_STACK_RETURN (REG_EBRACK); 2786 2787 for (;;) 2788 { 2789 PATFETCH (c); 2790 if ((c == ':' && *p == ']') || p == pend) 2791 break; 2792 if (c1 < CHAR_CLASS_MAX_LENGTH) 2793 str[c1++] = c; 2794 else 2795 /* This is in any case an invalid class name. */ 2796 str[0] = '\0'; 2797 } 2798 str[c1] = '\0'; 2799 2800 /* If isn't a word bracketed by `[:' and `:]': 2801 undo the ending character, the letters, and leave 2802 the leading `:' and `[' (but store them as character). */ 2803 if (c == ':' && *p == ']') 2804 { 2805 wctype_t wt; 2806 uintptr_t alignedp; 2807 2808 /* Query the character class as wctype_t. */ 2809 wt = IS_CHAR_CLASS (str); 2810 if (wt == 0) 2811 FREE_STACK_RETURN (REG_ECTYPE); 2812 2813 /* Throw away the ] at the end of the character 2814 class. */ 2815 PATFETCH (c); 2816 2817 if (p == pend) FREE_STACK_RETURN (REG_EBRACK); 2818 2819 /* Allocate the space for character class. */ 2820 GET_BUFFER_SPACE(CHAR_CLASS_SIZE); 2821 /* Update the pointer to indicate end of buffer. */ 2822 b += CHAR_CLASS_SIZE; 2823 /* Move data which follow character classes 2824 not to violate the data. */ 2825 insert_space(CHAR_CLASS_SIZE, 2826 laststart + 6 + laststart[1], 2827 b - 1); 2828 alignedp = ((uintptr_t)(laststart + 6 + laststart[1]) 2829 + __alignof__(wctype_t) - 1) 2830 & ~(uintptr_t)(__alignof__(wctype_t) - 1); 2831 /* Store the character class. */ 2832 *((wctype_t*)alignedp) = wt; 2833 /* Update length of char_classes */ 2834 laststart[1] += CHAR_CLASS_SIZE; 2835 2836 had_char_class = true; 2837 } 2838 else 2839 { 2840 c1++; 2841 while (c1--) 2842 PATUNFETCH; 2843 BUF_PUSH ('['); 2844 BUF_PUSH (':'); 2845 laststart[5] += 2; /* Update the length of characters */ 2846 range_start = ':'; 2847 had_char_class = false; 2848 } 2849 } 2850 else if (syntax & RE_CHAR_CLASSES && c == '[' && (*p == '=' 2851 || *p == '.')) 2852 { 2853 CHAR_TYPE str[128]; /* Should be large enough. */ 2854 CHAR_TYPE delim = *p; /* '=' or '.' */ 2855 # ifdef _LIBC 2856 uint32_t nrules = 2857 _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES); 2858 # endif 2859 PATFETCH (c); 2860 c1 = 0; 2861 2862 /* If pattern is `[[=' or '[[.'. */ 2863 if (p == pend) FREE_STACK_RETURN (REG_EBRACK); 2864 2865 for (;;) 2866 { 2867 PATFETCH (c); 2868 if ((c == delim && *p == ']') || p == pend) 2869 break; 2870 if (c1 < sizeof (str) - 1) 2871 str[c1++] = c; 2872 else 2873 /* This is in any case an invalid class name. */ 2874 str[0] = '\0'; 2875 } 2876 str[c1] = '\0'; 2877 2878 if (c == delim && *p == ']' && str[0] != '\0') 2879 { 2880 unsigned int i, offset; 2881 /* If we have no collation data we use the default 2882 collation in which each character is in a class 2883 by itself. It also means that ASCII is the 2884 character set and therefore we cannot have character 2885 with more than one byte in the multibyte 2886 representation. */ 2887 2888 /* If not defined _LIBC, we push the name and 2889 `\0' for the sake of matching performance. */ 2890 int datasize = c1 + 1; 2891 2892 # ifdef _LIBC 2893 int32_t idx = 0; 2894 if (nrules == 0) 2895 # endif 2896 { 2897 if (c1 != 1) 2898 FREE_STACK_RETURN (REG_ECOLLATE); 2899 } 2900 # ifdef _LIBC 2901 else 2902 { 2903 const int32_t *table; 2904 const int32_t *weights; 2905 const int32_t *extra; 2906 const int32_t *indirect; 2907 wint_t *cp; 2908 2909 /* This #include defines a local function! */ 2910 # include <locale/weightwc.h> 2911 2912 if(delim == '=') 2913 { 2914 /* We push the index for equivalence class. */ 2915 cp = (wint_t*)str; 2916 2917 table = (const int32_t *) 2918 _NL_CURRENT (LC_COLLATE, 2919 _NL_COLLATE_TABLEWC); 2920 weights = (const int32_t *) 2921 _NL_CURRENT (LC_COLLATE, 2922 _NL_COLLATE_WEIGHTWC); 2923 extra = (const int32_t *) 2924 _NL_CURRENT (LC_COLLATE, 2925 _NL_COLLATE_EXTRAWC); 2926 indirect = (const int32_t *) 2927 _NL_CURRENT (LC_COLLATE, 2928 _NL_COLLATE_INDIRECTWC); 2929 2930 idx = findidx ((const wint_t**)&cp); 2931 if (idx == 0 || cp < (wint_t*) str + c1) 2932 /* This is no valid character. */ 2933 FREE_STACK_RETURN (REG_ECOLLATE); 2934 2935 str[0] = (wchar_t)idx; 2936 } 2937 else /* delim == '.' */ 2938 { 2939 /* We push collation sequence value 2940 for collating symbol. */ 2941 int32_t table_size; 2942 const int32_t *symb_table; 2943 const unsigned char *extra; 2944 int32_t idx; 2945 int32_t elem; 2946 int32_t second; 2947 int32_t hash; 2948 char char_str[c1]; 2949 2950 /* We have to convert the name to a single-byte 2951 string. This is possible since the names 2952 consist of ASCII characters and the internal 2953 representation is UCS4. */ 2954 for (i = 0; i < c1; ++i) 2955 char_str[i] = str[i]; 2956 2957 table_size = 2958 _NL_CURRENT_WORD (LC_COLLATE, 2959 _NL_COLLATE_SYMB_HASH_SIZEMB); 2960 symb_table = (const int32_t *) 2961 _NL_CURRENT (LC_COLLATE, 2962 _NL_COLLATE_SYMB_TABLEMB); 2963 extra = (const unsigned char *) 2964 _NL_CURRENT (LC_COLLATE, 2965 _NL_COLLATE_SYMB_EXTRAMB); 2966 2967 /* Locate the character in the hashing table. */ 2968 hash = elem_hash (char_str, c1); 2969 2970 idx = 0; 2971 elem = hash % table_size; 2972 second = hash % (table_size - 2); 2973 while (symb_table[2 * elem] != 0) 2974 { 2975 /* First compare the hashing value. */ 2976 if (symb_table[2 * elem] == hash 2977 && c1 == extra[symb_table[2 * elem + 1]] 2978 && memcmp (str, 2979 &extra[symb_table[2 * elem + 1] 2980 + 1], c1) == 0) 2981 { 2982 /* Yep, this is the entry. */ 2983 idx = symb_table[2 * elem + 1]; 2984 idx += 1 + extra[idx]; 2985 break; 2986 } 2987 2988 /* Next entry. */ 2989 elem += second; 2990 } 2991 2992 if (symb_table[2 * elem] != 0) 2993 { 2994 /* Compute the index of the byte sequence 2995 in the table. */ 2996 idx += 1 + extra[idx]; 2997 /* Adjust for the alignment. */ 2998 idx = (idx + 3) & ~4; 2999 3000 str[0] = (wchar_t) idx + 4; 3001 } 3002 else if (symb_table[2 * elem] == 0 && c1 == 1) 3003 { 3004 /* No valid character. Match it as a 3005 single byte character. */ 3006 had_char_class = false; 3007 BUF_PUSH(str[0]); 3008 /* Update the length of characters */ 3009 laststart[5]++; 3010 range_start = str[0]; 3011 3012 /* Throw away the ] at the end of the 3013 collating symbol. */ 3014 PATFETCH (c); 3015 /* exit from the switch block. */ 3016 continue; 3017 } 3018 else 3019 FREE_STACK_RETURN (REG_ECOLLATE); 3020 } 3021 datasize = 1; 3022 } 3023 # endif 3024 /* Throw away the ] at the end of the equivalence 3025 class (or collating symbol). */ 3026 PATFETCH (c); 3027 3028 /* Allocate the space for the equivalence class 3029 (or collating symbol) (and '\0' if needed). */ 3030 GET_BUFFER_SPACE(datasize); 3031 /* Update the pointer to indicate end of buffer. */ 3032 b += datasize; 3033 3034 if (delim == '=') 3035 { /* equivalence class */ 3036 /* Calculate the offset of char_ranges, 3037 which is next to equivalence_classes. */ 3038 offset = laststart[1] + laststart[2] 3039 + laststart[3] +6; 3040 /* Insert space. */ 3041 insert_space(datasize, laststart + offset, b - 1); 3042 3043 /* Write the equivalence_class and \0. */ 3044 for (i = 0 ; i < datasize ; i++) 3045 laststart[offset + i] = str[i]; 3046 3047 /* Update the length of equivalence_classes. */ 3048 laststart[3] += datasize; 3049 had_char_class = true; 3050 } 3051 else /* delim == '.' */ 3052 { /* collating symbol */ 3053 /* Calculate the offset of the equivalence_classes, 3054 which is next to collating_symbols. */ 3055 offset = laststart[1] + laststart[2] + 6; 3056 /* Insert space and write the collationg_symbol 3057 and \0. */ 3058 insert_space(datasize, laststart + offset, b-1); 3059 for (i = 0 ; i < datasize ; i++) 3060 laststart[offset + i] = str[i]; 3061 3062 /* In re_match_2_internal if range_start < -1, we 3063 assume -range_start is the offset of the 3064 collating symbol which is specified as 3065 the character of the range start. So we assign 3066 -(laststart[1] + laststart[2] + 6) to 3067 range_start. */ 3068 range_start = -(laststart[1] + laststart[2] + 6); 3069 /* Update the length of collating_symbol. */ 3070 laststart[2] += datasize; 3071 had_char_class = false; 3072 } 3073 } 3074 else 3075 { 3076 c1++; 3077 while (c1--) 3078 PATUNFETCH; 3079 BUF_PUSH ('['); 3080 BUF_PUSH (delim); 3081 laststart[5] += 2; /* Update the length of characters */ 3082 range_start = delim; 3083 had_char_class = false; 3084 } 3085 } 3086 else 3087 { 3088 had_char_class = false; 3089 BUF_PUSH(c); 3090 laststart[5]++; /* Update the length of characters */ 3091 range_start = c; 3092 } 3093 } 3094 3095 #else /* not MBS_SUPPORT */ 3096 /* Ensure that we have enough space to push a charset: the 3097 opcode, the length count, and the bitset; 34 bytes in all. */ 3098 GET_BUFFER_SPACE (34); 3099 3100 laststart = b; 3101 3102 /* We test `*p == '^' twice, instead of using an if 3103 statement, so we only need one BUF_PUSH. */ 3104 BUF_PUSH (*p == '^' ? charset_not : charset); 3105 if (*p == '^') 3106 p++; 3107 3108 /* Remember the first position in the bracket expression. */ 3109 p1 = p; 3110 3111 /* Push the number of bytes in the bitmap. */ 3112 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH); 3113 3114 /* Clear the whole map. */ 3115 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH); 3116 3117 /* charset_not matches newline according to a syntax bit. */ 3118 if ((re_opcode_t) b[-2] == charset_not 3119 && (syntax & RE_HAT_LISTS_NOT_NEWLINE)) 3120 SET_LIST_BIT ('\n'); 3121 3122 /* Read in characters and ranges, setting map bits. */ 3123 for (;;) 3124 { 3125 if (p == pend) FREE_STACK_RETURN (REG_EBRACK); 3126 3127 PATFETCH (c); 3128 3129 /* \ might escape characters inside [...] and [^...]. */ 3130 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\') 3131 { 3132 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE); 3133 3134 PATFETCH (c1); 3135 SET_LIST_BIT (c1); 3136 range_start = c1; 3137 continue; 3138 } 3139 3140 /* Could be the end of the bracket expression. If it's 3141 not (i.e., when the bracket expression is `[]' so 3142 far), the ']' character bit gets set way below. */ 3143 if (c == ']' && p != p1 + 1) 3144 break; 3145 3146 /* Look ahead to see if it's a range when the last thing 3147 was a character class. */ 3148 if (had_char_class && c == '-' && *p != ']') 3149 FREE_STACK_RETURN (REG_ERANGE); 3150 3151 /* Look ahead to see if it's a range when the last thing 3152 was a character: if this is a hyphen not at the 3153 beginning or the end of a list, then it's the range 3154 operator. */ 3155 if (c == '-' 3156 && !(p - 2 >= pattern && p[-2] == '[') 3157 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^') 3158 && *p != ']') 3159 { 3160 reg_errcode_t ret 3161 = compile_range (range_start, &p, pend, translate, 3162 syntax, b); 3163 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret); 3164 range_start = 0xffffffff; 3165 } 3166 3167 else if (p[0] == '-' && p[1] != ']') 3168 { /* This handles ranges made up of characters only. */ 3169 reg_errcode_t ret; 3170 3171 /* Move past the `-'. */ 3172 PATFETCH (c1); 3173 3174 ret = compile_range (c, &p, pend, translate, syntax, b); 3175 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret); 3176 range_start = 0xffffffff; 3177 } 3178 3179 /* See if we're at the beginning of a possible character 3180 class. */ 3181 3182 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':') 3183 { /* Leave room for the null. */ 3184 char str[CHAR_CLASS_MAX_LENGTH + 1]; 3185 3186 PATFETCH (c); 3187 c1 = 0; 3188 3189 /* If pattern is `[[:'. */ 3190 if (p == pend) FREE_STACK_RETURN (REG_EBRACK); 3191 3192 for (;;) 3193 { 3194 PATFETCH (c); 3195 if ((c == ':' && *p == ']') || p == pend) 3196 break; 3197 if (c1 < CHAR_CLASS_MAX_LENGTH) 3198 str[c1++] = c; 3199 else 3200 /* This is in any case an invalid class name. */ 3201 str[0] = '\0'; 3202 } 3203 str[c1] = '\0'; 3204 3205 /* If isn't a word bracketed by `[:' and `:]': 3206 undo the ending character, the letters, and leave 3207 the leading `:' and `[' (but set bits for them). */ 3208 if (c == ':' && *p == ']') 3209 { 3210 # if defined _LIBC || WIDE_CHAR_SUPPORT 3211 boolean is_lower = STREQ (str, "lower"); 3212 boolean is_upper = STREQ (str, "upper"); 3213 wctype_t wt; 3214 int ch; 3215 3216 wt = IS_CHAR_CLASS (str); 3217 if (wt == 0) 3218 FREE_STACK_RETURN (REG_ECTYPE); 3219 3220 /* Throw away the ] at the end of the character 3221 class. */ 3222 PATFETCH (c); 3223 3224 if (p == pend) FREE_STACK_RETURN (REG_EBRACK); 3225 3226 for (ch = 0; ch < 1 << BYTEWIDTH; ++ch) 3227 { 3228 # ifdef _LIBC 3229 if (__iswctype (__btowc (ch), wt)) 3230 SET_LIST_BIT (ch); 3231 # else 3232 if (iswctype (btowc (ch), wt)) 3233 SET_LIST_BIT (ch); 3234 # endif 3235 3236 if (translate && (is_upper || is_lower) 3237 && (ISUPPER (ch) || ISLOWER (ch))) 3238 SET_LIST_BIT (ch); 3239 } 3240 3241 had_char_class = true; 3242 # else 3243 int ch; 3244 boolean is_alnum = STREQ (str, "alnum"); 3245 boolean is_alpha = STREQ (str, "alpha"); 3246 boolean is_blank = STREQ (str, "blank"); 3247 boolean is_cntrl = STREQ (str, "cntrl"); 3248 boolean is_digit = STREQ (str, "digit"); 3249 boolean is_graph = STREQ (str, "graph"); 3250 boolean is_lower = STREQ (str, "lower"); 3251 boolean is_print = STREQ (str, "print"); 3252 boolean is_punct = STREQ (str, "punct"); 3253 boolean is_space = STREQ (str, "space"); 3254 boolean is_upper = STREQ (str, "upper"); 3255 boolean is_xdigit = STREQ (str, "xdigit"); 3256 3257 if (!IS_CHAR_CLASS (str)) 3258 FREE_STACK_RETURN (REG_ECTYPE); 3259 3260 /* Throw away the ] at the end of the character 3261 class. */ 3262 PATFETCH (c); 3263 3264 if (p == pend) FREE_STACK_RETURN (REG_EBRACK); 3265 3266 for (ch = 0; ch < 1 << BYTEWIDTH; ch++) 3267 { 3268 /* This was split into 3 if's to 3269 avoid an arbitrary limit in some compiler. */ 3270 if ( (is_alnum && ISALNUM (ch)) 3271 || (is_alpha && ISALPHA (ch)) 3272 || (is_blank && ISBLANK (ch)) 3273 || (is_cntrl && ISCNTRL (ch))) 3274 SET_LIST_BIT (ch); 3275 if ( (is_digit && ISDIGIT (ch)) 3276 || (is_graph && ISGRAPH (ch)) 3277 || (is_lower && ISLOWER (ch)) 3278 || (is_print && ISPRINT (ch))) 3279 SET_LIST_BIT (ch); 3280 if ( (is_punct && ISPUNCT (ch)) 3281 || (is_space && ISSPACE (ch)) 3282 || (is_upper && ISUPPER (ch)) 3283 || (is_xdigit && ISXDIGIT (ch))) 3284 SET_LIST_BIT (ch); 3285 if ( translate && (is_upper || is_lower) 3286 && (ISUPPER (ch) || ISLOWER (ch))) 3287 SET_LIST_BIT (ch); 3288 } 3289 had_char_class = true; 3290 # endif /* libc || wctype.h */ 3291 } 3292 else 3293 { 3294 c1++; 3295 while (c1--) 3296 PATUNFETCH; 3297 SET_LIST_BIT ('['); 3298 SET_LIST_BIT (':'); 3299 range_start = ':'; 3300 had_char_class = false; 3301 } 3302 } 3303 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == '=') 3304 { 3305 unsigned char str[MB_LEN_MAX + 1]; 3306 # ifdef _LIBC 3307 uint32_t nrules = 3308 _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES); 3309 # endif 3310 3311 PATFETCH (c); 3312 c1 = 0; 3313 3314 /* If pattern is `[[='. */ 3315 if (p == pend) FREE_STACK_RETURN (REG_EBRACK); 3316 3317 for (;;) 3318 { 3319 PATFETCH (c); 3320 if ((c == '=' && *p == ']') || p == pend) 3321 break; 3322 if (c1 < MB_LEN_MAX) 3323 str[c1++] = c; 3324 else 3325 /* This is in any case an invalid class name. */ 3326 str[0] = '\0'; 3327 } 3328 str[c1] = '\0'; 3329 3330 if (c == '=' && *p == ']' && str[0] != '\0') 3331 { 3332 /* If we have no collation data we use the default 3333 collation in which each character is in a class 3334 by itself. It also means that ASCII is the 3335 character set and therefore we cannot have character 3336 with more than one byte in the multibyte 3337 representation. */ 3338 # ifdef _LIBC 3339 if (nrules == 0) 3340 # endif 3341 { 3342 if (c1 != 1) 3343 FREE_STACK_RETURN (REG_ECOLLATE); 3344 3345 /* Throw away the ] at the end of the equivalence 3346 class. */ 3347 PATFETCH (c); 3348 3349 /* Set the bit for the character. */ 3350 SET_LIST_BIT (str[0]); 3351 } 3352 # ifdef _LIBC 3353 else 3354 { 3355 /* Try to match the byte sequence in `str' against 3356 those known to the collate implementation. 3357 First find out whether the bytes in `str' are 3358 actually from exactly one character. */ 3359 const int32_t *table; 3360 const unsigned char *weights; 3361 const unsigned char *extra; 3362 const int32_t *indirect; 3363 int32_t idx; 3364 const unsigned char *cp = str; 3365 int ch; 3366 3367 /* This #include defines a local function! */ 3368 # include <locale/weight.h> 3369 3370 table = (const int32_t *) 3371 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB); 3372 weights = (const unsigned char *) 3373 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTMB); 3374 extra = (const unsigned char *) 3375 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAMB); 3376 indirect = (const int32_t *) 3377 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTMB); 3378 3379 idx = findidx (&cp); 3380 if (idx == 0 || cp < str + c1) 3381 /* This is no valid character. */ 3382 FREE_STACK_RETURN (REG_ECOLLATE); 3383 3384 /* Throw away the ] at the end of the equivalence 3385 class. */ 3386 PATFETCH (c); 3387 3388 /* Now we have to go throught the whole table 3389 and find all characters which have the same 3390 first level weight. 3391 3392 XXX Note that this is not entirely correct. 3393 we would have to match multibyte sequences 3394 but this is not possible with the current 3395 implementation. */ 3396 for (ch = 1; ch < 256; ++ch) 3397 /* XXX This test would have to be changed if we 3398 would allow matching multibyte sequences. */ 3399 if (table[ch] > 0) 3400 { 3401 int32_t idx2 = table[ch]; 3402 size_t len = weights[idx2]; 3403 3404 /* Test whether the lenghts match. */ 3405 if (weights[idx] == len) 3406 { 3407 /* They do. New compare the bytes of 3408 the weight. */ 3409 size_t cnt = 0; 3410 3411 while (cnt < len 3412 && (weights[idx + 1 + cnt] 3413 == weights[idx2 + 1 + cnt])) 3414 ++cnt; 3415 3416 if (cnt == len) 3417 /* They match. Mark the character as 3418 acceptable. */ 3419 SET_LIST_BIT (ch); 3420 } 3421 } 3422 } 3423 # endif 3424 had_char_class = true; 3425 } 3426 else 3427 { 3428 c1++; 3429 while (c1--) 3430 PATUNFETCH; 3431 SET_LIST_BIT ('['); 3432 SET_LIST_BIT ('='); 3433 range_start = '='; 3434 had_char_class = false; 3435 } 3436 } 3437 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == '.') 3438 { 3439 unsigned char str[128]; /* Should be large enough. */ 3440 # ifdef _LIBC 3441 uint32_t nrules = 3442 _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES); 3443 # endif 3444 3445 PATFETCH (c); 3446 c1 = 0; 3447 3448 /* If pattern is `[[.'