xref: /haiku/src/system/libroot/posix/glibc/regex/regex.c (revision 1214ef1b2100f2b3299fc9d8d6142e46f70a4c3f)
1 /* Extended regular expression matching and search library,
2    version 0.12.
3    (Implements POSIX draft P1003.2/D11.2, except for some of the
4    internationalization features.)
5    Copyright (C) 1993-1999, 2000, 2001 Free Software Foundation, Inc.
6 
7    The GNU C Library is free software; you can redistribute it and/or
8    modify it under the terms of the GNU Library General Public License as
9    published by the Free Software Foundation; either version 2 of the
10    License, or (at your option) any later version.
11 
12    The GNU C Library is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15    Library General Public License for more details.
16 
17    You should have received a copy of the GNU Library General Public
18    License along with the GNU C Library; see the file COPYING.LIB.  If not,
19    write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20    Boston, MA 02111-1307, USA.  */
21 
22 /* AIX requires this to be the first thing in the file. */
23 #if defined _AIX && !defined REGEX_MALLOC
24   #pragma alloca
25 #endif
26 
27 #undef	_GNU_SOURCE
28 #define _GNU_SOURCE
29 
30 #ifdef HAVE_CONFIG_H
31 # include <config.h>
32 #endif
33 
34 #ifndef PARAMS
35 # if defined __GNUC__ || (defined __STDC__ && __STDC__)
36 #  define PARAMS(args) args
37 # else
38 #  define PARAMS(args) ()
39 # endif  /* GCC.  */
40 #endif  /* Not PARAMS.  */
41 
42 #if defined STDC_HEADERS && !defined emacs
43 # include <stddef.h>
44 #else
45 /* We need this for `regex.h', and perhaps for the Emacs include files.  */
46 # include <sys/types.h>
47 #endif
48 
49 #define WIDE_CHAR_SUPPORT (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC)
50 
51 /* For platform which support the ISO C amendement 1 functionality we
52    support user defined character classes.  */
53 #if defined _LIBC || WIDE_CHAR_SUPPORT
54 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>.  */
55 # include <wchar.h>
56 # include <wctype.h>
57 #endif
58 
59 /* This is for multi byte string support.  */
60 #ifdef MBS_SUPPORT
61 # define CHAR_TYPE wchar_t
62 # define US_CHAR_TYPE wchar_t/* unsigned character type */
63 # define COMPILED_BUFFER_VAR wc_buffer
64 # define OFFSET_ADDRESS_SIZE 1 /* the size which STORE_NUMBER macro use */
65 # define CHAR_CLASS_SIZE ((__alignof__(wctype_t)+sizeof(wctype_t))/sizeof(CHAR_TYPE)+1)
66 # define PUT_CHAR(c) \
67   do {									      \
68     if (MB_CUR_MAX == 1)						      \
69       putchar (c);							      \
70     else								      \
71       printf ("%C", (wint_t) c); /* Should we use wide stream??  */	      \
72   } while (0)
73 # define TRUE 1
74 # define FALSE 0
75 #else
76 # define CHAR_TYPE char
77 # define US_CHAR_TYPE unsigned char /* unsigned character type */
78 # define COMPILED_BUFFER_VAR bufp->buffer
79 # define OFFSET_ADDRESS_SIZE 2
80 # define PUT_CHAR(c) putchar (c)
81 #endif /* MBS_SUPPORT */
82 
83 #ifdef _LIBC
84 /* We have to keep the namespace clean.  */
85 # define regfree(preg) __regfree (preg)
86 # define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
87 # define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
88 # define regerror(errcode, preg, errbuf, errbuf_size) \
89 	__regerror(errcode, preg, errbuf, errbuf_size)
90 # define re_set_registers(bu, re, nu, st, en) \
91 	__re_set_registers (bu, re, nu, st, en)
92 # define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
93 	__re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
94 # define re_match(bufp, string, size, pos, regs) \
95 	__re_match (bufp, string, size, pos, regs)
96 # define re_search(bufp, string, size, startpos, range, regs) \
97 	__re_search (bufp, string, size, startpos, range, regs)
98 # define re_compile_pattern(pattern, length, bufp) \
99 	__re_compile_pattern (pattern, length, bufp)
100 # define re_set_syntax(syntax) __re_set_syntax (syntax)
101 # define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
102 	__re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
103 # define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
104 
105 # define btowc __btowc
106 
107 /* We are also using some library internals.  */
108 # include <locale/localeinfo.h>
109 # include <locale/elem-hash.h>
110 # include <langinfo.h>
111 # include <locale/coll-lookup.h>
112 #endif
113 
114 /* This is for other GNU distributions with internationalized messages.  */
115 #if HAVE_LIBINTL_H || defined _LIBC
116 # include <libintl.h>
117 # ifdef _LIBC
118 #  undef gettext
119 #  define gettext(msgid) __dcgettext ("libc", msgid, LC_MESSAGES)
120 # endif
121 #else
122 # define gettext(msgid) (msgid)
123 #endif
124 
125 #ifndef gettext_noop
126 /* This define is so xgettext can find the internationalizable
127    strings.  */
128 # define gettext_noop(String) String
129 #endif
130 
131 /* The `emacs' switch turns on certain matching commands
132    that make sense only in Emacs. */
133 #ifdef emacs
134 
135 # include "lisp.h"
136 # include "buffer.h"
137 # include "syntax.h"
138 
139 #else  /* not emacs */
140 
141 /* If we are not linking with Emacs proper,
142    we can't use the relocating allocator
143    even if config.h says that we can.  */
144 # undef REL_ALLOC
145 
146 # if defined STDC_HEADERS || defined _LIBC
147 #  include <stdlib.h>
148 # else
149 char *malloc ();
150 char *realloc ();
151 # endif
152 
153 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
154    If nothing else has been done, use the method below.  */
155 # ifdef INHIBIT_STRING_HEADER
156 #  if !(defined HAVE_BZERO && defined HAVE_BCOPY)
157 #   if !defined bzero && !defined bcopy
158 #    undef INHIBIT_STRING_HEADER
159 #   endif
160 #  endif
161 # endif
162 
163 /* This is the normal way of making sure we have a bcopy and a bzero.
164    This is used in most programs--a few other programs avoid this
165    by defining INHIBIT_STRING_HEADER.  */
166 # ifndef INHIBIT_STRING_HEADER
167 #  if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
168 #   include <string.h>
169 #   ifndef bzero
170 #    ifndef _LIBC
171 #     define bzero(s, n)	(memset (s, '\0', n), (s))
172 #    else
173 #     define bzero(s, n)	__bzero (s, n)
174 #    endif
175 #   endif
176 #  else
177 #   include <strings.h>
178 #   ifndef memcmp
179 #    define memcmp(s1, s2, n)	bcmp (s1, s2, n)
180 #   endif
181 #   ifndef memcpy
182 #    define memcpy(d, s, n)	(bcopy (s, d, n), (d))
183 #   endif
184 #  endif
185 # endif
186 
187 /* Define the syntax stuff for \<, \>, etc.  */
188 
189 /* This must be nonzero for the wordchar and notwordchar pattern
190    commands in re_match_2.  */
191 # ifndef Sword
192 #  define Sword 1
193 # endif
194 
195 # ifdef SWITCH_ENUM_BUG
196 #  define SWITCH_ENUM_CAST(x) ((int)(x))
197 # else
198 #  define SWITCH_ENUM_CAST(x) (x)
199 # endif
200 
201 #endif /* not emacs */
202 
203 #if defined _LIBC || HAVE_LIMITS_H
204 # include <limits.h>
205 #endif
206 
207 #ifndef MB_LEN_MAX
208 # define MB_LEN_MAX 1
209 #endif
210 
211 /* Get the interface, including the syntax bits.  */
212 #include <regex.h>
213 
214 /* isalpha etc. are used for the character classes.  */
215 #include <ctype.h>
216 
217 /* Jim Meyering writes:
218 
219    "... Some ctype macros are valid only for character codes that
220    isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
221    using /bin/cc or gcc but without giving an ansi option).  So, all
222    ctype uses should be through macros like ISPRINT...  If
223    STDC_HEADERS is defined, then autoconf has verified that the ctype
224    macros don't need to be guarded with references to isascii. ...
225    Defining isascii to 1 should let any compiler worth its salt
226    eliminate the && through constant folding."
227    Solaris defines some of these symbols so we must undefine them first.  */
228 
229 #undef ISASCII
230 #if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
231 # define ISASCII(c) 1
232 #else
233 # define ISASCII(c) isascii(c)
234 #endif
235 
236 #ifdef isblank
237 # define ISBLANK(c) (ISASCII (c) && isblank (c))
238 #else
239 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
240 #endif
241 #ifdef isgraph
242 # define ISGRAPH(c) (ISASCII (c) && isgraph (c))
243 #else
244 # define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
245 #endif
246 
247 #undef ISPRINT
248 #define ISPRINT(c) (ISASCII (c) && isprint (c))
249 #define ISDIGIT(c) (ISASCII (c) && isdigit (c))
250 #define ISALNUM(c) (ISASCII (c) && isalnum (c))
251 #define ISALPHA(c) (ISASCII (c) && isalpha (c))
252 #define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
253 #define ISLOWER(c) (ISASCII (c) && islower (c))
254 #define ISPUNCT(c) (ISASCII (c) && ispunct (c))
255 #define ISSPACE(c) (ISASCII (c) && isspace (c))
256 #define ISUPPER(c) (ISASCII (c) && isupper (c))
257 #define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
258 
259 #ifdef _tolower
260 # define TOLOWER(c) _tolower(c)
261 #else
262 # define TOLOWER(c) tolower(c)
263 #endif
264 
265 #ifndef NULL
266 # define NULL (void *)0
267 #endif
268 
269 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
270    since ours (we hope) works properly with all combinations of
271    machines, compilers, `char' and `unsigned char' argument types.
272    (Per Bothner suggested the basic approach.)  */
273 #undef SIGN_EXTEND_CHAR
274 #if __STDC__
275 # define SIGN_EXTEND_CHAR(c) ((signed char) (c))
276 #else  /* not __STDC__ */
277 /* As in Harbison and Steele.  */
278 # define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
279 #endif
280 
281 #ifndef emacs
282 /* How many characters in the character set.  */
283 # define CHAR_SET_SIZE 256
284 
285 # ifdef SYNTAX_TABLE
286 
287 extern char *re_syntax_table;
288 
289 # else /* not SYNTAX_TABLE */
290 
291 static char re_syntax_table[CHAR_SET_SIZE];
292 
293 static void init_syntax_once PARAMS ((void));
294 
295 static void
296 init_syntax_once ()
297 {
298    register int c;
299    static int done = 0;
300 
301    if (done)
302      return;
303    bzero (re_syntax_table, sizeof re_syntax_table);
304 
305    for (c = 0; c < CHAR_SET_SIZE; ++c)
306      if (ISALNUM (c))
307 	re_syntax_table[c] = Sword;
308 
309    re_syntax_table['_'] = Sword;
310 
311    done = 1;
312 }
313 
314 # endif /* not SYNTAX_TABLE */
315 
316 # define SYNTAX(c) re_syntax_table[(unsigned char) (c)]
317 
318 #endif /* emacs */
319 
320 /* Should we use malloc or alloca?  If REGEX_MALLOC is not defined, we
321    use `alloca' instead of `malloc'.  This is because using malloc in
322    re_search* or re_match* could cause memory leaks when C-g is used in
323    Emacs; also, malloc is slower and causes storage fragmentation.  On
324    the other hand, malloc is more portable, and easier to debug.
325 
326    Because we sometimes use alloca, some routines have to be macros,
327    not functions -- `alloca'-allocated space disappears at the end of the
328    function it is called in.  */
329 
330 #ifdef REGEX_MALLOC
331 
332 # define REGEX_ALLOCATE malloc
333 # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
334 # define REGEX_FREE free
335 
336 #else /* not REGEX_MALLOC  */
337 
338 /* Emacs already defines alloca, sometimes.  */
339 # ifndef alloca
340 
341 /* Make alloca work the best possible way.  */
342 #  ifdef __GNUC__
343 #   define alloca __builtin_alloca
344 #  else /* not __GNUC__ */
345 #   if HAVE_ALLOCA_H
346 #    include <alloca.h>
347 #   endif /* HAVE_ALLOCA_H */
348 #  endif /* not __GNUC__ */
349 
350 # endif /* not alloca */
351 
352 # define REGEX_ALLOCATE alloca
353 
354 /* Assumes a `char *destination' variable.  */
355 # define REGEX_REALLOCATE(source, osize, nsize)				\
356   (destination = (char *) alloca (nsize),				\
357    memcpy (destination, source, osize))
358 
359 /* No need to do anything to free, after alloca.  */
360 # define REGEX_FREE(arg) ((void)0) /* Do nothing!  But inhibit gcc warning.  */
361 
362 #endif /* not REGEX_MALLOC */
363 
364 /* Define how to allocate the failure stack.  */
365 
366 #if defined REL_ALLOC && defined REGEX_MALLOC
367 
368 # define REGEX_ALLOCATE_STACK(size)				\
369   r_alloc (&failure_stack_ptr, (size))
370 # define REGEX_REALLOCATE_STACK(source, osize, nsize)		\
371   r_re_alloc (&failure_stack_ptr, (nsize))
372 # define REGEX_FREE_STACK(ptr)					\
373   r_alloc_free (&failure_stack_ptr)
374 
375 #else /* not using relocating allocator */
376 
377 # ifdef REGEX_MALLOC
378 
379 #  define REGEX_ALLOCATE_STACK malloc
380 #  define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
381 #  define REGEX_FREE_STACK free
382 
383 # else /* not REGEX_MALLOC */
384 
385 #  define REGEX_ALLOCATE_STACK alloca
386 
387 #  define REGEX_REALLOCATE_STACK(source, osize, nsize)			\
388    REGEX_REALLOCATE (source, osize, nsize)
389 /* No need to explicitly free anything.  */
390 #  define REGEX_FREE_STACK(arg)
391 
392 # endif /* not REGEX_MALLOC */
393 #endif /* not using relocating allocator */
394 
395 
396 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
397    `string1' or just past its end.  This works if PTR is NULL, which is
398    a good thing.  */
399 #define FIRST_STRING_P(ptr) 					\
400   (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
401 
402 /* (Re)Allocate N items of type T using malloc, or fail.  */
403 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
404 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
405 #define RETALLOC_IF(addr, n, t) \
406   if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
407 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
408 
409 #define BYTEWIDTH 8 /* In bits.  */
410 
411 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
412 
413 #undef MAX
414 #undef MIN
415 #define MAX(a, b) ((a) > (b) ? (a) : (b))
416 #define MIN(a, b) ((a) < (b) ? (a) : (b))
417 
418 typedef char boolean;
419 #define false 0
420 #define true 1
421 
422 static int re_match_2_internal PARAMS ((struct re_pattern_buffer *bufp,
423 					const char *string1, int size1,
424 					const char *string2, int size2,
425 					int pos,
426 					struct re_registers *regs,
427 					int stop));
428 
429 /* These are the command codes that appear in compiled regular
430    expressions.  Some opcodes are followed by argument bytes.  A
431    command code can specify any interpretation whatsoever for its
432    arguments.  Zero bytes may appear in the compiled regular expression.  */
433 
434 typedef enum
435 {
436   no_op = 0,
437 
438   /* Succeed right away--no more backtracking.  */
439   succeed,
440 
441         /* Followed by one byte giving n, then by n literal bytes.  */
442   exactn,
443 
444 #ifdef MBS_SUPPORT
445 	/* Same as exactn, but contains binary data.  */
446   exactn_bin,
447 #endif
448 
449         /* Matches any (more or less) character.  */
450   anychar,
451 
452         /* Matches any one char belonging to specified set.  First
453            following byte is number of bitmap bytes.  Then come bytes
454            for a bitmap saying which chars are in.  Bits in each byte
455            are ordered low-bit-first.  A character is in the set if its
456            bit is 1.  A character too large to have a bit in the map is
457            automatically not in the set.  */
458         /* ifdef MBS_SUPPORT, following element is length of character
459 	   classes, length of collating symbols, length of equivalence
460 	   classes, length of character ranges, and length of characters.
461 	   Next, character class element, collating symbols elements,
462 	   equivalence class elements, range elements, and character
463 	   elements follow.
464 	   See regex_compile function.  */
465   charset,
466 
467         /* Same parameters as charset, but match any character that is
468            not one of those specified.  */
469   charset_not,
470 
471         /* Start remembering the text that is matched, for storing in a
472            register.  Followed by one byte with the register number, in
473            the range 0 to one less than the pattern buffer's re_nsub
474            field.  Then followed by one byte with the number of groups
475            inner to this one.  (This last has to be part of the
476            start_memory only because we need it in the on_failure_jump
477            of re_match_2.)  */
478   start_memory,
479 
480         /* Stop remembering the text that is matched and store it in a
481            memory register.  Followed by one byte with the register
482            number, in the range 0 to one less than `re_nsub' in the
483            pattern buffer, and one byte with the number of inner groups,
484            just like `start_memory'.  (We need the number of inner
485            groups here because we don't have any easy way of finding the
486            corresponding start_memory when we're at a stop_memory.)  */
487   stop_memory,
488 
489         /* Match a duplicate of something remembered. Followed by one
490            byte containing the register number.  */
491   duplicate,
492 
493         /* Fail unless at beginning of line.  */
494   begline,
495 
496         /* Fail unless at end of line.  */
497   endline,
498 
499         /* Succeeds if at beginning of buffer (if emacs) or at beginning
500            of string to be matched (if not).  */
501   begbuf,
502 
503         /* Analogously, for end of buffer/string.  */
504   endbuf,
505 
506         /* Followed by two byte relative address to which to jump.  */
507   jump,
508 
509 	/* Same as jump, but marks the end of an alternative.  */
510   jump_past_alt,
511 
512         /* Followed by two-byte relative address of place to resume at
513            in case of failure.  */
514         /* ifdef MBS_SUPPORT, the size of address is 1.  */
515   on_failure_jump,
516 
517         /* Like on_failure_jump, but pushes a placeholder instead of the
518            current string position when executed.  */
519   on_failure_keep_string_jump,
520 
521         /* Throw away latest failure point and then jump to following
522            two-byte relative address.  */
523         /* ifdef MBS_SUPPORT, the size of address is 1.  */
524   pop_failure_jump,
525 
526         /* Change to pop_failure_jump if know won't have to backtrack to
527            match; otherwise change to jump.  This is used to jump
528            back to the beginning of a repeat.  If what follows this jump
529            clearly won't match what the repeat does, such that we can be
530            sure that there is no use backtracking out of repetitions
531            already matched, then we change it to a pop_failure_jump.
532            Followed by two-byte address.  */
533         /* ifdef MBS_SUPPORT, the size of address is 1.  */
534   maybe_pop_jump,
535 
536         /* Jump to following two-byte address, and push a dummy failure
537            point. This failure point will be thrown away if an attempt
538            is made to use it for a failure.  A `+' construct makes this
539            before the first repeat.  Also used as an intermediary kind
540            of jump when compiling an alternative.  */
541         /* ifdef MBS_SUPPORT, the size of address is 1.  */
542   dummy_failure_jump,
543 
544 	/* Push a dummy failure point and continue.  Used at the end of
545 	   alternatives.  */
546   push_dummy_failure,
547 
548         /* Followed by two-byte relative address and two-byte number n.
549            After matching N times, jump to the address upon failure.  */
550         /* ifdef MBS_SUPPORT, the size of address is 1.  */
551   succeed_n,
552 
553         /* Followed by two-byte relative address, and two-byte number n.