. */ 3449 if (p == pend) FREE_STACK_RETURN (REG_EBRACK); 3450 3451 for (;;) 3452 { 3453 PATFETCH (c); 3454 if ((c == '.' && *p == ']') || p == pend) 3455 break; 3456 if (c1 < sizeof (str)) 3457 str[c1++] = c; 3458 else 3459 /* This is in any case an invalid class name. */ 3460 str[0] = '\0'; 3461 } 3462 str[c1] = '\0'; 3463 3464 if (c == '.' && *p == ']' && str[0] != '\0') 3465 { 3466 /* If we have no collation data we use the default 3467 collation in which each character is the name 3468 for its own class which contains only the one 3469 character. It also means that ASCII is the 3470 character set and therefore we cannot have character 3471 with more than one byte in the multibyte 3472 representation. */ 3473 # ifdef _LIBC 3474 if (nrules == 0) 3475 # endif 3476 { 3477 if (c1 != 1) 3478 FREE_STACK_RETURN (REG_ECOLLATE); 3479 3480 /* Throw away the ] at the end of the equivalence 3481 class. */ 3482 PATFETCH (c); 3483 3484 /* Set the bit for the character. */ 3485 SET_LIST_BIT (str[0]); 3486 range_start = ((const unsigned char *) str)[0]; 3487 } 3488 # ifdef _LIBC 3489 else 3490 { 3491 /* Try to match the byte sequence in `str' against 3492 those known to the collate implementation. 3493 First find out whether the bytes in `str' are 3494 actually from exactly one character. */ 3495 int32_t table_size; 3496 const int32_t *symb_table; 3497 const unsigned char *extra; 3498 int32_t idx; 3499 int32_t elem; 3500 int32_t second; 3501 int32_t hash; 3502 3503 table_size = 3504 _NL_CURRENT_WORD (LC_COLLATE, 3505 _NL_COLLATE_SYMB_HASH_SIZEMB); 3506 symb_table = (const int32_t *) 3507 _NL_CURRENT (LC_COLLATE, 3508 _NL_COLLATE_SYMB_TABLEMB); 3509 extra = (const unsigned char *) 3510 _NL_CURRENT (LC_COLLATE, 3511 _NL_COLLATE_SYMB_EXTRAMB); 3512 3513 /* Locate the character in the hashing table. */ 3514 hash = elem_hash (str, c1); 3515 3516 idx = 0; 3517 elem = hash % table_size; 3518 second = hash % (table_size - 2); 3519 while (symb_table[2 * elem] != 0) 3520 { 3521 /* First compare the hashing value. */ 3522 if (symb_table[2 * elem] == hash 3523 && c1 == extra[symb_table[2 * elem + 1]] 3524 && memcmp (str, 3525 &extra[symb_table[2 * elem + 1] 3526 + 1], 3527 c1) == 0) 3528 { 3529 /* Yep, this is the entry. */ 3530 idx = symb_table[2 * elem + 1]; 3531 idx += 1 + extra[idx]; 3532 break; 3533 } 3534 3535 /* Next entry. */ 3536 elem += second; 3537 } 3538 3539 if (symb_table[2 * elem] == 0) 3540 /* This is no valid character. */ 3541 FREE_STACK_RETURN (REG_ECOLLATE); 3542 3543 /* Throw away the ] at the end of the equivalence 3544 class. */ 3545 PATFETCH (c); 3546 3547 /* Now add the multibyte character(s) we found 3548 to the accept list. 3549 3550 XXX Note that this is not entirely correct. 3551 we would have to match multibyte sequences 3552 but this is not possible with the current 3553 implementation. Also, we have to match 3554 collating symbols, which expand to more than 3555 one file, as a whole and not allow the 3556 individual bytes. */ 3557 c1 = extra[idx++]; 3558 if (c1 == 1) 3559 range_start = extra[idx]; 3560 while (c1-- > 0) 3561 { 3562 SET_LIST_BIT (extra[idx]); 3563 ++idx; 3564 } 3565 } 3566 # endif 3567 had_char_class = false; 3568 } 3569 else 3570 { 3571 c1++; 3572 while (c1--) 3573 PATUNFETCH; 3574 SET_LIST_BIT ('['); 3575 SET_LIST_BIT ('.'); 3576 range_start = '.'; 3577 had_char_class = false; 3578 } 3579 } 3580 else 3581 { 3582 had_char_class = false; 3583 SET_LIST_BIT (c); 3584 range_start = c; 3585 } 3586 } 3587 3588 /* Discard any (non)matching list bytes that are all 0 at the 3589 end of the map. Decrease the map-length byte too. */ 3590 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0) 3591 b[-1]--; 3592 b += b[-1]; 3593 #endif /* MBS_SUPPORT */ 3594 } 3595 break; 3596 3597 3598 case '(': 3599 if (syntax & RE_NO_BK_PARENS) 3600 goto handle_open; 3601 else 3602 goto normal_char; 3603 3604 3605 case ')': 3606 if (syntax & RE_NO_BK_PARENS) 3607 goto handle_close; 3608 else 3609 goto normal_char; 3610 3611 3612 case '\n': 3613 if (syntax & RE_NEWLINE_ALT) 3614 goto handle_alt; 3615 else 3616 goto normal_char; 3617 3618 3619 case '|': 3620 if (syntax & RE_NO_BK_VBAR) 3621 goto handle_alt; 3622 else 3623 goto normal_char; 3624 3625 3626 case '{': 3627 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES) 3628 goto handle_interval; 3629 else 3630 goto normal_char; 3631 3632 3633 case '\\': 3634 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE); 3635 3636 /* Do not translate the character after the \, so that we can 3637 distinguish, e.g., \B from \b, even if we normally would 3638 translate, e.g., B to b. */ 3639 PATFETCH_RAW (c); 3640 3641 switch (c) 3642 { 3643 case '(': 3644 if (syntax & RE_NO_BK_PARENS) 3645 goto normal_backslash; 3646 3647 handle_open: 3648 bufp->re_nsub++; 3649 regnum++; 3650 3651 if (COMPILE_STACK_FULL) 3652 { 3653 RETALLOC (compile_stack.stack, compile_stack.size << 1, 3654 compile_stack_elt_t); 3655 if (compile_stack.stack == NULL) return REG_ESPACE; 3656 3657 compile_stack.size <<= 1; 3658 } 3659 3660 /* These are the values to restore when we hit end of this 3661 group. They are all relative offsets, so that if the 3662 whole pattern moves because of realloc, they will still 3663 be valid. */ 3664 COMPILE_STACK_TOP.begalt_offset = begalt - COMPILED_BUFFER_VAR; 3665 COMPILE_STACK_TOP.fixup_alt_jump 3666 = fixup_alt_jump ? fixup_alt_jump - COMPILED_BUFFER_VAR + 1 : 0; 3667 COMPILE_STACK_TOP.laststart_offset = b - COMPILED_BUFFER_VAR; 3668 COMPILE_STACK_TOP.regnum = regnum; 3669 3670 /* We will eventually replace the 0 with the number of 3671 groups inner to this one. But do not push a 3672 start_memory for groups beyond the last one we can 3673 represent in the compiled pattern. */ 3674 if (regnum <= MAX_REGNUM) 3675 { 3676 COMPILE_STACK_TOP.inner_group_offset = b 3677 - COMPILED_BUFFER_VAR + 2; 3678 BUF_PUSH_3 (start_memory, regnum, 0); 3679 } 3680 3681 compile_stack.avail++; 3682 3683 fixup_alt_jump = 0; 3684 laststart = 0; 3685 begalt = b; 3686 /* If we've reached MAX_REGNUM groups, then this open 3687 won't actually generate any code, so we'll have to 3688 clear pending_exact explicitly. */ 3689 pending_exact = 0; 3690 break; 3691 3692 3693 case ')': 3694 if (syntax & RE_NO_BK_PARENS) goto normal_backslash; 3695 3696 if (COMPILE_STACK_EMPTY) 3697 { 3698 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD) 3699 goto normal_backslash; 3700 else 3701 FREE_STACK_RETURN (REG_ERPAREN); 3702 } 3703 3704 handle_close: 3705 if (fixup_alt_jump) 3706 { /* Push a dummy failure point at the end of the 3707 alternative for a possible future 3708 `pop_failure_jump' to pop. See comments at 3709 `push_dummy_failure' in `re_match_2'. */ 3710 BUF_PUSH (push_dummy_failure); 3711 3712 /* We allocated space for this jump when we assigned 3713 to `fixup_alt_jump', in the `handle_alt' case below. */ 3714 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1); 3715 } 3716 3717 /* See similar code for backslashed left paren above. */ 3718 if (COMPILE_STACK_EMPTY) 3719 { 3720 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD) 3721 goto normal_char; 3722 else 3723 FREE_STACK_RETURN (REG_ERPAREN); 3724 } 3725 3726 /* Since we just checked for an empty stack above, this 3727 ``can't happen''. */ 3728 assert (compile_stack.avail != 0); 3729 { 3730 /* We don't just want to restore into `regnum', because 3731 later groups should continue to be numbered higher, 3732 as in `(ab)c(de)' -- the second group is #2. */ 3733 regnum_t this_group_regnum; 3734 3735 compile_stack.avail--; 3736 begalt = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.begalt_offset; 3737 fixup_alt_jump 3738 = COMPILE_STACK_TOP.fixup_alt_jump 3739 ? COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.fixup_alt_jump - 1 3740 : 0; 3741 laststart = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.laststart_offset; 3742 this_group_regnum = COMPILE_STACK_TOP.regnum; 3743 /* If we've reached MAX_REGNUM groups, then this open 3744 won't actually generate any code, so we'll have to 3745 clear pending_exact explicitly. */ 3746 pending_exact = 0; 3747 3748 /* We're at the end of the group, so now we know how many 3749 groups were inside this one. */ 3750 if (this_group_regnum <= MAX_REGNUM) 3751 { 3752 US_CHAR_TYPE *inner_group_loc 3753 = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.inner_group_offset; 3754 3755 *inner_group_loc = regnum - this_group_regnum; 3756 BUF_PUSH_3 (stop_memory, this_group_regnum, 3757 regnum - this_group_regnum); 3758 } 3759 } 3760 break; 3761 3762 3763 case '|': /* `\|'. */ 3764 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR) 3765 goto normal_backslash; 3766 handle_alt: 3767 if (syntax & RE_LIMITED_OPS) 3768 goto normal_char; 3769 3770 /* Insert before the previous alternative a jump which 3771 jumps to this alternative if the former fails. */ 3772 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE); 3773 INSERT_JUMP (on_failure_jump, begalt, 3774 b + 2 + 2 * OFFSET_ADDRESS_SIZE); 3775 pending_exact = 0; 3776 b += 1 + OFFSET_ADDRESS_SIZE; 3777 3778 /* The alternative before this one has a jump after it 3779 which gets executed if it gets matched. Adjust that 3780 jump so it will jump to this alternative's analogous 3781 jump (put in below, which in turn will jump to the next 3782 (if any) alternative's such jump, etc.). The last such 3783 jump jumps to the correct final destination. A picture: 3784 _____ _____ 3785 | | | | 3786 | v | v 3787 a | b | c 3788 3789 If we are at `b', then fixup_alt_jump right now points to a 3790 three-byte space after `a'. We'll put in the jump, set 3791 fixup_alt_jump to right after `b', and leave behind three 3792 bytes which we'll fill in when we get to after `c'. */ 3793 3794 if (fixup_alt_jump) 3795 STORE_JUMP (jump_past_alt, fixup_alt_jump, b); 3796 3797 /* Mark and leave space for a jump after this alternative, 3798 to be filled in later either by next alternative or 3799 when know we're at the end of a series of alternatives. */ 3800 fixup_alt_jump = b; 3801 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE); 3802 b += 1 + OFFSET_ADDRESS_SIZE; 3803 3804 laststart = 0; 3805 begalt = b; 3806 break; 3807 3808 3809 case '{': 3810 /* If \{ is a literal. */ 3811 if (!(syntax & RE_INTERVALS) 3812 /* If we're at `\{' and it's not the open-interval 3813 operator. */ 3814 || (syntax & RE_NO_BK_BRACES)) 3815 goto normal_backslash; 3816 3817 handle_interval: 3818 { 3819 /* If got here, then the syntax allows intervals. */ 3820 3821 /* At least (most) this many matches must be made. */ 3822 int lower_bound = -1, upper_bound = -1; 3823 3824 /* Place in the uncompiled pattern (i.e., just after 3825 the '{') to go back to if the interval is invalid. */ 3826 const CHAR_TYPE *beg_interval = p; 3827 3828 if (p == pend) 3829 goto invalid_interval; 3830 3831 GET_UNSIGNED_NUMBER (lower_bound); 3832 3833 if (c == ',') 3834 { 3835 GET_UNSIGNED_NUMBER (upper_bound); 3836 if (upper_bound < 0) 3837 upper_bound = RE_DUP_MAX; 3838 } 3839 else 3840 /* Interval such as `{1}' => match exactly once. */ 3841 upper_bound = lower_bound; 3842 3843 if (! (0 <= lower_bound && lower_bound <= upper_bound)) 3844 goto invalid_interval; 3845 3846 if (!(syntax & RE_NO_BK_BRACES)) 3847 { 3848 if (c != '\\' || p == pend) 3849 goto invalid_interval; 3850 PATFETCH (c); 3851 } 3852 3853 if (c != '}') 3854 goto invalid_interval; 3855 3856 /* If it's invalid to have no preceding re. */ 3857 if (!laststart) 3858 { 3859 if (syntax & RE_CONTEXT_INVALID_OPS 3860 && !(syntax & RE_INVALID_INTERVAL_ORD)) 3861 FREE_STACK_RETURN (REG_BADRPT); 3862 else if (syntax & RE_CONTEXT_INDEP_OPS) 3863 laststart = b; 3864 else 3865 goto unfetch_interval; 3866 } 3867 3868 /* We just parsed a valid interval. */ 3869 3870 if (RE_DUP_MAX < upper_bound) 3871 FREE_STACK_RETURN (REG_BADBR); 3872 3873 /* If the upper bound is zero, don't want to succeed at 3874 all; jump from `laststart' to `b + 3', which will be 3875 the end of the buffer after we insert the jump. */ 3876 /* ifdef MBS_SUPPORT, 'b + 1 + OFFSET_ADDRESS_SIZE' 3877 instead of 'b + 3'. */ 3878 if (upper_bound == 0) 3879 { 3880 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE); 3881 INSERT_JUMP (jump, laststart, b + 1 3882 + OFFSET_ADDRESS_SIZE); 3883 b += 1 + OFFSET_ADDRESS_SIZE; 3884 } 3885 3886 /* Otherwise, we have a nontrivial interval. When 3887 we're all done, the pattern will look like: 3888 set_number_at <jump count> <upper bound> 3889 set_number_at <succeed_n count> <lower bound> 3890 succeed_n <after jump addr> <succeed_n count> 3891 <body of loop> 3892 jump_n <succeed_n addr> <jump count> 3893 (The upper bound and `jump_n' are omitted if 3894 `upper_bound' is 1, though.) */ 3895 else 3896 { /* If the upper bound is > 1, we need to insert 3897 more at the end of the loop. */ 3898 unsigned nbytes = 2 + 4 * OFFSET_ADDRESS_SIZE + 3899 (upper_bound > 1) * (2 + 4 * OFFSET_ADDRESS_SIZE); 3900 3901 GET_BUFFER_SPACE (nbytes); 3902 3903 /* Initialize lower bound of the `succeed_n', even 3904 though it will be set during matching by its 3905 attendant `set_number_at' (inserted next), 3906 because `re_compile_fastmap' needs to know. 3907 Jump to the `jump_n' we might insert below. */ 3908 INSERT_JUMP2 (succeed_n, laststart, 3909 b + 1 + 2 * OFFSET_ADDRESS_SIZE 3910 + (upper_bound > 1) * (1 + 2 * OFFSET_ADDRESS_SIZE) 3911 , lower_bound); 3912 b += 1 + 2 * OFFSET_ADDRESS_SIZE; 3913 3914 /* Code to initialize the lower bound. Insert 3915 before the `succeed_n'. The `5' is the last two 3916 bytes of this `set_number_at', plus 3 bytes of 3917 the following `succeed_n'. */ 3918 /* ifdef MBS_SUPPORT, The '1+2*OFFSET_ADDRESS_SIZE' 3919 is the 'set_number_at', plus '1+OFFSET_ADDRESS_SIZE' 3920 of the following `succeed_n'. */ 3921 insert_op2 (set_number_at, laststart, 1 3922 + 2 * OFFSET_ADDRESS_SIZE, lower_bound, b); 3923 b += 1 + 2 * OFFSET_ADDRESS_SIZE; 3924 3925 if (upper_bound > 1) 3926 { /* More than one repetition is allowed, so 3927 append a backward jump to the `succeed_n' 3928 that starts this interval. 3929 3930 When we've reached this during matching, 3931 we'll have matched the interval once, so 3932 jump back only `upper_bound - 1' times. */ 3933 STORE_JUMP2 (jump_n, b, laststart 3934 + 2 * OFFSET_ADDRESS_SIZE + 1, 3935 upper_bound - 1); 3936 b += 1 + 2 * OFFSET_ADDRESS_SIZE; 3937 3938 /* The location we want to set is the second 3939 parameter of the `jump_n'; that is `b-2' as 3940 an absolute address. `laststart' will be 3941 the `set_number_at' we're about to insert; 3942 `laststart+3' the number to set, the source 3943 for the relative address. But we are 3944 inserting into the middle of the pattern -- 3945 so everything is getting moved up by 5. 3946 Conclusion: (b - 2) - (laststart + 3) + 5, 3947 i.e., b - laststart. 3948 3949 We insert this at the beginning of the loop 3950 so that if we fail during matching, we'll 3951 reinitialize the bounds. */ 3952 insert_op2 (set_number_at, laststart, b - laststart, 3953 upper_bound - 1, b); 3954 b += 1 + 2 * OFFSET_ADDRESS_SIZE; 3955 } 3956 } 3957 pending_exact = 0; 3958 break; 3959 3960 invalid_interval: 3961 if (!(syntax & RE_INVALID_INTERVAL_ORD)) 3962 FREE_STACK_RETURN (p == pend ? REG_EBRACE : REG_BADBR); 3963 unfetch_interval: 3964 /* Match the characters as literals. */ 3965 p = beg_interval; 3966 c = '{'; 3967 if (syntax & RE_NO_BK_BRACES) 3968 goto normal_char; 3969 else 3970 goto normal_backslash; 3971 } 3972 3973 #ifdef emacs 3974 /* There is no way to specify the before_dot and after_dot 3975 operators. rms says this is ok. --karl */ 3976 case '=': 3977 BUF_PUSH (at_dot); 3978 break; 3979 3980 case 's': 3981 laststart = b; 3982 PATFETCH (c); 3983 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]); 3984 break; 3985 3986 case 'S': 3987 laststart = b; 3988 PATFETCH (c); 3989 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]); 3990 break; 3991 #endif /* emacs */ 3992 3993 3994 case 'w': 3995 if (syntax & RE_NO_GNU_OPS) 3996 goto normal_char; 3997 laststart = b; 3998 BUF_PUSH (wordchar); 3999 break; 4000 4001 4002 case 'W': 4003 if (syntax & RE_NO_GNU_OPS) 4004 goto normal_char; 4005 laststart = b; 4006 BUF_PUSH (notwordchar); 4007 break; 4008 4009 4010 case '<': 4011 if (syntax & RE_NO_GNU_OPS) 4012 goto normal_char; 4013 BUF_PUSH (wordbeg); 4014 break; 4015 4016 case '>': 4017 if (syntax & RE_NO_GNU_OPS) 4018 goto normal_char; 4019 BUF_PUSH (wordend); 4020 break; 4021 4022 case 'b': 4023 if (syntax & RE_NO_GNU_OPS) 4024 goto normal_char; 4025 BUF_PUSH (wordbound); 4026 break; 4027 4028 case 'B': 4029 if (syntax & RE_NO_GNU_OPS) 4030 goto normal_char; 4031 BUF_PUSH (notwordbound); 4032 break; 4033 4034 case '`': 4035 if (syntax & RE_NO_GNU_OPS) 4036 goto normal_char; 4037 BUF_PUSH (begbuf); 4038 break; 4039 4040 case '\'': 4041 if (syntax & RE_NO_GNU_OPS) 4042 goto normal_char; 4043 BUF_PUSH (endbuf); 4044 break; 4045 4046 case '1': case '2': case '3': case '4': case '5': 4047 case '6': case '7': case '8': case '9': 4048 if (syntax & RE_NO_BK_REFS) 4049 goto normal_char; 4050 4051 c1 = c - '0'; 4052 4053 if (c1 > regnum) 4054 FREE_STACK_RETURN (REG_ESUBREG); 4055 4056 /* Can't back reference to a subexpression if inside of it. */ 4057 if (group_in_compile_stack (compile_stack, (regnum_t) c1)) 4058 goto normal_char; 4059 4060 laststart = b; 4061 BUF_PUSH_2 (duplicate, c1); 4062 break; 4063 4064 4065 case '+': 4066 case '?': 4067 if (syntax & RE_BK_PLUS_QM) 4068 goto handle_plus; 4069 else 4070 goto normal_backslash; 4071 4072 default: 4073 normal_backslash: 4074 /* You might think it would be useful for \ to mean 4075 not to translate; but if we don't translate it 4076 it will never match anything. */ 4077 c = TRANSLATE (c); 4078 goto normal_char; 4079 } 4080 break; 4081 4082 4083 default: 4084 /* Expects the character in `c'. */ 4085 normal_char: 4086 /* If no exactn currently being built. */ 4087 if (!pending_exact 4088 #ifdef MBS_SUPPORT 4089 /* If last exactn handle binary(or character) and 4090 new exactn handle character(or binary). */ 4091 || is_exactn_bin != is_binary[p - 1 - pattern] 4092 #endif /* MBS_SUPPORT */ 4093 4094 /* If last exactn not at current position. */ 4095 || pending_exact + *pending_exact + 1 != b 4096 4097 /* We have only one byte following the exactn for the count. */ 4098 || *pending_exact == (1 << BYTEWIDTH) - 1 4099 4100 /* If followed by a repetition operator. */ 4101 || *p == '*' || *p == '^' 4102 || ((syntax & RE_BK_PLUS_QM) 4103 ? *p == '\\' && (p[1] == '+' || p[1] == '?') 4104 : (*p == '+' || *p == '?')) 