554            Jump to the address N times, then fail.  */
555         /* ifdef MBS_SUPPORT, the size of address is 1.  */
556   jump_n,
557 
558         /* Set the following two-byte relative address to the
559            subsequent two-byte number.  The address *includes* the two
560            bytes of number.  */
561         /* ifdef MBS_SUPPORT, the size of address is 1.  */
562   set_number_at,
563 
564   wordchar,	/* Matches any word-constituent character.  */
565   notwordchar,	/* Matches any char that is not a word-constituent.  */
566 
567   wordbeg,	/* Succeeds if at word beginning.  */
568   wordend,	/* Succeeds if at word end.  */
569 
570   wordbound,	/* Succeeds if at a word boundary.  */
571   notwordbound	/* Succeeds if not at a word boundary.  */
572 
573 #ifdef emacs
574   ,before_dot,	/* Succeeds if before point.  */
575   at_dot,	/* Succeeds if at point.  */
576   after_dot,	/* Succeeds if after point.  */
577 
578 	/* Matches any character whose syntax is specified.  Followed by
579            a byte which contains a syntax code, e.g., Sword.  */
580   syntaxspec,
581 
582 	/* Matches any character whose syntax is not that specified.  */
583   notsyntaxspec
584 #endif /* emacs */
585 } re_opcode_t;
586 
587 /* Common operations on the compiled pattern.  */
588 
589 /* Store NUMBER in two contiguous bytes starting at DESTINATION.  */
590 /* ifdef MBS_SUPPORT, we store NUMBER in 1 element.  */
591 
592 #ifdef MBS_SUPPORT
593 # define STORE_NUMBER(destination, number)				\
594   do {									\
595     *(destination) = (US_CHAR_TYPE)(number);				\
596   } while (0)
597 #else
598 # define STORE_NUMBER(destination, number)				\
599   do {									\
600     (destination)[0] = (number) & 0377;					\
601     (destination)[1] = (number) >> 8;					\
602   } while (0)
603 #endif /* MBS_SUPPORT */
604 
605 /* Same as STORE_NUMBER, except increment DESTINATION to
606    the byte after where the number is stored.  Therefore, DESTINATION
607    must be an lvalue.  */
608 /* ifdef MBS_SUPPORT, we store NUMBER in 1 element.  */
609 
610 #define STORE_NUMBER_AND_INCR(destination, number)			\
611   do {									\
612     STORE_NUMBER (destination, number);					\
613     (destination) += OFFSET_ADDRESS_SIZE;				\
614   } while (0)
615 
616 /* Put into DESTINATION a number stored in two contiguous bytes starting
617    at SOURCE.  */
618 /* ifdef MBS_SUPPORT, we store NUMBER in 1 element.  */
619 
620 #ifdef MBS_SUPPORT
621 # define EXTRACT_NUMBER(destination, source)				\
622   do {									\
623     (destination) = *(source);						\
624   } while (0)
625 #else
626 # define EXTRACT_NUMBER(destination, source)				\
627   do {									\
628     (destination) = *(source) & 0377;					\
629     (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8;		\
630   } while (0)
631 #endif
632 
633 #ifdef DEBUG
634 static void extract_number _RE_ARGS ((int *dest, US_CHAR_TYPE *source));
635 static void
636 extract_number (dest, source)
637     int *dest;
638     US_CHAR_TYPE *source;
639 {
640 #ifdef MBS_SUPPORT
641   *dest = *source;
642 #else
643   int temp = SIGN_EXTEND_CHAR (*(source + 1));
644   *dest = *source & 0377;
645   *dest += temp << 8;
646 #endif
647 }
648 
649 # ifndef EXTRACT_MACROS /* To debug the macros.  */
650 #  undef EXTRACT_NUMBER
651 #  define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
652 # endif /* not EXTRACT_MACROS */
653 
654 #endif /* DEBUG */
655 
656 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
657    SOURCE must be an lvalue.  */
658 
659 #define EXTRACT_NUMBER_AND_INCR(destination, source)			\
660   do {									\
661     EXTRACT_NUMBER (destination, source);				\
662     (source) += OFFSET_ADDRESS_SIZE; 					\
663   } while (0)
664 
665 #ifdef DEBUG
666 static void extract_number_and_incr _RE_ARGS ((int *destination,
667 					       US_CHAR_TYPE **source));
668 static void
669 extract_number_and_incr (destination, source)
670     int *destination;
671     US_CHAR_TYPE **source;
672 {
673   extract_number (destination, *source);
674   *source += OFFSET_ADDRESS_SIZE;
675 }
676 
677 # ifndef EXTRACT_MACROS
678 #  undef EXTRACT_NUMBER_AND_INCR
679 #  define EXTRACT_NUMBER_AND_INCR(dest, src) \
680   extract_number_and_incr (&dest, &src)
681 # endif /* not EXTRACT_MACROS */
682 
683 #endif /* DEBUG */
684 
685 /* If DEBUG is defined, Regex prints many voluminous messages about what
686    it is doing (if the variable `debug' is nonzero).  If linked with the
687    main program in `iregex.c', you can enter patterns and strings
688    interactively.  And if linked with the main program in `main.c' and
689    the other test files, you can run the already-written tests.  */
690 
691 #ifdef DEBUG
692 
693 /* We use standard I/O for debugging.  */
694 # include <stdio.h>
695 
696 /* It is useful to test things that ``must'' be true when debugging.  */
697 # include <assert.h>
698 
699 static int debug;
700 
701 # define DEBUG_STATEMENT(e) e
702 # define DEBUG_PRINT1(x) if (debug) printf (x)
703 # define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
704 # define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
705 # define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
706 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) 				\
707   if (debug) print_partial_compiled_pattern (s, e)
708 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)			\
709   if (debug) print_double_string (w, s1, sz1, s2, sz2)
710 
711 
712 /* Print the fastmap in human-readable form.  */
713 
714 void
715 print_fastmap (fastmap)
716     char *fastmap;
717 {
718   unsigned was_a_range = 0;
719   unsigned i = 0;
720 
721   while (i < (1 << BYTEWIDTH))
722     {
723       if (fastmap[i++])
724 	{
725 	  was_a_range = 0;
726           putchar (i - 1);
727           while (i < (1 << BYTEWIDTH)  &&  fastmap[i])
728             {
729               was_a_range = 1;
730               i++;
731             }
732 	  if (was_a_range)
733             {
734               printf ("-");
735               putchar (i - 1);
736             }
737         }
738     }
739   putchar ('\n');
740 }
741 
742 
743 /* Print a compiled pattern string in human-readable form, starting at
744    the START pointer into it and ending just before the pointer END.  */
745 
746 void
747 print_partial_compiled_pattern (start, end)
748     US_CHAR_TYPE *start;
749     US_CHAR_TYPE *end;
750 {
751   int mcnt, mcnt2;
752   US_CHAR_TYPE *p1;
753   US_CHAR_TYPE *p = start;
754   US_CHAR_TYPE *pend = end;
755 
756   if (start == NULL)
757     {
758       printf ("(null)\n");
759       return;
760     }
761 
762   /* Loop over pattern commands.  */
763   while (p < pend)
764     {
765 #ifdef _LIBC
766       printf ("%td:\t", p - start);
767 #else
768       printf ("%ld:\t", (long int) (p - start));
769 #endif
770 
771       switch ((re_opcode_t) *p++)
772 	{
773         case no_op:
774           printf ("/no_op");
775           break;
776 
777 	case exactn:
778 	  mcnt = *p++;
779           printf ("/exactn/%d", mcnt);
780           do
781 	    {
782               putchar ('/');
783 	      PUT_CHAR (*p++);
784             }
785           while (--mcnt);
786           break;
787 
788 #ifdef MBS_SUPPORT
789 	case exactn_bin:
790 	  mcnt = *p++;
791 	  printf ("/exactn_bin/%d", mcnt);
792           do
793 	    {
794 	      printf("/%lx", (long int) *p++);
795             }
796           while (--mcnt);
797           break;
798 #endif /* MBS_SUPPORT */
799 
800 	case start_memory:
801           mcnt = *p++;
802           printf ("/start_memory/%d/%ld", mcnt, (long int) *p++);
803           break;
804 
805 	case stop_memory:
806           mcnt = *p++;
807 	  printf ("/stop_memory/%d/%ld", mcnt, (long int) *p++);
808           break;
809 
810 	case duplicate:
811 	  printf ("/duplicate/%ld", (long int) *p++);
812 	  break;
813 
814 	case anychar:
815 	  printf ("/anychar");
816 	  break;
817 
818 	case charset:
819         case charset_not:
820           {
821 #ifdef MBS_SUPPORT
822 	    int i, length;
823 	    wchar_t *workp = p;
824 	    printf ("/charset [%s",
825 	            (re_opcode_t) *(workp - 1) == charset_not ? "^" : "");
826 	    p += 5;
827 	    length = *workp++; /* the length of char_classes */
828 	    for (i=0 ; i<length ; i++)
829 	      printf("[:%lx:]", (long int) *p++);
830 	    length = *workp++; /* the length of collating_symbol */
831 	    for (i=0 ; i<length ;)
832 	      {
833 		printf("[.");
834 		while(*p != 0)
835 		  PUT_CHAR((i++,*p++));
836 		i++,p++;
837 		printf(".]");
838 	      }
839 	    length = *workp++; /* the length of equivalence_class */
840 	    for (i=0 ; i<length ;)
841 	      {
842 		printf("[=");
843 		while(*p != 0)
844 		  PUT_CHAR((i++,*p++));
845 		i++,p++;
846 		printf("=]");
847 	      }
848 	    length = *workp++; /* the length of char_range */
849 	    for (i=0 ; i<length ; i++)
850 	      {
851 		wchar_t range_start = *p++;
852 		wchar_t range_end = *p++;
853 		if (MB_CUR_MAX == 1)
854 		  printf("%c-%c", (char) range_start, (char) range_end);
855 		else
856 		  printf("%C-%C", (wint_t) range_start, (wint_t) range_end);
857 	      }
858 	    length = *workp++; /* the length of char */
859 	    for (i=0 ; i<length ; i++)
860 	      if (MB_CUR_MAX == 1)
861 		putchar (*p++);
862 	      else
863 		printf("%C", (wint_t) *p++);
864 	    putchar (']');
865 #else
866             register int c, last = -100;
867 	    register int in_range = 0;
868 
869 	    printf ("/charset [%s",
870 	            (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
871 
872             assert (p + *p < pend);
873 
874             for (c = 0; c < 256; c++)
875 	      if (c / 8 < *p
876 		  && (p[1 + (c/8)] & (1 << (c % 8))))
877 		{
878 		  /* Are we starting a range?  */
879 		  if (last + 1 == c && ! in_range)
880 		    {
881 		      putchar ('-');
882 		      in_range = 1;
883 		    }
884 		  /* Have we broken a range?  */
885 		  else if (last + 1 != c && in_range)
886               {
887 		      putchar (last);
888 		      in_range = 0;
889 		    }
890 
891 		  if (! in_range)
892 		    putchar (c);
893 
894 		  last = c;
895               }
896 
897 	    if (in_range)
898 	      putchar (last);
899 
900 	    putchar (']');
901 
902 	    p += 1 + *p;
903 #endif /* MBS_SUPPORT */
904 	  }
905 	  break;
906 
907 	case begline:
908 	  printf ("/begline");
909           break;
910 
911 	case endline:
912           printf ("/endline");
913           break;
914 
915 	case on_failure_jump:
916           extract_number_and_incr (&mcnt, &p);
917 #ifdef _LIBC
918   	  printf ("/on_failure_jump to %td", p + mcnt - start);
919 #else
920   	  printf ("/on_failure_jump to %ld", (long int) (p + mcnt - start));
921 #endif
922           break;
923 
924 	case on_failure_keep_string_jump:
925           extract_number_and_incr (&mcnt, &p);
926 #ifdef _LIBC
927   	  printf ("/on_failure_keep_string_jump to %td", p + mcnt - start);
928 #else
929   	  printf ("/on_failure_keep_string_jump to %ld",
930 		  (long int) (p + mcnt - start));
931 #endif
932           break;
933 
934 	case dummy_failure_jump:
935           extract_number_and_incr (&mcnt, &p);
936 #ifdef _LIBC
937   	  printf ("/dummy_failure_jump to %td", p + mcnt - start);
938 #else
939   	  printf ("/dummy_failure_jump to %ld", (long int) (p + mcnt - start));
940 #endif
941           break;
942 
943 	case push_dummy_failure:
944           printf ("/push_dummy_failure");
945           break;
946 
947         case maybe_pop_jump:
948           extract_number_and_incr (&mcnt, &p);
949 #ifdef _LIBC
950   	  printf ("/maybe_pop_jump to %td", p + mcnt - start);
951 #else
952   	  printf ("/maybe_pop_jump to %ld", (long int) (p + mcnt - start));
953 #endif
954 	  break;
955 
956         case pop_failure_jump:
957 	  extract_number_and_incr (&mcnt, &p);
958 #ifdef _LIBC
959   	  printf ("/pop_failure_jump to %td", p + mcnt - start);
960 #else
961   	  printf ("/pop_failure_jump to %ld", (long int) (p + mcnt - start));
962 #endif
963 	  break;
964 
965         case jump_past_alt:
966 	  extract_number_and_incr (&mcnt, &p);
967 #ifdef _LIBC
968   	  printf ("/jump_past_alt to %td", p + mcnt - start);
969 #else
970   	  printf ("/jump_past_alt to %ld", (long int) (p + mcnt - start));
971 #endif
972 	  break;
973 
974         case jump:
975 	  extract_number_and_incr (&mcnt, &p);
976 #ifdef _LIBC
977   	  printf ("/jump to %td", p + mcnt - start);
978 #else
979   	  printf ("/jump to %ld", (long int) (p + mcnt - start));
980 #endif
981 	  break;
982 
983         case succeed_n:
984           extract_number_and_incr (&mcnt, &p);
985 	  p1 = p + mcnt;
986           extract_number_and_incr (&mcnt2, &p);
987 #ifdef _LIBC
988 	  printf ("/succeed_n to %td, %d times", p1 - start, mcnt2);
989 #else
990 	  printf ("/succeed_n to %ld, %d times",
991 		  (long int) (p1 - start), mcnt2);
992 #endif
993           break;
994 
995         case jump_n:
996           extract_number_and_incr (&mcnt, &p);
997 	  p1 = p + mcnt;
998           extract_number_and_incr (&mcnt2, &p);
999 	  printf ("/jump_n to %d, %d times", p1 - start, mcnt2);
1000           break;
1001 
1002         case set_number_at:
1003           extract_number_and_incr (&mcnt, &p);
1004 	  p1 = p + mcnt;
1005           extract_number_and_incr (&mcnt2, &p);
1006 #ifdef _LIBC
1007 	  printf ("/set_number_at location %td to %d", p1 - start, mcnt2);
1008 #else
1009 	  printf ("/set_number_at location %ld to %d",
1010 		  (long int) (p1 - start), mcnt2);
1011 #endif
1012           break;
1013 
1014         case wordbound:
1015 	  printf ("/wordbound");
1016 	  break;
1017 
1018 	case notwordbound:
1019 	  printf ("/notwordbound");
1020           break;
1021 
1022 	case wordbeg:
1023 	  printf ("/wordbeg");
1024 	  break;
1025 
1026 	case wordend:
1027 	  printf ("/wordend");
1028 	  break;
1029 
1030 # ifdef emacs
1031 	case before_dot:
1032 	  printf ("/before_dot");
1033           break;
1034 
1035 	case at_dot:
1036 	  printf ("/at_dot");
1037           break;
1038 
1039 	case after_dot:
1040 	  printf ("/after_dot");
1041           break;
1042 
1043 	case syntaxspec:
1044           printf ("/syntaxspec");
1045 	  mcnt = *p++;
1046 	  printf ("/%d", mcnt);
1047           break;
1048 
1049 	case notsyntaxspec:
1050           printf ("/notsyntaxspec");
1051 	  mcnt = *p++;
1052 	  printf ("/%d", mcnt);
1053 	  break;
1054 # endif /* emacs */
1055 
1056 	case wordchar:
1057 	  printf ("/wordchar");
1058           break;
1059 
1060 	case notwordchar:
1061 	  printf ("/notwordchar");
1062           break;
1063 
1064 	case begbuf:
1065 	  printf ("/begbuf");
1066           break;
1067 
1068 	case endbuf:
1069 	  printf ("/endbuf");
1070           break;
1071 
1072         default:
1073           printf ("?%ld", (long int) *(p-1));
1074 	}
1075 
1076       putchar ('\n');
1077     }
1078 
1079 #ifdef _LIBC
1080   printf ("%td:\tend of pattern.\n", p - start);
1081 #else
1082   printf ("%ld:\tend of pattern.\n", (long int) (p - start));
1083 #endif
1084 }
1085 
1086 
1087 void
1088 print_compiled_pattern (bufp)
1089     struct re_pattern_buffer *bufp;
1090 {
1091   US_CHAR_TYPE *buffer = (US_CHAR_TYPE*) bufp->buffer;
1092 
1093   print_partial_compiled_pattern (buffer, buffer
1094 				  + bufp->used / sizeof(US_CHAR_TYPE));
1095   printf ("%ld bytes used/%ld bytes allocated.\n",
1096 	  bufp->used, bufp->allocated);
1097 
1098   if (bufp->fastmap_accurate && bufp->fastmap)
1099     {
1100       printf ("fastmap: ");
1101       print_fastmap (bufp->fastmap);
1102     }
1103 
1104 #ifdef _LIBC
1105   printf ("re_nsub: %Zd\t", bufp->re_nsub);
1106 #else
1107   printf ("re_nsub: %ld\t", (long int) bufp->re_nsub);
1108 #endif
1109   printf ("regs_alloc: %d\t", bufp->regs_allocated);
1110   printf ("can_be_null: %d\t", bufp->can_be_null);
1111   printf ("newline_anchor: %d\n", bufp->newline_anchor);
1112   printf ("no_sub: %d\t", bufp->no_sub);
1113   printf ("not_bol: %d\t", bufp->not_bol);
1114   printf ("not_eol: %d\t", bufp->not_eol);
1115   printf ("syntax: %lx\n", bufp->syntax);
1116   /* Perhaps we should print the translate table?  */
1117 }
1118 
1119 
1120 void
1121 print_double_string (where, string1, size1, string2, size2)
1122     const CHAR_TYPE *where;
1123     const CHAR_TYPE *string1;
1124     const CHAR_TYPE *string2;
1125     int size1;
1126     int size2;
1127 {
1128   int this_char;
1129 
1130   if (where == NULL)
1131     printf ("(null)");
1132   else
1133     {
1134       if (FIRST_STRING_P (where))
1135         {
1136           for (this_char = where - string1; this_char < size1; this_char++)
1137 	    PUT_CHAR (string1[this_char]);
1138 
1139           where = string2;
1140         }
1141 
1142       for (this_char = where - string2; this_char < size2; this_char++)
1143         PUT_CHAR (string2[this_char]);
1144     }
1145 }
1146 
1147 void
1148 printchar (c)
1149      int c;
1150 {
1151   putc (c, stderr);
1152 }
1153 
1154 #else /* not DEBUG */
1155 
1156 # undef assert
1157 # define assert(e)
1158 
1159 # define DEBUG_STATEMENT(e)
1160 # define DEBUG_PRINT1(x)
1161 # define DEBUG_PRINT2(x1, x2)
1162 # define DEBUG_PRINT3(x1, x2, x3)
1163 # define DEBUG_PRINT4(x1, x2, x3, x4)
1164 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1165 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1166 
1167 #endif /* not DEBUG */
1168 
1169 #ifdef MBS_SUPPORT
1170 /* This  convert a multibyte string to a wide character string.
1171    And write their correspondances to offset_buffer(see below)
1172    and write whether each wchar_t is binary data to is_binary.
1173    This assume invalid multibyte sequences as binary data.
1174    We assume offset_buffer and is_binary is already allocated
1175    enough space.  */
1176 
1177 static size_t convert_mbs_to_wcs (CHAR_TYPE *dest, const unsigned char* src,
1178 				  size_t len, int *offset_buffer,
1179 				  char *is_binary);
1180 static size_t
1181 convert_mbs_to_wcs (dest, src, len, offset_buffer, is_binary)
1182      CHAR_TYPE *dest;
1183      const unsigned char* src;
1184      size_t len; /* the length of multibyte string.  */
1185 
1186      /* It hold correspondances between src(char string) and
1187 	dest(wchar_t string) for optimization.
1188 	e.g. src  = "xxxyzz"
1189              dest = {'X', 'Y', 'Z'}
1190 	      (each "xxx", "y" and "zz" represent one multibyte character
1191 	       corresponding to 'X', 'Y' and 'Z'.)
1192 	  offset_buffer = {0, 0+3("xxx"), 0+3+1("y"), 0+3+1+2("zz")}
1193 	  	        = {0, 3, 4, 6}
1194      */
1195      int *offset_buffer;
1196      char *is_binary;
1197 {
1198   wchar_t *pdest = dest;
1199   const unsigned char *psrc = src;
1200   size_t wc_count = 0;
1201 
1202   if (MB_CUR_MAX == 1)
1203     { /* We don't need conversion.  */
1204       for ( ; wc_count < len ; ++wc_count)
1205 	{
1206 	  *pdest++ = *psrc++;
1207 	  is_binary[wc_count] = FALSE;
1208 	  offset_buffer[wc_count] = wc_count;
1209 	}
1210       offset_buffer[wc_count] = wc_count;
1211     }
1212   else
1213     {
1214       /* We need conversion.  */
1215       mbstate_t mbs;
1216       int consumed;
1217       size_t mb_remain = len;
1218       size_t mb_count = 0;
1219 
1220       /* Initialize the conversion state.  */
1221       memset (&mbs, 0, sizeof (mbstate_t));
1222 
1223       offset_buffer[0] = 0;
1224       for( ; mb_remain > 0 ; ++wc_count, ++pdest, mb_remain -= consumed,
1225 	     psrc += consumed)
1226 	{
1227 	  consumed = mbrtowc (pdest, psrc, mb_remain, &mbs);
1228 
1229 	  if (consumed <= 0)
1230 	    /* failed to convert. maybe src contains binary data.
1231 	       So we consume 1 byte manualy.  */
1232 	    {
1233 	      *pdest = *psrc;
1234 	      consumed = 1;
1235 	      is_binary[wc_count] = TRUE;
1236 	    }
1237 	  else
1238 	    is_binary[wc_count] = FALSE;
1239 	  /* In sjis encoding, we use yen sign as escape character in
1240 	     place of reverse solidus. So we convert 0x5c(yen sign in
1241 	     sjis) to not 0xa5(yen sign in UCS2) but 0x5c(reverse
1242 	     solidus in UCS2).  */
1243 	  if (consumed == 1 && (int) *psrc == 0x5c && (int) *pdest == 0xa5)
1244 	    *pdest = (wchar_t) *psrc;
1245 
1246 	  offset_buffer[wc_count + 1] = mb_count += consumed;
1247 	}
1248     }
1249 
1250   return wc_count;
1251 }
1252 
1253 #endif /* MBS_SUPPORT */
1254 
1255 /* Set by `re_set_syntax' to the current regexp syntax to recognize.  Can
1256    also be assigned to arbitrarily: each pattern buffer stores its own
1257    syntax, so it can be changed between regex compilations.  */
1258 /* This has no initializer because initialized variables in Emacs
1259    become read-only after dumping.  */
1260 reg_syntax_t re_syntax_options;
1261 
1262 
1263 /* Specify the precise syntax of regexps for compilation.  This provides
1264    for compatibility for various utilities which historically have
1265    different, incompatible syntaxes.
1266 
1267    The argument SYNTAX is a bit mask comprised of the various bits
1268    defined in regex.h.  We return the old syntax.  */
1269 
1270 reg_syntax_t
1271 re_set_syntax (syntax)
1272     reg_syntax_t syntax;
1273 {
1274   reg_syntax_t ret = re_syntax_options;
1275 
1276   re_syntax_options = syntax;
1277 #ifdef DEBUG
1278   if (syntax & RE_DEBUG)
1279     debug = 1;
1280   else if (debug) /* was on but now is not */
1281     debug = 0;
1282 #endif /* DEBUG */
1283   return ret;
1284 }
1285 #ifdef _LIBC
1286 weak_alias (__re_set_syntax, re_set_syntax)
1287 #endif
1288 
1289 /* This table gives an error message for each of the error codes listed
1290    in regex.h.  Obviously the order here has to be same as there.
1291    POSIX doesn't require that we do anything for REG_NOERROR,
1292    but why not be nice?  */
1293 
1294 static const char re_error_msgid[] =
1295   {
1296 #define REG_NOERROR_IDX	0
1297     gettext_noop ("Success")	/* REG_NOERROR */
1298     "\0"
1299 #define REG_NOMATCH_IDX (REG_NOERROR_IDX + sizeof "Success")
1300     gettext_noop ("No match")	/* REG_NOMATCH */
1301     "\0"
1302 #define REG_BADPAT_IDX	(REG_NOMATCH_IDX + sizeof "No match")
1303     gettext_noop ("Invalid regular expression") /* REG_BADPAT */
1304     "\0"
1305 #define REG_ECOLLATE_IDX (REG_BADPAT_IDX + sizeof "Invalid regular expression")
1306     gettext_noop ("Invalid collation character") /* REG_ECOLLATE */
1307     "\0"
1308 #define REG_ECTYPE_IDX	(REG_ECOLLATE_IDX + sizeof "Invalid collation character")
1309     gettext_noop ("Invalid character class name") /* REG_ECTYPE */
1310     "\0"
1311 #define REG_EESCAPE_IDX	(REG_ECTYPE_IDX + sizeof "Invalid character class name")
1312     gettext_noop ("Trailing backslash") /* REG_EESCAPE */
1313     "\0"
1314 #define REG_ESUBREG_IDX	(REG_EESCAPE_IDX + sizeof "Trailing backslash")
1315     gettext_noop ("Invalid back reference") /* REG_ESUBREG */
1316     "\0"
1317 #define REG_EBRACK_IDX	(REG_ESUBREG_IDX + sizeof "Invalid back reference")
1318     gettext_noop ("Unmatched [ or [^")	/* REG_EBRACK */
1319     "\0"
1320 #define REG_EPAREN_IDX	(REG_EBRACK_IDX + sizeof "Unmatched [ or [^")
1321     gettext_noop ("Unmatched ( or \\(") /* REG_EPAREN */
1322     "\0"
1323 #define REG_EBRACE_IDX	(REG_EPAREN_IDX + sizeof "Unmatched ( or \\(")
1324     gettext_noop ("Unmatched \\{") /* REG_EBRACE */
1325     "\0"
1326 #define REG_BADBR_IDX	(REG_EBRACE_IDX + sizeof "Unmatched \\{")
1327     gettext_noop ("Invalid content of \\{\\}") /* REG_BADBR */
1328     "\0"
1329 #define REG_ERANGE_IDX	(REG_BADBR_IDX + sizeof "Invalid content of \\{\\}")
1330     gettext_noop ("Invalid range end")	/* REG_ERANGE */
1331     "\0"
1332 #define REG_ESPACE_IDX	(REG_ERANGE_IDX + sizeof "Invalid range end")
1333     gettext_noop ("Memory exhausted") /* REG_ESPACE */
1334     "\0"
1335 #define REG_BADRPT_IDX	(REG_ESPACE_IDX + sizeof "Memory exhausted")
1336     gettext_noop ("Invalid preceding regular expression") /* REG_BADRPT */
1337     "\0"
1338 #define REG_EEND_IDX	(REG_BADRPT_IDX + sizeof "Invalid preceding regular expression")
1339     gettext_noop ("Premature end of regular expression") /* REG_EEND */
1340     "\0"
1341 #define REG_ESIZE_IDX	(REG_EEND_IDX + sizeof "Premature end of regular expression")
1342     gettext_noop ("Regular expression too big") /* REG_ESIZE */
1343     "\0"
1344 #define REG_ERPAREN_IDX	(REG_ESIZE_IDX + sizeof "Regular expression too big")
1345     gettext_noop ("Unmatched ) or \\)") /* REG_ERPAREN */
1346   };
1347 
1348 static const size_t re_error_msgid_idx[] =
1349   {
1350     REG_NOERROR_IDX,
1351     REG_NOMATCH_IDX,
1352     REG_BADPAT_IDX,
1353     REG_ECOLLATE_IDX,
1354     REG_ECTYPE_IDX,
1355     REG_EESCAPE_IDX,
1356     REG_ESUBREG_IDX,
1357     REG_EBRACK_IDX,
1358     REG_EPAREN_IDX,
1359     REG_EBRACE_IDX,
1360     REG_BADBR_IDX,
1361     REG_ERANGE_IDX,
1362     REG_ESPACE_IDX,
1363     REG_BADRPT_IDX,
1364     REG_EEND_IDX,
1365     REG_ESIZE_IDX,
1366     REG_ERPAREN_IDX
1367   };
1368 
1369 /* Avoiding alloca during matching, to placate r_alloc.  */
1370 
1371 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1372    searching and matching functions should not call alloca.  On some
1373    systems, alloca is implemented in terms of malloc, and if we're
1374    using the relocating allocator routines, then malloc could cause a
1375    relocation, which might (if the strings being searched are in the
1376    ralloc heap) shift the data out from underneath the regexp
1377    routines.
1378 
1379    Here's another reason to avoid allocation: Emacs
1380    processes input from X in a signal handler; processing X input may
1381    call malloc; if input arrives while a matching routine is calling
1382    malloc, then we're scrod.  But Emacs can't just block input while
1383    calling matching routines; then we don't notice interrupts when
1384    they come in.  So, Emacs blocks input around all regexp calls
1385    except the matching calls, which it leaves unprotected, in the
1386    faith that they will not malloc.  */
1387 
1388 /* Normally, this is fine.  */
1389 #define MATCH_MAY_ALLOCATE
1390 
1391 /* When using GNU C, we are not REALLY using the C alloca, no matter
1392    what config.h may say.  So don't take precautions for it.  */
1393 #ifdef __GNUC__
1394 # undef C_ALLOCA
1395 #endif
1396 
1397 /* The match routines may not allocate if (1) they would do it with malloc
1398    and (2) it's not safe for them to use malloc.