4105 || ((syntax & RE_INTERVALS) 4106 && ((syntax & RE_NO_BK_BRACES) 4107 ? *p == '{' 4108 : (p[0] == '\\' && p[1] == '{')))) 4109 { 4110 /* Start building a new exactn. */ 4111 4112 laststart = b; 4113 4114 #ifdef MBS_SUPPORT 4115 /* Is this exactn binary data or character? */ 4116 is_exactn_bin = is_binary[p - 1 - pattern]; 4117 if (is_exactn_bin) 4118 BUF_PUSH_2 (exactn_bin, 0); 4119 else 4120 BUF_PUSH_2 (exactn, 0); 4121 #else 4122 BUF_PUSH_2 (exactn, 0); 4123 #endif /* MBS_SUPPORT */ 4124 pending_exact = b - 1; 4125 } 4126 4127 BUF_PUSH (c); 4128 (*pending_exact)++; 4129 break; 4130 } /* switch (c) */ 4131 } /* while p != pend */ 4132 4133 4134 /* Through the pattern now. */ 4135 4136 if (fixup_alt_jump) 4137 STORE_JUMP (jump_past_alt, fixup_alt_jump, b); 4138 4139 if (!COMPILE_STACK_EMPTY) 4140 FREE_STACK_RETURN (REG_EPAREN); 4141 4142 /* If we don't want backtracking, force success 4143 the first time we reach the end of the compiled pattern. */ 4144 if (syntax & RE_NO_POSIX_BACKTRACKING) 4145 BUF_PUSH (succeed); 4146 4147 #ifdef MBS_SUPPORT 4148 free (pattern); 4149 free (mbs_offset); 4150 free (is_binary); 4151 #endif 4152 free (compile_stack.stack); 4153 4154 /* We have succeeded; set the length of the buffer. */ 4155 #ifdef MBS_SUPPORT 4156 bufp->used = (uintptr_t) b - (uintptr_t) COMPILED_BUFFER_VAR; 4157 #else 4158 bufp->used = b - bufp->buffer; 4159 #endif 4160 4161 #ifdef DEBUG 4162 if (debug) 4163 { 4164 DEBUG_PRINT1 ("\nCompiled pattern: \n"); 4165 print_compiled_pattern (bufp); 4166 } 4167 #endif /* DEBUG */ 4168 4169 #ifndef MATCH_MAY_ALLOCATE 4170 /* Initialize the failure stack to the largest possible stack. This 4171 isn't necessary unless we're trying to avoid calling alloca in 4172 the search and match routines. */ 4173 { 4174 int num_regs = bufp->re_nsub + 1; 4175 4176 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size 4177 is strictly greater than re_max_failures, the largest possible stack 4178 is 2 * re_max_failures failure points. */ 4179 if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS)) 4180 { 4181 fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS); 4182 4183 # ifdef emacs 4184 if (! fail_stack.stack) 4185 fail_stack.stack 4186 = (fail_stack_elt_t *) xmalloc (fail_stack.size 4187 * sizeof (fail_stack_elt_t)); 4188 else 4189 fail_stack.stack 4190 = (fail_stack_elt_t *) xrealloc (fail_stack.stack, 4191 (fail_stack.size 4192 * sizeof (fail_stack_elt_t))); 4193 # else /* not emacs */ 4194 if (! fail_stack.stack) 4195 fail_stack.stack 4196 = (fail_stack_elt_t *) malloc (fail_stack.size 4197 * sizeof (fail_stack_elt_t)); 4198 else 4199 fail_stack.stack 4200 = (fail_stack_elt_t *) realloc (fail_stack.stack, 4201 (fail_stack.size 4202 * sizeof (fail_stack_elt_t))); 4203 # endif /* not emacs */ 4204 } 4205 4206 regex_grow_registers (num_regs); 4207 } 4208 #endif /* not MATCH_MAY_ALLOCATE */ 4209 4210 return REG_NOERROR; 4211 } /* regex_compile */ 4212 4213 /* Subroutines for `regex_compile'. */ 4214 4215 /* Store OP at LOC followed by two-byte integer parameter ARG. */ 4216 /* ifdef MBS_SUPPORT, integer parameter is 1 wchar_t. */ 4217 4218 static void 4219 store_op1 (op, loc, arg) 4220 re_opcode_t op; 4221 US_CHAR_TYPE *loc; 4222 int arg; 4223 { 4224 *loc = (US_CHAR_TYPE) op; 4225 STORE_NUMBER (loc + 1, arg); 4226 } 4227 4228 4229 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */ 4230 /* ifdef MBS_SUPPORT, integer parameter is 1 wchar_t. */ 4231 4232 static void 4233 store_op2 (op, loc, arg1, arg2) 4234 re_opcode_t op; 4235 US_CHAR_TYPE *loc; 4236 int arg1, arg2; 4237 { 4238 *loc = (US_CHAR_TYPE) op; 4239 STORE_NUMBER (loc + 1, arg1); 4240 STORE_NUMBER (loc + 1 + OFFSET_ADDRESS_SIZE, arg2); 4241 } 4242 4243 4244 /* Copy the bytes from LOC to END to open up three bytes of space at LOC 4245 for OP followed by two-byte integer parameter ARG. */ 4246 /* ifdef MBS_SUPPORT, integer parameter is 1 wchar_t. */ 4247 4248 static void 4249 insert_op1 (op, loc, arg, end) 4250 re_opcode_t op; 4251 US_CHAR_TYPE *loc; 4252 int arg; 4253 US_CHAR_TYPE *end; 4254 { 4255 register US_CHAR_TYPE *pfrom = end; 4256 register US_CHAR_TYPE *pto = end + 1 + OFFSET_ADDRESS_SIZE; 4257 4258 while (pfrom != loc) 4259 *--pto = *--pfrom; 4260 4261 store_op1 (op, loc, arg); 4262 } 4263 4264 4265 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */ 4266 /* ifdef MBS_SUPPORT, integer parameter is 1 wchar_t. */ 4267 4268 static void 4269 insert_op2 (op, loc, arg1, arg2, end) 4270 re_opcode_t op; 4271 US_CHAR_TYPE *loc; 4272 int arg1, arg2; 4273 US_CHAR_TYPE *end; 4274 { 4275 register US_CHAR_TYPE *pfrom = end; 4276 register US_CHAR_TYPE *pto = end + 1 + 2 * OFFSET_ADDRESS_SIZE; 4277 4278 while (pfrom != loc) 4279 *--pto = *--pfrom; 4280 4281 store_op2 (op, loc, arg1, arg2); 4282 } 4283 4284 4285 /* P points to just after a ^ in PATTERN. Return true if that ^ comes 4286 after an alternative or a begin-subexpression. We assume there is at 4287 least one character before the ^. */ 4288 4289 static boolean 4290 at_begline_loc_p (pattern, p, syntax) 4291 const CHAR_TYPE *pattern, *p; 4292 reg_syntax_t syntax; 4293 { 4294 const CHAR_TYPE *prev = p - 2; 4295 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\'; 4296 4297 return 4298 /* After a subexpression? */ 4299 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash)) 4300 /* After an alternative? */ 4301 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash)); 4302 } 4303 4304 4305 /* The dual of at_begline_loc_p. This one is for $. We assume there is 4306 at least one character after the $, i.e., `P < PEND'. */ 4307 4308 static boolean 4309 at_endline_loc_p (p, pend, syntax) 4310 const CHAR_TYPE *p, *pend; 4311 reg_syntax_t syntax; 4312 { 4313 const CHAR_TYPE *next = p; 4314 boolean next_backslash = *next == '\\'; 4315 const CHAR_TYPE *next_next = p + 1 < pend ? p + 1 : 0; 4316 4317 return 4318 /* Before a subexpression? */ 4319 (syntax & RE_NO_BK_PARENS ? *next == ')' 4320 : next_backslash && next_next && *next_next == ')') 4321 /* Before an alternative? */ 4322 || (syntax & RE_NO_BK_VBAR ? *next == '|' 4323 : next_backslash && next_next && *next_next == '|'); 4324 } 4325 4326 4327 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and 4328 false if it's not. */ 4329 4330 static boolean 4331 group_in_compile_stack (compile_stack, regnum) 4332 compile_stack_type compile_stack; 4333 regnum_t regnum; 4334 { 4335 int this_element; 4336 4337 for (this_element = compile_stack.avail - 1; 4338 this_element >= 0; 4339 this_element--) 4340 if (compile_stack.stack[this_element].regnum == regnum) 4341 return true; 4342 4343 return false; 4344 } 4345 4346 #ifdef MBS_SUPPORT 4347 /* This insert space, which size is "num", into the pattern at "loc". 4348 "end" must point the end of the allocated buffer. */ 4349 static void 4350 insert_space (num, loc, end) 4351 int num; 4352 CHAR_TYPE *loc; 4353 CHAR_TYPE *end; 4354 { 4355 register CHAR_TYPE *pto = end; 4356 register CHAR_TYPE *pfrom = end - num; 4357 4358 while (pfrom >= loc) 4359 *pto-- = *pfrom--; 4360 } 4361 #endif /* MBS_SUPPORT */ 4362 4363 #ifdef MBS_SUPPORT 4364 static reg_errcode_t 4365 compile_range (range_start_char, p_ptr, pend, translate, syntax, b, 4366 char_set) 4367 CHAR_TYPE range_start_char; 4368 const CHAR_TYPE **p_ptr, *pend; 4369 CHAR_TYPE *char_set, *b; 4370 RE_TRANSLATE_TYPE translate; 4371 reg_syntax_t syntax; 4372 { 4373 const CHAR_TYPE *p = *p_ptr; 4374 CHAR_TYPE range_start, range_end; 4375 reg_errcode_t ret; 4376 # ifdef _LIBC 4377 uint32_t nrules; 4378 uint32_t start_val, end_val; 4379 # endif 4380 if (p == pend) 4381 return REG_ERANGE; 4382 4383 # ifdef _LIBC 4384 nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES); 4385 if (nrules != 0) 4386 { 4387 const char *collseq = (const char *) _NL_CURRENT(LC_COLLATE, 4388 _NL_COLLATE_COLLSEQWC); 4389 const unsigned char *extra = (const unsigned char *) 4390 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB); 4391 4392 if (range_start_char < -1) 4393 { 4394 /* range_start is a collating symbol. */ 4395 int32_t *wextra; 4396 /* Retreive the index and get collation sequence value. */ 4397 wextra = (int32_t*)(extra + char_set[-range_start_char]); 4398 start_val = wextra[1 + *wextra]; 4399 } 4400 else 4401 start_val = collseq_table_lookup(collseq, TRANSLATE(range_start_char)); 4402 4403 end_val = collseq_table_lookup (collseq, TRANSLATE (p[0])); 4404 4405 /* Report an error if the range is empty and the syntax prohibits 4406 this. */ 4407 ret = ((syntax & RE_NO_EMPTY_RANGES) 4408 && (start_val > end_val))? REG_ERANGE : REG_NOERROR; 4409 4410 /* Insert space to the end of the char_ranges. */ 4411 insert_space(2, b - char_set[5] - 2, b - 1); 4412 *(b - char_set[5] - 2) = (wchar_t)start_val; 4413 *(b - char_set[5] - 1) = (wchar_t)end_val; 4414 char_set[4]++; /* ranges_index */ 4415 } 4416 else 4417 # endif 4418 { 4419 range_start = (range_start_char >= 0)? TRANSLATE (range_start_char): 4420 range_start_char; 4421 range_end = TRANSLATE (p[0]); 4422 /* Report an error if the range is empty and the syntax prohibits 4423 this. */ 4424 ret = ((syntax & RE_NO_EMPTY_RANGES) 4425 && (range_start > range_end))? REG_ERANGE : REG_NOERROR; 4426 4427 /* Insert space to the end of the char_ranges. */ 4428 insert_space(2, b - char_set[5] - 2, b - 1); 4429 *(b - char_set[5] - 2) = range_start; 4430 *(b - char_set[5] - 1) = range_end; 4431 char_set[4]++; /* ranges_index */ 4432 } 4433 /* Have to increment the pointer into the pattern string, so the 4434 caller isn't still at the ending character. */ 4435 (*p_ptr)++; 4436 4437 return ret; 4438 } 4439 #else 4440 /* Read the ending character of a range (in a bracket expression) from the 4441 uncompiled pattern *P_PTR (which ends at PEND). We assume the 4442 starting character is in `P[-2]'. (`P[-1]' is the character `-'.) 4443 Then we set the translation of all bits between the starting and 4444 ending characters (inclusive) in the compiled pattern B. 4445 4446 Return an error code. 4447 4448 We use these short variable names so we can use the same macros as 4449 `regex_compile' itself. */ 4450 4451 static reg_errcode_t 4452 compile_range (range_start_char, p_ptr, pend, translate, syntax, b) 4453 unsigned int range_start_char; 4454 const char **p_ptr, *pend; 4455 RE_TRANSLATE_TYPE translate; 4456 reg_syntax_t syntax; 4457 unsigned char *b; 4458 { 4459 unsigned this_char; 4460 const char *p = *p_ptr; 4461 reg_errcode_t ret; 4462 # if _LIBC 4463 const unsigned char *collseq; 4464 unsigned int start_colseq; 4465 unsigned int end_colseq; 4466 # else 4467 unsigned end_char; 4468 # endif 4469 4470 if (p == pend) 4471 return REG_ERANGE; 4472 4473 /* Have to increment the pointer into the pattern string, so the 4474 caller isn't still at the ending character. */ 4475 (*p_ptr)++; 4476 4477 /* Report an error if the range is empty and the syntax prohibits this. */ 4478 ret = syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR; 4479 4480 # if _LIBC 4481 collseq = (const unsigned char *) _NL_CURRENT (LC_COLLATE, 4482 _NL_COLLATE_COLLSEQMB); 4483 4484 start_colseq = collseq[(unsigned char) TRANSLATE (range_start_char)]; 4485 end_colseq = collseq[(unsigned char) TRANSLATE (p[0])]; 4486 for (this_char = 0; this_char <= (unsigned char) -1; ++this_char) 4487 { 4488 unsigned int this_colseq = collseq[(unsigned char) TRANSLATE (this_char)]; 4489 4490 if (start_colseq <= this_colseq && this_colseq <= end_colseq) 4491 { 4492 SET_LIST_BIT (TRANSLATE (this_char)); 4493 ret = REG_NOERROR; 4494 } 4495 } 4496 # else 4497 /* Here we see why `this_char' has to be larger than an `unsigned 4498 char' -- we would otherwise go into an infinite loop, since all 4499 characters <= 0xff. */ 4500 range_start_char = TRANSLATE (range_start_char); 4501 /* TRANSLATE(p[0]) is casted to char (not unsigned char) in TRANSLATE, 4502 and some compilers cast it to int implicitly, so following for_loop 4503 may fall to (almost) infinite loop. 4504 e.g. If translate[p[0]] = 0xff, end_char may equals to 0xffffffff. 4505 To avoid this, we cast p[0] to unsigned int and truncate it. */ 4506 end_char = ((unsigned)TRANSLATE(p[0]) & ((1 << BYTEWIDTH) - 1)); 4507 4508 for (this_char = range_start_char; this_char <= end_char; ++this_char) 4509 { 4510 SET_LIST_BIT (TRANSLATE (this_char)); 4511 ret = REG_NOERROR; 4512 } 4513 # endif 4514 4515 return ret; 4516 } 4517 #endif /* MBS_SUPPORT */ 4518 4519 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in 4520 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible 4521 characters can start a string that matches the pattern. This fastmap 4522 is used by re_search to skip quickly over impossible starting points. 4523 4524 The caller must supply the address of a (1 << BYTEWIDTH)-byte data 4525 area as BUFP->fastmap. 4526 4527 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in 4528 the pattern buffer. 4529 4530 Returns 0 if we succeed, -2 if an internal error. */ 4531 4532 #ifdef MBS_SUPPORT 4533 /* local function for re_compile_fastmap. 4534 truncate wchar_t character to char. */ 4535 static unsigned char truncate_wchar (CHAR_TYPE c); 4536 4537 static unsigned char 4538 truncate_wchar (c) 4539 CHAR_TYPE c; 4540 { 4541 unsigned char buf[MB_LEN_MAX]; 4542 int retval = wctomb(buf, c); 4543 return retval > 0 ? buf[0] : (unsigned char)c; 4544 } 4545 #endif /* MBS_SUPPORT */ 4546 4547 int 4548 re_compile_fastmap (bufp) 4549 struct re_pattern_buffer *bufp; 4550 { 4551 int j, k; 4552 #ifdef MATCH_MAY_ALLOCATE 4553 fail_stack_type fail_stack; 4554 #endif 4555 #ifndef REGEX_MALLOC 4556 char *destination; 4557 #endif 4558 4559 register char *fastmap = bufp->fastmap; 4560 4561 #ifdef MBS_SUPPORT 4562 /* We need to cast pattern to (wchar_t*), because we casted this compiled 4563 pattern to (char*) in regex_compile. */ 4564 US_CHAR_TYPE *pattern = (US_CHAR_TYPE*)bufp->buffer; 4565 register US_CHAR_TYPE *pend = (US_CHAR_TYPE*) (bufp->buffer + bufp->used); 4566 #else 4567 US_CHAR_TYPE *pattern = bufp->buffer; 4568 register US_CHAR_TYPE *pend = pattern + bufp->used; 4569 #endif /* MBS_SUPPORT */ 4570 US_CHAR_TYPE *p = pattern; 4571 4572 #ifdef REL_ALLOC 4573 /* This holds the pointer to the failure stack, when 4574 it is allocated relocatably. */ 4575 fail_stack_elt_t *failure_stack_ptr; 4576 #endif 4577 4578 /* Assume that each path through the pattern can be null until 4579 proven otherwise. We set this false at the bottom of switch 4580 statement, to which we get only if a particular path doesn't 4581 match the empty string. */ 4582 boolean path_can_be_null = true; 4583 4584 /* We aren't doing a `succeed_n' to begin with. */ 4585 boolean succeed_n_p = false; 4586 4587 assert (fastmap != NULL && p != NULL); 4588 4589 INIT_FAIL_STACK (); 4590 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */ 4591 bufp->fastmap_accurate = 1; /* It will be when we're done. */ 4592 bufp->can_be_null = 0; 4593 4594 while (1) 4595 { 4596 if (p == pend || *p == succeed) 4597 { 4598 /* We have reached the (effective) end of pattern. */ 4599 if (!FAIL_STACK_EMPTY ()) 4600 { 4601 bufp->can_be_null |= path_can_be_null; 4602 4603 /* Reset for next path. */ 4604 path_can_be_null = true; 4605 4606 p = fail_stack.stack[--fail_stack.avail].pointer; 4607 4608 continue; 4609 } 4610 else 4611 break; 4612 } 4613 4614 /* We should never be about to go beyond the end of the pattern. */ 4615 assert (p < pend); 4616 4617 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++)) 4618 { 4619 4620 /* I guess the idea here is to simply not bother with a fastmap 4621 if a backreference is used, since it's too hard to figure out 4622 the fastmap for the corresponding group. Setting 4623 `can_be_null' stops `re_search_2' from using the fastmap, so 4624 that is all we do. */ 4625 case duplicate: 4626 bufp->can_be_null = 1; 4627 goto done; 4628 4629 4630 /* Following are the cases which match a character. These end 4631 with `break'. */ 4632 4633 #ifdef MBS_SUPPORT 4634 case exactn: 4635 fastmap[truncate_wchar(p[1])] = 1; 4636 break; 4637 case exactn_bin: 4638 fastmap[p[1]] = 1; 4639 break; 4640 #else 4641 case exactn: 4642 fastmap[p[1]] = 1; 4643 break; 4644 #endif /* MBS_SUPPORT */ 4645 4646 4647 #ifdef MBS_SUPPORT 4648 /* It is hard to distinguish fastmap from (multi byte) characters 4649 which depends on current locale. */ 4650 case charset: 4651 case charset_not: 4652 case wordchar: 4653 case notwordchar: 4654 bufp->can_be_null = 1; 4655 goto done; 4656 #else 4657 case charset: 4658 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--) 4659 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) 4660 fastmap[j] = 1; 4661 break; 4662 4663 4664 case charset_not: 4665 /* Chars beyond end of map must be allowed. */ 4666 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++) 4667 fastmap[j] = 1; 4668 4669 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--) 4670 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))) 4671 fastmap[j] = 1; 4672 break; 4673 4674 4675 case wordchar: 4676 for (j = 0; j < (1 << BYTEWIDTH); j++) 4677 if (SYNTAX (j) == Sword) 4678 fastmap[j] = 1; 4679 break; 4680 4681 4682 case notwordchar: 4683 for (j = 0; j < (1 << BYTEWIDTH); j++) 4684 if (SYNTAX (j) != Sword) 4685 fastmap[j] = 1; 4686 break; 4687 #endif 4688 4689 case anychar: 4690 { 4691 int fastmap_newline = fastmap['\n']; 4692 4693 /* `.' matches anything ... */ 4694 for (j = 0; j < (1 << BYTEWIDTH); j++) 4695 fastmap[j] = 1; 4696 4697 /* ... except perhaps newline. */ 4698 if (!(bufp->syntax & RE_DOT_NEWLINE)) 4699 fastmap['\n'] = fastmap_newline; 4700 4701 /* Return if we have already set `can_be_null'; if we have, 4702 then the fastmap is irrelevant. Something's wrong here. */ 4703 else if (bufp->can_be_null) 4704 goto done; 4705 4706 /* Otherwise, have to check alternative paths. */ 4707 break; 4708 } 4709 4710 #ifdef emacs 4711 case syntaxspec: 4712 k = *p++; 4713 for (j = 0; j < (1 << BYTEWIDTH); j++) 4714 if (SYNTAX (j) == (enum syntaxcode) k) 4715 fastmap[j] = 1; 4716 break; 4717 4718 4719 case notsyntaxspec: 4720 k = *p++; 4721 for (j = 0; j < (1 << BYTEWIDTH); j++) 4722 if (SYNTAX (j) != (enum syntaxcode) k) 4723 fastmap[j] = 1; 4724 break; 4725 4726 4727 /* All cases after this match the empty string. These end with 4728 `continue'. */ 4729 4730 4731 case before_dot: 4732 case at_dot: 4733 case after_dot: 4734 continue; 4735 #endif /* emacs */ 4736 4737 4738 case no_op: 4739 case begline: 4740 case endline: 4741 case begbuf: 4742 case endbuf: 4743 case wordbound: 4744 case notwordbound: 4745 case wordbeg: 4746 case wordend: 4747 case push_dummy_failure: 4748 continue; 4749 4750 4751 case jump_n: 4752 case pop_failure_jump: 4753 case maybe_pop_jump: 4754 case jump: 4755 case jump_past_alt: 4756 case dummy_failure_jump: 4757 EXTRACT_NUMBER_AND_INCR (j, p); 4758 p += j; 4759 if (j > 0) 4760 continue; 4761 4762 /* Jump backward implies we just went through the body of a 4763 loop and matched nothing. Opcode jumped to should be 4764 `on_failure_jump' or `succeed_n'. Just treat it like an 4765 ordinary jump. For a * loop, it has pushed its failure 4766 point already; if so, discard that as redundant. */ 4767 if ((re_opcode_t) *p != on_failure_jump 4768 && (re_opcode_t) *p != succeed_n) 4769 continue; 4770 4771 p++; 4772 EXTRACT_NUMBER_AND_INCR (j, p); 4773 p += j; 4774 4775 /* If what's on the stack is where we are now, pop it. */ 4776 if (!FAIL_STACK_EMPTY () 4777 && fail_stack.stack[fail_stack.avail - 1].pointer == p) 4778 fail_stack.avail--; 4779 4780 continue; 4781 4782 4783 case on_failure_jump: 4784 case on_failure_keep_string_jump: 4785 handle_on_failure_jump: 4786 EXTRACT_NUMBER_AND_INCR (j, p); 4787 4788 /* For some patterns, e.g., `(a?)