1399    Note that if REL_ALLOC is defined, matching would not use malloc for the
1400    failure stack, but we would still use it for the register vectors;
1401    so REL_ALLOC should not affect this.  */
1402 #if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1403 # undef MATCH_MAY_ALLOCATE
1404 #endif
1405 
1406 
1407 /* Failure stack declarations and macros; both re_compile_fastmap and
1408    re_match_2 use a failure stack.  These have to be macros because of
1409    REGEX_ALLOCATE_STACK.  */
1410 
1411 
1412 /* Number of failure points for which to initially allocate space
1413    when matching.  If this number is exceeded, we allocate more
1414    space, so it is not a hard limit.  */
1415 #ifndef INIT_FAILURE_ALLOC
1416 # define INIT_FAILURE_ALLOC 5
1417 #endif
1418 
1419 /* Roughly the maximum number of failure points on the stack.  Would be
1420    exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
1421    This is a variable only so users of regex can assign to it; we never
1422    change it ourselves.  */
1423 
1424 #ifdef INT_IS_16BIT
1425 
1426 # if defined MATCH_MAY_ALLOCATE
1427 /* 4400 was enough to cause a crash on Alpha OSF/1,
1428    whose default stack limit is 2mb.  */
1429 long int re_max_failures = 4000;
1430 # else
1431 long int re_max_failures = 2000;
1432 # endif
1433 
1434 union fail_stack_elt
1435 {
1436   US_CHAR_TYPE *pointer;
1437   long int integer;
1438 };
1439 
1440 typedef union fail_stack_elt fail_stack_elt_t;
1441 
1442 typedef struct
1443 {
1444   fail_stack_elt_t *stack;
1445   unsigned long int size;
1446   unsigned long int avail;		/* Offset of next open position.  */
1447 } fail_stack_type;
1448 
1449 #else /* not INT_IS_16BIT */
1450 
1451 # if defined MATCH_MAY_ALLOCATE
1452 /* 4400 was enough to cause a crash on Alpha OSF/1,
1453    whose default stack limit is 2mb.  */
1454 int re_max_failures = 4000;
1455 # else
1456 int re_max_failures = 2000;
1457 # endif
1458 
1459 union fail_stack_elt
1460 {
1461   US_CHAR_TYPE *pointer;
1462   int integer;
1463 };
1464 
1465 typedef union fail_stack_elt fail_stack_elt_t;
1466 
1467 typedef struct
1468 {
1469   fail_stack_elt_t *stack;
1470   unsigned size;
1471   unsigned avail;			/* Offset of next open position.  */
1472 } fail_stack_type;
1473 
1474 #endif /* INT_IS_16BIT */
1475 
1476 #define FAIL_STACK_EMPTY()     (fail_stack.avail == 0)
1477 #define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1478 #define FAIL_STACK_FULL()      (fail_stack.avail == fail_stack.size)
1479 
1480 
1481 /* Define macros to initialize and free the failure stack.
1482    Do `return -2' if the alloc fails.  */
1483 
1484 #ifdef MATCH_MAY_ALLOCATE
1485 # define INIT_FAIL_STACK()						\
1486   do {									\
1487     fail_stack.stack = (fail_stack_elt_t *)				\
1488       REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
1489 									\
1490     if (fail_stack.stack == NULL)					\
1491       return -2;							\
1492 									\
1493     fail_stack.size = INIT_FAILURE_ALLOC;				\
1494     fail_stack.avail = 0;						\
1495   } while (0)
1496 
1497 # define RESET_FAIL_STACK()  REGEX_FREE_STACK (fail_stack.stack)
1498 #else
1499 # define INIT_FAIL_STACK()						\
1500   do {									\
1501     fail_stack.avail = 0;						\
1502   } while (0)
1503 
1504 # define RESET_FAIL_STACK()
1505 #endif
1506 
1507 
1508 /* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1509 
1510    Return 1 if succeeds, and 0 if either ran out of memory
1511    allocating space for it or it was already too large.
1512 
1513    REGEX_REALLOCATE_STACK requires `destination' be declared.   */
1514 
1515 #define DOUBLE_FAIL_STACK(fail_stack)					\
1516   ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS)	\
1517    ? 0									\
1518    : ((fail_stack).stack = (fail_stack_elt_t *)				\
1519         REGEX_REALLOCATE_STACK ((fail_stack).stack, 			\
1520           (fail_stack).size * sizeof (fail_stack_elt_t),		\
1521           ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)),	\
1522 									\
1523       (fail_stack).stack == NULL					\
1524       ? 0								\
1525       : ((fail_stack).size <<= 1, 					\
1526          1)))
1527 
1528 
1529 /* Push pointer POINTER on FAIL_STACK.
1530    Return 1 if was able to do so and 0 if ran out of memory allocating
1531    space to do so.  */
1532 #define PUSH_PATTERN_OP(POINTER, FAIL_STACK)				\
1533   ((FAIL_STACK_FULL ()							\
1534     && !DOUBLE_FAIL_STACK (FAIL_STACK))					\
1535    ? 0									\
1536    : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER,	\
1537       1))
1538 
1539 /* Push a pointer value onto the failure stack.
1540    Assumes the variable `fail_stack'.  Probably should only
1541    be called from within `PUSH_FAILURE_POINT'.  */
1542 #define PUSH_FAILURE_POINTER(item)					\
1543   fail_stack.stack[fail_stack.avail++].pointer = (US_CHAR_TYPE *) (item)
1544 
1545 /* This pushes an integer-valued item onto the failure stack.
1546    Assumes the variable `fail_stack'.  Probably should only
1547    be called from within `PUSH_FAILURE_POINT'.  */
1548 #define PUSH_FAILURE_INT(item)					\
1549   fail_stack.stack[fail_stack.avail++].integer = (item)
1550 
1551 /* Push a fail_stack_elt_t value onto the failure stack.
1552    Assumes the variable `fail_stack'.  Probably should only
1553    be called from within `PUSH_FAILURE_POINT'.  */
1554 #define PUSH_FAILURE_ELT(item)					\
1555   fail_stack.stack[fail_stack.avail++] =  (item)
1556 
1557 /* These three POP... operations complement the three PUSH... operations.
1558    All assume that `fail_stack' is nonempty.  */
1559 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1560 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1561 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1562 
1563 /* Used to omit pushing failure point id's when we're not debugging.  */
1564 #ifdef DEBUG
1565 # define DEBUG_PUSH PUSH_FAILURE_INT
1566 # define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1567 #else
1568 # define DEBUG_PUSH(item)
1569 # define DEBUG_POP(item_addr)
1570 #endif
1571 
1572 
1573 /* Push the information about the state we will need
1574    if we ever fail back to it.
1575 
1576    Requires variables fail_stack, regstart, regend, reg_info, and
1577    num_regs_pushed be declared.  DOUBLE_FAIL_STACK requires `destination'
1578    be declared.
1579 
1580    Does `return FAILURE_CODE' if runs out of memory.  */
1581 
1582 #define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code)	\
1583   do {									\
1584     char *destination;							\
1585     /* Must be int, so when we don't save any registers, the arithmetic	\
1586        of 0 + -1 isn't done as unsigned.  */				\
1587     /* Can't be int, since there is not a shred of a guarantee that int	\
1588        is wide enough to hold a value of something to which pointer can	\
1589        be assigned */							\
1590     active_reg_t this_reg;						\
1591     									\
1592     DEBUG_STATEMENT (failure_id++);					\
1593     DEBUG_STATEMENT (nfailure_points_pushed++);				\
1594     DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id);		\
1595     DEBUG_PRINT2 ("  Before push, next avail: %d\n", (fail_stack).avail);\
1596     DEBUG_PRINT2 ("                     size: %d\n", (fail_stack).size);\
1597 									\
1598     DEBUG_PRINT2 ("  slots needed: %ld\n", NUM_FAILURE_ITEMS);		\
1599     DEBUG_PRINT2 ("     available: %d\n", REMAINING_AVAIL_SLOTS);	\
1600 									\
1601     /* Ensure we have enough space allocated for what we will push.  */	\
1602     while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS)			\
1603       {									\
1604         if (!DOUBLE_FAIL_STACK (fail_stack))				\
1605           return failure_code;						\
1606 									\
1607         DEBUG_PRINT2 ("\n  Doubled stack; size now: %d\n",		\
1608 		       (fail_stack).size);				\
1609         DEBUG_PRINT2 ("  slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1610       }									\
1611 									\
1612     /* Push the info, starting with the registers.  */			\
1613     DEBUG_PRINT1 ("\n");						\
1614 									\
1615     if (1)								\
1616       for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1617 	   this_reg++)							\
1618 	{								\
1619 	  DEBUG_PRINT2 ("  Pushing reg: %lu\n", this_reg);		\
1620 	  DEBUG_STATEMENT (num_regs_pushed++);				\
1621 									\
1622 	  DEBUG_PRINT2 ("    start: %p\n", regstart[this_reg]);		\
1623 	  PUSH_FAILURE_POINTER (regstart[this_reg]);			\
1624 									\
1625 	  DEBUG_PRINT2 ("    end: %p\n", regend[this_reg]);		\
1626 	  PUSH_FAILURE_POINTER (regend[this_reg]);			\
1627 									\
1628 	  DEBUG_PRINT2 ("    info: %p\n      ",				\
1629 			reg_info[this_reg].word.pointer);		\
1630 	  DEBUG_PRINT2 (" match_null=%d",				\
1631 			REG_MATCH_NULL_STRING_P (reg_info[this_reg]));	\
1632 	  DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg]));	\
1633 	  DEBUG_PRINT2 (" matched_something=%d",			\
1634 			MATCHED_SOMETHING (reg_info[this_reg]));	\
1635 	  DEBUG_PRINT2 (" ever_matched=%d",				\
1636 			EVER_MATCHED_SOMETHING (reg_info[this_reg]));	\
1637 	  DEBUG_PRINT1 ("\n");						\
1638 	  PUSH_FAILURE_ELT (reg_info[this_reg].word);			\
1639 	}								\
1640 									\
1641     DEBUG_PRINT2 ("  Pushing  low active reg: %ld\n", lowest_active_reg);\
1642     PUSH_FAILURE_INT (lowest_active_reg);				\
1643 									\
1644     DEBUG_PRINT2 ("  Pushing high active reg: %ld\n", highest_active_reg);\
1645     PUSH_FAILURE_INT (highest_active_reg);				\
1646 									\
1647     DEBUG_PRINT2 ("  Pushing pattern %p:\n", pattern_place);		\
1648     DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend);		\
1649     PUSH_FAILURE_POINTER (pattern_place);				\
1650 									\
1651     DEBUG_PRINT2 ("  Pushing string %p: `", string_place);		\
1652     DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2,   \
1653 				 size2);				\
1654     DEBUG_PRINT1 ("'\n");						\
1655     PUSH_FAILURE_POINTER (string_place);				\
1656 									\
1657     DEBUG_PRINT2 ("  Pushing failure id: %u\n", failure_id);		\
1658     DEBUG_PUSH (failure_id);						\
1659   } while (0)
1660 
1661 /* This is the number of items that are pushed and popped on the stack
1662    for each register.  */
1663 #define NUM_REG_ITEMS  3
1664 
1665 /* Individual items aside from the registers.  */
1666 #ifdef DEBUG
1667 # define NUM_NONREG_ITEMS 5 /* Includes failure point id.  */
1668 #else
1669 # define NUM_NONREG_ITEMS 4
1670 #endif
1671 
1672 /* We push at most this many items on the stack.  */
1673 /* We used to use (num_regs - 1), which is the number of registers
1674    this regexp will save; but that was changed to 5
1675    to avoid stack overflow for a regexp with lots of parens.  */
1676 #define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1677 
1678 /* We actually push this many items.  */
1679 #define NUM_FAILURE_ITEMS				\
1680   (((0							\
1681      ? 0 : highest_active_reg - lowest_active_reg + 1)	\
1682     * NUM_REG_ITEMS)					\
1683    + NUM_NONREG_ITEMS)
1684 
1685 /* How many items can still be added to the stack without overflowing it.  */
1686 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1687 
1688 
1689 /* Pops what PUSH_FAIL_STACK pushes.
1690 
1691    We restore into the parameters, all of which should be lvalues:
1692      STR -- the saved data position.
1693      PAT -- the saved pattern position.
1694      LOW_REG, HIGH_REG -- the highest and lowest active registers.
1695      REGSTART, REGEND -- arrays of string positions.
1696      REG_INFO -- array of information about each subexpression.
1697 
1698    Also assumes the variables `fail_stack' and (if debugging), `bufp',
1699    `pend', `string1', `size1', `string2', and `size2'.  */
1700 #define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1701 {									\
1702   DEBUG_STATEMENT (unsigned failure_id;)				\
1703   active_reg_t this_reg;						\
1704   const US_CHAR_TYPE *string_temp;					\
1705 									\
1706   assert (!FAIL_STACK_EMPTY ());					\
1707 									\
1708   /* Remove failure points and point to how many regs pushed.  */	\
1709   DEBUG_PRINT1 ("POP_FAILURE_POINT:\n");				\
1710   DEBUG_PRINT2 ("  Before pop, next avail: %d\n", fail_stack.avail);	\
1711   DEBUG_PRINT2 ("                    size: %d\n", fail_stack.size);	\
1712 									\
1713   assert (fail_stack.avail >= NUM_NONREG_ITEMS);			\
1714 									\
1715   DEBUG_POP (&failure_id);						\
1716   DEBUG_PRINT2 ("  Popping failure id: %u\n", failure_id);		\
1717 									\
1718   /* If the saved string location is NULL, it came from an		\
1719      on_failure_keep_string_jump opcode, and we want to throw away the	\
1720      saved NULL, thus retaining our current position in the string.  */	\
1721   string_temp = POP_FAILURE_POINTER ();					\
1722   if (string_temp != NULL)						\
1723     str = (const CHAR_TYPE *) string_temp;				\
1724 									\
1725   DEBUG_PRINT2 ("  Popping string %p: `", str);				\
1726   DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2);	\
1727   DEBUG_PRINT1 ("'\n");							\
1728 									\
1729   pat = (US_CHAR_TYPE *) POP_FAILURE_POINTER ();			\
1730   DEBUG_PRINT2 ("  Popping pattern %p:\n", pat);			\
1731   DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend);			\
1732 									\
1733   /* Restore register info.  */						\
1734   high_reg = (active_reg_t) POP_FAILURE_INT ();				\
1735   DEBUG_PRINT2 ("  Popping high active reg: %ld\n", high_reg);		\
1736 									\
1737   low_reg = (active_reg_t) POP_FAILURE_INT ();				\
1738   DEBUG_PRINT2 ("  Popping  low active reg: %ld\n", low_reg);		\
1739 									\
1740   if (1)								\
1741     for (this_reg = high_reg; this_reg >= low_reg; this_reg--)		\
1742       {									\
1743 	DEBUG_PRINT2 ("    Popping reg: %ld\n", this_reg);		\
1744 									\
1745 	reg_info[this_reg].word = POP_FAILURE_ELT ();			\
1746 	DEBUG_PRINT2 ("      info: %p\n",				\
1747 		      reg_info[this_reg].word.pointer);			\
1748 									\
1749 	regend[this_reg] = (const CHAR_TYPE *) POP_FAILURE_POINTER ();	\
1750 	DEBUG_PRINT2 ("      end: %p\n", regend[this_reg]);		\
1751 									\
1752 	regstart[this_reg] = (const CHAR_TYPE *) POP_FAILURE_POINTER ();\
1753 	DEBUG_PRINT2 ("      start: %p\n", regstart[this_reg]);		\
1754       }									\
1755   else									\
1756     {									\
1757       for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1758 	{								\
1759 	  reg_info[this_reg].word.integer = 0;				\
1760 	  regend[this_reg] = 0;						\
1761 	  regstart[this_reg] = 0;					\
1762 	}								\
1763       highest_active_reg = high_reg;					\
1764     }									\
1765 									\
1766   set_regs_matched_done = 0;						\
1767   DEBUG_STATEMENT (nfailure_points_popped++);				\
1768 } /* POP_FAILURE_POINT */
1769 
1770 
1771 /* Structure for per-register (a.k.a. per-group) information.
1772    Other register information, such as the
1773    starting and ending positions (which are addresses), and the list of
1774    inner groups (which is a bits list) are maintained in separate
1775    variables.
1776 
1777    We are making a (strictly speaking) nonportable assumption here: that
1778    the compiler will pack our bit fields into something that fits into
1779    the type of `word', i.e., is something that fits into one item on the
1780    failure stack.  */
1781 
1782 
1783 /* Declarations and macros for re_match_2.  */
1784 
1785 typedef union
1786 {
1787   fail_stack_elt_t word;
1788   struct
1789   {
1790       /* This field is one if this group can match the empty string,
1791          zero if not.  If not yet determined,  `MATCH_NULL_UNSET_VALUE'.  */
1792 #define MATCH_NULL_UNSET_VALUE 3
1793     unsigned match_null_string_p : 2;
1794     unsigned is_active : 1;
1795     unsigned matched_something : 1;
1796     unsigned ever_matched_something : 1;
1797   } bits;
1798 } register_info_type;
1799 
1800 #define REG_MATCH_NULL_STRING_P(R)  ((R).bits.match_null_string_p)
1801 #define IS_ACTIVE(R)  ((R).bits.is_active)
1802 #define MATCHED_SOMETHING(R)  ((R).bits.matched_something)
1803 #define EVER_MATCHED_SOMETHING(R)  ((R).bits.ever_matched_something)
1804 
1805 
1806 /* Call this when have matched a real character; it sets `matched' flags
1807    for the subexpressions which we are currently inside.  Also records
1808    that those subexprs have matched.  */
1809 #define SET_REGS_MATCHED()						\
1810   do									\
1811     {									\
1812       if (!set_regs_matched_done)					\
1813 	{								\
1814 	  active_reg_t r;						\
1815 	  set_regs_matched_done = 1;					\
1816 	  for (r = lowest_active_reg; r <= highest_active_reg; r++)	\
1817 	    {								\
1818 	      MATCHED_SOMETHING (reg_info[r])				\
1819 		= EVER_MATCHED_SOMETHING (reg_info[r])			\
1820 		= 1;							\
1821 	    }								\
1822 	}								\
1823     }									\
1824   while (0)
1825 
1826 /* Registers are set to a sentinel when they haven't yet matched.  */
1827 static CHAR_TYPE reg_unset_dummy;
1828 #define REG_UNSET_VALUE (&reg_unset_dummy)
1829 #define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1830 
1831 /* Subroutine declarations and macros for regex_compile.  */
1832 
1833 static reg_errcode_t regex_compile _RE_ARGS ((const char *pattern, size_t size,
1834 					      reg_syntax_t syntax,
1835 					      struct re_pattern_buffer *bufp));
1836 static void store_op1 _RE_ARGS ((re_opcode_t op, US_CHAR_TYPE *loc, int arg));
1837 static void store_op2 _RE_ARGS ((re_opcode_t op, US_CHAR_TYPE *loc,
1838 				 int arg1, int arg2));
1839 static void insert_op1 _RE_ARGS ((re_opcode_t op, US_CHAR_TYPE *loc,
1840 				  int arg, US_CHAR_TYPE *end));
1841 static void insert_op2 _RE_ARGS ((re_opcode_t op, US_CHAR_TYPE *loc,
1842 				  int arg1, int arg2, US_CHAR_TYPE *end));
1843 static boolean at_begline_loc_p _RE_ARGS ((const CHAR_TYPE *pattern,
1844 					   const CHAR_TYPE *p,
1845 					   reg_syntax_t syntax));
1846 static boolean at_endline_loc_p _RE_ARGS ((const CHAR_TYPE *p,
1847 					   const CHAR_TYPE *pend,
1848 					   reg_syntax_t syntax));
1849 #ifdef MBS_SUPPORT
1850 static reg_errcode_t compile_range _RE_ARGS ((CHAR_TYPE range_start,
1851 					      const CHAR_TYPE **p_ptr,
1852 					      const CHAR_TYPE *pend,
1853 					      char *translate,
1854 					      reg_syntax_t syntax,
1855 					      US_CHAR_TYPE *b,
1856 					      CHAR_TYPE *char_set));
1857 static void insert_space _RE_ARGS ((int num, CHAR_TYPE *loc, CHAR_TYPE *end));
1858 #else
1859 static reg_errcode_t compile_range _RE_ARGS ((unsigned int range_start,
1860 					      const CHAR_TYPE **p_ptr,
1861 					      const CHAR_TYPE *pend,
1862 					      char *translate,
1863 					      reg_syntax_t syntax,
1864 					      US_CHAR_TYPE *b));
1865 #endif /* MBS_SUPPORT */
1866 
1867 /* Fetch the next character in the uncompiled pattern---translating it
1868    if necessary.  Also cast from a signed character in the constant
1869    string passed to us by the user to an unsigned char that we can use
1870    as an array index (in, e.g., `translate').  */
1871 /* ifdef MBS_SUPPORT, we translate only if character <= 0xff,
1872    because it is impossible to allocate 4GB array for some encodings
1873    which have 4 byte character_set like UCS4.  */
1874 #ifndef PATFETCH
1875 # ifdef MBS_SUPPORT
1876 #  define PATFETCH(c)							\
1877   do {if (p == pend) return REG_EEND;					\
1878     c = (US_CHAR_TYPE) *p++;						\
1879     if (translate && (c <= 0xff)) c = (US_CHAR_TYPE) translate[c];	\
1880   } while (0)
1881 # else
1882 #  define PATFETCH(c)							\
1883   do {if (p == pend) return REG_EEND;					\
1884     c = (unsigned char) *p++;						\
1885     if (translate) c = (unsigned char) translate[c];			\
1886   } while (0)
1887 # endif /* MBS_SUPPORT */
1888 #endif
1889 
1890 /* Fetch the next character in the uncompiled pattern, with no
1891    translation.  */
1892 #define PATFETCH_RAW(c)							\
1893   do {if (p == pend) return REG_EEND;					\
1894     c = (US_CHAR_TYPE) *p++; 						\
1895   } while (0)
1896 
1897 /* Go backwards one character in the pattern.  */
1898 #define PATUNFETCH p--
1899 
1900 
1901 /* If `translate' is non-null, return translate[D], else just D.  We
1902    cast the subscript to translate because some data is declared as
1903    `char *', to avoid warnings when a string constant is passed.  But
1904    when we use a character as a subscript we must make it unsigned.  */
1905 /* ifdef MBS_SUPPORT, we translate only if character <= 0xff,
1906    because it is impossible to allocate 4GB array for some encodings
1907    which have 4 byte character_set like UCS4.  */
1908 #ifndef TRANSLATE
1909 # ifdef MBS_SUPPORT
1910 #  define TRANSLATE(d) \
1911   ((translate && ((US_CHAR_TYPE) (d)) <= 0xff) \
1912    ? (char) translate[(unsigned char) (d)] : (d))
1913 #else
1914 #  define TRANSLATE(d) \
1915   (translate ? (char) translate[(unsigned char) (d)] : (d))
1916 # endif /* MBS_SUPPORT */
1917 #endif
1918 
1919 
1920 /* Macros for outputting the compiled pattern into `buffer'.  */
1921 
1922 /* If the buffer isn't allocated when it comes in, use this.  */
1923 #define INIT_BUF_SIZE  (32 * sizeof(US_CHAR_TYPE))
1924 
1925 /* Make sure we have at least N more bytes of space in buffer.  */
1926 #ifdef MBS_SUPPORT
1927 # define GET_BUFFER_SPACE(n)						\
1928     while (((unsigned long)b - (unsigned long)COMPILED_BUFFER_VAR	\
1929             + (n)*sizeof(CHAR_TYPE)) > bufp->allocated)			\
1930       EXTEND_BUFFER ()
1931 #else
1932 # define GET_BUFFER_SPACE(n)						\
1933     while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated)	\
1934       EXTEND_BUFFER ()
1935 #endif /* MBS_SUPPORT */
1936 
1937 /* Make sure we have one more byte of buffer space and then add C to it.  */
1938 #define BUF_PUSH(c)							\
1939   do {									\
1940     GET_BUFFER_SPACE (1);						\
1941     *b++ = (US_CHAR_TYPE) (c);						\
1942   } while (0)
1943 
1944 
1945 /* Ensure we have two more bytes of buffer space and then append C1 and C2.  */
1946 #define BUF_PUSH_2(c1, c2)						\
1947   do {									\
1948     GET_BUFFER_SPACE (2);						\
1949     *b++ = (US_CHAR_TYPE) (c1);					\
1950     *b++ = (US_CHAR_TYPE) (c2);					\
1951   } while (0)
1952 
1953 
1954 /* As with BUF_PUSH_2, except for three bytes.  */
1955 #define BUF_PUSH_3(c1, c2, c3)						\
1956   do {									\
1957     GET_BUFFER_SPACE (3);						\
1958     *b++ = (US_CHAR_TYPE) (c1);					\
1959     *b++ = (US_CHAR_TYPE) (c2);					\
1960     *b++ = (US_CHAR_TYPE) (c3);					\
1961   } while (0)
1962 
1963 /* Store a jump with opcode OP at LOC to location TO.  We store a
1964    relative address offset by the three bytes the jump itself occupies.  */
1965 #define STORE_JUMP(op, loc, to) \
1966   store_op1 (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)))
1967 
1968 /* Likewise, for a two-argument jump.  */
1969 #define STORE_JUMP2(op, loc, to, arg) \
1970   store_op2 (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), arg)
1971 
1972 /* Like `STORE_JUMP', but for inserting.  Assume `b' is the buffer end.  */
1973 #define INSERT_JUMP(op, loc, to) \
1974   insert_op1 (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), b)
1975 
1976 /* Like `STORE_JUMP2', but for inserting.  Assume `b' is the buffer end.  */
1977 #define INSERT_JUMP2(op, loc, to, arg) \
1978   insert_op2 (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)),\
1979 	      arg, b)
1980 
1981 
1982 /* This is not an arbitrary limit: the arguments which represent offsets
1983    into the pattern are two bytes long.  So if 2^16 bytes turns out to
1984    be too small, many things would have to change.  */
1985 /* Any other compiler which, like MSC, has allocation limit below 2^16
1986    bytes will have to use approach similar to what was done below for
1987    MSC and drop MAX_BUF_SIZE a bit.  Otherwise you may end up
1988    reallocating to 0 bytes.  Such thing is not going to work too well.
1989    You have been warned!!  */
1990 #if defined _MSC_VER  && !defined WIN32
1991 /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes.