?', `p+j' here points to the 4789 end of the pattern. We don't want to push such a point, 4790 since when we restore it above, entering the switch will 4791 increment `p' past the end of the pattern. We don't need 4792 to push such a point since we obviously won't find any more 4793 fastmap entries beyond `pend'. Such a pattern can match 4794 the null string, though. */ 4795 if (p + j < pend) 4796 { 4797 if (!PUSH_PATTERN_OP (p + j, fail_stack)) 4798 { 4799 RESET_FAIL_STACK (); 4800 return -2; 4801 } 4802 } 4803 else 4804 bufp->can_be_null = 1; 4805 4806 if (succeed_n_p) 4807 { 4808 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */ 4809 succeed_n_p = false; 4810 } 4811 4812 continue; 4813 4814 4815 case succeed_n: 4816 /* Get to the number of times to succeed. */ 4817 p += OFFSET_ADDRESS_SIZE; 4818 4819 /* Increment p past the n for when k != 0. */ 4820 EXTRACT_NUMBER_AND_INCR (k, p); 4821 if (k == 0) 4822 { 4823 p -= 2 * OFFSET_ADDRESS_SIZE; 4824 succeed_n_p = true; /* Spaghetti code alert. */ 4825 goto handle_on_failure_jump; 4826 } 4827 continue; 4828 4829 4830 case set_number_at: 4831 p += 2 * OFFSET_ADDRESS_SIZE; 4832 continue; 4833 4834 4835 case start_memory: 4836 case stop_memory: 4837 p += 2; 4838 continue; 4839 4840 4841 default: 4842 abort (); /* We have listed all the cases. */ 4843 } /* switch *p++ */ 4844 4845 /* Getting here means we have found the possible starting 4846 characters for one path of the pattern -- and that the empty 4847 string does not match. We need not follow this path further. 4848 Instead, look at the next alternative (remembered on the 4849 stack), or quit if no more. The test at the top of the loop 4850 does these things. */ 4851 path_can_be_null = false; 4852 p = pend; 4853 } /* while p */ 4854 4855 /* Set `can_be_null' for the last path (also the first path, if the 4856 pattern is empty). */ 4857 bufp->can_be_null |= path_can_be_null; 4858 4859 done: 4860 RESET_FAIL_STACK (); 4861 return 0; 4862 } /* re_compile_fastmap */ 4863 #ifdef _LIBC 4864 weak_alias (__re_compile_fastmap, re_compile_fastmap) 4865 #endif 4866 4867 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and 4868 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use 4869 this memory for recording register information. STARTS and ENDS 4870 must be allocated using the malloc library routine, and must each 4871 be at least NUM_REGS * sizeof (regoff_t) bytes long. 4872 4873 If NUM_REGS == 0, then subsequent matches should allocate their own 4874 register data. 4875 4876 Unless this function is called, the first search or match using 4877 PATTERN_BUFFER will allocate its own register data, without 4878 freeing the old data. */ 4879 4880 void 4881 re_set_registers (bufp, regs, num_regs, starts, ends) 4882 struct re_pattern_buffer *bufp; 4883 struct re_registers *regs; 4884 unsigned num_regs; 4885 regoff_t *starts, *ends; 4886 { 4887 if (num_regs) 4888 { 4889 bufp->regs_allocated = REGS_REALLOCATE; 4890 regs->num_regs = num_regs; 4891 regs->start = starts; 4892 regs->end = ends; 4893 } 4894 else 4895 { 4896 bufp->regs_allocated = REGS_UNALLOCATED; 4897 regs->num_regs = 0; 4898 regs->start = regs->end = (regoff_t *) 0; 4899 } 4900 } 4901 #ifdef _LIBC 4902 weak_alias (__re_set_registers, re_set_registers) 4903 #endif 4904 4905 /* Searching routines. */ 4906 4907 /* Like re_search_2, below, but only one string is specified, and 4908 doesn't let you say where to stop matching. */ 4909 4910 int 4911 re_search (bufp, string, size, startpos, range, regs) 4912 struct re_pattern_buffer *bufp; 4913 const char *string; 4914 int size, startpos, range; 4915 struct re_registers *regs; 4916 { 4917 return re_search_2 (bufp, NULL, 0, string, size, startpos, range, 4918 regs, size); 4919 } 4920 #ifdef _LIBC 4921 weak_alias (__re_search, re_search) 4922 #endif 4923 4924 4925 /* Using the compiled pattern in BUFP->buffer, first tries to match the 4926 virtual concatenation of STRING1 and STRING2, starting first at index 4927 STARTPOS, then at STARTPOS + 1, and so on. 4928 4929 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively. 4930 4931 RANGE is how far to scan while trying to match. RANGE = 0 means try 4932 only at STARTPOS; in general, the last start tried is STARTPOS + 4933 RANGE. 4934 4935 In REGS, return the indices of the virtual concatenation of STRING1 4936 and STRING2 that matched the entire BUFP->buffer and its contained 4937 subexpressions. 4938 4939 Do not consider matching one past the index STOP in the virtual 4940 concatenation of STRING1 and STRING2. 4941 4942 We return either the position in the strings at which the match was 4943 found, -1 if no match, or -2 if error (such as failure 4944 stack overflow). */ 4945 4946 int 4947 re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop) 4948 struct re_pattern_buffer *bufp; 4949 const char *string1, *string2; 4950 int size1, size2; 4951 int startpos; 4952 int range; 4953 struct re_registers *regs; 4954 int stop; 4955 { 4956 int val; 4957 register char *fastmap = bufp->fastmap; 4958 register RE_TRANSLATE_TYPE translate = bufp->translate; 4959 int total_size = size1 + size2; 4960 int endpos = startpos + range; 4961 4962 /* Check for out-of-range STARTPOS. */ 4963 if (startpos < 0 || startpos > total_size) 4964 return -1; 4965 4966 /* Fix up RANGE if it might eventually take us outside 4967 the virtual concatenation of STRING1 and STRING2. 4968 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */ 4969 if (endpos < 0) 4970 range = 0 - startpos; 4971 else if (endpos > total_size) 4972 range = total_size - startpos; 4973 4974 /* If the search isn't to be a backwards one, don't waste time in a 4975 search for a pattern that must be anchored. */ 4976 if (bufp->used > 0 && range > 0 4977 && ((re_opcode_t) bufp->buffer[0] == begbuf 4978 /* `begline' is like `begbuf' if it cannot match at newlines. */ 4979 || ((re_opcode_t) bufp->buffer[0] == begline 4980 && !bufp->newline_anchor))) 4981 { 4982 if (startpos > 0) 4983 return -1; 4984 else 4985 range = 1; 4986 } 4987 4988 #ifdef emacs 4989 /* In a forward search for something that starts with \=. 4990 don't keep searching past point. */ 4991 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0) 4992 { 4993 range = PT - startpos; 4994 if (range <= 0) 4995 return -1; 4996 } 4997 #endif /* emacs */ 4998 4999 /* Update the fastmap now if not correct already. */ 5000 if (fastmap && !bufp->fastmap_accurate) 5001 if (re_compile_fastmap (bufp) == -2) 5002 return -2; 5003 5004 /* Loop through the string, looking for a place to start matching. */ 5005 for (;;) 5006 { 5007 /* If a fastmap is supplied, skip quickly over characters that 5008 cannot be the start of a match. If the pattern can match the 5009 null string, however, we don't need to skip characters; we want 5010 the first null string. */ 5011 if (fastmap && startpos < total_size && !bufp->can_be_null) 5012 { 5013 if (range > 0) /* Searching forwards. */ 5014 { 5015 register const char *d; 5016 register int lim = 0; 5017 int irange = range; 5018 5019 if (startpos < size1 && startpos + range >= size1) 5020 lim = range - (size1 - startpos); 5021 5022 d = (startpos >= size1 ? string2 - size1 : string1) + startpos; 5023 5024 /* Written out as an if-else to avoid testing `translate' 5025 inside the loop. */ 5026 if (translate) 5027 while (range > lim 5028 && !fastmap[(unsigned char) 5029 translate[(unsigned char) *d++]]) 5030 range--; 5031 else 5032 while (range > lim && !fastmap[(unsigned char) *d++]) 5033 range--; 5034 5035 startpos += irange - range; 5036 } 5037 else /* Searching backwards. */ 5038 { 5039 register CHAR_TYPE c = (size1 == 0 || startpos >= size1 5040 ? string2[startpos - size1] 5041 : string1[startpos]); 5042 5043 if (!fastmap[(unsigned char) TRANSLATE (c)]) 5044 goto advance; 5045 } 5046 } 5047 5048 /* If can't match the null string, and that's all we have left, fail. */ 5049 if (range >= 0 && startpos == total_size && fastmap 5050 && !bufp->can_be_null) 5051 return -1; 5052 5053 val = re_match_2_internal (bufp, string1, size1, string2, size2, 5054 startpos, regs, stop); 5055 #ifndef REGEX_MALLOC 5056 # ifdef C_ALLOCA 5057 alloca (0); 5058 # endif 5059 #endif 5060 5061 if (val >= 0) 5062 return startpos; 5063 5064 if (val == -2) 5065 return -2; 5066 5067 advance: 5068 if (!range) 5069 break; 5070 else if (range > 0) 5071 { 5072 range--; 5073 startpos++; 5074 } 5075 else 5076 { 5077 range++; 5078 startpos--; 5079 } 5080 } 5081 return -1; 5082 } /* re_search_2 */ 5083 #ifdef _LIBC 5084 weak_alias (__re_search_2, re_search_2) 5085 #endif 5086 5087 #ifdef MBS_SUPPORT 5088 /* This converts PTR, a pointer into one of the search wchar_t strings 5089 `string1' and `string2' into an multibyte string offset from the 5090 beginning of that string. We use mbs_offset to optimize. 5091 See convert_mbs_to_wcs. */ 5092 # define POINTER_TO_OFFSET(ptr) \ 5093 (FIRST_STRING_P (ptr) \ 5094 ? ((regoff_t)(mbs_offset1 != NULL? mbs_offset1[(ptr)-string1] : 0)) \ 5095 : ((regoff_t)((mbs_offset2 != NULL? mbs_offset2[(ptr)-string2] : 0) \ 5096 + csize1))) 5097 #else 5098 /* This converts PTR, a pointer into one of the search strings `string1' 5099 and `string2' into an offset from the beginning of that string. */ 5100 # define POINTER_TO_OFFSET(ptr) \ 5101 (FIRST_STRING_P (ptr) \ 5102 ? ((regoff_t) ((ptr) - string1)) \ 5103 : ((regoff_t) ((ptr) - string2 + size1))) 5104 #endif /* MBS_SUPPORT */ 5105 5106 /* Macros for dealing with the split strings in re_match_2. */ 5107 5108 #define MATCHING_IN_FIRST_STRING (dend == end_match_1) 5109 5110 /* Call before fetching a character with *d. This switches over to 5111 string2 if necessary. */ 5112 #define PREFETCH() \ 5113 while (d == dend) \ 5114 { \ 5115 /* End of string2 => fail. */ \ 5116 if (dend == end_match_2) \ 5117 goto fail; \ 5118 /* End of string1 => advance to string2. */ \ 5119 d = string2; \ 5120 dend = end_match_2; \ 5121 } 5122 5123 5124 /* Test if at very beginning or at very end of the virtual concatenation 5125 of `string1' and `string2'. If only one string, it's `string2'. */ 5126 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2) 5127 #define AT_STRINGS_END(d) ((d) == end2) 5128 5129 5130 /* Test if D points to a character which is word-constituent. We have 5131 two special cases to check for: if past the end of string1, look at 5132 the first character in string2; and if before the beginning of 5133 string2, look at the last character in string1. */ 5134 #ifdef MBS_SUPPORT 5135 /* Use internationalized API instead of SYNTAX. */ 5136 # define WORDCHAR_P(d) \ 5137 (iswalnum ((wint_t)((d) == end1 ? *string2 \ 5138 : (d) == string2 - 1 ? *(end1 - 1) : *(d))) != 0) 5139 #else 5140 # define WORDCHAR_P(d) \ 5141 (SYNTAX ((d) == end1 ? *string2 \ 5142 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \ 5143 == Sword) 5144 #endif /* MBS_SUPPORT */ 5145 5146 /* Disabled due to a compiler bug -- see comment at case wordbound */ 5147 #if 0 5148 /* Test if the character before D and the one at D differ with respect 5149 to being word-constituent. */ 5150 #define AT_WORD_BOUNDARY(d) \ 5151 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \ 5152 || WORDCHAR_P (d - 1) != WORDCHAR_P (d)) 5153 #endif 5154 5155 /* Free everything we malloc. */ 5156 #ifdef MATCH_MAY_ALLOCATE 5157 # define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL 5158 # ifdef MBS_SUPPORT 5159 # define FREE_VARIABLES() \ 5160 do { \ 5161 REGEX_FREE_STACK (fail_stack.stack); \ 5162 FREE_VAR (regstart); \ 5163 FREE_VAR (regend); \ 5164 FREE_VAR (old_regstart); \ 5165 FREE_VAR (old_regend); \ 5166 FREE_VAR (best_regstart); \ 5167 FREE_VAR (best_regend); \ 5168 FREE_VAR (reg_info); \ 5169 FREE_VAR (reg_dummy); \ 5170 FREE_VAR (reg_info_dummy); \ 5171 FREE_VAR (string1); \ 5172 FREE_VAR (string2); \ 5173 FREE_VAR (mbs_offset1); \ 5174 FREE_VAR (mbs_offset2); \ 5175 } while (0) 5176 # else /* not MBS_SUPPORT */ 5177 # define FREE_VARIABLES() \ 5178 do { \ 5179 REGEX_FREE_STACK (fail_stack.stack); \ 5180 FREE_VAR (regstart); \ 5181 FREE_VAR (regend); \ 5182 FREE_VAR (old_regstart); \ 5183 FREE_VAR (old_regend); \ 5184 FREE_VAR (best_regstart); \ 5185 FREE_VAR (best_regend); \ 5186 FREE_VAR (reg_info); \ 5187 FREE_VAR (reg_dummy); \ 5188 FREE_VAR (reg_info_dummy); \ 5189 } while (0) 5190 # endif /* MBS_SUPPORT */ 5191 #else 5192 # define FREE_VAR(var) if (var) free (var); var = NULL 5193 # ifdef MBS_SUPPORT 5194 # define FREE_VARIABLES() \ 5195 do { \ 5196 FREE_VAR (string1); \ 5197 FREE_VAR (string2); \ 5198 FREE_VAR (mbs_offset1); \ 5199 FREE_VAR (mbs_offset2); \ 5200 } while (0) 5201 # else 5202 # define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */ 5203 # endif /* MBS_SUPPORT */ 5204 #endif /* not MATCH_MAY_ALLOCATE */ 5205 5206 /* These values must meet several constraints. They must not be valid 5207 register values; since we have a limit of 255 registers (because 5208 we use only one byte in the pattern for the register number), we can 5209 use numbers larger than 255. They must differ by 1, because of 5210 NUM_FAILURE_ITEMS above. And the value for the lowest register must 5211 be larger than the value for the highest register, so we do not try 5212 to actually save any registers when none are active. */ 5213 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH) 5214 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1) 5215 5216 /* Matching routines. */ 5217 5218 #ifndef emacs /* Emacs never uses this. */ 5219 /* re_match is like re_match_2 except it takes only a single string. */ 5220 5221 int 5222 re_match (bufp, string, size, pos, regs) 5223 struct re_pattern_buffer *bufp; 5224 const char *string; 5225 int size, pos; 5226 struct re_registers *regs; 5227 { 5228 int result = re_match_2_internal (bufp, NULL, 0, string, size, 5229 pos, regs, size); 5230 # ifndef REGEX_MALLOC 5231 # ifdef C_ALLOCA 5232 alloca (0); 5233 # endif 5234 # endif 5235 return result; 5236 } 5237 # ifdef _LIBC 5238 weak_alias (__re_match, re_match) 5239 # endif 5240 #endif /* not emacs */ 5241 5242 static boolean group_match_null_string_p _RE_ARGS ((US_CHAR_TYPE **p, 5243 US_CHAR_TYPE *end, 5244 register_info_type *reg_info)); 5245 static boolean alt_match_null_string_p _RE_ARGS ((US_CHAR_TYPE *p, 5246 US_CHAR_TYPE *end, 5247 register_info_type *reg_info)); 5248 static boolean common_op_match_null_string_p _RE_ARGS ((US_CHAR_TYPE **p, 5249 US_CHAR_TYPE *end, 5250 register_info_type *reg_info)); 5251 static int bcmp_translate _RE_ARGS ((const CHAR_TYPE *s1, const CHAR_TYPE *s2, 5252 int len, char *translate)); 5253 5254 /* re_match_2 matches the compiled pattern in BUFP against the 5255 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1 5256 and SIZE2, respectively). We start matching at POS, and stop 5257 matching at STOP. 5258 5259 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we 5260 store offsets for the substring each group matched in REGS. See the 5261 documentation for exactly how many groups we fill. 5262 5263 We return -1 if no match, -2 if an internal error (such as the 5264 failure stack overflowing). Otherwise, we return the length of the 5265 matched substring. */ 5266 5267 int 5268 re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop) 5269 struct re_pattern_buffer *bufp; 5270 const char *string1, *string2; 5271 int size1, size2; 5272 int pos; 5273 struct re_registers *regs; 5274 int stop; 5275 { 5276 int result = re_match_2_internal (bufp, string1, size1, string2, size2, 5277 pos, regs, stop); 5278 #ifndef REGEX_MALLOC 5279 # ifdef C_ALLOCA 5280 alloca (0); 5281 # endif 5282 #endif 5283 return result; 5284 } 5285 #ifdef _LIBC 5286 weak_alias (__re_match_2, re_match_2) 5287 #endif 5288 5289 #ifdef MBS_SUPPORT 5290 5291 static int count_mbs_length PARAMS ((int *, int)); 5292 5293 /* This check the substring (from 0, to length) of the multibyte string, 5294 to which offset_buffer correspond. And count how many wchar_t_characters 5295 the substring occupy. We use offset_buffer to optimization. 5296 See convert_mbs_to_wcs. */ 5297 5298 static int 5299 count_mbs_length(offset_buffer, length) 5300 int *offset_buffer; 5301 int length; 5302 { 5303 int wcs_size; 5304 5305 /* Check whether the size is valid. */ 5306 if (length < 0) 5307 return -1; 5308 5309 if (offset_buffer == NULL) 5310 return 0; 5311 5312 for (wcs_size = 0 ; offset_buffer[wcs_size] != -1 ; wcs_size++) 5313 { 5314 if (offset_buffer[wcs_size] == length) 5315 return wcs_size; 5316 if (offset_buffer[wcs_size] > length) 5317 /* It is a fragment of a wide character. */ 5318 return -1; 5319 } 5320 5321 /* We reached at the sentinel. */ 5322 return -1; 5323 } 5324 #endif /* MBS_SUPPORT */ 5325 5326 /* This is a separate function so that we can force an alloca cleanup 5327 afterwards. */ 5328 static int 5329 #ifdef MBS_SUPPORT 5330 re_match_2_internal (bufp, cstring1, csize1, cstring2, csize2, pos, regs, stop) 5331 struct re_pattern_buffer *bufp; 5332 const char *cstring1, *cstring2; 5333 int csize1, csize2; 5334 #else 5335 re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop) 5336 struct re_pattern_buffer *bufp; 5337 const char *string1, *string2; 5338 int size1, size2; 5339 #endif 5340 int pos; 5341 struct re_registers *regs; 5342 int stop; 5343 { 5344 /* General temporaries. */ 5345 int mcnt; 5346 US_CHAR_TYPE *p1; 5347 #ifdef MBS_SUPPORT 5348 /* We need wchar_t* buffers correspond to string1, string2. */ 5349 CHAR_TYPE *string1 = NULL, *string2 = NULL; 5350 /* We need the size of wchar_t buffers correspond to csize1, csize2. */ 5351 int size1 = 0, size2 = 0; 5352 /* offset buffer for optimizatoin. See convert_mbs_to_wc. */ 5353 int *mbs_offset1 = NULL, *mbs_offset2 = NULL; 5354 /* They hold whether each wchar_t is binary data or not. */ 5355 char *is_binary = NULL; 5356 #endif /* MBS_SUPPORT */ 5357 5358 /* Just past the end of the corresponding string. */ 5359 const CHAR_TYPE *end1, *end2; 5360 5361 /* Pointers into string1 and string2, just past the last characters in 5362 each to consider matching. */ 5363 const CHAR_TYPE *end_match_1, *end_match_2; 5364 5365 /* Where we are in the data, and the end of the current string. */ 5366 const CHAR_TYPE *d, *dend; 5367 5368 /* Where we are in the pattern, and the end of the pattern. */ 5369 #ifdef MBS_SUPPORT 5370 US_CHAR_TYPE *pattern, *p; 5371 register US_CHAR_TYPE *pend; 5372 #else 5373 US_CHAR_TYPE *p = bufp->buffer; 5374 register US_CHAR_TYPE *pend = p + bufp->used; 5375 #endif /* MBS_SUPPORT */ 5376 5377 /* Mark the opcode just after a start_memory, so we can test for an 5378 empty subpattern when we get to the stop_memory. */ 5379 US_CHAR_TYPE *just_past_start_mem = 0; 5380 5381 /* We use this to map every character in the string. */ 5382 RE_TRANSLATE_TYPE translate = bufp->translate; 5383 5384 /* Failure point stack. Each place that can handle a failure further 5385 down the line pushes a failure point on this stack. It consists of 5386 restart, regend, and reg_info for all registers corresponding to 5387 the subexpressions we're currently inside, plus the number of such 5388 registers, and, finally, two char *'s. The first char * is where 5389 to resume scanning the pattern; the second one is where to resume 5390 scanning the strings. If the latter is zero, the failure point is 5391 a ``dummy''; if a failure happens and the failure point is a dummy, 5392 it gets discarded and the next next one is tried. */ 5393 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */ 5394 fail_stack_type fail_stack; 5395 #endif 5396 #ifdef DEBUG 5397 static unsigned failure_id; 5398 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0; 5399 #endif 5400 5401 #ifdef REL_ALLOC 5402 /* This holds the pointer to the failure stack, when 5403 it is allocated relocatably. */ 5404 fail_stack_elt_t *failure_stack_ptr; 5405 #endif 5406 5407 /* We fill all the registers internally, independent of what we 5408 return, for use in backreferences. The number here includes 5409 an element for register zero. */ 5410 size_t num_regs = bufp->re_nsub + 1; 5411 5412 /* The currently active registers. */ 5413 active_reg_t lowest_active_reg = NO_LOWEST_ACTIVE_REG; 5414 active_reg_t highest_active_reg = NO_HIGHEST_ACTIVE_REG; 5415 5416 /* Information on the contents of registers. These are pointers into 5417 the input strings; they record just what was matched (on this 5418 attempt) by a subexpression part of the pattern, that is, the 5419 regnum-th regstart pointer points to where in the pattern we began 5420 matching and the regnum-th regend points to right after where we 5421 stopped matching the regnum-th subexpression. (The zeroth register 5422 keeps track of what the whole pattern matches.) */ 5423 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */ 5424 const CHAR_TYPE **regstart, **regend; 5425 #endif 5426 5427 /* If a group that's operated upon by a repetition operator fails to 5428 match anything, then the register for its start will need to be 5429 restored because it will have been set to wherever in the string we 5430 are when we last see its open-group operator. Similarly for a 5431 register's end. */ 5432 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */ 5433 const CHAR_TYPE **old_regstart, **old_regend; 5434 #endif 5435 5436 /* The is_active field of reg_info helps us keep track of which (possibly 5437 nested) subexpressions we are currently in. The matched_something 5438 field of reg_info[reg_num] helps us tell whether or not we have 5439 matched any of the pattern so far this time through the reg_num-th 5440 subexpression. These two fields get reset each time through any 5441 loop their register is in. */ 5442 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */ 5443 register_info_type *reg_info; 5444 #endif 5445 5446 /* The following record the register info as found in the above 5447 variables when we find a match better than any we've seen before. 