1992    The REALLOC define eliminates a flurry of conversion warnings,
1993    but is not required. */
1994 # define MAX_BUF_SIZE  65500L
1995 # define REALLOC(p,s) realloc ((p), (size_t) (s))
1996 #else
1997 # define MAX_BUF_SIZE (1L << 16)
1998 # define REALLOC(p,s) realloc ((p), (s))
1999 #endif
2000 
2001 /* Extend the buffer by twice its current size via realloc and
2002    reset the pointers that pointed into the old block to point to the
2003    correct places in the new one.  If extending the buffer results in it
2004    being larger than MAX_BUF_SIZE, then flag memory exhausted.  */
2005 #if __BOUNDED_POINTERS__
2006 # define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
2007 # define MOVE_BUFFER_POINTER(P) \
2008   (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
2009 # define ELSE_EXTEND_BUFFER_HIGH_BOUND		\
2010   else						\
2011     {						\
2012       SET_HIGH_BOUND (b);			\
2013       SET_HIGH_BOUND (begalt);			\
2014       if (fixup_alt_jump)			\
2015 	SET_HIGH_BOUND (fixup_alt_jump);	\
2016       if (laststart)				\
2017 	SET_HIGH_BOUND (laststart);		\
2018       if (pending_exact)			\
2019 	SET_HIGH_BOUND (pending_exact);		\
2020     }
2021 #else
2022 # define MOVE_BUFFER_POINTER(P) (P) += incr
2023 # define ELSE_EXTEND_BUFFER_HIGH_BOUND
2024 #endif
2025 
2026 #ifdef MBS_SUPPORT
2027 # define EXTEND_BUFFER()						\
2028   do {									\
2029     US_CHAR_TYPE *old_buffer = COMPILED_BUFFER_VAR;			\
2030     int wchar_count;							\
2031     if (bufp->allocated + sizeof(US_CHAR_TYPE) > MAX_BUF_SIZE)		\
2032       return REG_ESIZE;							\
2033     bufp->allocated <<= 1;						\
2034     if (bufp->allocated > MAX_BUF_SIZE)					\
2035       bufp->allocated = MAX_BUF_SIZE;					\
2036     /* How many characters the new buffer can have?  */			\
2037     wchar_count = bufp->allocated / sizeof(US_CHAR_TYPE);		\
2038     if (wchar_count == 0) wchar_count = 1;				\
2039     /* Truncate the buffer to CHAR_TYPE align.  */			\
2040     bufp->allocated = wchar_count * sizeof(US_CHAR_TYPE);		\
2041     RETALLOC (COMPILED_BUFFER_VAR, wchar_count, US_CHAR_TYPE);		\
2042     bufp->buffer = (char*)COMPILED_BUFFER_VAR;				\
2043     if (COMPILED_BUFFER_VAR == NULL)					\
2044       return REG_ESPACE;						\
2045     /* If the buffer moved, move all the pointers into it.  */		\
2046     if (old_buffer != COMPILED_BUFFER_VAR)				\
2047       {									\
2048 	int incr = COMPILED_BUFFER_VAR - old_buffer;			\
2049 	MOVE_BUFFER_POINTER (b);					\
2050 	MOVE_BUFFER_POINTER (begalt);					\
2051 	if (fixup_alt_jump)						\
2052 	  MOVE_BUFFER_POINTER (fixup_alt_jump);				\
2053 	if (laststart)							\
2054 	  MOVE_BUFFER_POINTER (laststart);				\
2055 	if (pending_exact)						\
2056 	  MOVE_BUFFER_POINTER (pending_exact);				\
2057       }									\
2058     ELSE_EXTEND_BUFFER_HIGH_BOUND					\
2059   } while (0)
2060 #else
2061 # define EXTEND_BUFFER()						\
2062   do {									\
2063     US_CHAR_TYPE *old_buffer = COMPILED_BUFFER_VAR;			\
2064     if (bufp->allocated == MAX_BUF_SIZE)				\
2065       return REG_ESIZE;							\
2066     bufp->allocated <<= 1;						\
2067     if (bufp->allocated > MAX_BUF_SIZE)					\
2068       bufp->allocated = MAX_BUF_SIZE;					\
2069     bufp->buffer = (US_CHAR_TYPE *) REALLOC (COMPILED_BUFFER_VAR,	\
2070 						bufp->allocated);	\
2071     if (COMPILED_BUFFER_VAR == NULL)					\
2072       return REG_ESPACE;						\
2073     /* If the buffer moved, move all the pointers into it.  */		\
2074     if (old_buffer != COMPILED_BUFFER_VAR)				\
2075       {									\
2076 	int incr = COMPILED_BUFFER_VAR - old_buffer;			\
2077 	MOVE_BUFFER_POINTER (b);					\
2078 	MOVE_BUFFER_POINTER (begalt);					\
2079 	if (fixup_alt_jump)						\
2080 	  MOVE_BUFFER_POINTER (fixup_alt_jump);				\
2081 	if (laststart)							\
2082 	  MOVE_BUFFER_POINTER (laststart);				\
2083 	if (pending_exact)						\
2084 	  MOVE_BUFFER_POINTER (pending_exact);				\
2085       }									\
2086     ELSE_EXTEND_BUFFER_HIGH_BOUND					\
2087   } while (0)
2088 #endif /* MBS_SUPPORT */
2089 
2090 /* Since we have one byte reserved for the register number argument to
2091    {start,stop}_memory, the maximum number of groups we can report
2092    things about is what fits in that byte.  */
2093 #define MAX_REGNUM 255
2094 
2095 /* But patterns can have more than `MAX_REGNUM' registers.  We just
2096    ignore the excess.  */
2097 typedef unsigned regnum_t;
2098 
2099 
2100 /* Macros for the compile stack.  */
2101 
2102 /* Since offsets can go either forwards or backwards, this type needs to
2103    be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1.  */
2104 /* int may be not enough when sizeof(int) == 2.  */
2105 typedef long pattern_offset_t;
2106 
2107 typedef struct
2108 {
2109   pattern_offset_t begalt_offset;
2110   pattern_offset_t fixup_alt_jump;
2111   pattern_offset_t inner_group_offset;
2112   pattern_offset_t laststart_offset;
2113   regnum_t regnum;
2114 } compile_stack_elt_t;
2115 
2116 
2117 typedef struct
2118 {
2119   compile_stack_elt_t *stack;
2120   unsigned size;
2121   unsigned avail;			/* Offset of next open position.  */
2122 } compile_stack_type;
2123 
2124 
2125 #define INIT_COMPILE_STACK_SIZE 32
2126 
2127 #define COMPILE_STACK_EMPTY  (compile_stack.avail == 0)
2128 #define COMPILE_STACK_FULL  (compile_stack.avail == compile_stack.size)
2129 
2130 /* The next available element.  */
2131 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
2132 
2133 
2134 /* Set the bit for character C in a list.  */
2135 #define SET_LIST_BIT(c)                               \
2136   (b[((unsigned char) (c)) / BYTEWIDTH]               \
2137    |= 1 << (((unsigned char) c) % BYTEWIDTH))
2138 
2139 
2140 /* Get the next unsigned number in the uncompiled pattern.  */
2141 #define GET_UNSIGNED_NUMBER(num) 					\
2142   {									\
2143     while (p != pend)							\
2144       {									\
2145 	PATFETCH (c);							\
2146 	if (! ('0' <= c && c <= '9'))					\
2147 	  break;							\
2148 	if (num <= RE_DUP_MAX)						\
2149 	  {								\
2150 	    if (num < 0)						\
2151 	      num = 0;							\
2152 	    num = num * 10 + c - '0';					\
2153 	  }								\
2154       }									\
2155   }
2156 
2157 #if defined _LIBC || WIDE_CHAR_SUPPORT
2158 /* The GNU C library provides support for user-defined character classes
2159    and the functions from ISO C amendement 1.  */
2160 # ifdef CHARCLASS_NAME_MAX
2161 #  define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
2162 # else
2163 /* This shouldn't happen but some implementation might still have this
2164    problem.  Use a reasonable default value.  */
2165 #  define CHAR_CLASS_MAX_LENGTH 256
2166 # endif
2167 
2168 # ifdef _LIBC
2169 #  define IS_CHAR_CLASS(string) __wctype (string)
2170 # else
2171 #  define IS_CHAR_CLASS(string) wctype (string)
2172 # endif
2173 #else
2174 # define CHAR_CLASS_MAX_LENGTH  6 /* Namely, `xdigit'.  */
2175 
2176 # define IS_CHAR_CLASS(string)						\
2177    (STREQ (string, "alpha") || STREQ (string, "upper")			\
2178     || STREQ (string, "lower") || STREQ (string, "digit")		\
2179     || STREQ (string, "alnum") || STREQ (string, "xdigit")		\
2180     || STREQ (string, "space") || STREQ (string, "print")		\
2181     || STREQ (string, "punct") || STREQ (string, "graph")		\
2182     || STREQ (string, "cntrl") || STREQ (string, "blank"))
2183 #endif
2184 
2185 #ifndef MATCH_MAY_ALLOCATE
2186 
2187 /* If we cannot allocate large objects within re_match_2_internal,
2188    we make the fail stack and register vectors global.
2189    The fail stack, we grow to the maximum size when a regexp
2190    is compiled.
2191    The register vectors, we adjust in size each time we
2192    compile a regexp, according to the number of registers it needs.  */
2193 
2194 static fail_stack_type fail_stack;
2195 
2196 /* Size with which the following vectors are currently allocated.
2197    That is so we can make them bigger as needed,
2198    but never make them smaller.  */
2199 static int regs_allocated_size;
2200 
2201 static const char **     regstart, **     regend;
2202 static const char ** old_regstart, ** old_regend;
2203 static const char **best_regstart, **best_regend;
2204 static register_info_type *reg_info;
2205 static const char **reg_dummy;
2206 static register_info_type *reg_info_dummy;
2207 
2208 /* Make the register vectors big enough for NUM_REGS registers,
2209    but don't make them smaller.  */
2210 
2211 static
2212 regex_grow_registers (num_regs)
2213      int num_regs;
2214 {
2215   if (num_regs > regs_allocated_size)
2216     {
2217       RETALLOC_IF (regstart,	 num_regs, const char *);
2218       RETALLOC_IF (regend,	 num_regs, const char *);
2219       RETALLOC_IF (old_regstart, num_regs, const char *);
2220       RETALLOC_IF (old_regend,	 num_regs, const char *);
2221       RETALLOC_IF (best_regstart, num_regs, const char *);
2222       RETALLOC_IF (best_regend,	 num_regs, const char *);
2223       RETALLOC_IF (reg_info,	 num_regs, register_info_type);
2224       RETALLOC_IF (reg_dummy,	 num_regs, const char *);
2225       RETALLOC_IF (reg_info_dummy, num_regs, register_info_type);
2226 
2227       regs_allocated_size = num_regs;
2228     }
2229 }
2230 
2231 #endif /* not MATCH_MAY_ALLOCATE */
2232 
2233 static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
2234 						 compile_stack,
2235 						 regnum_t regnum));
2236 
2237 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2238    Returns one of error codes defined in `regex.h', or zero for success.
2239 
2240    Assumes the `allocated' (and perhaps `buffer') and `translate'
2241    fields are set in BUFP on entry.
2242 
2243    If it succeeds, results are put in BUFP (if it returns an error, the
2244    contents of BUFP are undefined):
2245      `buffer' is the compiled pattern;
2246      `syntax' is set to SYNTAX;
2247      `used' is set to the length of the compiled pattern;
2248      `fastmap_accurate' is zero;
2249      `re_nsub' is the number of subexpressions in PATTERN;
2250      `not_bol' and `not_eol' are zero;
2251 
2252    The `fastmap' and `newline_anchor' fields are neither
2253    examined nor set.  */
2254 
2255 /* Return, freeing storage we allocated.  */
2256 #ifdef MBS_SUPPORT
2257 # define FREE_STACK_RETURN(value)		\
2258   return (free(pattern), free(mbs_offset), free(is_binary), free (compile_stack.stack), value)
2259 #else
2260 # define FREE_STACK_RETURN(value)		\
2261   return (free (compile_stack.stack), value)
2262 #endif /* MBS_SUPPORT */
2263 
2264 static reg_errcode_t
2265 #ifdef MBS_SUPPORT
2266 regex_compile (cpattern, csize, syntax, bufp)
2267      const char *cpattern;
2268      size_t csize;
2269 #else
2270 regex_compile (pattern, size, syntax, bufp)
2271      const char *pattern;
2272      size_t size;
2273 #endif /* MBS_SUPPORT */
2274      reg_syntax_t syntax;
2275      struct re_pattern_buffer *bufp;
2276 {
2277   /* We fetch characters from PATTERN here.  Even though PATTERN is
2278      `char *' (i.e., signed), we declare these variables as unsigned, so
2279      they can be reliably used as array indices.  */
2280   register US_CHAR_TYPE c, c1;
2281 
2282 #ifdef MBS_SUPPORT
2283   /* A temporary space to keep wchar_t pattern and compiled pattern.  */
2284   CHAR_TYPE *pattern, *COMPILED_BUFFER_VAR;
2285   size_t size;
2286   /* offset buffer for optimizatoin. See convert_mbs_to_wc.  */
2287   int *mbs_offset = NULL;
2288   /* It hold whether each wchar_t is binary data or not.  */
2289   char *is_binary = NULL;
2290   /* A flag whether exactn is handling binary data or not.  */
2291   char is_exactn_bin = FALSE;
2292 #endif /* MBS_SUPPORT */
2293 
2294   /* A random temporary spot in PATTERN.  */
2295   const CHAR_TYPE *p1;
2296 
2297   /* Points to the end of the buffer, where we should append.  */
2298   register US_CHAR_TYPE *b;
2299 
2300   /* Keeps track of unclosed groups.  */
2301   compile_stack_type compile_stack;
2302 
2303   /* Points to the current (ending) position in the pattern.  */
2304 #ifdef MBS_SUPPORT
2305   const CHAR_TYPE *p;
2306   const CHAR_TYPE *pend;
2307 #else
2308   const CHAR_TYPE *p = pattern;
2309   const CHAR_TYPE *pend = pattern + size;
2310 #endif /* MBS_SUPPORT */
2311 
2312   /* How to translate the characters in the pattern.  */
2313   RE_TRANSLATE_TYPE translate = bufp->translate;
2314 
2315   /* Address of the count-byte of the most recently inserted `exactn'
2316      command.  This makes it possible to tell if a new exact-match
2317      character can be added to that command or if the character requires
2318      a new `exactn' command.  */
2319   US_CHAR_TYPE *pending_exact = 0;
2320 
2321   /* Address of start of the most recently finished expression.
2322      This tells, e.g., postfix * where to find the start of its
2323      operand.  Reset at the beginning of groups and alternatives.  */
2324   US_CHAR_TYPE *laststart = 0;
2325 
2326   /* Address of beginning of regexp, or inside of last group.  */
2327   US_CHAR_TYPE *begalt;
2328 
2329   /* Address of the place where a forward jump should go to the end of
2330      the containing expression.  Each alternative of an `or' -- except the
2331      last -- ends with a forward jump of this sort.  */
2332   US_CHAR_TYPE *fixup_alt_jump = 0;
2333 
2334   /* Counts open-groups as they are encountered.  Remembered for the
2335      matching close-group on the compile stack, so the same register
2336      number is put in the stop_memory as the start_memory.  */
2337   regnum_t regnum = 0;
2338 
2339 #ifdef MBS_SUPPORT
2340   /* Initialize the wchar_t PATTERN and offset_buffer.  */
2341   p = pend = pattern = TALLOC(csize + 1, CHAR_TYPE);
2342   p[csize] = L'\0';	/* sentinel */
2343   mbs_offset = TALLOC(csize + 1, int);
2344   is_binary = TALLOC(csize + 1, char);
2345   if (pattern == NULL || mbs_offset == NULL || is_binary == NULL)
2346     {
2347       if (pattern) free(pattern);
2348       if (mbs_offset) free(mbs_offset);
2349       if (is_binary) free(is_binary);
2350       return REG_ESPACE;
2351     }
2352   size = convert_mbs_to_wcs(pattern, cpattern, csize, mbs_offset, is_binary);
2353   pend = p + size;
2354   if (size < 0)
2355     {
2356       if (pattern) free(pattern);
2357       if (mbs_offset) free(mbs_offset);
2358       if (is_binary) free(is_binary);
2359       return REG_BADPAT;
2360     }
2361 #endif
2362 
2363 #ifdef DEBUG
2364   DEBUG_PRINT1 ("\nCompiling pattern: ");
2365   if (debug)
2366     {
2367       unsigned debug_count;
2368 
2369       for (debug_count = 0; debug_count < size; debug_count++)
2370         PUT_CHAR (pattern[debug_count]);
2371       putchar ('\n');
2372     }
2373 #endif /* DEBUG */
2374 
2375   /* Initialize the compile stack.  */
2376   compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
2377   if (compile_stack.stack == NULL)
2378     {
2379 #ifdef MBS_SUPPORT
2380       if (pattern) free(pattern);
2381       if (mbs_offset) free(mbs_offset);
2382       if (is_binary) free(is_binary);
2383 #endif
2384       return REG_ESPACE;
2385     }
2386 
2387   compile_stack.size = INIT_COMPILE_STACK_SIZE;
2388   compile_stack.avail = 0;
2389 
2390   /* Initialize the pattern buffer.  */
2391   bufp->syntax = syntax;
2392   bufp->fastmap_accurate = 0;
2393   bufp->not_bol = bufp->not_eol = 0;
2394 
2395   /* Set `used' to zero, so that if we return an error, the pattern
2396      printer (for debugging) will think there's no pattern.  We reset it
2397      at the end.  */
2398   bufp->used = 0;
2399 
2400   /* Always count groups, whether or not bufp->no_sub is set.  */
2401   bufp->re_nsub = 0;
2402 
2403 #if !defined emacs && !defined SYNTAX_TABLE
2404   /* Initialize the syntax table.  */
2405    init_syntax_once ();
2406 #endif
2407 
2408   if (bufp->allocated == 0)
2409     {
2410       if (bufp->buffer)
2411 	{ /* If zero allocated, but buffer is non-null, try to realloc
2412              enough space.  This loses if buffer's address is bogus, but
2413              that is the user's responsibility.  */
2414 #ifdef MBS_SUPPORT
2415 	  /* Free bufp->buffer and allocate an array for wchar_t pattern
2416 	     buffer.  */
2417           free(bufp->buffer);
2418           COMPILED_BUFFER_VAR = TALLOC (INIT_BUF_SIZE/sizeof(US_CHAR_TYPE),
2419 					US_CHAR_TYPE);
2420 #else
2421           RETALLOC (COMPILED_BUFFER_VAR, INIT_BUF_SIZE, US_CHAR_TYPE);
2422 #endif /* MBS_SUPPORT */
2423         }
2424       else
2425         { /* Caller did not allocate a buffer.  Do it for them.  */
2426           COMPILED_BUFFER_VAR = TALLOC (INIT_BUF_SIZE / sizeof(US_CHAR_TYPE),
2427 					US_CHAR_TYPE);
2428         }
2429 
2430       if (!COMPILED_BUFFER_VAR) FREE_STACK_RETURN (REG_ESPACE);
2431 #ifdef MBS_SUPPORT
2432       bufp->buffer = (char*)COMPILED_BUFFER_VAR;
2433 #endif /* MBS_SUPPORT */
2434       bufp->allocated = INIT_BUF_SIZE;
2435     }
2436 #ifdef MBS_SUPPORT
2437   else
2438     COMPILED_BUFFER_VAR = (US_CHAR_TYPE*) bufp->buffer;
2439 #endif
2440 
2441   begalt = b = COMPILED_BUFFER_VAR;
2442 
2443   /* Loop through the uncompiled pattern until we're at the end.  */
2444   while (p != pend)
2445     {
2446       PATFETCH (c);
2447 
2448       switch (c)
2449         {
2450         case '^':
2451           {
2452             if (   /* If at start of pattern, it's an operator.  */
2453                    p == pattern + 1
2454                    /* If context independent, it's an operator.  */
2455                 || syntax & RE_CONTEXT_INDEP_ANCHORS
2456                    /* Otherwise, depends on what's come before.  */
2457                 || at_begline_loc_p (pattern, p, syntax))
2458               BUF_PUSH (begline);
2459             else
2460               goto normal_char;
2461           }
2462           break;
2463 
2464 
2465         case '$':
2466           {
2467             if (   /* If at end of pattern, it's an operator.  */
2468                    p == pend
2469                    /* If context independent, it's an operator.  */
2470                 || syntax & RE_CONTEXT_INDEP_ANCHORS
2471                    /* Otherwise, depends on what's next.  */
2472                 || at_endline_loc_p (p, pend, syntax))
2473                BUF_PUSH (endline);
2474              else
2475                goto normal_char;
2476            }
2477            break;
2478 
2479 
2480 	case '+':
2481         case '?':
2482           if ((syntax & RE_BK_PLUS_QM)
2483               || (syntax & RE_LIMITED_OPS))
2484             goto normal_char;
2485         handle_plus:
2486         case '*':
2487           /* If there is no previous pattern... */
2488           if (!laststart)
2489             {
2490               if (syntax & RE_CONTEXT_INVALID_OPS)
2491                 FREE_STACK_RETURN (REG_BADRPT);
2492               else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2493                 goto normal_char;
2494             }
2495 
2496           {
2497             /* Are we optimizing this jump?  */
2498             boolean keep_string_p = false;
2499 
2500             /* 1 means zero (many) matches is allowed.  */
2501             char zero_times_ok = 0, many_times_ok = 0;
2502 
2503             /* If there is a sequence of repetition chars, collapse it
2504                down to just one (the right one).  We can't combine
2505                interval operators with these because of, e.g., `a{2}*',
2506                which should only match an even number of `a's.  */
2507 
2508             for (;;)
2509               {
2510                 zero_times_ok |= c != '+';
2511                 many_times_ok |= c != '?';
2512 
2513                 if (p == pend)
2514                   break;
2515 
2516                 PATFETCH (c);
2517 
2518                 if (c == '*'
2519                     || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
2520                   ;
2521 
2522                 else if (syntax & RE_BK_PLUS_QM  &&  c == '\\')
2523                   {
2524                     if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2525 
2526                     PATFETCH (c1);
2527                     if (!(c1 == '+' || c1 == '?'))
2528                       {
2529                         PATUNFETCH;
2530                         PATUNFETCH;
2531                         break;
2532                       }
2533 
2534                     c = c1;
2535                   }
2536                 else
2537                   {
2538                     PATUNFETCH;
2539                     break;
2540                   }
2541 
2542                 /* If we get here, we found another repeat character.  */
2543                }
2544 
2545             /* Star, etc. applied to an empty pattern is equivalent
2546                to an empty pattern.  */
2547             if (!laststart)
2548               break;
2549 
2550             /* Now we know whether or not zero matches is allowed
2551                and also whether or not two or more matches is allowed.  */
2552             if (many_times_ok)
2553               { /* More than one repetition is allowed, so put in at the
2554                    end a backward relative jump from `b' to before the next
2555                    jump we're going to put in below (which jumps from
2556                    laststart to after this jump).
2557 
2558                    But if we are at the `*' in the exact sequence `.*\n',
2559                    insert an unconditional jump backwards to the .,
2560                    instead of the beginning of the loop.  This way we only
2561                    push a failure point once, instead of every time
2562                    through the loop.  */
2563                 assert (p - 1 > pattern);
2564 
2565                 /* Allocate the space for the jump.  */
2566                 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2567 
2568                 /* We know we are not at the first character of the pattern,
2569                    because laststart was nonzero.  And we've already
2570                    incremented `p', by the way, to be the character after
2571                    the `*'.  Do we have to do something analogous here
2572                    for null bytes, because of RE_DOT_NOT_NULL?  */
2573                 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
2574 		    && zero_times_ok
2575                     && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
2576                     && !(syntax & RE_DOT_NEWLINE))
2577                   { /* We have .*\n.  */
2578                     STORE_JUMP (jump, b, laststart);
2579                     keep_string_p = true;
2580                   }
2581                 else
2582                   /* Anything else.  */
2583                   STORE_JUMP (maybe_pop_jump, b, laststart -
2584 			      (1 + OFFSET_ADDRESS_SIZE));
2585 
2586                 /* We've added more stuff to the buffer.  */
2587                 b += 1 + OFFSET_ADDRESS_SIZE;
2588               }
2589 
2590             /* On failure, jump from laststart to b + 3, which will be the
2591                end of the buffer after this jump is inserted.  */
2592 	    /* ifdef MBS_SUPPORT, 'b + 1 + OFFSET_ADDRESS_SIZE' instead of
2593 	       'b + 3'.  */
2594             GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2595             INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
2596                                        : on_failure_jump,
2597                          laststart, b + 1 + OFFSET_ADDRESS_SIZE);
2598             pending_exact = 0;
2599             b += 1 + OFFSET_ADDRESS_SIZE;
2600 
2601             if (!zero_times_ok)
2602               {
2603                 /* At least one repetition is required, so insert a
2604                    `dummy_failure_jump' before the initial
2605                    `on_failure_jump' instruction of the loop. This
2606                    effects a skip over that instruction the first time
2607                    we hit that loop.  */
2608                 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2609                 INSERT_JUMP (dummy_failure_jump, laststart, laststart +
2610 			     2 + 2 * OFFSET_ADDRESS_SIZE);
2611                 b += 1 + OFFSET_ADDRESS_SIZE;
2612               }
2613             }
2614 	  break;
2615 
2616 
2617 	case '.':
2618           laststart = b;
2619           BUF_PUSH (anychar);
2620           break;
2621 
2622 
2623         case '[':
2624           {
2625             boolean had_char_class = false;
2626 #ifdef MBS_SUPPORT
2627 	    CHAR_TYPE range_start = 0xffffffff;
2628 #else
2629 	    unsigned int range_start = 0xffffffff;
2630 #endif
2631             if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2632 
2633 #ifdef MBS_SUPPORT
2634 	    /* We assume a charset(_not) structure as a wchar_t array.