5448 This happens as we backtrack through the failure points, which in 5449 turn happens only if we have not yet matched the entire string. */ 5450 unsigned best_regs_set = false; 5451 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */ 5452 const CHAR_TYPE **best_regstart, **best_regend; 5453 #endif 5454 5455 /* Logically, this is `best_regend[0]'. But we don't want to have to 5456 allocate space for that if we're not allocating space for anything 5457 else (see below). Also, we never need info about register 0 for 5458 any of the other register vectors, and it seems rather a kludge to 5459 treat `best_regend' differently than the rest. So we keep track of 5460 the end of the best match so far in a separate variable. We 5461 initialize this to NULL so that when we backtrack the first time 5462 and need to test it, it's not garbage. */ 5463 const CHAR_TYPE *match_end = NULL; 5464 5465 /* This helps SET_REGS_MATCHED avoid doing redundant work. */ 5466 int set_regs_matched_done = 0; 5467 5468 /* Used when we pop values we don't care about. */ 5469 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */ 5470 const CHAR_TYPE **reg_dummy; 5471 register_info_type *reg_info_dummy; 5472 #endif 5473 5474 #ifdef DEBUG 5475 /* Counts the total number of registers pushed. */ 5476 unsigned num_regs_pushed = 0; 5477 #endif 5478 5479 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n"); 5480 5481 INIT_FAIL_STACK (); 5482 5483 #ifdef MATCH_MAY_ALLOCATE 5484 /* Do not bother to initialize all the register variables if there are 5485 no groups in the pattern, as it takes a fair amount of time. If 5486 there are groups, we include space for register 0 (the whole 5487 pattern), even though we never use it, since it simplifies the 5488 array indexing. We should fix this. */ 5489 if (bufp->re_nsub) 5490 { 5491 regstart = REGEX_TALLOC (num_regs, const CHAR_TYPE *); 5492 regend = REGEX_TALLOC (num_regs, const CHAR_TYPE *); 5493 old_regstart = REGEX_TALLOC (num_regs, const CHAR_TYPE *); 5494 old_regend = REGEX_TALLOC (num_regs, const CHAR_TYPE *); 5495 best_regstart = REGEX_TALLOC (num_regs, const CHAR_TYPE *); 5496 best_regend = REGEX_TALLOC (num_regs, const CHAR_TYPE *); 5497 reg_info = REGEX_TALLOC (num_regs, register_info_type); 5498 reg_dummy = REGEX_TALLOC (num_regs, const CHAR_TYPE *); 5499 reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type); 5500 5501 if (!(regstart && regend && old_regstart && old_regend && reg_info 5502 && best_regstart && best_regend && reg_dummy && reg_info_dummy)) 5503 { 5504 FREE_VARIABLES (); 5505 return -2; 5506 } 5507 } 5508 else 5509 { 5510 /* We must initialize all our variables to NULL, so that 5511 `FREE_VARIABLES' doesn't try to free them. */ 5512 regstart = regend = old_regstart = old_regend = best_regstart 5513 = best_regend = reg_dummy = NULL; 5514 reg_info = reg_info_dummy = (register_info_type *) NULL; 5515 } 5516 #endif /* MATCH_MAY_ALLOCATE */ 5517 5518 /* The starting position is bogus. */ 5519 #ifdef MBS_SUPPORT 5520 if (pos < 0 || pos > csize1 + csize2) 5521 #else 5522 if (pos < 0 || pos > size1 + size2) 5523 #endif 5524 { 5525 FREE_VARIABLES (); 5526 return -1; 5527 } 5528 5529 #ifdef MBS_SUPPORT 5530 /* Allocate wchar_t array for string1 and string2 and 5531 fill them with converted string. */ 5532 if (csize1 != 0) 5533 { 5534 string1 = REGEX_TALLOC (csize1 + 1, CHAR_TYPE); 5535 mbs_offset1 = REGEX_TALLOC (csize1 + 1, int); 5536 is_binary = REGEX_TALLOC (csize1 + 1, char); 5537 if (!string1 || !mbs_offset1 || !is_binary) 5538 { 5539 FREE_VAR (string1); 5540 FREE_VAR (mbs_offset1); 5541 FREE_VAR (is_binary); 5542 return -2; 5543 } 5544 size1 = convert_mbs_to_wcs(string1, cstring1, csize1, 5545 mbs_offset1, is_binary); 5546 string1[size1] = L'\0'; /* for a sentinel */ 5547 FREE_VAR (is_binary); 5548 } 5549 if (csize2 != 0) 5550 { 5551 string2 = REGEX_TALLOC (csize2 + 1, CHAR_TYPE); 5552 mbs_offset2 = REGEX_TALLOC (csize2 + 1, int); 5553 is_binary = REGEX_TALLOC (csize2 + 1, char); 5554 if (!string2 || !mbs_offset2 || !is_binary) 5555 { 5556 FREE_VAR (string1); 5557 FREE_VAR (mbs_offset1); 5558 FREE_VAR (string2); 5559 FREE_VAR (mbs_offset2); 5560 FREE_VAR (is_binary); 5561 return -2; 5562 } 5563 size2 = convert_mbs_to_wcs(string2, cstring2, csize2, 5564 mbs_offset2, is_binary); 5565 string2[size2] = L'\0'; /* for a sentinel */ 5566 FREE_VAR (is_binary); 5567 } 5568 5569 /* We need to cast pattern to (wchar_t*), because we casted this compiled 5570 pattern to (char*) in regex_compile. */ 5571 p = pattern = (CHAR_TYPE*)bufp->buffer; 5572 pend = (CHAR_TYPE*)(bufp->buffer + bufp->used); 5573 5574 #endif /* MBS_SUPPORT */ 5575 5576 /* Initialize subexpression text positions to -1 to mark ones that no 5577 start_memory/stop_memory has been seen for. Also initialize the 5578 register information struct. */ 5579 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++) 5580 { 5581 regstart[mcnt] = regend[mcnt] 5582 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE; 5583 5584 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE; 5585 IS_ACTIVE (reg_info[mcnt]) = 0; 5586 MATCHED_SOMETHING (reg_info[mcnt]) = 0; 5587 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0; 5588 } 5589 5590 /* We move `string1' into `string2' if the latter's empty -- but not if 5591 `string1' is null. */ 5592 if (size2 == 0 && string1 != NULL) 5593 { 5594 string2 = string1; 5595 size2 = size1; 5596 string1 = 0; 5597 size1 = 0; 5598 } 5599 end1 = string1 + size1; 5600 end2 = string2 + size2; 5601 5602 /* Compute where to stop matching, within the two strings. */ 5603 #ifdef MBS_SUPPORT 5604 if (stop <= csize1) 5605 { 5606 mcnt = count_mbs_length(mbs_offset1, stop); 5607 end_match_1 = string1 + mcnt; 5608 end_match_2 = string2; 5609 } 5610 else 5611 { 5612 end_match_1 = end1; 5613 mcnt = count_mbs_length(mbs_offset2, stop-csize1); 5614 end_match_2 = string2 + mcnt; 5615 } 5616 if (mcnt < 0) 5617 { /* count_mbs_length return error. */ 5618 FREE_VARIABLES (); 5619 return -1; 5620 } 5621 #else 5622 if (stop <= size1) 5623 { 5624 end_match_1 = string1 + stop; 5625 end_match_2 = string2; 5626 } 5627 else 5628 { 5629 end_match_1 = end1; 5630 end_match_2 = string2 + stop - size1; 5631 } 5632 #endif /* MBS_SUPPORT */ 5633 5634 /* `p' scans through the pattern as `d' scans through the data. 5635 `dend' is the end of the input string that `d' points within. `d' 5636 is advanced into the following input string whenever necessary, but 5637 this happens before fetching; therefore, at the beginning of the 5638 loop, `d' can be pointing at the end of a string, but it cannot 5639 equal `string2'. */ 5640 #ifdef MBS_SUPPORT 5641 if (size1 > 0 && pos <= csize1) 5642 { 5643 mcnt = count_mbs_length(mbs_offset1, pos); 5644 d = string1 + mcnt; 5645 dend = end_match_1; 5646 } 5647 else 5648 { 5649 mcnt = count_mbs_length(mbs_offset2, pos-csize1); 5650 d = string2 + mcnt; 5651 dend = end_match_2; 5652 } 5653 5654 if (mcnt < 0) 5655 { /* count_mbs_length return error. */ 5656 FREE_VARIABLES (); 5657 return -1; 5658 } 5659 #else 5660 if (size1 > 0 && pos <= size1) 5661 { 5662 d = string1 + pos; 5663 dend = end_match_1; 5664 } 5665 else 5666 { 5667 d = string2 + pos - size1; 5668 dend = end_match_2; 5669 } 5670 #endif /* MBS_SUPPORT */ 5671 5672 DEBUG_PRINT1 ("The compiled pattern is:\n"); 5673 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend); 5674 DEBUG_PRINT1 ("The string to match is: `"); 5675 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2); 5676 DEBUG_PRINT1 ("'\n"); 5677 5678 /* This loops over pattern commands. It exits by returning from the 5679 function if the match is complete, or it drops through if the match 5680 fails at this starting point in the input data. */ 5681 for (;;) 5682 { 5683 #ifdef _LIBC 5684 DEBUG_PRINT2 ("\n%p: ", p); 5685 #else 5686 DEBUG_PRINT2 ("\n0x%x: ", p); 5687 #endif 5688 5689 if (p == pend) 5690 { /* End of pattern means we might have succeeded. */ 5691 DEBUG_PRINT1 ("end of pattern ... "); 5692 5693 /* If we haven't matched the entire string, and we want the 5694 longest match, try backtracking. */ 5695 if (d != end_match_2) 5696 { 5697 /* 1 if this match ends in the same string (string1 or string2) 5698 as the best previous match. */ 5699 boolean same_str_p = (FIRST_STRING_P (match_end) 5700 == MATCHING_IN_FIRST_STRING); 5701 /* 1 if this match is the best seen so far. */ 5702 boolean best_match_p; 5703 5704 /* AIX compiler got confused when this was combined 5705 with the previous declaration. */ 5706 if (same_str_p) 5707 best_match_p = d > match_end; 5708 else 5709 best_match_p = !MATCHING_IN_FIRST_STRING; 5710 5711 DEBUG_PRINT1 ("backtracking.\n"); 5712 5713 if (!FAIL_STACK_EMPTY ()) 5714 { /* More failure points to try. */ 5715 5716 /* If exceeds best match so far, save it. */ 5717 if (!best_regs_set || best_match_p) 5718 { 5719 best_regs_set = true; 5720 match_end = d; 5721 5722 DEBUG_PRINT1 ("\nSAVING match as best so far.\n"); 5723 5724 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++) 5725 { 5726 best_regstart[mcnt] = regstart[mcnt]; 5727 best_regend[mcnt] = regend[mcnt]; 5728 } 5729 } 5730 goto fail; 5731 } 5732 5733 /* If no failure points, don't restore garbage. And if 5734 last match is real best match, don't restore second 5735 best one. */ 5736 else if (best_regs_set && !best_match_p) 5737 { 5738 restore_best_regs: 5739 /* Restore best match. It may happen that `dend == 5740 end_match_1' while the restored d is in string2. 5741 For example, the pattern `x.*y.*z' against the 5742 strings `x-' and `y-z-', if the two strings are 5743 not consecutive in memory. */ 5744 DEBUG_PRINT1 ("Restoring best registers.\n"); 5745 5746 d = match_end; 5747 dend = ((d >= string1 && d <= end1) 5748 ? end_match_1 : end_match_2); 5749 5750 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++) 5751 { 5752 regstart[mcnt] = best_regstart[mcnt]; 5753 regend[mcnt] = best_regend[mcnt]; 5754 } 5755 } 5756 } /* d != end_match_2 */ 5757 5758 succeed_label: 5759 DEBUG_PRINT1 ("Accepting match.\n"); 5760 /* If caller wants register contents data back, do it. */ 5761 if (regs && !bufp->no_sub) 5762 { 5763 /* Have the register data arrays been allocated? */ 5764 if (bufp->regs_allocated == REGS_UNALLOCATED) 5765 { /* No. So allocate them with malloc. We need one 5766 extra element beyond `num_regs' for the `-1' marker 5767 GNU code uses. */ 5768 regs->num_regs = MAX (RE_NREGS, num_regs + 1); 5769 regs->start = TALLOC (regs->num_regs, regoff_t); 5770 regs->end = TALLOC (regs->num_regs, regoff_t); 5771 if (regs->start == NULL || regs->end == NULL) 5772 { 5773 FREE_VARIABLES (); 5774 return -2; 5775 } 5776 bufp->regs_allocated = REGS_REALLOCATE; 5777 } 5778 else if (bufp->regs_allocated == REGS_REALLOCATE) 5779 { /* Yes. If we need more elements than were already 5780 allocated, reallocate them. If we need fewer, just 5781 leave it alone. */ 5782 if (regs->num_regs < num_regs + 1) 5783 { 5784 regs->num_regs = num_regs + 1; 5785 RETALLOC (regs->start, regs->num_regs, regoff_t); 5786 RETALLOC (regs->end, regs->num_regs, regoff_t); 5787 if (regs->start == NULL || regs->end == NULL) 5788 { 5789 FREE_VARIABLES (); 5790 return -2; 5791 } 5792 } 5793 } 5794 else 5795 { 5796 /* These braces fend off a "empty body in an else-statement" 5797 warning under GCC when assert expands to nothing. */ 5798 assert (bufp->regs_allocated == REGS_FIXED); 5799 } 5800 5801 /* Convert the pointer data in `regstart' and `regend' to 5802 indices. Register zero has to be set differently, 5803 since we haven't kept track of any info for it. */ 5804 if (regs->num_regs > 0) 5805 { 5806 regs->start[0] = pos; 5807 #ifdef MBS_SUPPORT 5808 if (MATCHING_IN_FIRST_STRING) 5809 regs->end[0] = mbs_offset1 != NULL ? 5810 mbs_offset1[d-string1] : 0; 5811 else 5812 regs->end[0] = csize1 + (mbs_offset2 != NULL ? 5813 mbs_offset2[d-string2] : 0); 5814 #else 5815 regs->end[0] = (MATCHING_IN_FIRST_STRING 5816 ? ((regoff_t) (d - string1)) 5817 : ((regoff_t) (d - string2 + size1))); 5818 #endif /* MBS_SUPPORT */ 5819 } 5820 5821 /* Go through the first `min (num_regs, regs->num_regs)' 5822 registers, since that is all we initialized. */ 5823 for (mcnt = 1; (unsigned) mcnt < MIN (num_regs, regs->num_regs); 5824 mcnt++) 5825 { 5826 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt])) 5827 regs->start[mcnt] = regs->end[mcnt] = -1; 5828 else 5829 { 5830 regs->start[mcnt] 5831 = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]); 5832 regs->end[mcnt] 5833 = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]); 5834 } 5835 } 5836 5837 /* If the regs structure we return has more elements than 5838 were in the pattern, set the extra elements to -1. If 5839 we (re)allocated the registers, this is the case, 5840 because we always allocate enough to have at least one 5841 -1 at the end. */ 5842 for (mcnt = num_regs; (unsigned) mcnt < regs->num_regs; mcnt++) 5843 regs->start[mcnt] = regs->end[mcnt] = -1; 5844 } /* regs && !bufp->no_sub */ 5845 5846 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n", 5847 nfailure_points_pushed, nfailure_points_popped, 5848 nfailure_points_pushed - nfailure_points_popped); 5849 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed); 5850 5851 #ifdef MBS_SUPPORT 5852 if (MATCHING_IN_FIRST_STRING) 5853 mcnt = mbs_offset1 != NULL ? mbs_offset1[d-string1] : 0; 5854 else 5855 mcnt = (mbs_offset2 != NULL ? mbs_offset2[d-string2] : 0) + 5856 csize1; 5857 mcnt -= pos; 5858 #else 5859 mcnt = d - pos - (MATCHING_IN_FIRST_STRING 5860 ? string1 5861 : string2 - size1); 5862 #endif /* MBS_SUPPORT */ 5863 5864 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt); 5865 5866 FREE_VARIABLES (); 5867 return mcnt; 5868 } 5869 5870 /* Otherwise match next pattern command. */ 5871 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++)) 5872 { 5873 /* Ignore these. Used to ignore the n of succeed_n's which 5874 currently have n == 0. */ 5875 case no_op: 5876 DEBUG_PRINT1 ("EXECUTING no_op.\n"); 5877 break; 5878 5879 case succeed: 5880 DEBUG_PRINT1 ("EXECUTING succeed.\n"); 5881 goto succeed_label; 5882 5883 /* Match the next n pattern characters exactly. The following 5884 byte in the pattern defines n, and the n bytes after that 5885 are the characters to match. */ 5886 case exactn: 5887 #ifdef MBS_SUPPORT 5888 case exactn_bin: 5889 #endif 5890 mcnt = *p++; 5891 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt); 5892 5893 /* This is written out as an if-else so we don't waste time 5894 testing `translate' inside the loop. */ 5895 if (translate) 5896 { 5897 do 5898 { 5899 PREFETCH (); 5900 #ifdef MBS_SUPPORT 5901 if (*d <= 0xff) 5902 { 5903 if ((US_CHAR_TYPE) translate[(unsigned char) *d++] 5904 != (US_CHAR_TYPE) *p++) 5905 goto fail; 5906 } 5907 else 5908 { 5909 if (*d++ != (CHAR_TYPE) *p++) 5910 goto fail; 5911 } 5912 #else 5913 if ((US_CHAR_TYPE) translate[(unsigned char) *d++] 5914 != (US_CHAR_TYPE) *p++) 5915 goto fail; 5916 #endif /* MBS_SUPPORT */ 5917 } 5918 while (--mcnt); 5919 } 5920 else 5921 { 5922 do 5923 { 5924 PREFETCH (); 5925 if (*d++ != (CHAR_TYPE) *p++) goto fail; 5926 } 5927 while (--mcnt); 5928 } 5929 SET_REGS_MATCHED (); 5930 break; 5931 5932 5933 /* Match any character except possibly a newline or a null. */ 5934 case anychar: 5935 DEBUG_PRINT1 ("EXECUTING anychar.\n"); 5936 5937 PREFETCH (); 5938 5939 if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n') 5940 || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000')) 5941 goto fail; 5942 5943 SET_REGS_MATCHED (); 5944 DEBUG_PRINT2 (" Matched `%ld'.