2635 	       charset[0] = (re_opcode_t) charset(_not)
2636                charset[1] = l (= length of char_classes)
2637                charset[2] = m (= length of collating_symbols)
2638                charset[3] = n (= length of equivalence_classes)
2639 	       charset[4] = o (= length of char_ranges)
2640 	       charset[5] = p (= length of chars)
2641 
2642                charset[6] = char_class (wctype_t)
2643                charset[6+CHAR_CLASS_SIZE] = char_class (wctype_t)
2644                          ...
2645                charset[l+5]  = char_class (wctype_t)
2646 
2647                charset[l+6]  = collating_symbol (wchar_t)
2648                             ...
2649                charset[l+m+5]  = collating_symbol (wchar_t)
2650 					ifdef _LIBC we use the index if
2651 					_NL_COLLATE_SYMB_EXTRAMB instead of
2652 					wchar_t string.
2653 
2654                charset[l+m+6]  = equivalence_classes (wchar_t)
2655                               ...
2656                charset[l+m+n+5]  = equivalence_classes (wchar_t)
2657 					ifdef _LIBC we use the index in
2658 					_NL_COLLATE_WEIGHT instead of
2659 					wchar_t string.
2660 
2661 	       charset[l+m+n+6] = range_start
2662 	       charset[l+m+n+7] = range_end
2663 	                       ...
2664 	       charset[l+m+n+2o+4] = range_start
2665 	       charset[l+m+n+2o+5] = range_end
2666 					ifdef _LIBC we use the value looked up
2667 					in _NL_COLLATE_COLLSEQ instead of
2668 					wchar_t character.
2669 
2670 	       charset[l+m+n+2o+6] = char
2671 	                          ...
2672 	       charset[l+m+n+2o+p+5] = char
2673 
2674 	     */
2675 
2676 	    /* We need at least 6 spaces: the opcode, the length of
2677                char_classes, the length of collating_symbols, the length of
2678                equivalence_classes, the length of char_ranges, the length of
2679                chars.  */
2680 	    GET_BUFFER_SPACE (6);
2681 
2682 	    /* Save b as laststart. And We use laststart as the pointer
2683 	       to the first element of the charset here.
2684 	       In other words, laststart[i] indicates charset[i].  */
2685             laststart = b;
2686 
2687             /* We test `*p == '^' twice, instead of using an if
2688                statement, so we only need one BUF_PUSH.  */
2689             BUF_PUSH (*p == '^' ? charset_not : charset);
2690             if (*p == '^')
2691               p++;
2692 
2693             /* Push the length of char_classes, the length of
2694                collating_symbols, the length of equivalence_classes, the
2695                length of char_ranges and the length of chars.  */
2696             BUF_PUSH_3 (0, 0, 0);
2697             BUF_PUSH_2 (0, 0);
2698 
2699             /* Remember the first position in the bracket expression.  */
2700             p1 = p;
2701 
2702             /* charset_not matches newline according to a syntax bit.  */
2703             if ((re_opcode_t) b[-6] == charset_not
2704                 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2705 	      {
2706 		BUF_PUSH('\n');
2707 		laststart[5]++; /* Update the length of characters  */
2708 	      }
2709 
2710             /* Read in characters and ranges, setting map bits.  */
2711             for (;;)
2712               {
2713                 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2714 
2715                 PATFETCH (c);
2716 
2717                 /* \ might escape characters inside [...] and [^...].  */
2718                 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2719                   {
2720                     if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2721 
2722                     PATFETCH (c1);
2723 		    BUF_PUSH(c1);
2724 		    laststart[5]++; /* Update the length of chars  */
2725 		    range_start = c1;
2726                     continue;
2727                   }
2728 
2729                 /* Could be the end of the bracket expression.  If it's
2730                    not (i.e., when the bracket expression is `[]' so
2731                    far), the ']' character bit gets set way below.  */
2732                 if (c == ']' && p != p1 + 1)
2733                   break;
2734 
2735                 /* Look ahead to see if it's a range when the last thing
2736                    was a character class.  */
2737                 if (had_char_class && c == '-' && *p != ']')
2738                   FREE_STACK_RETURN (REG_ERANGE);
2739 
2740                 /* Look ahead to see if it's a range when the last thing
2741                    was a character: if this is a hyphen not at the
2742                    beginning or the end of a list, then it's the range
2743                    operator.  */
2744                 if (c == '-'
2745                     && !(p - 2 >= pattern && p[-2] == '[')
2746                     && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
2747                     && *p != ']')
2748                   {
2749                     reg_errcode_t ret;
2750 		    /* Allocate the space for range_start and range_end.  */
2751 		    GET_BUFFER_SPACE (2);
2752 		    /* Update the pointer to indicate end of buffer.  */
2753                     b += 2;
2754                     ret = compile_range (range_start, &p, pend, translate,
2755                                          syntax, b, laststart);
2756                     if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2757                     range_start = 0xffffffff;
2758                   }
2759                 else if (p[0] == '-' && p[1] != ']')
2760                   { /* This handles ranges made up of characters only.  */
2761                     reg_errcode_t ret;
2762 
2763 		    /* Move past the `-'.  */
2764                     PATFETCH (c1);
2765 		    /* Allocate the space for range_start and range_end.  */
2766 		    GET_BUFFER_SPACE (2);
2767 		    /* Update the pointer to indicate end of buffer.  */
2768                     b += 2;
2769                     ret = compile_range (c, &p, pend, translate, syntax, b,
2770                                          laststart);
2771                     if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2772 		    range_start = 0xffffffff;
2773                   }
2774 
2775                 /* See if we're at the beginning of a possible character
2776                    class.  */
2777                 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2778                   { /* Leave room for the null.  */
2779                     char str[CHAR_CLASS_MAX_LENGTH + 1];
2780 
2781                     PATFETCH (c);
2782                     c1 = 0;
2783 
2784                     /* If pattern is `[[:'.  */
2785                     if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2786 
2787                     for (;;)
2788                       {
2789                         PATFETCH (c);
2790                         if ((c == ':' && *p == ']') || p == pend)
2791                           break;
2792 			if (c1 < CHAR_CLASS_MAX_LENGTH)
2793 			  str[c1++] = c;
2794 			else
2795 			  /* This is in any case an invalid class name.  */
2796 			  str[0] = '\0';
2797                       }
2798                     str[c1] = '\0';
2799 
2800                     /* If isn't a word bracketed by `[:' and `:]':
2801                        undo the ending character, the letters, and leave
2802                        the leading `:' and `[' (but store them as character).  */
2803                     if (c == ':' && *p == ']')
2804                       {
2805 			wctype_t wt;
2806 			uintptr_t alignedp;
2807 
2808 			/* Query the character class as wctype_t.  */
2809 			wt = IS_CHAR_CLASS (str);
2810 			if (wt == 0)
2811 			  FREE_STACK_RETURN (REG_ECTYPE);
2812 
2813                         /* Throw away the ] at the end of the character
2814                            class.  */
2815                         PATFETCH (c);
2816 
2817                         if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2818 
2819 			/* Allocate the space for character class.  */
2820                         GET_BUFFER_SPACE(CHAR_CLASS_SIZE);
2821 			/* Update the pointer to indicate end of buffer.  */
2822                         b += CHAR_CLASS_SIZE;
2823 			/* Move data which follow character classes
2824 			    not to violate the data.  */
2825                         insert_space(CHAR_CLASS_SIZE,
2826 				     laststart + 6 + laststart[1],
2827 				     b - 1);
2828 			alignedp = ((uintptr_t)(laststart + 6 + laststart[1])
2829 				    + __alignof__(wctype_t) - 1)
2830 			  	    & ~(uintptr_t)(__alignof__(wctype_t) - 1);
2831 			/* Store the character class.  */
2832                         *((wctype_t*)alignedp) = wt;
2833                         /* Update length of char_classes */
2834                         laststart[1] += CHAR_CLASS_SIZE;
2835 
2836                         had_char_class = true;
2837                       }
2838                     else
2839                       {
2840                         c1++;
2841                         while (c1--)
2842                           PATUNFETCH;
2843                         BUF_PUSH ('[');
2844                         BUF_PUSH (':');
2845                         laststart[5] += 2; /* Update the length of characters  */
2846 			range_start = ':';
2847                         had_char_class = false;
2848                       }
2849                   }
2850                 else if (syntax & RE_CHAR_CLASSES && c == '[' && (*p == '='
2851 							  || *p == '.'))
2852 		  {
2853 		    CHAR_TYPE str[128];	/* Should be large enough.  */
2854 		    CHAR_TYPE delim = *p; /* '=' or '.'  */
2855 # ifdef _LIBC
2856 		    uint32_t nrules =
2857 		      _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
2858 # endif
2859 		    PATFETCH (c);
2860 		    c1 = 0;
2861 
2862 		    /* If pattern is `[[=' or '[[.'.  */
2863 		    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2864 
2865 		    for (;;)
2866 		      {
2867 			PATFETCH (c);
2868 			if ((c == delim && *p == ']') || p == pend)
2869 			  break;
2870 			if (c1 < sizeof (str) - 1)
2871 			  str[c1++] = c;
2872 			else
2873 			  /* This is in any case an invalid class name.  */
2874 			  str[0] = '\0';
2875                       }
2876 		    str[c1] = '\0';
2877 
2878 		    if (c == delim && *p == ']' && str[0] != '\0')
2879 		      {
2880                         unsigned int i, offset;
2881 			/* If we have no collation data we use the default
2882 			   collation in which each character is in a class
2883 			   by itself.  It also means that ASCII is the
2884 			   character set and therefore we cannot have character
2885 			   with more than one byte in the multibyte
2886 			   representation.  */
2887 
2888                         /* If not defined _LIBC, we push the name and
2889 			   `\0' for the sake of matching performance.  */
2890 			int datasize = c1 + 1;
2891 
2892 # ifdef _LIBC
2893 			int32_t idx = 0;
2894 			if (nrules == 0)
2895 # endif
2896 			  {
2897 			    if (c1 != 1)
2898 			      FREE_STACK_RETURN (REG_ECOLLATE);
2899 			  }
2900 # ifdef _LIBC
2901 			else
2902 			  {
2903 			    const int32_t *table;
2904 			    const int32_t *weights;
2905 			    const int32_t *extra;
2906 			    const int32_t *indirect;
2907 			    wint_t *cp;
2908 
2909 			    /* This #include defines a local function!  */
2910 #  include <locale/weightwc.h>
2911 
2912 			    if(delim == '=')
2913 			      {
2914 				/* We push the index for equivalence class.  */
2915 				cp = (wint_t*)str;
2916 
2917 				table = (const int32_t *)
2918 				  _NL_CURRENT (LC_COLLATE,
2919 					       _NL_COLLATE_TABLEWC);
2920 				weights = (const int32_t *)
2921 				  _NL_CURRENT (LC_COLLATE,
2922 					       _NL_COLLATE_WEIGHTWC);
2923 				extra = (const int32_t *)
2924 				  _NL_CURRENT (LC_COLLATE,
2925 					       _NL_COLLATE_EXTRAWC);
2926 				indirect = (const int32_t *)
2927 				  _NL_CURRENT (LC_COLLATE,
2928 					       _NL_COLLATE_INDIRECTWC);
2929 
2930 				idx = findidx ((const wint_t**)&cp);
2931 				if (idx == 0 || cp < (wint_t*) str + c1)
2932 				  /* This is no valid character.  */
2933 				  FREE_STACK_RETURN (REG_ECOLLATE);
2934 
2935 				str[0] = (wchar_t)idx;
2936 			      }
2937 			    else /* delim == '.' */
2938 			      {
2939 				/* We push collation sequence value
2940 				   for collating symbol.  */
2941 				int32_t table_size;
2942 				const int32_t *symb_table;
2943 				const unsigned char *extra;
2944 				int32_t idx;
2945 				int32_t elem;
2946 				int32_t second;
2947 				int32_t hash;
2948 				char char_str[c1];
2949 
2950 				/* We have to convert the name to a single-byte
2951 				   string.  This is possible since the names
2952 				   consist of ASCII characters and the internal
2953 				   representation is UCS4.  */
2954 				for (i = 0; i < c1; ++i)
2955 				  char_str[i] = str[i];
2956 
2957 				table_size =
2958 				  _NL_CURRENT_WORD (LC_COLLATE,
2959 						    _NL_COLLATE_SYMB_HASH_SIZEMB);
2960 				symb_table = (const int32_t *)
2961 				  _NL_CURRENT (LC_COLLATE,
2962 					       _NL_COLLATE_SYMB_TABLEMB);
2963 				extra = (const unsigned char *)
2964 				  _NL_CURRENT (LC_COLLATE,
2965 					       _NL_COLLATE_SYMB_EXTRAMB);
2966 
2967 				/* Locate the character in the hashing table.  */
2968 				hash = elem_hash (char_str, c1);
2969 
2970 				idx = 0;
2971 				elem = hash % table_size;
2972 				second = hash % (table_size - 2);
2973 				while (symb_table[2 * elem] != 0)
2974 				  {
2975 				    /* First compare the hashing value.  */
2976 				    if (symb_table[2 * elem] == hash
2977 					&& c1 == extra[symb_table[2 * elem + 1]]
2978 					&& memcmp (str,
2979 						   &extra[symb_table[2 * elem + 1]
2980 							 + 1], c1) == 0)
2981 				      {
2982 					/* Yep, this is the entry.  */
2983 					idx = symb_table[2 * elem + 1];
2984 					idx += 1 + extra[idx];
2985 					break;
2986 				      }
2987 
2988 				    /* Next entry.  */
2989 				    elem += second;
2990 				  }
2991 
2992 				if (symb_table[2 * elem] != 0)
2993 				  {
2994 				    /* Compute the index of the byte sequence
2995 				       in the table.  */
2996 				    idx += 1 + extra[idx];
2997 				    /* Adjust for the alignment.  */
2998 				    idx = (idx + 3) & ~4;
2999 
3000 				    str[0] = (wchar_t) idx + 4;
3001 				  }
3002 				else if (symb_table[2 * elem] == 0 && c1 == 1)
3003 				  {
3004 				    /* No valid character.  Match it as a
3005 				       single byte character.  */
3006 				    had_char_class = false;
3007 				    BUF_PUSH(str[0]);
3008 				    /* Update the length of characters  */
3009 				    laststart[5]++;
3010 				    range_start = str[0];
3011 
3012 				    /* Throw away the ] at the end of the
3013 				       collating symbol.  */
3014 				    PATFETCH (c);
3015 				    /* exit from the switch block.  */
3016 				    continue;
3017 				  }
3018 				else
3019 				  FREE_STACK_RETURN (REG_ECOLLATE);
3020 			      }
3021 			    datasize = 1;
3022 			  }
3023 # endif
3024                         /* Throw away the ] at the end of the equivalence
3025                            class (or collating symbol).  */
3026                         PATFETCH (c);
3027 
3028 			/* Allocate the space for the equivalence class
3029 			   (or collating symbol) (and '\0' if needed).  */
3030                         GET_BUFFER_SPACE(datasize);
3031 			/* Update the pointer to indicate end of buffer.  */
3032                         b += datasize;
3033 
3034 			if (delim == '=')
3035 			  { /* equivalence class  */
3036 			    /* Calculate the offset of char_ranges,
3037 			       which is next to equivalence_classes.  */
3038 			    offset = laststart[1] + laststart[2]
3039 			      + laststart[3] +6;
3040 			    /* Insert space.  */
3041 			    insert_space(datasize, laststart + offset, b - 1);
3042 
3043 			    /* Write the equivalence_class and \0.  */
3044 			    for (i = 0 ; i < datasize ; i++)
3045 			      laststart[offset + i] = str[i];
3046 
3047 			    /* Update the length of equivalence_classes.  */
3048 			    laststart[3] += datasize;
3049 			    had_char_class = true;
3050 			  }
3051 			else /* delim == '.' */
3052 			  { /* collating symbol  */
3053 			    /* Calculate the offset of the equivalence_classes,
3054 			       which is next to collating_symbols.  */
3055 			    offset = laststart[1] + laststart[2] + 6;
3056 			    /* Insert space and write the collationg_symbol
3057 			       and \0.  */
3058 			    insert_space(datasize, laststart + offset, b-1);
3059 			    for (i = 0 ; i < datasize ; i++)
3060 			      laststart[offset + i] = str[i];
3061 
3062 			    /* In re_match_2_internal if range_start < -1, we
3063 			       assume -range_start is the offset of the
3064 			       collating symbol which is specified as
3065 			       the character of the range start.  So we assign
3066 			       -(laststart[1] + laststart[2] + 6) to
3067 			       range_start.  */
3068 			    range_start = -(laststart[1] + laststart[2] + 6);
3069 			    /* Update the length of collating_symbol.  */
3070 			    laststart[2] += datasize;
3071 			    had_char_class = false;
3072 			  }
3073 		      }
3074                     else
3075                       {
3076                         c1++;
3077                         while (c1--)
3078                           PATUNFETCH;
3079                         BUF_PUSH ('[');
3080                         BUF_PUSH (delim);
3081                         laststart[5] += 2; /* Update the length of characters  */
3082 			range_start = delim;
3083                         had_char_class = false;
3084                       }
3085 		  }
3086                 else
3087                   {
3088                     had_char_class = false;
3089 		    BUF_PUSH(c);
3090 		    laststart[5]++;  /* Update the length of characters  */
3091 		    range_start = c;
3092                   }
3093 	      }
3094 
3095 #else /* not MBS_SUPPORT */
3096             /* Ensure that we have enough space to push a charset: the
3097                opcode, the length count, and the bitset; 34 bytes in all.  */
3098 	    GET_BUFFER_SPACE (34);
3099 
3100             laststart = b;
3101 
3102             /* We test `*p == '^' twice, instead of using an if
3103                statement, so we only need one BUF_PUSH.  */
3104             BUF_PUSH (*p == '^' ? charset_not : charset);
3105             if (*p == '^')
3106               p++;
3107 
3108             /* Remember the first position in the bracket expression.  */
3109             p1 = p;
3110 
3111             /* Push the number of bytes in the bitmap.  */
3112             BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
3113 
3114             /* Clear the whole map.  */
3115             bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
3116 
3117             /* charset_not matches newline according to a syntax bit.  */
3118             if ((re_opcode_t) b[-2] == charset_not
3119                 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
3120               SET_LIST_BIT ('\n');
3121 
3122             /* Read in characters and ranges, setting map bits.  */
3123             for (;;)
3124               {
3125                 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3126 
3127                 PATFETCH (c);
3128 
3129                 /* \ might escape characters inside [...] and [^...].  */
3130                 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
3131                   {
3132                     if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3133 
3134                     PATFETCH (c1);
3135                     SET_LIST_BIT (c1);
3136 		    range_start = c1;
3137                     continue;
3138                   }
3139 
3140                 /* Could be the end of the bracket expression.  If it's
3141                    not (i.e., when the bracket expression is `[]' so
3142                    far), the ']' character bit gets set way below.  */
3143                 if (c == ']' && p != p1 + 1)
3144                   break;
3145 
3146                 /* Look ahead to see if it's a range when the last thing
3147                    was a character class.  */
3148                 if (had_char_class && c == '-' && *p != ']')
3149                   FREE_STACK_RETURN (REG_ERANGE);
3150 
3151                 /* Look ahead to see if it's a range when the last thing
3152                    was a character: if this is a hyphen not at the
3153                    beginning or the end of a list, then it's the range
3154                    operator.  */
3155                 if (c == '-'
3156                     && !(p - 2 >= pattern && p[-2] == '[')
3157                     && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
3158                     && *p != ']')
3159                   {
3160                     reg_errcode_t ret
3161                       = compile_range (range_start, &p, pend, translate,
3162 				       syntax, b);
3163                     if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
3164 		    range_start = 0xffffffff;
3165                   }
3166 
3167                 else if (p[0] == '-' && p[1] != ']')
3168                   { /* This handles ranges made up of characters only.  */
3169                     reg_errcode_t ret;
3170 
3171 		    /* Move past the `-'.  */
3172                     PATFETCH (c1);
3173 
3174                     ret = compile_range (c, &p, pend, translate, syntax, b);
3175                     if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
3176 		    range_start = 0xffffffff;
3177                   }
3178 
3179                 /* See if we're at the beginning of a possible character
3180                    class.  */
3181 
3182                 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
3183                   { /* Leave room for the null.  */
3184                     char str[CHAR_CLASS_MAX_LENGTH + 1];
3185 
3186                     PATFETCH (c);
3187                     c1 = 0;
3188 
3189                     /* If pattern is `[[:'.  */
3190                     if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3191 
3192                     for (;;)
3193                       {
3194                         PATFETCH (c);
3195                         if ((c == ':' && *p == ']') || p == pend)
3196                           break;
3197 			if (c1 < CHAR_CLASS_MAX_LENGTH)
3198 			  str[c1++] = c;
3199 			else
3200 			  /* This is in any case an invalid class name.  */
3201 			  str[0] = '\0';
3202                       }
3203                     str[c1] = '\0';
3204 
3205                     /* If isn't a word bracketed by `[:' and `:]':
3206                        undo the ending character, the letters, and leave
3207                        the leading `:' and `[' (but set bits for them).  */
3208                     if (c == ':' && *p == ']')
3209                       {
3210 # if defined _LIBC || WIDE_CHAR_SUPPORT
3211                         boolean is_lower = STREQ (str, "lower");
3212                         boolean is_upper = STREQ (str, "upper");
3213 			wctype_t wt;
3214                         int ch;
3215 
3216 			wt = IS_CHAR_CLASS (str);
3217 			if (wt == 0)
3218 			  FREE_STACK_RETURN (REG_ECTYPE);
3219 
3220                         /* Throw away the ] at the end of the character
3221                            class.  */
3222                         PATFETCH (c);
3223 
3224                         if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3225 
3226                         for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
3227 			  {
3228 #  ifdef _LIBC
3229 			    if (__iswctype (__btowc (ch), wt))
3230 			      SET_LIST_BIT (ch);
3231 #  else
3232 			    if (iswctype (btowc (ch), wt))
3233 			      SET_LIST_BIT (ch);
3234 #  endif
3235 
3236 			    if (translate && (is_upper || is_lower)
3237 				&& (ISUPPER (ch) || ISLOWER (ch)))
3238 			      SET_LIST_BIT (ch);
3239 			  }
3240 
3241                         had_char_class = true;
3242 # else
3243                         int ch;
3244                         boolean is_alnum = STREQ (str, "alnum");
3245                         boolean is_alpha = STREQ (str, "alpha");
3246                         boolean is_blank = STREQ (str, "blank");
3247                         boolean is_cntrl = STREQ (str, "cntrl");
3248                         boolean is_digit = STREQ (str, "digit");
3249                         boolean is_graph = STREQ (str, "graph");
3250                         boolean is_lower = STREQ (str, "lower");
3251                         boolean is_print = STREQ (str, "print");
3252                         boolean is_punct = STREQ (str, "punct");
3253                         boolean is_space = STREQ (str, "space");
3254                         boolean is_upper = STREQ (str, "upper");
3255                         boolean is_xdigit = STREQ (str, "xdigit");
3256 
3257                         if (!IS_CHAR_CLASS (str))
3258 			  FREE_STACK_RETURN (REG_ECTYPE);
3259 
3260                         /* Throw away the ] at the end of the character
3261                            class.  */
3262                         PATFETCH (c);
3263 
3264                         if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3265 
3266                         for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
3267                           {
3268 			    /* This was split into 3 if's to
3269 			       avoid an arbitrary limit in some compiler.  */
3270                             if (   (is_alnum  && ISALNUM (ch))
3271                                 || (is_alpha  && ISALPHA (ch))
3272                                 || (is_blank  && ISBLANK (ch))
3273                                 || (is_cntrl  && ISCNTRL (ch)))
3274 			      SET_LIST_BIT (ch);
3275 			    if (   (is_digit  && ISDIGIT (ch))
3276                                 || (is_graph  && ISGRAPH (ch))
3277                                 || (is_lower  && ISLOWER (ch))
3278                                 || (is_print  && ISPRINT (ch)))
3279 			      SET_LIST_BIT (ch);
3280 			    if (   (is_punct  && ISPUNCT (ch))
3281                                 || (is_space  && ISSPACE (ch))
3282                                 || (is_upper  && ISUPPER (ch))
3283                                 || (is_xdigit && ISXDIGIT (ch)))
3284 			      SET_LIST_BIT (ch);
3285 			    if (   translate && (is_upper || is_lower)
3286 				&& (ISUPPER (ch) || ISLOWER (ch)))
3287 			      SET_LIST_BIT (ch);
3288                           }
3289                         had_char_class = true;
3290 # endif	/* libc || wctype.h */
3291                       }
3292                     else
3293                       {
3294                         c1++;
3295                         while (c1--)
3296                           PATUNFETCH;
3297                         SET_LIST_BIT ('[');
3298                         SET_LIST_BIT (':');
3299 			range_start = ':';
3300                         had_char_class = false;
3301                       }
3302                   }
3303                 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == '=')
3304 		  {
3305 		    unsigned char str[MB_LEN_MAX + 1];
3306 # ifdef _LIBC
3307 		    uint32_t nrules =
3308 		      _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
3309 # endif
3310 
3311 		    PATFETCH (c);
3312 		    c1 = 0;
3313 
3314 		    /* If pattern is `[[='.  */
3315 		    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3316 
3317 		    for (;;)
3318 		      {
3319 			PATFETCH (c);
3320 			if ((c == '=' && *p == ']') || p == pend)
3321 			  break;
3322 			if (c1 < MB_LEN_MAX)
3323 			  str[c1++] = c;
3324 			else
3325 			  /* This is in any case an invalid class name.  */
3326 			  str[0] = '\0';
3327                       }
3328 		    str[c1] = '\0';
3329 
3330 		    if (c == '=' && *p == ']' && str[0] != '\0')
3331 		      {
3332 			/* If we have no collation data we use the default
3333 			   collation in which each character is in a class
3334 			   by itself.  It also means that ASCII is the
3335 			   character set and therefore we cannot have character
3336 			   with more than one byte in the multibyte
3337 			   representation.  */
3338 # ifdef _LIBC
3339 			if (nrules == 0)
3340 # endif
3341 			  {
3342 			    if (c1 != 1)
3343 			      FREE_STACK_RETURN (REG_ECOLLATE);
3344 
3345 			    /* Throw away the ] at the end of the equivalence
3346 			       class.  */
3347 			    PATFETCH (c);
3348 
3349 			    /* Set the bit for the character.  */
3350 			    SET_LIST_BIT (str[0]);
3351 			  }
3352 # ifdef _LIBC
3353 			else
3354 			  {
3355 			    /* Try to match the byte sequence in `str' against
3356 			       those known to the collate implementation.