\n", (long int) *d); 5945 d++; 5946 break; 5947 5948 5949 case charset: 5950 case charset_not: 5951 { 5952 register US_CHAR_TYPE c; 5953 #ifdef MBS_SUPPORT 5954 unsigned int i, char_class_length, coll_symbol_length, 5955 equiv_class_length, ranges_length, chars_length, length; 5956 CHAR_TYPE *workp, *workp2, *charset_top; 5957 #define WORK_BUFFER_SIZE 128 5958 CHAR_TYPE str_buf[WORK_BUFFER_SIZE]; 5959 # ifdef _LIBC 5960 uint32_t nrules; 5961 # endif /* _LIBC */ 5962 #endif /* MBS_SUPPORT */ 5963 boolean not = (re_opcode_t) *(p - 1) == charset_not; 5964 5965 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : ""); 5966 PREFETCH (); 5967 c = TRANSLATE (*d); /* The character to match. */ 5968 #ifdef MBS_SUPPORT 5969 # ifdef _LIBC 5970 nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES); 5971 # endif /* _LIBC */ 5972 charset_top = p - 1; 5973 char_class_length = *p++; 5974 coll_symbol_length = *p++; 5975 equiv_class_length = *p++; 5976 ranges_length = *p++; 5977 chars_length = *p++; 5978 /* p points charset[6], so the address of the next instruction 5979 (charset[l+m+n+2o+k+p']) equals p[l+m+n+2*o+p'], 5980 where l=length of char_classes, m=length of collating_symbol, 5981 n=equivalence_class, o=length of char_range, 5982 p'=length of character. */ 5983 workp = p; 5984 /* Update p to indicate the next instruction. */ 5985 p += char_class_length + coll_symbol_length+ equiv_class_length + 5986 2*ranges_length + chars_length; 5987 5988 /* match with char_class? */ 5989 for (i = 0; i < char_class_length ; i += CHAR_CLASS_SIZE) 5990 { 5991 wctype_t wctype; 5992 uintptr_t alignedp = ((uintptr_t)workp 5993 + __alignof__(wctype_t) - 1) 5994 & ~(uintptr_t)(__alignof__(wctype_t) - 1); 5995 wctype = *((wctype_t*)alignedp); 5996 workp += CHAR_CLASS_SIZE; 5997 if (iswctype((wint_t)c, wctype)) 5998 goto char_set_matched; 5999 } 6000 6001 /* match with collating_symbol? */ 6002 # ifdef _LIBC 6003 if (nrules != 0) 6004 { 6005 const unsigned char *extra = (const unsigned char *) 6006 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB); 6007 6008 for (workp2 = workp + coll_symbol_length ; workp < workp2 ; 6009 workp++) 6010 { 6011 int32_t *wextra; 6012 wextra = (int32_t*)(extra + *workp++); 6013 for (i = 0; i < *wextra; ++i) 6014 if (TRANSLATE(d[i]) != wextra[1 + i]) 6015 break; 6016 6017 if (i == *wextra) 6018 { 6019 /* Update d, however d will be incremented at 6020 char_set_matched:, we decrement d here. */ 6021 d += i - 1; 6022 goto char_set_matched; 6023 } 6024 } 6025 } 6026 else /* (nrules == 0) */ 6027 # endif 6028 /* If we can't look up collation data, we use wcscoll 6029 instead. */ 6030 { 6031 for (workp2 = workp + coll_symbol_length ; workp < workp2 ;) 6032 { 6033 const CHAR_TYPE *backup_d = d, *backup_dend = dend; 6034 length = wcslen(workp); 6035 6036 /* If wcscoll(the collating symbol, whole string) > 0, 6037 any substring of the string never match with the 6038 collating symbol. */ 6039 if (wcscoll(workp, d) > 0) 6040 { 6041 workp += length + 1; 6042 continue; 6043 } 6044 6045 /* First, we compare the collating symbol with 6046 the first character of the string. 6047 If it don't match, we add the next character to 6048 the compare buffer in turn. */ 6049 for (i = 0 ; i < WORK_BUFFER_SIZE-1 ; i++, d++) 6050 { 6051 int match; 6052 if (d == dend) 6053 { 6054 if (dend == end_match_2) 6055 break; 6056 d = string2; 6057 dend = end_match_2; 6058 } 6059 6060 /* add next character to the compare buffer. */ 6061 str_buf[i] = TRANSLATE(*d); 6062 str_buf[i+1] = '\0'; 6063 6064 match = wcscoll(workp, str_buf); 6065 if (match == 0) 6066 goto char_set_matched; 6067 6068 if (match < 0) 6069 /* (str_buf > workp) indicate (str_buf + X > workp), 6070 because for all X (str_buf + X > str_buf). 6071 So we don't need continue this loop. */ 6072 break; 6073 6074 /* Otherwise(str_buf < workp), 6075 (str_buf+next_character) may equals (workp). 6076 So we continue this loop. */ 6077 } 6078 /* not matched */ 6079 d = backup_d; 6080 dend = backup_dend; 6081 workp += length + 1; 6082 } 6083 } 6084 /* match with equivalence_class? */ 6085 # ifdef _LIBC 6086 if (nrules != 0) 6087 { 6088 const CHAR_TYPE *backup_d = d, *backup_dend = dend; 6089 /* Try to match the equivalence class against 6090 those known to the collate implementation. */ 6091 const int32_t *table; 6092 const int32_t *weights; 6093 const int32_t *extra; 6094 const int32_t *indirect; 6095 int32_t idx, idx2; 6096 wint_t *cp; 6097 size_t len; 6098 6099 /* This #include defines a local function! */ 6100 # include <locale/weightwc.h> 6101 6102 table = (const int32_t *) 6103 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEWC); 6104 weights = (const wint_t *) 6105 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTWC); 6106 extra = (const wint_t *) 6107 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAWC); 6108 indirect = (const int32_t *) 6109 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTWC); 6110 6111 /* Write 1 collating element to str_buf, and 6112 get its index. */ 6113 idx2 = 0; 6114 6115 for (i = 0 ; idx2 == 0 && i < WORK_BUFFER_SIZE - 1; i++) 6116 { 6117 cp = (wint_t*)str_buf; 6118 if (d == dend) 6119 { 6120 if (dend == end_match_2) 6121 break; 6122 d = string2; 6123 dend = end_match_2; 6124 } 6125 str_buf[i] = TRANSLATE(*(d+i)); 6126 str_buf[i+1] = '\0'; /* sentinel */ 6127 idx2 = findidx ((const wint_t**)&cp); 6128 } 6129 6130 /* Update d, however d will be incremented at 6131 char_set_matched:, we decrement d here. */ 6132 d = backup_d + ((wchar_t*)cp - (wchar_t*)str_buf - 1); 6133 if (d >= dend) 6134 { 6135 if (dend == end_match_2) 6136 d = dend; 6137 else 6138 { 6139 d = string2; 6140 dend = end_match_2; 6141 } 6142 } 6143 6144 len = weights[idx2]; 6145 6146 for (workp2 = workp + equiv_class_length ; workp < workp2 ; 6147 workp++) 6148 { 6149 idx = (int32_t)*workp; 6150 /* We already checked idx != 0 in regex_compile. */ 6151 6152 if (idx2 != 0 && len == weights[idx]) 6153 { 6154 int cnt = 0; 6155 while (cnt < len && (weights[idx + 1 + cnt] 6156 == weights[idx2 + 1 + cnt])) 6157 ++cnt; 6158 6159 if (cnt == len) 6160 goto char_set_matched; 6161 } 6162 } 6163 /* not matched */ 6164 d = backup_d; 6165 dend = backup_dend; 6166 } 6167 else /* (nrules == 0) */ 6168 # endif 6169 /* If we can't look up collation data, we use wcscoll 6170 instead. */ 6171 { 6172 for (workp2 = workp + equiv_class_length ; workp < workp2 ;) 6173 { 6174 const CHAR_TYPE *backup_d = d, *backup_dend = dend; 6175 length = wcslen(workp); 6176 6177 /* If wcscoll(the collating symbol, whole string) > 0, 6178 any substring of the string never match with the 6179 collating symbol. */ 6180 if (wcscoll(workp, d) > 0) 6181 { 6182 workp += length + 1; 6183 break; 6184 } 6185 6186 /* First, we compare the equivalence class with 6187 the first character of the string. 6188 If it don't match, we add the next character to 6189 the compare buffer in turn. */ 6190 for (i = 0 ; i < WORK_BUFFER_SIZE - 1 ; i++, d++) 6191 { 6192 int match; 6193 if (d == dend) 6194 { 6195 if (dend == end_match_2) 6196 break; 6197 d = string2; 6198 dend = end_match_2; 6199 } 6200 6201 /* add next character to the compare buffer. */ 6202 str_buf[i] = TRANSLATE(*d); 6203 str_buf[i+1] = '\0'; 6204 6205 match = wcscoll(workp, str_buf); 6206 6207 if (match == 0) 6208 goto char_set_matched; 6209 6210 if (match < 0) 6211 /* (str_buf > workp) indicate (str_buf + X > workp), 6212 because for all X (str_buf + X > str_buf). 6213 So we don't need continue this loop. */ 6214 break; 6215 6216 /* Otherwise(str_buf < workp), 6217 (str_buf+next_character) may equals (workp). 6218 So we continue this loop. */ 6219 } 6220 /* not matched */ 6221 d = backup_d; 6222 dend = backup_dend; 6223 workp += length + 1; 6224 } 6225 } 6226 6227 /* match with char_range? */ 6228 #ifdef _LIBC 6229 if (nrules != 0) 6230 { 6231 uint32_t collseqval; 6232 const char *collseq = (const char *) 6233 _NL_CURRENT(LC_COLLATE, _NL_COLLATE_COLLSEQWC); 6234 6235 collseqval = collseq_table_lookup (collseq, c); 6236 6237 for (; workp < p - chars_length ;) 6238 { 6239 uint32_t start_val, end_val; 6240 6241 /* We already compute the collation sequence value 6242 of the characters (or collating symbols). */ 6243 start_val = (uint32_t) *workp++; /* range_start */ 6244 end_val = (uint32_t) *workp++; /* range_end */ 6245 6246 if (start_val <= collseqval && collseqval <= end_val) 6247 goto char_set_matched; 6248 } 6249 } 6250 else 6251 #endif 6252 { 6253 /* We set range_start_char at str_buf[0], range_end_char 6254 at str_buf[4], and compared char at str_buf[2]. */ 6255 str_buf[1] = 0; 6256 str_buf[2] = c; 6257 str_buf[3] = 0; 6258 str_buf[5] = 0; 6259 for (; workp < p - chars_length ;) 6260 { 6261 wchar_t *range_start_char, *range_end_char; 6262 6263 /* match if (range_start_char <= c <= range_end_char). */ 6264 6265 /* If range_start(or end) < 0, we assume -range_start(end) 6266 is the offset of the collating symbol which is specified 6267 as the character of the range start(end). */ 6268 6269 /* range_start */ 6270 if (*workp < 0) 6271 range_start_char = charset_top - (*workp++); 6272 else 6273 { 6274 str_buf[0] = *workp++; 6275 range_start_char = str_buf; 6276 } 6277 6278 /* range_end */ 6279 if (*workp < 0) 6280 range_end_char = charset_top - (*workp++); 6281 else 6282 { 6283 str_buf[4] = *workp++; 6284 range_end_char = str_buf + 4; 6285 } 6286 6287 if (wcscoll(range_start_char, str_buf+2) <= 0 && 6288 wcscoll(str_buf+2, range_end_char) <= 0) 6289 6290 goto char_set_matched; 6291 } 6292 } 6293 6294 /* match with char? */ 6295 for (; workp < p ; workp++) 6296 if (c == *workp) 6297 goto char_set_matched; 6298 6299 not = !not; 6300 6301 char_set_matched: 6302 if (not) goto fail; 6303 #else 6304 /* Cast to `unsigned' instead of `unsigned char' in case the 6305 bit list is a full 32 bytes long. */ 6306 if (c < (unsigned) (*p * BYTEWIDTH) 6307 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH))) 6308 not = !not; 6309 6310 p += 1 + *p; 6311 6312 if (!not) goto fail; 6313 #undef WORK_BUFFER_SIZE 6314 #endif /* MBS_SUPPORT */ 6315 SET_REGS_MATCHED (); 6316 d++; 6317 break; 6318 } 6319 6320 6321 /* The beginning of a group is represented by start_memory. 6322 The arguments are the register number in the next byte, and the 6323 number of groups inner to this one in the next. The text 6324 matched within the group is recorded (in the internal 6325 registers data structure) under the register number. */ 6326 case start_memory: 6327 DEBUG_PRINT3 ("EXECUTING start_memory %ld (%ld):\n", 6328 (long int) *p, (long int) p[1]); 6329 6330 /* Find out if this group can match the empty string. */ 6331 p1 = p; /* To send to group_match_null_string_p. */ 6332 6333 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE) 6334 REG_MATCH_NULL_STRING_P (reg_info[*p]) 6335 = group_match_null_string_p (&p1, pend, reg_info); 6336 6337 /* Save the position in the string where we were the last time 6338 we were at this open-group operator in case the group is 6339 operated upon by a repetition operator, e.g., with `(a*)*b' 6340 against `ab'; then we want to ignore where we are now in 6341 the string in case this attempt to match fails. */ 6342 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p]) 6343 ? REG_UNSET (regstart[*p]) ? d : regstart[*p] 6344 : regstart[*p]; 6345 DEBUG_PRINT2 (" old_regstart: %d\n", 6346 POINTER_TO_OFFSET (old_regstart[*p])); 6347 6348 regstart[*p] = d; 6349 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p])); 6350 6351 IS_ACTIVE (reg_info[*p]) = 1; 6352 MATCHED_SOMETHING (reg_info[*p]) = 0; 6353 6354 /* Clear this whenever we change the register activity status. */ 6355 set_regs_matched_done = 0; 6356 6357 /* This is the new highest active register. */ 6358 highest_active_reg = *p; 6359 6360 /* If nothing was active before, this is the new lowest active 6361 register. */ 6362 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG) 6363 lowest_active_reg = *p; 6364 6365 /* Move past the register number and inner group count. */ 6366 p += 2; 6367 just_past_start_mem = p; 6368 6369 break; 6370 6371 6372 /* The stop_memory opcode represents the end of a group. Its 6373 arguments are the same as start_memory's: the register 6374 number, and the number of inner groups. */ 6375 case stop_memory: 6376 DEBUG_PRINT3 ("EXECUTING stop_memory %ld (%ld):\n", 6377 (long int) *p, (long int) p[1]); 6378 6379 /* We need to save the string position the last time we were at 6380 this close-group operator in case the group is operated 6381 upon by a repetition operator, e.g., with `((a*)*(b*)*)*' 6382 against `aba'; then we want to ignore where we are now in 6383 the string in case this attempt to match fails. */ 6384 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p]) 6385 ? REG_UNSET (regend[*p]) ? d : regend[*p] 6386 : regend[*p]; 6387 DEBUG_PRINT2 (" old_regend: %d\n", 6388 POINTER_TO_OFFSET (old_regend[*p])); 6389 6390 regend[*p] = d; 6391 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p])); 6392 6393 /* This register isn't active anymore. */ 6394 IS_ACTIVE (reg_info[*p]) = 0; 6395 6396 /* Clear this whenever we change the register activity status. */ 6397 set_regs_matched_done = 0; 6398 6399 /* If this was the only register active, nothing is active 6400 anymore. */ 6401 if (lowest_active_reg == highest_active_reg) 6402 { 6403 lowest_active_reg = NO_LOWEST_ACTIVE_REG; 6404 highest_active_reg = NO_HIGHEST_ACTIVE_REG; 6405 } 6406 else 6407 { /* We must scan for the new highest active register, since 6408 it isn't necessarily one less than now: consider 6409 (a(b)c(d(e)f)g). When group 3 ends, after the f), the 6410 new highest active register is 1. */ 6411 US_CHAR_TYPE r = *p - 1; 6412 while (r > 0 && !IS_ACTIVE (reg_info[r])) 6413 r--; 6414 6415 /* If we end up at register zero, that means that we saved 6416 the registers as the result of an `on_failure_jump', not 6417 a `start_memory', and we jumped to past the innermost 6418 `stop_memory'. For example, in ((.)*) we save 6419 registers 1 and 2 as a result of the *, but when we pop 6420 back to the second ), we are at the stop_memory 1. 6421 Thus, nothing is active. */ 6422 if (r == 0) 6423 { 6424 lowest_active_reg = NO_LOWEST_ACTIVE_REG; 6425 highest_active_reg = NO_HIGHEST_ACTIVE_REG; 6426 } 6427 else 6428 highest_active_reg = r; 6429 } 6430 6431 /* If just failed to match something this time around with a 6432 group that's operated on by a repetition operator, try to 6433 force exit from the ``loop'', and restore the register 6434 information for this group that we had before trying this 6435 last match. */ 6436 if ((!MATCHED_SOMETHING (reg_info[*p]) 6437 || just_past_start_mem == p - 1) 6438 && (p + 2) < pend) 6439 { 6440 boolean is_a_jump_n = false; 6441 6442 p1 = p + 2; 6443 mcnt = 0; 6444 switch ((re_opcode_t) *p1++) 6445 { 6446 case jump_n: 6447 is_a_jump_n = true; 6448 case pop_failure_jump: 6449 case maybe_pop_jump: 6450 case jump: 6451 case dummy_failure_jump: 6452 EXTRACT_NUMBER_AND_INCR (mcnt, p1); 6453 if (is_a_jump_n) 6454 p1 += OFFSET_ADDRESS_SIZE; 6455 break; 6456 6457 default: 6458 /* do nothing */ ; 6459 } 6460 p1 += mcnt; 6461 6462 /* If the next operation is a jump backwards in the pattern 6463 to an on_failure_jump right before the start_memory 6464 corresponding to this stop_memory, exit from the loop 6465 by forcing a failure after pushing on the stack the 6466 on_failure_jump's jump in the pattern, and d. */ 6467 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump 6468 && (re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == start_memory 6469 && p1[2+OFFSET_ADDRESS_SIZE] == *p) 6470 { 6471 /* If this group ever matched anything, then restore 6472 what its registers were before trying this last 6473 failed match, e.g., with `(a*)*b' against `ab' for 6474 regstart[1], and, e.g., with `((a*)*(b*)*)*' 6475 against `aba' for regend[3]. 6476 6477 Also restore the registers for inner groups for, 6478 e.g., `((a*)(b*))*' against `aba' (register 3 would 6479 otherwise get trashed). */ 6480 6481 if (EVER_MATCHED_SOMETHING (reg_info[*p])) 6482 { 6483 unsigned r; 6484 6485 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0; 6486 6487 /* Restore this and inner groups' (if any) registers. */ 6488 for (r = *p; r < (unsigned) *p + (unsigned) *(p + 1); 6489 r++) 6490 { 6491 regstart[r] = old_regstart[r]; 6492 6493 /* xx why this test? */ 6494 if (old_regend[r] >= regstart[r]) 6495 regend[r] = old_regend[r]; 6496 } 6497 } 6498 p1++; 6499 EXTRACT_NUMBER_AND_INCR (mcnt, p1); 6500 PUSH_FAILURE_POINT (p1 + mcnt, d, -2); 6501 6502 goto fail; 6503 } 6504 } 6505 6506 /* Move past the register number and the inner group count. */ 6507 p += 2; 6508 break; 6509 6510 6511 /* \<digit> has been turned into a `duplicate' command which is 6512 followed by the numeric value of <digit> as the register number. */ 6513 case duplicate: 6514 { 6515 register const CHAR_TYPE *d2, *dend2; 6516 int regno = *p++; /* Get which register to match against. */ 6517 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno); 6518 6519 /* Can't back reference a group which we've never matched. */ 6520 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno])) 6521 goto fail; 6522 6523 /* Where in input to try to start matching. */ 6524 d2 = regstart[regno]; 6525 6526 /* Where to stop matching; if both the place to start and 6527 the place to stop matching are in the same string, then 6528 set to the place to stop, otherwise, for now have to use 6529 the end of the first string. */ 6530 6531 dend2 = ((FIRST_STRING_P (regstart[regno]) 6532 == FIRST_STRING_P (regend[regno])) 6533 ? regend[regno] : end_match_1); 6534 for (;;) 6535 { 6536 /* If necessary, advance to next segment in register 6537 contents. */ 6538 while (d2 == dend2) 6539 { 6540 if (dend2 == end_match_2) break; 6541 if (dend2 == regend[regno]) break; 6542 6543 /* End of string1 => advance to string2. */ 6544 d2 = string2; 6545 dend2 = regend[regno]; 6546 } 6547 /* At end of register contents => success */ 6548 if (d2 == dend2) break; 6549 6550 /* If necessary, advance to next segment in data. */ 6551 PREFETCH (); 6552 6553 /* How many characters left in this segment to match. */ 6554 mcnt = dend - d; 6555 6556 /* Want how many consecutive characters we can match in 6557 one shot, so, if necessary, adjust the count. */ 6558 if (mcnt > dend2 - d2) 6559 mcnt = dend2 - d2; 6560 6561 /* Compare that many; failure if mismatch, else move 6562 past them. */ 6563 if (translate 6564 ? bcmp_translate (d, d2, mcnt, translate) 6565 : memcmp (d, d2, mcnt*sizeof(US_CHAR_TYPE))) 6566 goto fail; 6567 d += mcnt, d2 += mcnt; 6568 6569 /* Do this because we've match some characters. */ 6570 SET_REGS_MATCHED (); 6571 } 6572 } 6573 break; 6574 6575 6576 /* begline matches the empty string at the beginning of the string 6577 (unless `not_bol' is set in `bufp'), and, if 6578 `newline_anchor' is set, after newlines. */ 6579 case begline: 6580 DEBUG_PRINT1 ("EXECUTING begline.\n"); 6581 6582 if (AT_STRINGS_BEG (d)) 6583 { 6584 if (!bufp->not_bol) break; 6585 } 6586 else if (d[-1] == '\n' && bufp->newline_anchor) 6587 { 6588 break; 6589 } 6590 /* In all other cases, we fail. */ 6591 goto fail; 6592 6593 6594 /* endline is the dual of begline. */ 6595 case endline: 6596 DEBUG_PRINT1 ("EXECUTING endline.\n"); 6597 6598 if (AT_STRINGS_END (d)) 6599 { 6600 if (!bufp->not_eol) break; 6601 } 6602 6603 /* We have to ``prefetch'' the next character. */ 6604 else if ((d == end1 ? *string2 : *d) == '\n' 6605 && bufp->newline_anchor) 6606 { 6607 break; 6608 } 6609 goto fail; 6610 6611 6612 /* Match at the very beginning of the data. */ 6613 case begbuf: 6614 DEBUG_PRINT1 ("EXECUTING begbuf.