3357 			       First find out whether the bytes in `str' are
3358 			       actually from exactly one character.  */
3359 			    const int32_t *table;
3360 			    const unsigned char *weights;
3361 			    const unsigned char *extra;
3362 			    const int32_t *indirect;
3363 			    int32_t idx;
3364 			    const unsigned char *cp = str;
3365 			    int ch;
3366 
3367 			    /* This #include defines a local function!  */
3368 #  include <locale/weight.h>
3369 
3370 			    table = (const int32_t *)
3371 			      _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB);
3372 			    weights = (const unsigned char *)
3373 			      _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTMB);
3374 			    extra = (const unsigned char *)
3375 			      _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAMB);
3376 			    indirect = (const int32_t *)
3377 			      _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTMB);
3378 
3379 			    idx = findidx (&cp);
3380 			    if (idx == 0 || cp < str + c1)
3381 			      /* This is no valid character.  */
3382 			      FREE_STACK_RETURN (REG_ECOLLATE);
3383 
3384 			    /* Throw away the ] at the end of the equivalence
3385 			       class.  */
3386 			    PATFETCH (c);
3387 
3388 			    /* Now we have to go throught the whole table
3389 			       and find all characters which have the same
3390 			       first level weight.
3391 
3392 			       XXX Note that this is not entirely correct.
3393 			       we would have to match multibyte sequences
3394 			       but this is not possible with the current
3395 			       implementation.  */
3396 			    for (ch = 1; ch < 256; ++ch)
3397 			      /* XXX This test would have to be changed if we
3398 				 would allow matching multibyte sequences.  */
3399 			      if (table[ch] > 0)
3400 				{
3401 				  int32_t idx2 = table[ch];
3402 				  size_t len = weights[idx2];
3403 
3404 				  /* Test whether the lenghts match.  */
3405 				  if (weights[idx] == len)
3406 				    {
3407 				      /* They do.  New compare the bytes of
3408 					 the weight.  */
3409 				      size_t cnt = 0;
3410 
3411 				      while (cnt < len
3412 					     && (weights[idx + 1 + cnt]
3413 						 == weights[idx2 + 1 + cnt]))
3414 					++cnt;
3415 
3416 				      if (cnt == len)
3417 					/* They match.  Mark the character as
3418 					   acceptable.  */
3419 					SET_LIST_BIT (ch);
3420 				    }
3421 				}
3422 			  }
3423 # endif
3424 			had_char_class = true;
3425 		      }
3426                     else
3427                       {
3428                         c1++;
3429                         while (c1--)
3430                           PATUNFETCH;
3431                         SET_LIST_BIT ('[');
3432                         SET_LIST_BIT ('=');
3433 			range_start = '=';
3434                         had_char_class = false;
3435                       }
3436 		  }
3437                 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == '.')
3438 		  {
3439 		    unsigned char str[128];	/* Should be large enough.  */
3440 # ifdef _LIBC
3441 		    uint32_t nrules =
3442 		      _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
3443 # endif
3444 
3445 		    PATFETCH (c);
3446 		    c1 = 0;
3447 
3448 		    /* If pattern is `[[.'.  */
3449 		    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3450 
3451 		    for (;;)
3452 		      {
3453 			PATFETCH (c);
3454 			if ((c == '.' && *p == ']') || p == pend)
3455 			  break;
3456 			if (c1 < sizeof (str))
3457 			  str[c1++] = c;
3458 			else
3459 			  /* This is in any case an invalid class name.  */
3460 			  str[0] = '\0';
3461                       }
3462 		    str[c1] = '\0';
3463 
3464 		    if (c == '.' && *p == ']' && str[0] != '\0')
3465 		      {
3466 			/* If we have no collation data we use the default
3467 			   collation in which each character is the name
3468 			   for its own class which contains only the one
3469 			   character.  It also means that ASCII is the
3470 			   character set and therefore we cannot have character
3471 			   with more than one byte in the multibyte
3472 			   representation.  */
3473 # ifdef _LIBC
3474 			if (nrules == 0)
3475 # endif
3476 			  {
3477 			    if (c1 != 1)
3478 			      FREE_STACK_RETURN (REG_ECOLLATE);
3479 
3480 			    /* Throw away the ] at the end of the equivalence
3481 			       class.  */
3482 			    PATFETCH (c);
3483 
3484 			    /* Set the bit for the character.  */
3485 			    SET_LIST_BIT (str[0]);
3486 			    range_start = ((const unsigned char *) str)[0];
3487 			  }
3488 # ifdef _LIBC
3489 			else
3490 			  {
3491 			    /* Try to match the byte sequence in `str' against
3492 			       those known to the collate implementation.
3493 			       First find out whether the bytes in `str' are
3494 			       actually from exactly one character.  */
3495 			    int32_t table_size;
3496 			    const int32_t *symb_table;
3497 			    const unsigned char *extra;
3498 			    int32_t idx;
3499 			    int32_t elem;
3500 			    int32_t second;
3501 			    int32_t hash;
3502 
3503 			    table_size =
3504 			      _NL_CURRENT_WORD (LC_COLLATE,
3505 						_NL_COLLATE_SYMB_HASH_SIZEMB);
3506 			    symb_table = (const int32_t *)
3507 			      _NL_CURRENT (LC_COLLATE,
3508 					   _NL_COLLATE_SYMB_TABLEMB);
3509 			    extra = (const unsigned char *)
3510 			      _NL_CURRENT (LC_COLLATE,
3511 					   _NL_COLLATE_SYMB_EXTRAMB);
3512 
3513 			    /* Locate the character in the hashing table.  */
3514 			    hash = elem_hash (str, c1);
3515 
3516 			    idx = 0;
3517 			    elem = hash % table_size;
3518 			    second = hash % (table_size - 2);
3519 			    while (symb_table[2 * elem] != 0)
3520 			      {
3521 				/* First compare the hashing value.  */
3522 				if (symb_table[2 * elem] == hash
3523 				    && c1 == extra[symb_table[2 * elem + 1]]
3524 				    && memcmp (str,
3525 					       &extra[symb_table[2 * elem + 1]
3526 						     + 1],
3527 					       c1) == 0)
3528 				  {
3529 				    /* Yep, this is the entry.  */
3530 				    idx = symb_table[2 * elem + 1];
3531 				    idx += 1 + extra[idx];
3532 				    break;
3533 				  }
3534 
3535 				/* Next entry.  */
3536 				elem += second;
3537 			      }
3538 
3539 			    if (symb_table[2 * elem] == 0)
3540 			      /* This is no valid character.  */
3541 			      FREE_STACK_RETURN (REG_ECOLLATE);
3542 
3543 			    /* Throw away the ] at the end of the equivalence
3544 			       class.  */
3545 			    PATFETCH (c);
3546 
3547 			    /* Now add the multibyte character(s) we found
3548 			       to the accept list.
3549 
3550 			       XXX Note that this is not entirely correct.
3551 			       we would have to match multibyte sequences
3552 			       but this is not possible with the current
3553 			       implementation.  Also, we have to match
3554 			       collating symbols, which expand to more than
3555 			       one file, as a whole and not allow the
3556 			       individual bytes.  */
3557 			    c1 = extra[idx++];
3558 			    if (c1 == 1)
3559 			      range_start = extra[idx];
3560 			    while (c1-- > 0)
3561 			      {
3562 				SET_LIST_BIT (extra[idx]);
3563 				++idx;
3564 			      }
3565 			  }
3566 # endif
3567 			had_char_class = false;
3568 		      }
3569                     else
3570                       {
3571                         c1++;
3572                         while (c1--)
3573                           PATUNFETCH;
3574                         SET_LIST_BIT ('[');
3575                         SET_LIST_BIT ('.');
3576 			range_start = '.';
3577                         had_char_class = false;
3578                       }
3579 		  }
3580                 else
3581                   {
3582                     had_char_class = false;
3583                     SET_LIST_BIT (c);
3584 		    range_start = c;
3585                   }
3586               }
3587 
3588             /* Discard any (non)matching list bytes that are all 0 at the
3589                end of the map.  Decrease the map-length byte too.  */
3590             while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
3591               b[-1]--;
3592             b += b[-1];
3593 #endif /* MBS_SUPPORT */
3594           }
3595           break;
3596 
3597 
3598 	case '(':
3599           if (syntax & RE_NO_BK_PARENS)
3600             goto handle_open;
3601           else
3602             goto normal_char;
3603 
3604 
3605         case ')':
3606           if (syntax & RE_NO_BK_PARENS)
3607             goto handle_close;
3608           else
3609             goto normal_char;
3610 
3611 
3612         case '\n':
3613           if (syntax & RE_NEWLINE_ALT)
3614             goto handle_alt;
3615           else
3616             goto normal_char;
3617 
3618 
3619 	case '|':
3620           if (syntax & RE_NO_BK_VBAR)
3621             goto handle_alt;
3622           else
3623             goto normal_char;
3624 
3625 
3626         case '{':
3627            if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
3628              goto handle_interval;
3629            else
3630              goto normal_char;
3631 
3632 
3633         case '\\':
3634           if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3635 
3636           /* Do not translate the character after the \, so that we can
3637              distinguish, e.g., \B from \b, even if we normally would
3638              translate, e.g., B to b.  */
3639           PATFETCH_RAW (c);
3640 
3641           switch (c)
3642             {
3643             case '(':
3644               if (syntax & RE_NO_BK_PARENS)
3645                 goto normal_backslash;
3646 
3647             handle_open:
3648               bufp->re_nsub++;
3649               regnum++;
3650 
3651               if (COMPILE_STACK_FULL)
3652                 {
3653                   RETALLOC (compile_stack.stack, compile_stack.size << 1,
3654                             compile_stack_elt_t);
3655                   if (compile_stack.stack == NULL) return REG_ESPACE;
3656 
3657                   compile_stack.size <<= 1;
3658                 }
3659 
3660               /* These are the values to restore when we hit end of this
3661                  group.  They are all relative offsets, so that if the
3662                  whole pattern moves because of realloc, they will still
3663                  be valid.  */
3664               COMPILE_STACK_TOP.begalt_offset = begalt - COMPILED_BUFFER_VAR;
3665               COMPILE_STACK_TOP.fixup_alt_jump
3666                 = fixup_alt_jump ? fixup_alt_jump - COMPILED_BUFFER_VAR + 1 : 0;
3667               COMPILE_STACK_TOP.laststart_offset = b - COMPILED_BUFFER_VAR;
3668               COMPILE_STACK_TOP.regnum = regnum;
3669 
3670               /* We will eventually replace the 0 with the number of
3671                  groups inner to this one.  But do not push a
3672                  start_memory for groups beyond the last one we can
3673                  represent in the compiled pattern.  */
3674               if (regnum <= MAX_REGNUM)
3675                 {
3676                   COMPILE_STACK_TOP.inner_group_offset = b
3677 		    - COMPILED_BUFFER_VAR + 2;
3678                   BUF_PUSH_3 (start_memory, regnum, 0);
3679                 }
3680 
3681               compile_stack.avail++;
3682 
3683               fixup_alt_jump = 0;
3684               laststart = 0;
3685               begalt = b;
3686 	      /* If we've reached MAX_REGNUM groups, then this open
3687 		 won't actually generate any code, so we'll have to
3688 		 clear pending_exact explicitly.  */
3689 	      pending_exact = 0;
3690               break;
3691 
3692 
3693             case ')':
3694               if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
3695 
3696               if (COMPILE_STACK_EMPTY)
3697 		{
3698 		  if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3699 		    goto normal_backslash;
3700 		  else
3701 		    FREE_STACK_RETURN (REG_ERPAREN);
3702 		}
3703 
3704             handle_close:
3705               if (fixup_alt_jump)
3706                 { /* Push a dummy failure point at the end of the
3707                      alternative for a possible future
3708                      `pop_failure_jump' to pop.  See comments at
3709                      `push_dummy_failure' in `re_match_2'.  */
3710                   BUF_PUSH (push_dummy_failure);
3711 
3712                   /* We allocated space for this jump when we assigned
3713                      to `fixup_alt_jump', in the `handle_alt' case below.  */
3714                   STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
3715                 }
3716 
3717               /* See similar code for backslashed left paren above.  */
3718               if (COMPILE_STACK_EMPTY)
3719 		{
3720 		  if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3721 		    goto normal_char;
3722 		  else
3723 		    FREE_STACK_RETURN (REG_ERPAREN);
3724 		}
3725 
3726               /* Since we just checked for an empty stack above, this
3727                  ``can't happen''.  */
3728               assert (compile_stack.avail != 0);
3729               {
3730                 /* We don't just want to restore into `regnum', because
3731                    later groups should continue to be numbered higher,
3732                    as in `(ab)c(de)' -- the second group is #2.  */
3733                 regnum_t this_group_regnum;
3734 
3735                 compile_stack.avail--;
3736                 begalt = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.begalt_offset;
3737                 fixup_alt_jump
3738                   = COMPILE_STACK_TOP.fixup_alt_jump
3739                     ? COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.fixup_alt_jump - 1
3740                     : 0;
3741                 laststart = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.laststart_offset;
3742                 this_group_regnum = COMPILE_STACK_TOP.regnum;
3743 		/* If we've reached MAX_REGNUM groups, then this open
3744 		   won't actually generate any code, so we'll have to
3745 		   clear pending_exact explicitly.  */
3746 		pending_exact = 0;
3747 
3748                 /* We're at the end of the group, so now we know how many
3749                    groups were inside this one.  */
3750                 if (this_group_regnum <= MAX_REGNUM)
3751                   {
3752 		    US_CHAR_TYPE *inner_group_loc
3753                       = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.inner_group_offset;
3754 
3755                     *inner_group_loc = regnum - this_group_regnum;
3756                     BUF_PUSH_3 (stop_memory, this_group_regnum,
3757                                 regnum - this_group_regnum);
3758                   }
3759               }
3760               break;
3761 
3762 
3763             case '|':					/* `\|'.  */
3764               if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
3765                 goto normal_backslash;
3766             handle_alt:
3767               if (syntax & RE_LIMITED_OPS)
3768                 goto normal_char;
3769 
3770               /* Insert before the previous alternative a jump which
3771                  jumps to this alternative if the former fails.  */
3772               GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3773               INSERT_JUMP (on_failure_jump, begalt,
3774 			   b + 2 + 2 * OFFSET_ADDRESS_SIZE);
3775               pending_exact = 0;
3776               b += 1 + OFFSET_ADDRESS_SIZE;
3777 
3778               /* The alternative before this one has a jump after it
3779                  which gets executed if it gets matched.  Adjust that
3780                  jump so it will jump to this alternative's analogous
3781                  jump (put in below, which in turn will jump to the next
3782                  (if any) alternative's such jump, etc.).  The last such
3783                  jump jumps to the correct final destination.  A picture:
3784                           _____ _____
3785                           |   | |   |
3786                           |   v |   v
3787                          a | b   | c
3788 
3789                  If we are at `b', then fixup_alt_jump right now points to a
3790                  three-byte space after `a'.  We'll put in the jump, set
3791                  fixup_alt_jump to right after `b', and leave behind three
3792                  bytes which we'll fill in when we get to after `c'.  */
3793 
3794               if (fixup_alt_jump)
3795                 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
3796 
3797               /* Mark and leave space for a jump after this alternative,
3798                  to be filled in later either by next alternative or
3799                  when know we're at the end of a series of alternatives.  */
3800               fixup_alt_jump = b;
3801               GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3802               b += 1 + OFFSET_ADDRESS_SIZE;
3803 
3804               laststart = 0;
3805               begalt = b;
3806               break;
3807 
3808 
3809             case '{':
3810               /* If \{ is a literal.  */
3811               if (!(syntax & RE_INTERVALS)
3812                      /* If we're at `\{' and it's not the open-interval
3813                         operator.  */
3814 		  || (syntax & RE_NO_BK_BRACES))
3815                 goto normal_backslash;
3816 
3817             handle_interval:
3818               {
3819                 /* If got here, then the syntax allows intervals.  */
3820 
3821                 /* At least (most) this many matches must be made.  */
3822                 int lower_bound = -1, upper_bound = -1;
3823 
3824 		/* Place in the uncompiled pattern (i.e., just after
3825 		   the '{') to go back to if the interval is invalid.  */
3826 		const CHAR_TYPE *beg_interval = p;
3827 
3828                 if (p == pend)
3829 		  goto invalid_interval;
3830 
3831                 GET_UNSIGNED_NUMBER (lower_bound);
3832 
3833                 if (c == ',')
3834                   {
3835                     GET_UNSIGNED_NUMBER (upper_bound);
3836 		    if (upper_bound < 0)
3837 		      upper_bound = RE_DUP_MAX;
3838                   }
3839                 else
3840                   /* Interval such as `{1}' => match exactly once. */
3841                   upper_bound = lower_bound;
3842 
3843                 if (! (0 <= lower_bound && lower_bound <= upper_bound))
3844 		  goto invalid_interval;
3845 
3846                 if (!(syntax & RE_NO_BK_BRACES))
3847                   {
3848 		    if (c != '\\' || p == pend)
3849 		      goto invalid_interval;
3850                     PATFETCH (c);
3851                   }
3852 
3853                 if (c != '}')
3854 		  goto invalid_interval;
3855 
3856                 /* If it's invalid to have no preceding re.  */
3857                 if (!laststart)
3858                   {
3859 		    if (syntax & RE_CONTEXT_INVALID_OPS
3860 			&& !(syntax & RE_INVALID_INTERVAL_ORD))
3861                       FREE_STACK_RETURN (REG_BADRPT);
3862                     else if (syntax & RE_CONTEXT_INDEP_OPS)
3863                       laststart = b;
3864                     else
3865                       goto unfetch_interval;
3866                   }
3867 
3868                 /* We just parsed a valid interval.  */
3869 
3870                 if (RE_DUP_MAX < upper_bound)
3871 		  FREE_STACK_RETURN (REG_BADBR);
3872 
3873                 /* If the upper bound is zero, don't want to succeed at
3874                    all; jump from `laststart' to `b + 3', which will be
3875 		   the end of the buffer after we insert the jump.  */
3876 		/* ifdef MBS_SUPPORT, 'b + 1 + OFFSET_ADDRESS_SIZE'
3877 		   instead of 'b + 3'.  */
3878                  if (upper_bound == 0)
3879                    {
3880                      GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3881                      INSERT_JUMP (jump, laststart, b + 1
3882 				  + OFFSET_ADDRESS_SIZE);
3883                      b += 1 + OFFSET_ADDRESS_SIZE;
3884                    }
3885 
3886                  /* Otherwise, we have a nontrivial interval.  When
3887                     we're all done, the pattern will look like:
3888                       set_number_at <jump count> <upper bound>
3889                       set_number_at <succeed_n count> <lower bound>
3890                       succeed_n <after jump addr> <succeed_n count>
3891                       <body of loop>
3892                       jump_n <succeed_n addr> <jump count>
3893                     (The upper bound and `jump_n' are omitted if
3894                     `upper_bound' is 1, though.)  */
3895                  else
3896                    { /* If the upper bound is > 1, we need to insert
3897                         more at the end of the loop.  */
3898                      unsigned nbytes = 2 + 4 * OFFSET_ADDRESS_SIZE +
3899 		       (upper_bound > 1) * (2 + 4 * OFFSET_ADDRESS_SIZE);
3900 
3901                      GET_BUFFER_SPACE (nbytes);
3902 
3903                      /* Initialize lower bound of the `succeed_n', even
3904                         though it will be set during matching by its
3905                         attendant `set_number_at' (inserted next),
3906                         because `re_compile_fastmap' needs to know.
3907                         Jump to the `jump_n' we might insert below.  */
3908                      INSERT_JUMP2 (succeed_n, laststart,
3909                                    b + 1 + 2 * OFFSET_ADDRESS_SIZE
3910 				   + (upper_bound > 1) * (1 + 2 * OFFSET_ADDRESS_SIZE)
3911 				   , lower_bound);
3912                      b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3913 
3914                      /* Code to initialize the lower bound.  Insert
3915                         before the `succeed_n'.  The `5' is the last two
3916                         bytes of this `set_number_at', plus 3 bytes of
3917                         the following `succeed_n'.  */
3918 		     /* ifdef MBS_SUPPORT, The '1+2*OFFSET_ADDRESS_SIZE'
3919 			is the 'set_number_at', plus '1+OFFSET_ADDRESS_SIZE'
3920 			of the following `succeed_n'.  */
3921                      insert_op2 (set_number_at, laststart, 1
3922 				 + 2 * OFFSET_ADDRESS_SIZE, lower_bound, b);
3923                      b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3924 
3925                      if (upper_bound > 1)
3926                        { /* More than one repetition is allowed, so
3927                             append a backward jump to the `succeed_n'
3928                             that starts this interval.
3929 
3930                             When we've reached this during matching,
3931                             we'll have matched the interval once, so
3932                             jump back only `upper_bound - 1' times.  */
3933                          STORE_JUMP2 (jump_n, b, laststart
3934 				      + 2 * OFFSET_ADDRESS_SIZE + 1,
3935                                       upper_bound - 1);
3936                          b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3937 
3938                          /* The location we want to set is the second
3939                             parameter of the `jump_n'; that is `b-2' as
3940                             an absolute address.  `laststart' will be
3941                             the `set_number_at' we're about to insert;
3942                             `laststart+3' the number to set, the source
3943                             for the relative address.  But we are
3944                             inserting into the middle of the pattern --
3945                             so everything is getting moved up by 5.
3946                             Conclusion: (b - 2) - (laststart + 3) + 5,
3947                             i.e., b - laststart.
3948 
3949                             We insert this at the beginning of the loop
3950                             so that if we fail during matching, we'll
3951                             reinitialize the bounds.  */
3952                          insert_op2 (set_number_at, laststart, b - laststart,
3953                                      upper_bound - 1, b);
3954                          b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3955                        }
3956                    }
3957                 pending_exact = 0;
3958 		break;
3959 
3960 	      invalid_interval:
3961 		if (!(syntax & RE_INVALID_INTERVAL_ORD))
3962 		  FREE_STACK_RETURN (p == pend ? REG_EBRACE : REG_BADBR);
3963 	      unfetch_interval:
3964 		/* Match the characters as literals.  */
3965 		p = beg_interval;
3966 		c = '{';
3967 		if (syntax & RE_NO_BK_BRACES)
3968 		  goto normal_char;
3969 		else
3970 		  goto normal_backslash;
3971 	      }
3972 
3973 #ifdef emacs
3974             /* There is no way to specify the before_dot and after_dot
3975                operators.  rms says this is ok.  --karl  */
3976             case '=':
3977               BUF_PUSH (at_dot);
3978               break;
3979 
3980             case 's':
3981               laststart = b;
3982               PATFETCH (c);
3983               BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
3984               break;
3985 
3986             case 'S':
3987               laststart = b;
3988               PATFETCH (c);
3989               BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
3990               break;
3991 #endif /* emacs */
3992 
3993 
3994             case 'w':
3995 	      if (syntax & RE_NO_GNU_OPS)
3996 		goto normal_char;
3997               laststart = b;
3998               BUF_PUSH (wordchar);
3999               break;
4000 
4001 
4002             case 'W':
4003 	      if (syntax & RE_NO_GNU_OPS)
4004 		goto normal_char;
4005               laststart = b;
4006               BUF_PUSH (notwordchar);
4007               break;
4008 
4009 
4010             case '<':
4011 	      if (syntax & RE_NO_GNU_OPS)
4012 		goto normal_char;
4013               BUF_PUSH (wordbeg);
4014               break;
4015 
4016             case '>':
4017 	      if (syntax & RE_NO_GNU_OPS)
4018 		goto normal_char;
4019               BUF_PUSH (wordend);
4020               break;
4021 
4022             case 'b':
4023 	      if (syntax & RE_NO_GNU_OPS)
4024 		goto normal_char;
4025               BUF_PUSH (wordbound);
4026               break;
4027 
4028             case 'B':
4029 	      if (syntax & RE_NO_GNU_OPS)
4030 		goto normal_char;
4031               BUF_PUSH (notwordbound);
4032               break;
4033 
4034             case '`':
4035 	      if (syntax & RE_NO_GNU_OPS)
4036 		goto normal_char;
4037               BUF_PUSH (begbuf);
4038               break;
4039 
4040             case '\'':
4041 	      if (syntax & RE_NO_GNU_OPS)
4042 		goto normal_char;
4043               BUF_PUSH (endbuf);
4044               break;
4045 
4046             case '1': case '2': case '3': case '4': case '5':
4047             case '6': case '7': case '8': case '9':
4048               if (syntax & RE_NO_BK_REFS)
4049                 goto normal_char;
4050 
4051               c1 = c - '0';
4052 
4053               if (c1 > regnum)
4054                 FREE_STACK_RETURN (REG_ESUBREG);
4055 
4056               /* Can't back reference to a subexpression if inside of it.  */
4057               if (group_in_compile_stack (compile_stack, (regnum_t) c1))
4058                 goto normal_char;
4059 
4060               laststart = b;
4061               BUF_PUSH_2 (duplicate, c1);
4062               break;
4063 
4064 
4065             case '+':
4066             case '?':
4067               if (syntax & RE_BK_PLUS_QM)
4068                 goto handle_plus;
4069               else
4070                 goto normal_backslash;
4071 
4072             default:
4073             normal_backslash:
4074               /* You might think it would be useful for \ to mean
4075                  not to translate; but if we don't translate it
4076                  it will never match anything.  */
4077               c = TRANSLATE (c);
4078               goto normal_char;
4079             }
4080           break;
4081 
4082 
4083 	default:
4084         /* Expects the character in `c'.  */
4085 	normal_char:
4086 	      /* If no exactn currently being built.  */
4087           if (!pending_exact
4088 #ifdef MBS_SUPPORT
4089 	      /* If last exactn handle binary(or character) and
4090 		 new exactn handle character(or binary).  */
4091 	      || is_exactn_bin != is_binary[p - 1 - pattern]
4092 #endif /* MBS_SUPPORT */
4093 
4094               /* If last exactn not at current position.  */
4095               || pending_exact + *pending_exact + 1 != b
4096 
4097               /* We have only one byte following the exactn for the count.  */
4098 	      || *pending_exact == (1 << BYTEWIDTH) - 1
4099 
4100               /* If followed by a repetition operator.  */
4101               || *p == '*' || *p == '^'
4102 	      || ((syntax & RE_BK_PLUS_QM)
4103 		  ? *p == '\\' && (p[1] == '+' || p[1] == '?')
4104 		  : (*p == '+' || *p == '?'))
4105 	      || ((syntax & RE_INTERVALS)
4106                   && ((syntax & RE_NO_BK_BRACES)
4107 		      ? *p == '{'
4108                       : (p[0] == '\\' && p[1] == '{'))))
4109 	    {
4110 	      /* Start building a new exactn.  */
4111 
4112               laststart = b;
4113 
4114 #ifdef MBS_SUPPORT
4115 	      /* Is this exactn binary data or character? */
4116 	      is_exactn_bin = is_binary[p - 1 - pattern];
4117 	      if (is_exactn_bin)
4118 		  BUF_PUSH_2 (exactn_bin, 0);
4119 	      else
4120 		  BUF_PUSH_2 (exactn, 0);
4121 #else
4122 	      BUF_PUSH_2 (exactn, 0);
4123 #endif /* MBS_SUPPORT */
4124 	      pending_exact = b - 1;
4125             }
4126 
4127 	  BUF_PUSH (c);
4128           (*pending_exact)++;
4129 	  break;
4130         } /* switch (c) */
4131     } /* while p != pend */
4132 
4133 
4134   /* Through the pattern now.  */
4135 
4136   if (fixup_alt_jump)
4137     STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
4138 
4139   if (!COMPILE_STACK_EMPTY)
4140     FREE_STACK_RETURN (REG_EPAREN);
4141 
4142   /* If we don't want backtracking, force success
4143      the first time we reach the end of the compiled pattern.  */
4144   if (syntax & RE_NO_POSIX_BACKTRACKING)
4145     BUF_PUSH (succeed);
4146 
4147 #ifdef MBS_SUPPORT
4148   free (pattern);
4149   free (mbs_offset);
4150   free (is_binary);
4151 #endif
4152   free (compile_stack.stack);
4153 
4154   /* We have succeeded; set the length of the buffer.  */
4155 #ifdef MBS_SUPPORT
4156   bufp->used = (uintptr_t) b - (uintptr_t) COMPILED_BUFFER_VAR;
4157 #else
4158   bufp->used = b - bufp->buffer;
4159 #endif
4160 
4161 #ifdef DEBUG
4162   if (debug)
4163     {
4164       DEBUG_PRINT1 ("\nCompiled pattern: \n");
4165       print_compiled_pattern (bufp);
4166     }
4167 #endif /* DEBUG */
4168 
4169 #ifndef MATCH_MAY_ALLOCATE
4170   /* Initialize the failure stack to the largest possible stack.  This
4171      isn't necessary unless we're trying to avoid calling alloca in
4172      the search and match routines.  */
4173   {
4174     int num_regs = bufp->re_nsub + 1;
4175 
4176     /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
4177        is strictly greater than re_max_failures, the largest possible stack
4178        is 2 * re_max_failures failure points.  */
4179     if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
4180       {
4181 	fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
4182 
4183 # ifdef emacs
4184 	if (! fail_stack.stack)
4185 	  fail_stack.stack
4186 	    = (fail_stack_elt_t *) xmalloc (fail_stack.size
4187 					    * sizeof (fail_stack_elt_t));
4188 	else
4189 	  fail_stack.stack
4190 	    = (fail_stack_elt_t *) xrealloc (fail_stack.stack,
4191 					     (fail_stack.size
4192 					      * sizeof (fail_stack_elt_t)));
4193 # else /* not emacs */
4194 	if (! fail_stack.stack)
4195 	  fail_stack.stack
4196 	    = (fail_stack_elt_t *) malloc (fail_stack.size
4197 					   * sizeof (fail_stack_elt_t));
4198 	else
4199 	  fail_stack.stack
4200 	    = (fail_stack_elt_t *) realloc (fail_stack.stack,
4201 					    (fail_stack.size
4202 					     * sizeof (fail_stack_elt_t)));
4203 # endif /* not emacs */
4204       }
4205 
4206     regex_grow_registers (num_regs);
4207   }
4208 #endif /* not MATCH_MAY_ALLOCATE */
4209 
4210   return REG_NOERROR;
4211 } /* regex_compile */
4212 
4213 /* Subroutines for `regex_compile'.  */
4214 
4215 /* Store OP at LOC followed by two-byte integer parameter ARG.  */
4216 /* ifdef MBS_SUPPORT, integer parameter is 1 wchar_t.  */
4217 
4218 static void
4219 store_op1 (op, loc, arg)
4220     re_opcode_t op;
4221     US_CHAR_TYPE *loc;
4222     int arg;
4223 {
4224   *loc = (US_CHAR_TYPE) op;
4225   STORE_NUMBER (loc + 1, arg);
4226 }
4227 
4228 
4229 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2.  */
4230 /* ifdef MBS_SUPPORT, integer parameter is 1 wchar_t.  */
4231 
4232 static void
4233 store_op2 (op, loc, arg1, arg2)
4234     re_opcode_t op;
4235     US_CHAR_TYPE *loc;
4236     int arg1, arg2;
4237 {
4238   *loc = (US_CHAR_TYPE) op;
4239   STORE_NUMBER (loc + 1, arg1);
4240   STORE_NUMBER (loc + 1 + OFFSET_ADDRESS_SIZE, arg2);
4241 }
4242 
4243 
4244 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
4245    for OP followed by two-byte integer parameter ARG.  */
4246 /* ifdef MBS_SUPPORT, integer parameter is 1 wchar_t.  */
4247 
4248 static void
4249 insert_op1 (op, loc, arg, end)
4250     re_opcode_t op;
4251     US_CHAR_TYPE *loc;
4252     int arg;
4253     US_CHAR_TYPE *end;
4254 {
4255   register US_CHAR_TYPE *pfrom = end;
4256   register US_CHAR_TYPE *pto = end + 1 + OFFSET_ADDRESS_SIZE;
4257 
4258   while (pfrom != loc)
4259     *--pto = *--pfrom;
4260 
4261   store_op1 (op, loc, arg);
4262 }
4263 
4264 
4265 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2.  */
4266 /* ifdef MBS_SUPPORT, integer parameter is 1 wchar_t.  */
4267 
4268 static void
4269 insert_op2 (op, loc, arg1, arg2, end)
4270     re_opcode_t op;
4271     US_CHAR_TYPE *loc;
4272     int arg1, arg2;
4273     US_CHAR_TYPE *end;
4274 {
4275   register US_CHAR_TYPE *pfrom = end;
4276   register US_CHAR_TYPE *pto = end + 1 + 2 * OFFSET_ADDRESS_SIZE;
4277 
4278   while (pfrom != loc)
4279     *--pto = *--pfrom;
4280 
4281   store_op2 (op, loc, arg1, arg2);
4282 }
4283 
4284 
4285 /* P points to just after a ^ in PATTERN.  Return true if that ^ comes
4286    after an alternative or a begin-subexpression.  We assume there is at
4287    least one character before the ^.  */
4288 
4289 static boolean
4290 at_begline_loc_p (pattern, p, syntax)
4291     const CHAR_TYPE *pattern, *p;
4292     reg_syntax_t syntax;
4293 {
4294   const CHAR_TYPE *prev = p - 2;
4295   boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
4296 
4297   return
4298        /* After a subexpression?  */
4299        (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
4300        /* After an alternative?  */
4301     || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
4302 }
4303 
4304 
4305 /* The dual of at_begline_loc_p.  This one is for $.  We assume there is
4306    at least one character after the $, i.e., `P < PEND'.  */
4307 
4308 static boolean
4309 at_endline_loc_p (p, pend, syntax)
4310     const CHAR_TYPE *p, *pend;
4311     reg_syntax_t syntax;
4312 {
4313   const CHAR_TYPE *next = p;
4314   boolean next_backslash = *next == '\\';
4315   const CHAR_TYPE *next_next = p + 1 < pend ? p + 1 : 0;
4316 
4317   return
4318        /* Before a subexpression?  */
4319        (syntax & RE_NO_BK_PARENS ? *next == ')'
4320         : next_backslash && next_next && *next_next == ')')
4321        /* Before an alternative?  */
4322     || (syntax & RE_NO_BK_VBAR ? *next == '|'
4323         : next_backslash && next_next && *next_next == '|');
4324 }
4325 
4326 
4327 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
4328    false if it's not.  */
4329 
4330 static boolean
4331 group_in_compile_stack (compile_stack, regnum)
4332     compile_stack_type compile_stack;
4333     regnum_t regnum;
4334 {
4335   int this_element;
4336 
4337   for (this_element = compile_stack.avail - 1;
4338        this_element >= 0;
4339        this_element--)
4340     if (compile_stack.stack[this_element].regnum == regnum)
4341       return true;
4342 
4343   return false;
4344 }
4345 
4346 #ifdef MBS_SUPPORT
4347 /* This insert space, which size is "num", into the pattern at "loc".
4348    "end" must point the end of the allocated buffer.  */
4349 static void
4350 insert_space (num, loc, end)
4351      int num;
4352      CHAR_TYPE *loc;
4353      CHAR_TYPE *end;
4354 {
4355   register CHAR_TYPE *pto = end;
4356   register CHAR_TYPE *pfrom = end - num;
4357 
4358   while (pfrom >= loc)
4359     *pto-- = *pfrom--;
4360 }
4361 #endif /* MBS_SUPPORT */
4362 
4363 #ifdef MBS_SUPPORT
4364 static reg_errcode_t
4365 compile_range (range_start_char, p_ptr, pend, translate, syntax, b,
4366 	       char_set)
4367      CHAR_TYPE range_start_char;
4368      const CHAR_TYPE **p_ptr, *pend;
4369      CHAR_TYPE *char_set, *b;
4370      RE_TRANSLATE_TYPE translate;
4371      reg_syntax_t syntax;
4372 {
4373   const CHAR_TYPE *p = *p_ptr;
4374   CHAR_TYPE range_start, range_end;
4375   reg_errcode_t ret;
4376 # ifdef _LIBC
4377   uint32_t nrules;
4378   uint32_t start_val, end_val;
4379 # endif
4380   if (p == pend)
4381     return REG_ERANGE;
4382 
4383 # ifdef _LIBC
4384   nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
4385   if (nrules != 0)
4386     {
4387       const char *collseq = (const char *) _NL_CURRENT(LC_COLLATE,
4388 						       _NL_COLLATE_COLLSEQWC);
4389       const unsigned char *extra = (const unsigned char *)
4390 	_NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB);
4391 
4392       if (range_start_char < -1)
4393 	{
4394 	  /* range_start is a collating symbol.  */
4395 	  int32_t *wextra;
4396 	  /* Retreive the index and get collation sequence value.  */
4397 	  wextra = (int32_t*)(extra + char_set[-range_start_char]);
4398 	  start_val = wextra[1 + *wextra];
4399 	}
4400       else
4401 	start_val = collseq_table_lookup(collseq, TRANSLATE(range_start_char));
4402 
4403       end_val = collseq_table_lookup (collseq, TRANSLATE (p[0]));
4404 
4405       /* Report an error if the range is empty and the syntax prohibits
4406 	 this.  */
4407       ret = ((syntax & RE_NO_EMPTY_RANGES)
4408 	     && (start_val > end_val))? REG_ERANGE : REG_NOERROR;
4409 
4410       /* Insert space to the end of the char_ranges.  */
4411       insert_space(2, b - char_set[5] - 2, b - 1);
4412       *(b - char_set[5] - 2) = (wchar_t)start_val;
4413       *(b - char_set[5] - 1) = (wchar_t)end_val;
4414       char_set[4]++; /* ranges_index */
4415     }
4416   else
4417 # endif
4418     {
4419       range_start = (range_start_char >= 0)? TRANSLATE (range_start_char):
4420 	range_start_char;
4421       range_end = TRANSLATE (p[0]);
4422       /* Report an error if the range is empty and the syntax prohibits
4423 	 this.  */
4424       ret = ((syntax & RE_NO_EMPTY_RANGES)
4425 	     && (range_start > range_end))? REG_ERANGE : REG_NOERROR;
4426 
4427       /* Insert space to the end of the char_ranges.  */
4428       insert_space(2, b - char_set[5] - 2, b - 1);
4429       *(b - char_set[5] - 2) = range_start;
4430       *(b - char_set[5] - 1) = range_end;
4431       char_set[4]++; /* ranges_index */
4432     }
4433   /* Have to increment the pointer into the pattern string, so the
4434      caller isn't still at the ending character.  */
4435   (*p_ptr)++;
4436 
4437   return ret;
4438 }
4439 #else
4440 /* Read the ending character of a range (in a bracket expression) from the
4441    uncompiled pattern *P_PTR (which ends at PEND).  We assume the
4442    starting character is in `P[-2]'.  (`P[-1]' is the character `-'.)
4443    Then we set the translation of all bits between the starting and
4444    ending characters (inclusive) in the compiled pattern B.
4445 
4446    Return an error code.
4447 
4448    We use these short variable names so we can use the same macros as
4449    `regex_compile' itself.  */
4450 
4451 static reg_errcode_t
4452 compile_range (range_start_char, p_ptr, pend, translate, syntax, b)
4453      unsigned int range_start_char;
4454      const char **p_ptr, *pend;
4455      RE_TRANSLATE_TYPE translate;
4456      reg_syntax_t syntax;
4457      unsigned char *b;
4458 {
4459   unsigned this_char;
4460   const char *p = *p_ptr;
4461   reg_errcode_t ret;
4462 # if _LIBC
4463   const unsigned char *collseq;
4464   unsigned int start_colseq;
4465   unsigned int end_colseq;
4466 # else
4467   unsigned end_char;
4468 # endif
4469 
4470   if (p == pend)
4471     return REG_ERANGE;
4472 
4473   /* Have to increment the pointer into the pattern string, so the
4474      caller isn't still at the ending character.  */
4475   (*p_ptr)++;
4476 
4477   /* Report an error if the range is empty and the syntax prohibits this.  */
4478   ret = syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
4479 
4480 # if _LIBC
4481   collseq = (const unsigned char *) _NL_CURRENT (LC_COLLATE,
4482 						 _NL_COLLATE_COLLSEQMB);
4483 
4484   start_colseq = collseq[(unsigned char) TRANSLATE (range_start_char)];
4485   end_colseq = collseq[(unsigned char) TRANSLATE (p[0])];
4486   for (this_char = 0; this_char <= (unsigned char) -1; ++this_char)
4487     {
4488       unsigned int this_colseq = collseq[(unsigned char) TRANSLATE (this_char)];
4489 
4490       if (start_colseq <= this_colseq && this_colseq <= end_colseq)
4491 	{
4492 	  SET_LIST_BIT (TRANSLATE (this_char));
4493 	  ret = REG_NOERROR;
4494 	}
4495     }
4496 # else
4497   /* Here we see why `this_char' has to be larger than an `unsigned
4498      char' -- we would otherwise go into an infinite loop, since all
4499      characters <= 0xff.  */
4500   range_start_char = TRANSLATE (range_start_char);
4501   /* TRANSLATE(p[0]) is casted to char (not unsigned char) in TRANSLATE,
4502      and some compilers cast it to int implicitly, so following for_loop
4503      may fall to (almost) infinite loop.
4504      e.g. If translate[p[0]] = 0xff, end_char may equals to 0xffffffff.
4505      To avoid this, we cast p[0] to unsigned int and truncate it.  */
4506   end_char = ((unsigned)TRANSLATE(p[0]) & ((1 << BYTEWIDTH) - 1));
4507 
4508   for (this_char = range_start_char; this_char <= end_char; ++this_char)
4509     {
4510       SET_LIST_BIT (TRANSLATE (this_char));
4511       ret = REG_NOERROR;
4512     }
4513 # endif
4514 
4515   return ret;
4516 }
4517 #endif /* MBS_SUPPORT */
4518 
4519 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
4520    BUFP.  A fastmap records which of the (1 << BYTEWIDTH) possible
4521    characters can start a string that matches the pattern.  This fastmap
4522    is used by re_search to skip quickly over impossible starting points.
4523 
4524    The caller must supply the address of a (1 << BYTEWIDTH)-byte data
4525    area as BUFP->fastmap.
4526 
4527    We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
4528    the pattern buffer.
4529 
4530    Returns 0 if we succeed, -2 if an internal error.   */
4531 
4532 #ifdef MBS_SUPPORT
4533 /* local function for re_compile_fastmap.
4534    truncate wchar_t character to char.  */
4535 static unsigned char truncate_wchar (CHAR_TYPE c);
4536 
4537 static unsigned char
4538 truncate_wchar (c)
4539      CHAR_TYPE c;
4540 {
4541   unsigned char buf[MB_LEN_MAX];
4542   int retval = wctomb(buf, c);
4543   return retval > 0 ? buf[0] : (unsigned char)c;
4544 }
4545 #endif /* MBS_SUPPORT */
4546 
4547 int
4548 re_compile_fastmap (bufp)
4549      struct re_pattern_buffer *bufp;
4550 {
4551   int j, k;
4552 #ifdef MATCH_MAY_ALLOCATE
4553   fail_stack_type fail_stack;
4554 #endif
4555 #ifndef REGEX_MALLOC
4556   char *destination;
4557 #endif
4558 
4559   register char *fastmap = bufp->fastmap;
4560 
4561 #ifdef MBS_SUPPORT
4562   /* We need to cast pattern to (wchar_t*), because we casted this compiled
4563      pattern to (char*) in regex_compile.  */
4564   US_CHAR_TYPE *pattern = (US_CHAR_TYPE*)bufp->buffer;
4565   register US_CHAR_TYPE *pend = (US_CHAR_TYPE*) (bufp->buffer + bufp->used);
4566 #else
4567   US_CHAR_TYPE *pattern = bufp->buffer;
4568   register US_CHAR_TYPE *pend = pattern + bufp->used;
4569 #endif /* MBS_SUPPORT */
4570   US_CHAR_TYPE *p = pattern;
4571 
4572 #ifdef REL_ALLOC
4573   /* This holds the pointer to the failure stack, when
4574      it is allocated relocatably.  */
4575   fail_stack_elt_t *failure_stack_ptr;
4576 #endif
4577 
4578   /* Assume that each path through the pattern can be null until
4579      proven otherwise.  We set this false at the bottom of switch
4580      statement, to which we get only if a particular path doesn't
4581      match the empty string.  */
4582   boolean path_can_be_null = true;
4583 
4584   /* We aren't doing a `succeed_n' to begin with.  */
4585   boolean succeed_n_p = false;
4586 
4587   assert (fastmap != NULL && p != NULL);
4588 
4589   INIT_FAIL_STACK ();
4590   bzero (fastmap, 1 << BYTEWIDTH);  /* Assume nothing's valid.  */
4591   bufp->fastmap_accurate = 1;	    /* It will be when we're done.  */
4592   bufp->can_be_null = 0;
4593 
4594   while (1)
4595     {
4596       if (p == pend || *p == succeed)
4597 	{
4598 	  /* We have reached the (effective) end of pattern.  */
4599 	  if (!FAIL_STACK_EMPTY ())
4600 	    {
4601 	      bufp->can_be_null |= path_can_be_null;
4602 
4603 	      /* Reset for next path.  */
4604 	      path_can_be_null = true;
4605 
4606 	      p = fail_stack.stack[--fail_stack.avail].pointer;
4607 
4608 	      continue;
4609 	    }
4610 	  else
4611 	    break;
4612 	}
4613 
4614       /* We should never be about to go beyond the end of the pattern.  */
4615       assert (p < pend);
4616 
4617       switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
4618 	{
4619 
4620         /* I guess the idea here is to simply not bother with a fastmap
4621            if a backreference is used, since it's too hard to figure out
4622            the fastmap for the corresponding group.  Setting
4623            `can_be_null' stops `re_search_2' from using the fastmap, so
4624            that is all we do.  */
4625 	case duplicate:
4626 	  bufp->can_be_null = 1;
4627           goto done;
4628 
4629 
4630       /* Following are the cases which match a character.  These end
4631          with `break'.  */
4632 
4633 #ifdef MBS_SUPPORT
4634 	case exactn:
4635           fastmap[truncate_wchar(p[1])] = 1;
4636 	  break;
4637 	case exactn_bin:
4638 	  fastmap[p[1]] = 1;
4639 	  break;
4640 #else
4641 	case exactn:
4642           fastmap[p[1]] = 1;
4643 	  break;
4644 #endif /* MBS_SUPPORT */
4645 
4646 
4647 #ifdef MBS_SUPPORT
4648         /* It is hard to distinguish fastmap from (multi byte) characters
4649            which depends on current locale.  */
4650         case charset:
4651 	case charset_not:
4652 	case wordchar:
4653 	case notwordchar:
4654           bufp->can_be_null = 1;
4655           goto done;
4656 #else
4657         case charset:
4658           for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
4659 	    if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
4660               fastmap[j] = 1;
4661 	  break;
4662 
4663 
4664 	case charset_not:
4665 	  /* Chars beyond end of map must be allowed.  */
4666 	  for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
4667             fastmap[j] = 1;
4668 
4669 	  for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
4670 	    if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
4671               fastmap[j] = 1;
4672           break;
4673 
4674 
4675 	case wordchar:
4676 	  for (j = 0; j < (1 << BYTEWIDTH); j++)
4677 	    if (SYNTAX (j) == Sword)
4678 	      fastmap[j] = 1;
4679 	  break;
4680 
4681 
4682 	case notwordchar:
4683 	  for (j = 0; j < (1 << BYTEWIDTH); j++)
4684 	    if (SYNTAX (j) != Sword)
4685 	      fastmap[j] = 1;
4686 	  break;
4687 #endif
4688 
4689         case anychar:
4690 	  {
4691 	    int fastmap_newline = fastmap['\n'];
4692 
4693 	    /* `.' matches anything ...  */
4694 	    for (j = 0; j < (1 << BYTEWIDTH); j++)
4695 	      fastmap[j] = 1;
4696 
4697 	    /* ... except perhaps newline.  */
4698 	    if (!(bufp->syntax & RE_DOT_NEWLINE))
4699 	      fastmap['\n'] = fastmap_newline;
4700 
4701 	    /* Return if we have already set `can_be_null'; if we have,
4702 	       then the fastmap is irrelevant.  Something's wrong here.  */
4703 	    else if (bufp->can_be_null)
4704 	      goto done;
4705 
4706 	    /* Otherwise, have to check alternative paths.  */
4707 	    break;
4708 	  }
4709 
4710 #ifdef emacs
4711         case syntaxspec:
4712 	  k = *p++;
4713 	  for (j = 0; j < (1 << BYTEWIDTH); j++)
4714 	    if (SYNTAX (j) == (enum syntaxcode) k)
4715 	      fastmap[j] = 1;
4716 	  break;
4717 
4718 
4719 	case notsyntaxspec:
4720 	  k = *p++;
4721 	  for (j = 0; j < (1 << BYTEWIDTH); j++)
4722 	    if (SYNTAX (j) != (enum syntaxcode) k)
4723 	      fastmap[j] = 1;
4724 	  break;
4725 
4726 
4727       /* All cases after this match the empty string.  These end with
4728          `continue'.  */
4729 
4730 
4731 	case before_dot:
4732 	case at_dot:
4733 	case after_dot:
4734           continue;
4735 #endif /* emacs */
4736 
4737 
4738         case no_op:
4739         case begline:
4740         case endline:
4741 	case begbuf:
4742 	case endbuf:
4743 	case wordbound:
4744 	case notwordbound:
4745 	case wordbeg:
4746 	case wordend:
4747         case push_dummy_failure:
4748           continue;
4749 
4750 
4751 	case jump_n:
4752         case pop_failure_jump:
4753 	case maybe_pop_jump:
4754 	case jump:
4755         case jump_past_alt:
4756 	case dummy_failure_jump:
4757           EXTRACT_NUMBER_AND_INCR (j, p);
4758 	  p += j;
4759 	  if (j > 0)
4760 	    continue;
4761 
4762           /* Jump backward implies we just went through the body of a
4763              loop and matched nothing.  Opcode jumped to should be
4764              `on_failure_jump' or `succeed_n'.  Just treat it like an
4765              ordinary jump.  For a * loop, it has pushed its failure
4766              point already; if so, discard that as redundant.  */
4767           if ((re_opcode_t) *p != on_failure_jump
4768 	      && (re_opcode_t) *p != succeed_n)
4769 	    continue;
4770 
4771           p++;
4772           EXTRACT_NUMBER_AND_INCR (j, p);
4773           p += j;
4774 
4775           /* If what's on the stack is where we are now, pop it.  */
4776           if (!FAIL_STACK_EMPTY ()
4777 	      && fail_stack.stack[fail_stack.avail - 1].pointer == p)
4778             fail_stack.avail--;
4779 
4780           continue;
4781 
4782 
4783         case on_failure_jump:
4784         case on_failure_keep_string_jump:
4785 	handle_on_failure_jump:
4786           EXTRACT_NUMBER_AND_INCR (j, p);
4787 
4788           /* For some patterns, e.g., `(a?)?', `p+j' here points to the
4789              end of the pattern.  We don't want to push such a point,
4790              since when we restore it above, entering the switch will
4791              increment `p' past the end of the pattern.  We don't need
4792              to push such a point since we obviously won't find any more
4793              fastmap entries beyond `pend'.  Such a pattern can match
4794              the null string, though.  */
4795           if (p + j < pend)
4796             {
4797               if (!PUSH_PATTERN_OP (p + j, fail_stack))
4798 		{
4799 		  RESET_FAIL_STACK ();
4800 		  return -2;
4801 		}
4802             }
4803           else
4804             bufp->can_be_null = 1;
4805 
4806           if (succeed_n_p)
4807             {
4808               EXTRACT_NUMBER_AND_INCR (k, p);	/* Skip the n.  */
4809               succeed_n_p = false;
4810 	    }
4811 
4812           continue;
4813 
4814 
4815 	case succeed_n:
4816           /* Get to the number of times to succeed.  */
4817           p += OFFSET_ADDRESS_SIZE;
4818 
4819           /* Increment p past the n for when k != 0.  */
4820           EXTRACT_NUMBER_AND_INCR (k, p);
4821           if (k == 0)
4822 	    {
4823               p -= 2 * OFFSET_ADDRESS_SIZE;
4824   	      succeed_n_p = true;  /* Spaghetti code alert.  */
4825               goto handle_on_failure_jump;
4826             }
4827           continue;
4828 
4829 
4830 	case set_number_at:
4831           p += 2 * OFFSET_ADDRESS_SIZE;
4832           continue;
4833 
4834 
4835 	case start_memory:
4836         case stop_memory:
4837 	  p += 2;
4838 	  continue;
4839 
4840 
4841 	default:
4842           abort (); /* We have listed all the cases.  */
4843         } /* switch *p++ */
4844 
4845       /* Getting here means we have found the possible starting
4846          characters for one path of the pattern -- and that the empty
4847          string does not match.  We need not follow this path further.