\n"); 6615 if (AT_STRINGS_BEG (d)) 6616 break; 6617 goto fail; 6618 6619 6620 /* Match at the very end of the data. */ 6621 case endbuf: 6622 DEBUG_PRINT1 ("EXECUTING endbuf.\n"); 6623 if (AT_STRINGS_END (d)) 6624 break; 6625 goto fail; 6626 6627 6628 /* on_failure_keep_string_jump is used to optimize `.*\n'. It 6629 pushes NULL as the value for the string on the stack. Then 6630 `pop_failure_point' will keep the current value for the 6631 string, instead of restoring it. To see why, consider 6632 matching `foo\nbar' against `.*\n'. The .* matches the foo; 6633 then the . fails against the \n. But the next thing we want 6634 to do is match the \n against the \n; if we restored the 6635 string value, we would be back at the foo. 6636 6637 Because this is used only in specific cases, we don't need to 6638 check all the things that `on_failure_jump' does, to make 6639 sure the right things get saved on the stack. Hence we don't 6640 share its code. The only reason to push anything on the 6641 stack at all is that otherwise we would have to change 6642 `anychar's code to do something besides goto fail in this 6643 case; that seems worse than this. */ 6644 case on_failure_keep_string_jump: 6645 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump"); 6646 6647 EXTRACT_NUMBER_AND_INCR (mcnt, p); 6648 #ifdef _LIBC 6649 DEBUG_PRINT3 (" %d (to %p):\n", mcnt, p + mcnt); 6650 #else 6651 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt); 6652 #endif 6653 6654 PUSH_FAILURE_POINT (p + mcnt, NULL, -2); 6655 break; 6656 6657 6658 /* Uses of on_failure_jump: 6659 6660 Each alternative starts with an on_failure_jump that points 6661 to the beginning of the next alternative. Each alternative 6662 except the last ends with a jump that in effect jumps past 6663 the rest of the alternatives. (They really jump to the 6664 ending jump of the following alternative, because tensioning 6665 these jumps is a hassle.) 6666 6667 Repeats start with an on_failure_jump that points past both 6668 the repetition text and either the following jump or 6669 pop_failure_jump back to this on_failure_jump. */ 6670 case on_failure_jump: 6671 on_failure: 6672 DEBUG_PRINT1 ("EXECUTING on_failure_jump"); 6673 6674 EXTRACT_NUMBER_AND_INCR (mcnt, p); 6675 #ifdef _LIBC 6676 DEBUG_PRINT3 (" %d (to %p)", mcnt, p + mcnt); 6677 #else 6678 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt); 6679 #endif 6680 6681 /* If this on_failure_jump comes right before a group (i.e., 6682 the original * applied to a group), save the information 6683 for that group and all inner ones, so that if we fail back 6684 to this point, the group's information will be correct. 6685 For example, in \(a*\)*\1, we need the preceding group, 6686 and in \(zz\(a*\)b*\)\2, we need the inner group. */ 6687 6688 /* We can't use `p' to check ahead because we push 6689 a failure point to `p + mcnt' after we do this. */ 6690 p1 = p; 6691 6692 /* We need to skip no_op's before we look for the 6693 start_memory in case this on_failure_jump is happening as 6694 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1 6695 against aba. */ 6696 while (p1 < pend && (re_opcode_t) *p1 == no_op) 6697 p1++; 6698 6699 if (p1 < pend && (re_opcode_t) *p1 == start_memory) 6700 { 6701 /* We have a new highest active register now. This will 6702 get reset at the start_memory we are about to get to, 6703 but we will have saved all the registers relevant to 6704 this repetition op, as described above. */ 6705 highest_active_reg = *(p1 + 1) + *(p1 + 2); 6706 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG) 6707 lowest_active_reg = *(p1 + 1); 6708 } 6709 6710 DEBUG_PRINT1 (":\n"); 6711 PUSH_FAILURE_POINT (p + mcnt, d, -2); 6712 break; 6713 6714 6715 /* A smart repeat ends with `maybe_pop_jump'. 6716 We change it to either `pop_failure_jump' or `jump'. */ 6717 case maybe_pop_jump: 6718 EXTRACT_NUMBER_AND_INCR (mcnt, p); 6719 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt); 6720 { 6721 register US_CHAR_TYPE *p2 = p; 6722 6723 /* Compare the beginning of the repeat with what in the 6724 pattern follows its end. If we can establish that there 6725 is nothing that they would both match, i.e., that we 6726 would have to backtrack because of (as in, e.g., `a*a') 6727 then we can change to pop_failure_jump, because we'll 6728 never have to backtrack. 6729 6730 This is not true in the case of alternatives: in 6731 `(a|ab)*' we do need to backtrack to the `ab' alternative 6732 (e.g., if the string was `ab'). But instead of trying to 6733 detect that here, the alternative has put on a dummy 6734 failure point which is what we will end up popping. */ 6735 6736 /* Skip over open/close-group commands. 6737 If what follows this loop is a ...+ construct, 6738 look at what begins its body, since we will have to 6739 match at least one of that. */ 6740 while (1) 6741 { 6742 if (p2 + 2 < pend 6743 && ((re_opcode_t) *p2 == stop_memory 6744 || (re_opcode_t) *p2 == start_memory)) 6745 p2 += 3; 6746 else if (p2 + 2 + 2 * OFFSET_ADDRESS_SIZE < pend 6747 && (re_opcode_t) *p2 == dummy_failure_jump) 6748 p2 += 2 + 2 * OFFSET_ADDRESS_SIZE; 6749 else 6750 break; 6751 } 6752 6753 p1 = p + mcnt; 6754 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding 6755 to the `maybe_finalize_jump' of this case. Examine what 6756 follows. */ 6757 6758 /* If we're at the end of the pattern, we can change. */ 6759 if (p2 == pend) 6760 { 6761 /* Consider what happens when matching ":\(.*\)" 6762 against ":/". I don't really understand this code 6763 yet. */ 6764 p[-(1+OFFSET_ADDRESS_SIZE)] = (US_CHAR_TYPE) 6765 pop_failure_jump; 6766 DEBUG_PRINT1 6767 (" End of pattern: change to `pop_failure_jump'.\n"); 6768 } 6769 6770 else if ((re_opcode_t) *p2 == exactn 6771 #ifdef MBS_SUPPORT 6772 || (re_opcode_t) *p2 == exactn_bin 6773 #endif 6774 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline)) 6775 { 6776 register US_CHAR_TYPE c 6777 = *p2 == (US_CHAR_TYPE) endline ? '\n' : p2[2]; 6778 6779 if (((re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == exactn 6780 #ifdef MBS_SUPPORT 6781 || (re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == exactn_bin 6782 #endif 6783 ) && p1[3+OFFSET_ADDRESS_SIZE] != c) 6784 { 6785 p[-(1+OFFSET_ADDRESS_SIZE)] = (US_CHAR_TYPE) 6786 pop_failure_jump; 6787 #ifdef MBS_SUPPORT 6788 if (MB_CUR_MAX != 1) 6789 DEBUG_PRINT3 (" %C != %C => pop_failure_jump.\n", 6790 (wint_t) c, 6791 (wint_t) p1[3+OFFSET_ADDRESS_SIZE]); 6792 else 6793 #endif 6794 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n", 6795 (char) c, 6796 (char) p1[3+OFFSET_ADDRESS_SIZE]); 6797 } 6798 6799 #ifndef MBS_SUPPORT 6800 else if ((re_opcode_t) p1[3] == charset 6801 || (re_opcode_t) p1[3] == charset_not) 6802 { 6803 int not = (re_opcode_t) p1[3] == charset_not; 6804 6805 if (c < (unsigned) (p1[4] * BYTEWIDTH) 6806 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH))) 6807 not = !not; 6808 6809 /* `not' is equal to 1 if c would match, which means 6810 that we can't change to pop_failure_jump. */ 6811 if (!not) 6812 { 6813 p[-3] = (unsigned char) pop_failure_jump; 6814 DEBUG_PRINT1 (" No match => pop_failure_jump.\n"); 6815 } 6816 } 6817 #endif /* not MBS_SUPPORT */ 6818 } 6819 #ifndef MBS_SUPPORT 6820 else if ((re_opcode_t) *p2 == charset) 6821 { 6822 /* We win if the first character of the loop is not part 6823 of the charset. */ 6824 if ((re_opcode_t) p1[3] == exactn 6825 && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5] 6826 && (p2[2 + p1[5] / BYTEWIDTH] 6827 & (1 << (p1[5] % BYTEWIDTH))))) 6828 { 6829 p[-3] = (unsigned char) pop_failure_jump; 6830 DEBUG_PRINT1 (" No match => pop_failure_jump.\n"); 6831 } 6832 6833 else if ((re_opcode_t) p1[3] == charset_not) 6834 { 6835 int idx; 6836 /* We win if the charset_not inside the loop 6837 lists every character listed in the charset after. */ 6838 for (idx = 0; idx < (int) p2[1]; idx++) 6839 if (! (p2[2 + idx] == 0 6840 || (idx < (int) p1[4] 6841 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0)))) 6842 break; 6843 6844 if (idx == p2[1]) 6845 { 6846 p[-3] = (unsigned char) pop_failure_jump; 6847 DEBUG_PRINT1 (" No match => pop_failure_jump.\n"); 6848 } 6849 } 6850 else if ((re_opcode_t) p1[3] == charset) 6851 { 6852 int idx; 6853 /* We win if the charset inside the loop 6854 has no overlap with the one after the loop. */ 6855 for (idx = 0; 6856 idx < (int) p2[1] && idx < (int) p1[4]; 6857 idx++) 6858 if ((p2[2 + idx] & p1[5 + idx]) != 0) 6859 break; 6860 6861 if (idx == p2[1] || idx == p1[4]) 6862 { 6863 p[-3] = (unsigned char) pop_failure_jump; 6864 DEBUG_PRINT1 (" No match => pop_failure_jump.\n"); 6865 } 6866 } 6867 } 6868 #endif /* not MBS_SUPPORT */ 6869 } 6870 p -= OFFSET_ADDRESS_SIZE; /* Point at relative address again. */ 6871 if ((re_opcode_t) p[-1] != pop_failure_jump) 6872 { 6873 p[-1] = (US_CHAR_TYPE) jump; 6874 DEBUG_PRINT1 (" Match => jump.\n"); 6875 goto unconditional_jump; 6876 } 6877 /* Note fall through. */ 6878 6879 6880 /* The end of a simple repeat has a pop_failure_jump back to 6881 its matching on_failure_jump, where the latter will push a 6882 failure point. The pop_failure_jump takes off failure 6883 points put on by this pop_failure_jump's matching 6884 on_failure_jump; we got through the pattern to here from the 6885 matching on_failure_jump, so didn't fail. */ 6886 case pop_failure_jump: 6887 { 6888 /* We need to pass separate storage for the lowest and 6889 highest registers, even though we don't care about the 6890 actual values. Otherwise, we will restore only one 6891 register from the stack, since lowest will == highest in 6892 `pop_failure_point'. */ 6893 active_reg_t dummy_low_reg, dummy_high_reg; 6894 US_CHAR_TYPE *pdummy = NULL; 6895 const CHAR_TYPE *sdummy = NULL; 6896 6897 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n"); 6898 POP_FAILURE_POINT (sdummy, pdummy, 6899 dummy_low_reg, dummy_high_reg, 6900 reg_dummy, reg_dummy, reg_info_dummy); 6901 } 6902 /* Note fall through. */ 6903 6904 unconditional_jump: 6905 #ifdef _LIBC 6906 DEBUG_PRINT2 ("\n%p: ", p); 6907 #else 6908 DEBUG_PRINT2 ("\n0x%x: ", p); 6909 #endif 6910 /* Note fall through. */ 6911 6912 /* Unconditionally jump (without popping any failure points). */ 6913 case jump: 6914 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */ 6915 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt); 6916 p += mcnt; /* Do the jump. */ 6917 #ifdef _LIBC 6918 DEBUG_PRINT2 ("(to %p).\n", p); 6919 #else 6920 DEBUG_PRINT2 ("(to 0x%x).\n", p); 6921 #endif 6922 break; 6923 6924 6925 /* We need this opcode so we can detect where alternatives end 6926 in `group_match_null_string_p' et al. */ 6927 case jump_past_alt: 6928 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n"); 6929 goto unconditional_jump; 6930 6931 6932 /* Normally, the on_failure_jump pushes a failure point, which 6933 then gets popped at pop_failure_jump. We will end up at 6934 pop_failure_jump, also, and with a pattern of, say, `a+', we 6935 are skipping over the on_failure_jump, so we have to push 6936 something meaningless for pop_failure_jump to pop. */ 6937 case dummy_failure_jump: 6938 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n"); 6939 /* It doesn't matter what we push for the string here. What 6940 the code at `fail' tests is the value for the pattern. */ 6941 PUSH_FAILURE_POINT (NULL, NULL, -2); 6942 goto unconditional_jump; 6943 6944 6945 /* At the end of an alternative, we need to push a dummy failure 6946 point in case we are followed by a `pop_failure_jump', because 6947 we don't want the failure point for the alternative to be 6948 popped. For example, matching `(a|ab)*' against `aab' 6949 requires that we match the `ab' alternative. */ 6950 case push_dummy_failure: 6951 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n"); 6952 /* See comments just above at `dummy_failure_jump' about the 6953 two zeroes. */ 6954 PUSH_FAILURE_POINT (NULL, NULL, -2); 6955 break; 6956 6957 /* Have to succeed matching what follows at least n times. 6958 After that, handle like `on_failure_jump'. */ 6959 case succeed_n: 6960 EXTRACT_NUMBER (mcnt, p + OFFSET_ADDRESS_SIZE); 6961 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt); 6962 6963 assert (mcnt >= 0); 6964 /* Originally, this is how many times we HAVE to succeed. */ 6965 if (mcnt > 0) 6966 { 6967 mcnt--; 6968 p += OFFSET_ADDRESS_SIZE; 6969 STORE_NUMBER_AND_INCR (p, mcnt); 6970 #ifdef _LIBC 6971 DEBUG_PRINT3 (" Setting %p to %d.\n", p - OFFSET_ADDRESS_SIZE 6972 , mcnt); 6973 #else 6974 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p - OFFSET_ADDRESS_SIZE 6975 , mcnt); 6976 #endif 6977 } 6978 else if (mcnt == 0) 6979 { 6980 #ifdef _LIBC 6981 DEBUG_PRINT2 (" Setting two bytes from %p to no_op.\n", 6982 p + OFFSET_ADDRESS_SIZE); 6983 #else 6984 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", 6985 p + OFFSET_ADDRESS_SIZE); 6986 #endif /* _LIBC */ 6987 6988 #ifdef MBS_SUPPORT 6989 p[1] = (US_CHAR_TYPE) no_op; 6990 #else 6991 p[2] = (US_CHAR_TYPE) no_op; 6992 p[3] = (US_CHAR_TYPE) no_op; 6993 #endif /* MBS_SUPPORT */ 6994 goto on_failure; 6995 } 6996 break; 6997 6998 case jump_n: 6999 EXTRACT_NUMBER (mcnt, p + OFFSET_ADDRESS_SIZE); 7000 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt); 7001 7002 /* Originally, this is how many times we CAN jump. */ 7003 if (mcnt) 7004 { 7005 mcnt--; 7006 STORE_NUMBER (p + OFFSET_ADDRESS_SIZE, mcnt); 7007 7008 #ifdef _LIBC 7009 DEBUG_PRINT3 (" Setting %p to %d.\n", p + OFFSET_ADDRESS_SIZE, 7010 mcnt); 7011 #else 7012 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p + OFFSET_ADDRESS_SIZE, 7013 mcnt); 7014 #endif /* _LIBC */ 7015 goto unconditional_jump; 7016 } 7017 /* If don't have to jump any more, skip over the rest of command. */ 7018 else 7019 p += 2 * OFFSET_ADDRESS_SIZE; 7020 break; 7021 7022 case set_number_at: 7023 { 7024 DEBUG_PRINT1 ("EXECUTING set_number_at.\n"); 7025 7026 EXTRACT_NUMBER_AND_INCR (mcnt, p); 7027 p1 = p + mcnt; 7028 EXTRACT_NUMBER_AND_INCR (mcnt, p); 7029 #ifdef _LIBC 7030 DEBUG_PRINT3 (" Setting %p to %d.\n", p1, mcnt); 7031 #else 7032 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt); 7033 #endif 7034 STORE_NUMBER (p1, mcnt); 7035 break; 7036 } 7037 7038 #if 0 7039 /* The DEC Alpha C compiler 3.x generates incorrect code for the 7040 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of 7041 AT_WORD_BOUNDARY, so this code is disabled. Expanding the 7042 macro and introducing temporary variables works around the bug. */ 7043 7044 case wordbound: 7045 DEBUG_PRINT1 ("EXECUTING wordbound.\n"); 7046 if (AT_WORD_BOUNDARY (d)) 7047 break; 7048 goto fail; 7049 7050 case notwordbound: 7051 DEBUG_PRINT1 ("EXECUTING notwordbound.\n"); 7052 if (AT_WORD_BOUNDARY (d)) 7053 goto fail; 7054 break; 7055 #else 7056 case wordbound: 7057 { 7058 boolean prevchar, thischar; 7059 7060 DEBUG_PRINT1 ("EXECUTING wordbound.\n"); 7061 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d)) 7062 break; 7063 7064 prevchar = WORDCHAR_P (d - 1); 7065 thischar = WORDCHAR_P (d); 7066 if (prevchar != thischar) 7067 break; 7068 goto fail; 7069 } 7070 7071 case notwordbound: 7072 { 7073 boolean prevchar, thischar; 7074 7075 DEBUG_PRINT1 ("EXECUTING notwordbound.\n"); 7076 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d)) 7077 goto fail; 7078 7079 prevchar = WORDCHAR_P (d - 1); 7080 thischar = WORDCHAR_P (d); 7081 if (prevchar != thischar) 7082 goto fail; 7083 break; 7084 } 7085 #endif 7086 7087 case wordbeg: 7088 DEBUG_PRINT1 ("EXECUTING wordbeg.\n"); 7089 if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1))) 7090 break; 7091 goto fail; 7092 7093 case wordend: 7094 DEBUG_PRINT1 ("EXECUTING wordend.\n"); 7095 if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1) 7096 && (!WORDCHAR_P (d) || AT_STRINGS_END (d))) 7097 break; 7098 goto fail; 7099 7100 #ifdef emacs 7101 case before_dot: 7102 DEBUG_PRINT1 ("EXECUTING before_dot.\n"); 7103 if (PTR_CHAR_POS ((unsigned char *) d) >= point) 7104 goto fail; 7105 break; 7106 7107 case at_dot: 7108 DEBUG_PRINT1 ("EXECUTING at_dot.\n"); 7109 if (PTR_CHAR_POS ((unsigned char *) d) != point) 7110 goto fail; 7111 break; 7112 7113 case after_dot: 7114 DEBUG_PRINT1 ("EXECUTING after_dot.\n"); 7115 if (PTR_CHAR_POS ((unsigned char *) d) <= point) 7116 goto fail; 7117 break; 7118 7119 case syntaxspec: 7120 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt); 7121 mcnt = *p++; 7122 goto matchsyntax; 7123 7124 case wordchar: 7125 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n"); 7126 mcnt = (int) Sword; 7127 matchsyntax: 7128 PREFETCH (); 7129 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */ 7130 d++; 7131 if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt) 7132 goto fail; 7133 SET_REGS_MATCHED (); 7134 break; 7135 7136 case notsyntaxspec: 7137 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt); 7138 mcnt = *p++; 7139 goto matchnotsyntax; 7140 7141 case notwordchar: 7142 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n"); 7143 mcnt = (int) Sword; 7144 matchnotsyntax: 7145 PREFETCH (); 7146 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */ 7147 d++; 7148 if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt) 7149 goto fail; 7150 SET_REGS_MATCHED (); 7151 break; 7152 7153 #else /* not emacs */ 7154 case wordchar: 7155 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n"); 7156 PREFETCH (); 7157 if (!WORDCHAR_P (d)) 7158 goto fail; 7159 SET_REGS_MATCHED (); 7160 d++; 7161 break; 7162 7163 case notwordchar: 7164 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n"); 7165 PREFETCH (); 7166 if (WORDCHAR_P (d)) 7167 goto fail; 7168 SET_REGS_MATCHED (); 7169 d++; 7170 break; 7171 #endif /* not emacs */ 7172 7173 default: 7174 abort (); 7175 } 7176 continue; /* Successfully executed one pattern command; keep going. */ 7177 7178 7179 /* We goto here if a matching operation fails. */ 7180 fail: 7181 if (!FAIL_STACK_EMPTY ()) 7182 { /* A restart point is known. Restore to that state. */ 7183 DEBUG_PRINT1 ("\nFAIL:\n"); 7184 POP_FAILURE_POINT (d, p, 7185 lowest_active_reg, highest_active_reg, 7186 regstart, regend, reg_info); 7187 7188 /* If this failure point is a dummy, try the next one. */ 7189 if (!p) 7190 goto fail; 7191 7192 /* If we failed to the end of the pattern, don't examine *p. */ 7193 assert (p <= pend); 7194 if (p < pend) 7195 { 7196 boolean is_a_jump_n = false; 7197 7198 /* If failed to a backwards jump that's part of a repetition 7199 loop, need to pop this failure point and use the next one. */ 7200 switch ((re_opcode_t) *p) 7201 { 7202 case jump_n: 7203 is_a_jump_n = true; 7204 case maybe_pop_jump: 7205 case pop_failure_jump: 7206 case jump: 7207 p1 = p + 1; 7208 EXTRACT_NUMBER_AND_INCR (mcnt, p1); 7209 p1 += mcnt; 7210 7211 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n) 7212 || (!is_a_jump_n 7213 && (re_opcode_t) *p1 == on_failure_jump)) 7214 goto fail; 7215 break; 7216 default: 7217 /* do nothing */ ; 7218 } 7219 } 7220 7221 if (d >= string1 && d <= end1) 7222 dend = end_match_1; 7223 } 7224 else 7225 break; /* Matching at this starting point really fails. */ 7226 } /* for (;;) */ 7227 7228 if (best_regs_set) 7229 goto restore_best_regs; 7230 7231 FREE_VARIABLES (); 7232 7233 return -1; /* Failure to match. */ 7234 } /* re_match_2 */ 7235 7236 /* Subroutine definitions for re_match_2. */ 7237 7238 7239 /* We are passed P pointing to a register number after a start_memory. 7240 7241 Return true if the pattern up to the corresponding stop_memory can 7242 match the empty string, and false otherwise. 7243 7244 If we find the matching stop_memory, sets P to point to one past its number. 7245 Otherwise, sets P to an undefined byte less than or equal to END. 7246 7247 We don't handle duplicates properly (yet). */ 7248 7249 static boolean 7250 group_match_null_string_p (p, end, reg_info) 7251 US_CHAR_TYPE **p, *end; 7252 register_info_type *reg_info; 7253 { 7254 int mcnt; 7255 /* Point to after the args to the start_memory. */ 7256 US_CHAR_TYPE *p1 = *p + 2; 7257 7258 while (p1 < end) 7259 { 7260 /* Skip over opcodes that can match nothing, and return true or 7261 false, as appropriate, when we get to one that can't, or to the 7262 matching stop_memory. */ 7263 7264 switch ((re_opcode_t) *p1) 7265 { 7266 /* Could be either a loop or a series of alternatives. */ 7267 case on_failure_jump: 7268 p1++; 7269 EXTRACT_NUMBER_AND_INCR (mcnt, p1); 7270 7271 /* If the next operation is not a jump backwards in the 7272 pattern. */ 7273 7274 if (mcnt >= 0) 7275 { 7276 /* Go through the on_failure_jumps of the alternatives, 7277 seeing if any of the alternatives cannot match nothing. 7278 The last alternative starts with only a jump, 7279 whereas the rest start with on_failure_jump and end 7280 with a jump, e.g., here is the pattern for `a|b|c': 7281 7282 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6 7283 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3 7284 /exactn/1/c 7285 7286 So, we have to first go through the first (n-1) 7287 alternatives and then deal with the last one separately. */ 7288 7289 7290 /* Deal with the first (n-1) alternatives, which start 7291 with an on_failure_jump (see above) that jumps to right 7292 past a jump_past_alt. */ 7293 7294 while ((re_opcode_t) p1[mcnt-(1+OFFSET_ADDRESS_SIZE)] == 7295 jump_past_alt) 7296 { 7297 /* `mcnt' holds how many bytes long the alternative 7298 is, including the ending `jump_past_alt' and 7299 its number. */ 7300 7301 if (!alt_match_null_string_p (p1, p1 + mcnt - 7302 (1 + OFFSET_ADDRESS_SIZE), 7303 reg_info)) 7304 return false; 7305 7306 /* Move to right after this alternative, including the 7307 jump_past_alt. */ 7308 p1 += mcnt; 7309 7310 /* Break if it's the beginning of an n-th alternative 7311 that doesn't begin with an on_failure_jump. */ 7312 if ((re_opcode_t) *p1 != on_failure_jump) 7313 break; 7314 7315 /* Still have to check that it's not an n-th 7316 alternative that starts with an on_failure_jump. */ 7317 p1++; 7318 EXTRACT_NUMBER_AND_INCR (mcnt, p1); 7319 if ((re_opcode_t) p1[mcnt-(1+OFFSET_ADDRESS_SIZE)] != 7320 jump_past_alt) 7321 { 7322 /* Get to the beginning of the n-th alternative. */ 7323 p1 -= 1 + OFFSET_ADDRESS_SIZE; 7324 break; 7325 } 7326 } 7327 7328 /* Deal with the last alternative: go back and get number 7329 of the `jump_past_alt' just before it. `mcnt' contains 7330 the length of the alternative. */ 7331 EXTRACT_NUMBER (mcnt, p1 - OFFSET_ADDRESS_SIZE); 7332 7333 if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info)) 7334 return false; 7335 7336 p1 += mcnt; /* Get past the n-th alternative. */ 7337 } /* if mcnt > 0 */ 7338 break; 7339 7340 7341 case stop_memory: 7342 assert (p1[1] == **p); 7343 *p = p1 + 2; 7344 return true; 7345 7346 7347 default: 7348 if (!common_op_match_null_string_p (&p1, end, reg_info)) 7349 return false; 7350 } 7351 } /* while p1 < end */ 7352 7353 return false; 7354 } /* group_match_null_string_p */ 7355 7356 7357 /* Similar to group_match_null_string_p, but doesn't deal with alternatives: 7358 It expects P to be the first byte of a single alternative and END one 7359 byte past the last. The alternative can contain groups. */ 7360 7361 static boolean 7362 alt_match_null_string_p (p, end, reg_info) 7363 US_CHAR_TYPE *p, *end; 7364 register_info_type *reg_info; 7365 { 7366 int mcnt; 7367 US_CHAR_TYPE *p1 = p; 7368 7369 while (p1 < end) 7370 { 7371 /* Skip over opcodes that can match nothing, and break when we get 7372 to one that can't. */ 7373 7374 switch ((re_opcode_t) *p1) 7375 { 7376 /* It's a loop. */ 7377 case on_failure_jump: 7378 p1++; 7379 EXTRACT_NUMBER_AND_INCR (mcnt, p1); 7380 p1 += mcnt; 7381 break; 7382 7383 default: 7384 if (!common_op_match_null_string_p (&p1, end, reg_info)) 7385 return false; 7386 } 7387 } /* while p1 < end */ 7388 7389 return true; 7390 } /* alt_match_null_string_p */ 7391 7392 7393 /* Deals with the ops common to group_match_null_string_p and 7394 alt_match_null_string_p. 7395 7396 Sets P to one after the op and its arguments, if any. */ 7397 7398 static boolean 7399 common_op_match_null_string_p (p, end, reg_info) 7400 US_CHAR_TYPE **p, *end; 7401 register_info_type *reg_info; 7402 { 7403 int mcnt; 7404 boolean ret; 7405 int reg_no; 7406 US_CHAR_TYPE *p1 = *p; 7407 7408 switch ((re_opcode_t) *p1++) 7409 { 7410 case no_op: 7411 case begline: 7412 case endline: 7413 case begbuf: 7414 case endbuf: 7415 case wordbeg: 7416 case wordend: 7417 case wordbound: 7418 case notwordbound: 7419 #ifdef emacs 7420 case before_dot: 7421 case at_dot: 7422 case after_dot: 7423 #endif 7424 break; 7425 7426 case start_memory: 7427 reg_no = *p1; 7428 assert (reg_no > 0 && reg_no <= MAX_REGNUM); 7429 ret = group_match_null_string_p (&p1, end, reg_info); 7430 7431 /* Have to set this here in case we're checking a group which 7432 contains a group and a back reference to it. */ 7433 7434 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE) 7435 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret; 7436 7437 if (!ret) 7438 return false; 7439 break; 7440 7441 /* If this is an optimized succeed_n for zero times, make the jump. */ 7442 case jump: 7443 EXTRACT_NUMBER_AND_INCR (mcnt, p1); 7444 if (mcnt >= 0) 7445 p1 += mcnt; 7446 else 7447 return false; 7448 break; 7449 7450 case succeed_n: 7451 /* Get to the number of times to succeed. */ 7452 p1 += OFFSET_ADDRESS_SIZE; 7453 EXTRACT_NUMBER_AND_INCR (mcnt, p1); 7454 7455 if (mcnt == 0) 7456 { 7457 p1 -= 2 * OFFSET_ADDRESS_SIZE; 7458 EXTRACT_NUMBER_AND_INCR (mcnt, p1); 7459 p1 += mcnt; 7460 } 7461 else 7462 return false; 7463 break; 7464 7465 case duplicate: 7466 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1])) 7467 return false; 7468 break; 7469 7470 case set_number_at: 7471 p1 += 2 * OFFSET_ADDRESS_SIZE; 7472 7473 default: 7474 /* All other opcodes mean we cannot match the empty string. */ 7475 return false; 7476 } 7477 7478 *p = p1; 7479 return true; 7480 } /* common_op_match_null_string_p */ 7481 7482 7483 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN 7484 bytes; nonzero otherwise. */ 7485 7486 static int 7487 bcmp_translate (s1, s2, len, translate) 7488 const CHAR_TYPE *s1, *s2; 7489 register int len; 7490 RE_TRANSLATE_TYPE translate; 7491 { 7492 register const US_CHAR_TYPE *p1 = (const US_CHAR_TYPE *) s1; 7493 register const US_CHAR_TYPE *p2 = (const US_CHAR_TYPE *) s2; 7494 while (len) 7495 { 7496 #ifdef MBS_SUPPORT 7497 if (((*p1<=0xff)?translate[*p1++]:*p1++) 7498 != ((*p2<=0xff)?translate[*p2++]:*p2++)) 7499 return 1; 7500 #else 7501 if (translate[*p1++] != translate[*p2++]) return 1; 7502 #endif /* MBS_SUPPORT */ 7503 len--; 7504 } 7505 return 0; 7506 } 7507 7508 /* Entry points for GNU code. */ 7509 7510 /* re_compile_pattern is the GNU regular expression compiler: it 7511 compiles PATTERN (of length SIZE) and puts the result in BUFP. 7512 Returns 0 if the pattern was valid, otherwise an error string. 7513 7514 Assumes the `allocated' (and perhaps `buffer') and `translate' fields 7515 are set in BUFP on entry. 7516 7517 We call regex_compile to do the actual compilation. */ 7518 7519 const char * 7520 re_compile_pattern (pattern, length, bufp) 7521 const char *pattern; 7522 size_t length; 7523 struct re_pattern_buffer *bufp; 7524 { 7525 reg_errcode_t ret; 7526 7527 /* GNU code is written to assume at least RE_NREGS registers will be set 7528 (and at least one extra will be -1). */ 7529 bufp->regs_allocated = REGS_UNALLOCATED; 7530 7531 /* And GNU code determines whether or not to get register information 7532 by passing null for the REGS argument to re_match, etc., not by 7533 setting no_sub. */ 7534 bufp->no_sub = 0; 7535 7536 /* Match anchors at newline. */ 7537 bufp->newline_anchor = 1; 7538 7539 ret = regex_compile (pattern, length, re_syntax_options, bufp); 7540 7541 if (!ret) 7542 return NULL; 7543 return gettext (re_error_msgid + re_error_msgid_idx[(int) ret]); 7544 } 7545 #ifdef _LIBC 7546 weak_alias (__re_compile_pattern, re_compile_pattern) 7547 #endif 7548 7549 /* Entry points compatible with 4.2 BSD regex library. We don't define 7550 them unless specifically requested. */ 7551 7552 #if defined _REGEX_RE_COMP || defined _LIBC 7553 7554 /* BSD has one and only one pattern buffer. */ 7555 static struct re_pattern_buffer re_comp_buf; 7556 7557 char * 7558 #ifdef _LIBC 7559 /* Make these definitions weak in libc, so POSIX programs can redefine 7560 these names if they don't use our functions, and still use 7561 regcomp/regexec below without link errors. */ 7562 weak_function 7563 #endif 7564 re_comp (s) 7565 const char *s; 7566 { 7567 reg_errcode_t ret; 7568 7569 if (!s) 7570 { 7571 if (!re_comp_buf.buffer) 7572 return gettext ("No previous regular expression"); 7573 return 0; 7574 } 7575 7576 if (!re_comp_buf.buffer) 7577 { 7578 re_comp_buf.buffer = (unsigned char *) malloc (200); 7579 if (re_comp_buf.buffer == NULL) 7580 return (char *) gettext (re_error_msgid 7581 + re_error_msgid_idx[(int) REG_ESPACE]); 7582 re_comp_buf.allocated = 200; 7583 7584 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH); 7585 if (re_comp_buf.fastmap == NULL) 7586 return (char *) gettext (re_error_msgid 7587 + re_error_msgid_idx[(int) REG_ESPACE]); 7588 } 7589 7590 /* Since `re_exec' always passes NULL for the `regs' argument, we 7591 don't need to initialize the pattern buffer fields which affect it. */ 7592 7593 /* Match anchors at newlines. */ 7594 re_comp_buf.newline_anchor = 1; 7595 7596 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf); 7597 7598 if (!ret) 7599 return NULL; 7600 7601 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */ 7602 return (char *) gettext (re_error_msgid + re_error_msgid_idx[(int) ret]); 7603 } 7604 7605 7606 int 7607 #ifdef _LIBC 7608 weak_function 7609 #endif 7610 re_exec (s) 7611 const char *s; 7612 { 7613 const int len = strlen (s); 7614 return 7615 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0); 7616 } 7617 7618 #endif /* _REGEX_RE_COMP */ 7619 7620 /* POSIX.2 functions. Don't define these for Emacs. */ 7621 7622 #ifndef emacs 7623 7624 /* regcomp takes a regular expression as a string and compiles it. 7625 7626 PREG is a regex_t *. We do not expect any fields to be initialized, 7627 since POSIX says we shouldn't. Thus, we set 7628 7629 `buffer' to the compiled pattern; 7630 `used' to the length of the compiled pattern; 7631 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the 7632 REG_EXTENDED bit in CFLAGS is set; otherwise, to 7633 RE_SYNTAX_POSIX_BASIC; 7634 `newline_anchor' to REG_NEWLINE being set in CFLAGS; 7635 `fastmap' to an allocated space for the fastmap; 7636 `fastmap_accurate' to zero; 7637 `re_nsub' to the number of subexpressions in PATTERN. 7638 7639 PATTERN is the address of the pattern string. 7640 7641 CFLAGS is a series of bits which affect compilation. 7642 7643 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we 7644 use POSIX basic syntax. 7645 7646 If REG_NEWLINE is set, then . and [^...] don't match newline. 7647 Also, regexec will try a match beginning after every newline. 7648 7649 If REG_ICASE is set, then we considers upper- and lowercase 7650 versions of letters to be equivalent when matching. 7651 7652 If REG_NOSUB is set, then when PREG is passed to regexec, that 7653 routine will report only success or failure, and nothing about the 7654 registers. 7655 7656 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for 7657 the return codes and their meanings.) */ 7658 7659 int 7660 regcomp (preg, pattern, cflags) 7661 regex_t *preg; 7662 const char *pattern; 7663 int cflags; 7664 { 7665 reg_errcode_t ret; 7666 reg_syntax_t syntax 7667 = (cflags & REG_EXTENDED) ? 7668 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC; 7669 7670 /* regex_compile will allocate the space for the compiled pattern. */ 7671 preg->buffer = 0; 7672 preg->allocated = 0; 7673 preg->used = 0; 7674 7675 /* Try to allocate space for the fastmap. */ 7676 preg->fastmap = (char *) malloc (1 << BYTEWIDTH); 7677 7678 if (cflags & REG_ICASE) 7679 { 7680 unsigned i; 7681 7682 preg->translate 7683 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE 7684 * sizeof (*(RE_TRANSLATE_TYPE)0)); 7685 if (preg->translate == NULL) 7686 return (int) REG_ESPACE; 7687 7688 /* Map uppercase characters to corresponding lowercase ones. */ 7689 for (i = 0; i < CHAR_SET_SIZE; i++) 7690 preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i; 7691 } 7692 else 7693 preg->translate = NULL; 7694 7695 /* If REG_NEWLINE is set, newlines are treated differently. */ 7696 if (cflags & REG_NEWLINE) 7697 { /* REG_NEWLINE implies neither . nor [^...] match newline. */ 7698 syntax &= ~RE_DOT_NEWLINE; 7699 syntax |= RE_HAT_LISTS_NOT_NEWLINE; 7700 /* It also changes the matching behavior. */ 7701 preg->newline_anchor = 1; 7702 } 7703 else 7704 preg->newline_anchor = 0; 7705 7706 preg->no_sub = !!(cflags & REG_NOSUB); 7707 7708 /* POSIX says a null character in the pattern terminates it, so we 7709 can use strlen here in compiling the pattern. */ 7710 ret = regex_compile (pattern, strlen (pattern), syntax, preg); 7711 7712 /* POSIX doesn't distinguish between an unmatched open-group and an 7713 unmatched close-group: both are REG_EPAREN. */ 7714 if (ret == REG_ERPAREN) ret = REG_EPAREN; 7715 7716 if (ret == REG_NOERROR && preg->fastmap) 7717 { 7718 /* Compute the fastmap now, since regexec cannot modify the pattern 7719 buffer. */ 7720 if (re_compile_fastmap (preg) == -2) 7721 { 7722 /* Some error occurred while computing the fastmap, just forget 7723 about it. */ 7724 free (preg->fastmap); 7725 preg->fastmap = NULL; 7726 } 7727 } 7728 7729 return (int) ret; 7730 } 7731 #ifdef _LIBC 7732 weak_alias (__regcomp, regcomp) 7733 #endif 7734 7735 7736 /* regexec searches for a given pattern, specified by PREG, in the 7737 string STRING. 7738 7739 If NMATCH is zero or REG_NOSUB was set in the cflags argument to 7740 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at 7741 least NMATCH elements, and we set them to the offsets of the 7742 corresponding matched substrings. 7743 7744 EFLAGS specifies `execution flags' which affect matching: if 7745 REG_NOTBOL is set, then ^ does not match at the beginning of the 7746 string; if REG_NOTEOL is set, then $ does not match at the end. 7747 7748 We return 0 if we find a match and REG_NOMATCH if not. */ 7749 7750 int 7751 regexec (preg, string, nmatch, pmatch, eflags) 7752 const regex_t *preg; 7753 const char *string; 7754 size_t nmatch; 7755 regmatch_t pmatch[]; 7756 int eflags; 7757 { 7758 int ret; 7759 struct re_registers regs; 7760 regex_t private_preg; 7761 int len = strlen (string); 7762 boolean want_reg_info = !preg->no_sub && nmatch > 0; 7763 7764 private_preg = *preg; 7765 7766 private_preg.not_bol = !!(eflags & REG_NOTBOL); 7767 private_preg.not_eol = !!(eflags & REG_NOTEOL); 7768 7769 /* The user has told us exactly how many registers to return 7770 information about, via `nmatch'. We have to pass that on to the 7771 matching routines. */ 7772 private_preg.regs_allocated = REGS_FIXED; 7773 7774 if (want_reg_info) 7775 { 7776 regs.num_regs = nmatch; 7777 regs.start = TALLOC (nmatch * 2, regoff_t); 7778 if (regs.start == NULL) 7779 return (int) REG_NOMATCH; 7780 regs.end = regs.start + nmatch; 7781 } 7782 7783 /* Perform the searching operation. */ 7784 ret = re_search (&private_preg, string, len, 7785 /* start: */ 0, /* range: */ len, 7786 want_reg_info ? ®s : (struct re_registers *) 0); 7787 7788 /* Copy the register information to the POSIX structure. */ 7789 if (want_reg_info) 7790 { 7791 if (ret >= 0) 7792 { 7793 unsigned r; 7794 7795 for (r = 0; r < nmatch; r++) 7796 { 7797 pmatch[r].rm_so = regs.start[r]; 7798 pmatch[r].rm_eo = regs.end[r]; 7799 } 7800 } 7801 7802 /* If we needed the temporary register info, free the space now. */ 7803 free (regs.start); 7804 } 7805 7806 /* We want zero return to mean success, unlike `re_search'. */ 7807 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH; 7808 } 7809 #ifdef _LIBC 7810 weak_alias (__regexec, regexec) 7811 #endif 7812 7813 7814 /* Returns a message corresponding to an error code, ERRCODE, returned 7815 from either regcomp or regexec. We don't use PREG here. */ 7816 7817 size_t 7818 regerror (errcode, preg, errbuf, errbuf_size) 7819 int errcode; 7820 const regex_t *preg; 7821 char *errbuf; 7822 size_t errbuf_size; 7823 { 7824 const char *msg; 7825 size_t msg_size; 7826 7827 if (errcode < 0 7828 || errcode >= (int) (sizeof (re_error_msgid_idx) 7829 / sizeof (re_error_msgid_idx[0]))) 7830 /* Only error codes returned by the rest of the code should be passed 7831 to this routine. If we are given anything else, or if other regex 7832 code generates an invalid error code, then the program has a bug. 7833 Dump core so we can fix it. */ 7834 abort (); 7835 7836 msg = gettext (re_error_msgid + re_error_msgid_idx[errcode]); 7837 7838 msg_size = strlen (msg) + 1; /* Includes the null. */ 7839 7840 if (errbuf_size != 0) 7841 { 7842 if (msg_size > errbuf_size) 7843 { 7844 #if defined HAVE_MEMPCPY || defined _LIBC 7845 *((char *) __mempcpy (errbuf, msg, errbuf_size - 1)) = '\0'; 7846 #else 7847 memcpy (errbuf, msg, errbuf_size - 1); 7848 errbuf[errbuf_size - 1] = 0; 7849 #endif 7850 } 7851 else 7852 memcpy (errbuf, msg, msg_size); 7853 } 7854 7855 return msg_size; 7856 } 7857 #ifdef _LIBC 7858 weak_alias (__regerror, regerror) 7859 #endif 7860 7861 7862 /* Free dynamically allocated space used by PREG. */ 7863 7864 void 7865 regfree (preg) 7866 regex_t *preg; 7867 { 7868 if (preg->buffer != NULL) 7869 free (preg->buffer); 7870 preg->buffer = NULL; 7871 7872 preg->allocated = 0; 7873 preg->used = 0; 7874 7875 if (preg->fastmap != NULL) 7876 free (preg->fastmap); 7877 preg->fastmap = NULL; 7878 preg->fastmap_accurate = 0; 7879 7880 if (preg->translate != NULL) 7881 free (preg->translate); 7882 preg->translate = NULL; 7883 } 7884 #ifdef _LIBC 7885 weak_alias (__regfree, regfree) 7886 #endif 7887 7888 #endif /* not emacs */ 7889