4848          Instead, look at the next alternative (remembered on the
4849          stack), or quit if no more.  The test at the top of the loop
4850          does these things.  */
4851       path_can_be_null = false;
4852       p = pend;
4853     } /* while p */
4854 
4855   /* Set `can_be_null' for the last path (also the first path, if the
4856      pattern is empty).  */
4857   bufp->can_be_null |= path_can_be_null;
4858 
4859  done:
4860   RESET_FAIL_STACK ();
4861   return 0;
4862 } /* re_compile_fastmap */
4863 #ifdef _LIBC
4864 weak_alias (__re_compile_fastmap, re_compile_fastmap)
4865 #endif
4866 
4867 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4868    ENDS.  Subsequent matches using PATTERN_BUFFER and REGS will use
4869    this memory for recording register information.  STARTS and ENDS
4870    must be allocated using the malloc library routine, and must each
4871    be at least NUM_REGS * sizeof (regoff_t) bytes long.
4872 
4873    If NUM_REGS == 0, then subsequent matches should allocate their own
4874    register data.
4875 
4876    Unless this function is called, the first search or match using
4877    PATTERN_BUFFER will allocate its own register data, without
4878    freeing the old data.  */
4879 
4880 void
4881 re_set_registers (bufp, regs, num_regs, starts, ends)
4882     struct re_pattern_buffer *bufp;
4883     struct re_registers *regs;
4884     unsigned num_regs;
4885     regoff_t *starts, *ends;
4886 {
4887   if (num_regs)
4888     {
4889       bufp->regs_allocated = REGS_REALLOCATE;
4890       regs->num_regs = num_regs;
4891       regs->start = starts;
4892       regs->end = ends;
4893     }
4894   else
4895     {
4896       bufp->regs_allocated = REGS_UNALLOCATED;
4897       regs->num_regs = 0;
4898       regs->start = regs->end = (regoff_t *) 0;
4899     }
4900 }
4901 #ifdef _LIBC
4902 weak_alias (__re_set_registers, re_set_registers)
4903 #endif
4904 
4905 /* Searching routines.  */
4906 
4907 /* Like re_search_2, below, but only one string is specified, and
4908    doesn't let you say where to stop matching.  */
4909 
4910 int
4911 re_search (bufp, string, size, startpos, range, regs)
4912      struct re_pattern_buffer *bufp;
4913      const char *string;
4914      int size, startpos, range;
4915      struct re_registers *regs;
4916 {
4917   return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
4918 		      regs, size);
4919 }
4920 #ifdef _LIBC
4921 weak_alias (__re_search, re_search)
4922 #endif
4923 
4924 
4925 /* Using the compiled pattern in BUFP->buffer, first tries to match the
4926    virtual concatenation of STRING1 and STRING2, starting first at index
4927    STARTPOS, then at STARTPOS + 1, and so on.
4928 
4929    STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
4930 
4931    RANGE is how far to scan while trying to match.  RANGE = 0 means try
4932    only at STARTPOS; in general, the last start tried is STARTPOS +
4933    RANGE.
4934 
4935    In REGS, return the indices of the virtual concatenation of STRING1
4936    and STRING2 that matched the entire BUFP->buffer and its contained
4937    subexpressions.
4938 
4939    Do not consider matching one past the index STOP in the virtual
4940    concatenation of STRING1 and STRING2.
4941 
4942    We return either the position in the strings at which the match was
4943    found, -1 if no match, or -2 if error (such as failure
4944    stack overflow).  */
4945 
4946 int
4947 re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
4948      struct re_pattern_buffer *bufp;
4949      const char *string1, *string2;
4950      int size1, size2;
4951      int startpos;
4952      int range;
4953      struct re_registers *regs;
4954      int stop;
4955 {
4956   int val;
4957   register char *fastmap = bufp->fastmap;
4958   register RE_TRANSLATE_TYPE translate = bufp->translate;
4959   int total_size = size1 + size2;
4960   int endpos = startpos + range;
4961 
4962   /* Check for out-of-range STARTPOS.  */
4963   if (startpos < 0 || startpos > total_size)
4964     return -1;
4965 
4966   /* Fix up RANGE if it might eventually take us outside
4967      the virtual concatenation of STRING1 and STRING2.
4968      Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE.  */
4969   if (endpos < 0)
4970     range = 0 - startpos;
4971   else if (endpos > total_size)
4972     range = total_size - startpos;
4973 
4974   /* If the search isn't to be a backwards one, don't waste time in a
4975      search for a pattern that must be anchored.  */
4976   if (bufp->used > 0 && range > 0
4977       && ((re_opcode_t) bufp->buffer[0] == begbuf
4978 	  /* `begline' is like `begbuf' if it cannot match at newlines.  */
4979 	  || ((re_opcode_t) bufp->buffer[0] == begline
4980 	      && !bufp->newline_anchor)))
4981     {
4982       if (startpos > 0)
4983 	return -1;
4984       else
4985 	range = 1;
4986     }
4987 
4988 #ifdef emacs
4989   /* In a forward search for something that starts with \=.
4990      don't keep searching past point.  */
4991   if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
4992     {
4993       range = PT - startpos;
4994       if (range <= 0)
4995 	return -1;
4996     }
4997 #endif /* emacs */
4998 
4999   /* Update the fastmap now if not correct already.  */
5000   if (fastmap && !bufp->fastmap_accurate)
5001     if (re_compile_fastmap (bufp) == -2)
5002       return -2;
5003 
5004   /* Loop through the string, looking for a place to start matching.  */
5005   for (;;)
5006     {
5007       /* If a fastmap is supplied, skip quickly over characters that
5008          cannot be the start of a match.  If the pattern can match the
5009          null string, however, we don't need to skip characters; we want
5010          the first null string.  */
5011       if (fastmap && startpos < total_size && !bufp->can_be_null)
5012 	{
5013 	  if (range > 0)	/* Searching forwards.  */
5014 	    {
5015 	      register const char *d;
5016 	      register int lim = 0;
5017 	      int irange = range;
5018 
5019               if (startpos < size1 && startpos + range >= size1)
5020                 lim = range - (size1 - startpos);
5021 
5022 	      d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
5023 
5024               /* Written out as an if-else to avoid testing `translate'
5025                  inside the loop.  */
5026 	      if (translate)
5027                 while (range > lim
5028                        && !fastmap[(unsigned char)
5029 				   translate[(unsigned char) *d++]])
5030                   range--;
5031 	      else
5032                 while (range > lim && !fastmap[(unsigned char) *d++])
5033                   range--;
5034 
5035 	      startpos += irange - range;
5036 	    }
5037 	  else				/* Searching backwards.  */
5038 	    {
5039 	      register CHAR_TYPE c = (size1 == 0 || startpos >= size1
5040 				      ? string2[startpos - size1]
5041 				      : string1[startpos]);
5042 
5043 	      if (!fastmap[(unsigned char) TRANSLATE (c)])
5044 		goto advance;
5045 	    }
5046 	}
5047 
5048       /* If can't match the null string, and that's all we have left, fail.  */
5049       if (range >= 0 && startpos == total_size && fastmap
5050           && !bufp->can_be_null)
5051 	return -1;
5052 
5053       val = re_match_2_internal (bufp, string1, size1, string2, size2,
5054 				 startpos, regs, stop);
5055 #ifndef REGEX_MALLOC
5056 # ifdef C_ALLOCA
5057       alloca (0);
5058 # endif
5059 #endif
5060 
5061       if (val >= 0)
5062 	return startpos;
5063 
5064       if (val == -2)
5065 	return -2;
5066 
5067     advance:
5068       if (!range)
5069         break;
5070       else if (range > 0)
5071         {
5072           range--;
5073           startpos++;
5074         }
5075       else
5076         {
5077           range++;
5078           startpos--;
5079         }
5080     }
5081   return -1;
5082 } /* re_search_2 */
5083 #ifdef _LIBC
5084 weak_alias (__re_search_2, re_search_2)
5085 #endif
5086 
5087 #ifdef MBS_SUPPORT
5088 /* This converts PTR, a pointer into one of the search wchar_t strings
5089    `string1' and `string2' into an multibyte string offset from the
5090    beginning of that string. We use mbs_offset to optimize.
5091    See convert_mbs_to_wcs.  */
5092 # define POINTER_TO_OFFSET(ptr)						\
5093   (FIRST_STRING_P (ptr)							\
5094    ? ((regoff_t)(mbs_offset1 != NULL? mbs_offset1[(ptr)-string1] : 0))	\
5095    : ((regoff_t)((mbs_offset2 != NULL? mbs_offset2[(ptr)-string2] : 0)	\
5096 		 + csize1)))
5097 #else
5098 /* This converts PTR, a pointer into one of the search strings `string1'
5099    and `string2' into an offset from the beginning of that string.  */
5100 # define POINTER_TO_OFFSET(ptr)			\
5101   (FIRST_STRING_P (ptr)				\
5102    ? ((regoff_t) ((ptr) - string1))		\
5103    : ((regoff_t) ((ptr) - string2 + size1)))
5104 #endif /* MBS_SUPPORT */
5105 
5106 /* Macros for dealing with the split strings in re_match_2.  */
5107 
5108 #define MATCHING_IN_FIRST_STRING  (dend == end_match_1)
5109 
5110 /* Call before fetching a character with *d.  This switches over to
5111    string2 if necessary.  */
5112 #define PREFETCH()							\
5113   while (d == dend)						    	\
5114     {									\
5115       /* End of string2 => fail.  */					\
5116       if (dend == end_match_2) 						\
5117         goto fail;							\
5118       /* End of string1 => advance to string2.  */ 			\
5119       d = string2;						        \
5120       dend = end_match_2;						\
5121     }
5122 
5123 
5124 /* Test if at very beginning or at very end of the virtual concatenation
5125    of `string1' and `string2'.  If only one string, it's `string2'.  */
5126 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
5127 #define AT_STRINGS_END(d) ((d) == end2)
5128 
5129 
5130 /* Test if D points to a character which is word-constituent.  We have
5131    two special cases to check for: if past the end of string1, look at
5132    the first character in string2; and if before the beginning of
5133    string2, look at the last character in string1.  */
5134 #ifdef MBS_SUPPORT
5135 /* Use internationalized API instead of SYNTAX.  */
5136 # define WORDCHAR_P(d)							\
5137   (iswalnum ((wint_t)((d) == end1 ? *string2				\
5138            : (d) == string2 - 1 ? *(end1 - 1) : *(d))) != 0)
5139 #else
5140 # define WORDCHAR_P(d)							\
5141   (SYNTAX ((d) == end1 ? *string2					\
5142            : (d) == string2 - 1 ? *(end1 - 1) : *(d))			\
5143    == Sword)
5144 #endif /* MBS_SUPPORT */
5145 
5146 /* Disabled due to a compiler bug -- see comment at case wordbound */
5147 #if 0
5148 /* Test if the character before D and the one at D differ with respect
5149    to being word-constituent.  */
5150 #define AT_WORD_BOUNDARY(d)						\
5151   (AT_STRINGS_BEG (d) || AT_STRINGS_END (d)				\
5152    || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
5153 #endif
5154 
5155 /* Free everything we malloc.  */
5156 #ifdef MATCH_MAY_ALLOCATE
5157 # define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
5158 # ifdef MBS_SUPPORT
5159 #  define FREE_VARIABLES()						\
5160   do {									\
5161     REGEX_FREE_STACK (fail_stack.stack);				\
5162     FREE_VAR (regstart);						\
5163     FREE_VAR (regend);							\
5164     FREE_VAR (old_regstart);						\
5165     FREE_VAR (old_regend);						\
5166     FREE_VAR (best_regstart);						\
5167     FREE_VAR (best_regend);						\
5168     FREE_VAR (reg_info);						\
5169     FREE_VAR (reg_dummy);						\
5170     FREE_VAR (reg_info_dummy);						\
5171     FREE_VAR (string1);							\
5172     FREE_VAR (string2);							\
5173     FREE_VAR (mbs_offset1);						\
5174     FREE_VAR (mbs_offset2);						\
5175   } while (0)
5176 # else /* not MBS_SUPPORT */
5177 #  define FREE_VARIABLES()						\
5178   do {									\
5179     REGEX_FREE_STACK (fail_stack.stack);				\
5180     FREE_VAR (regstart);						\
5181     FREE_VAR (regend);							\
5182     FREE_VAR (old_regstart);						\
5183     FREE_VAR (old_regend);						\
5184     FREE_VAR (best_regstart);						\
5185     FREE_VAR (best_regend);						\
5186     FREE_VAR (reg_info);						\
5187     FREE_VAR (reg_dummy);						\
5188     FREE_VAR (reg_info_dummy);						\
5189   } while (0)
5190 # endif /* MBS_SUPPORT */
5191 #else
5192 # define FREE_VAR(var) if (var) free (var); var = NULL
5193 # ifdef MBS_SUPPORT
5194 #  define FREE_VARIABLES()						\
5195   do {									\
5196     FREE_VAR (string1);							\
5197     FREE_VAR (string2);							\
5198     FREE_VAR (mbs_offset1);						\
5199     FREE_VAR (mbs_offset2);						\
5200   } while (0)
5201 # else
5202 #  define FREE_VARIABLES() ((void)0) /* Do nothing!  But inhibit gcc warning. */
5203 # endif /* MBS_SUPPORT */
5204 #endif /* not MATCH_MAY_ALLOCATE */
5205 
5206 /* These values must meet several constraints.  They must not be valid
5207    register values; since we have a limit of 255 registers (because
5208    we use only one byte in the pattern for the register number), we can
5209    use numbers larger than 255.  They must differ by 1, because of
5210    NUM_FAILURE_ITEMS above.  And the value for the lowest register must
5211    be larger than the value for the highest register, so we do not try
5212    to actually save any registers when none are active.  */
5213 #define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
5214 #define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
5215 
5216 /* Matching routines.  */
5217 
5218 #ifndef emacs   /* Emacs never uses this.  */
5219 /* re_match is like re_match_2 except it takes only a single string.  */
5220 
5221 int
5222 re_match (bufp, string, size, pos, regs)
5223      struct re_pattern_buffer *bufp;
5224      const char *string;
5225      int size, pos;
5226      struct re_registers *regs;
5227 {
5228   int result = re_match_2_internal (bufp, NULL, 0, string, size,
5229 				    pos, regs, size);
5230 # ifndef REGEX_MALLOC
5231 #  ifdef C_ALLOCA
5232   alloca (0);
5233 #  endif
5234 # endif
5235   return result;
5236 }
5237 # ifdef _LIBC
5238 weak_alias (__re_match, re_match)
5239 # endif
5240 #endif /* not emacs */
5241 
5242 static boolean group_match_null_string_p _RE_ARGS ((US_CHAR_TYPE **p,
5243 						    US_CHAR_TYPE *end,
5244 						register_info_type *reg_info));
5245 static boolean alt_match_null_string_p _RE_ARGS ((US_CHAR_TYPE *p,
5246 						  US_CHAR_TYPE *end,
5247 						register_info_type *reg_info));
5248 static boolean common_op_match_null_string_p _RE_ARGS ((US_CHAR_TYPE **p,
5249 							US_CHAR_TYPE *end,
5250 						register_info_type *reg_info));
5251 static int bcmp_translate _RE_ARGS ((const CHAR_TYPE *s1, const CHAR_TYPE *s2,
5252 				     int len, char *translate));
5253 
5254 /* re_match_2 matches the compiled pattern in BUFP against the
5255    the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
5256    and SIZE2, respectively).  We start matching at POS, and stop
5257    matching at STOP.
5258 
5259    If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
5260    store offsets for the substring each group matched in REGS.  See the
5261    documentation for exactly how many groups we fill.
5262 
5263    We return -1 if no match, -2 if an internal error (such as the
5264    failure stack overflowing).  Otherwise, we return the length of the
5265    matched substring.  */
5266 
5267 int
5268 re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
5269      struct re_pattern_buffer *bufp;
5270      const char *string1, *string2;
5271      int size1, size2;
5272      int pos;
5273      struct re_registers *regs;
5274      int stop;
5275 {
5276   int result = re_match_2_internal (bufp, string1, size1, string2, size2,
5277 				    pos, regs, stop);
5278 #ifndef REGEX_MALLOC
5279 # ifdef C_ALLOCA
5280   alloca (0);
5281 # endif
5282 #endif
5283   return result;
5284 }
5285 #ifdef _LIBC
5286 weak_alias (__re_match_2, re_match_2)
5287 #endif
5288 
5289 #ifdef MBS_SUPPORT
5290 
5291 static int count_mbs_length PARAMS ((int *, int));
5292 
5293 /* This check the substring (from 0, to length) of the multibyte string,
5294    to which offset_buffer correspond. And count how many wchar_t_characters
5295    the substring occupy. We use offset_buffer to optimization.
5296    See convert_mbs_to_wcs.  */
5297 
5298 static int
5299 count_mbs_length(offset_buffer, length)
5300      int *offset_buffer;
5301      int length;
5302 {
5303   int wcs_size;
5304 
5305   /* Check whether the size is valid.  */
5306   if (length < 0)
5307     return -1;
5308 
5309   if (offset_buffer == NULL)
5310     return 0;
5311 
5312   for (wcs_size = 0 ; offset_buffer[wcs_size] != -1 ; wcs_size++)
5313     {
5314       if (offset_buffer[wcs_size] == length)
5315 	return wcs_size;
5316       if (offset_buffer[wcs_size] > length)
5317 	/* It is a fragment of a wide character.  */
5318 	return -1;
5319     }
5320 
5321   /* We reached at the sentinel.  */
5322   return -1;
5323 }
5324 #endif /* MBS_SUPPORT */
5325 
5326 /* This is a separate function so that we can force an alloca cleanup
5327    afterwards.  */
5328 static int
5329 #ifdef MBS_SUPPORT
5330 re_match_2_internal (bufp, cstring1, csize1, cstring2, csize2, pos, regs, stop)
5331      struct re_pattern_buffer *bufp;
5332      const char *cstring1, *cstring2;
5333      int csize1, csize2;
5334 #else
5335 re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
5336      struct re_pattern_buffer *bufp;
5337      const char *string1, *string2;
5338      int size1, size2;
5339 #endif
5340      int pos;
5341      struct re_registers *regs;
5342      int stop;
5343 {
5344   /* General temporaries.  */
5345   int mcnt;
5346   US_CHAR_TYPE *p1;
5347 #ifdef MBS_SUPPORT
5348   /* We need wchar_t* buffers correspond to string1, string2.  */
5349   CHAR_TYPE *string1 = NULL, *string2 = NULL;
5350   /* We need the size of wchar_t buffers correspond to csize1, csize2.  */
5351   int size1 = 0, size2 = 0;
5352   /* offset buffer for optimizatoin. See convert_mbs_to_wc.  */
5353   int *mbs_offset1 = NULL, *mbs_offset2 = NULL;
5354   /* They hold whether each wchar_t is binary data or not.  */
5355   char *is_binary = NULL;
5356 #endif /* MBS_SUPPORT */
5357 
5358   /* Just past the end of the corresponding string.  */
5359   const CHAR_TYPE *end1, *end2;
5360 
5361   /* Pointers into string1 and string2, just past the last characters in
5362      each to consider matching.  */
5363   const CHAR_TYPE *end_match_1, *end_match_2;
5364 
5365   /* Where we are in the data, and the end of the current string.  */
5366   const CHAR_TYPE *d, *dend;
5367 
5368   /* Where we are in the pattern, and the end of the pattern.  */
5369 #ifdef MBS_SUPPORT
5370   US_CHAR_TYPE *pattern, *p;
5371   register US_CHAR_TYPE *pend;
5372 #else
5373   US_CHAR_TYPE *p = bufp->buffer;
5374   register US_CHAR_TYPE *pend = p + bufp->used;
5375 #endif /* MBS_SUPPORT */
5376 
5377   /* Mark the opcode just after a start_memory, so we can test for an
5378      empty subpattern when we get to the stop_memory.  */
5379   US_CHAR_TYPE *just_past_start_mem = 0;
5380 
5381   /* We use this to map every character in the string.  */
5382   RE_TRANSLATE_TYPE translate = bufp->translate;
5383 
5384   /* Failure point stack.  Each place that can handle a failure further
5385      down the line pushes a failure point on this stack.  It consists of
5386      restart, regend, and reg_info for all registers corresponding to
5387      the subexpressions we're currently inside, plus the number of such
5388      registers, and, finally, two char *'s.  The first char * is where
5389      to resume scanning the pattern; the second one is where to resume
5390      scanning the strings.  If the latter is zero, the failure point is
5391      a ``dummy''; if a failure happens and the failure point is a dummy,
5392      it gets discarded and the next next one is tried.  */
5393 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global.  */
5394   fail_stack_type fail_stack;
5395 #endif
5396 #ifdef DEBUG
5397   static unsigned failure_id;
5398   unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
5399 #endif
5400 
5401 #ifdef REL_ALLOC
5402   /* This holds the pointer to the failure stack, when
5403      it is allocated relocatably.  */
5404   fail_stack_elt_t *failure_stack_ptr;
5405 #endif
5406 
5407   /* We fill all the registers internally, independent of what we
5408      return, for use in backreferences.  The number here includes
5409      an element for register zero.  */
5410   size_t num_regs = bufp->re_nsub + 1;
5411 
5412   /* The currently active registers.  */
5413   active_reg_t lowest_active_reg = NO_LOWEST_ACTIVE_REG;
5414   active_reg_t highest_active_reg = NO_HIGHEST_ACTIVE_REG;
5415 
5416   /* Information on the contents of registers. These are pointers into
5417      the input strings; they record just what was matched (on this
5418      attempt) by a subexpression part of the pattern, that is, the
5419      regnum-th regstart pointer points to where in the pattern we began
5420      matching and the regnum-th regend points to right after where we
5421      stopped matching the regnum-th subexpression.  (The zeroth register
5422      keeps track of what the whole pattern matches.)  */
5423 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
5424   const CHAR_TYPE **regstart, **regend;
5425 #endif
5426 
5427   /* If a group that's operated upon by a repetition operator fails to
5428      match anything, then the register for its start will need to be
5429      restored because it will have been set to wherever in the string we
5430      are when we last see its open-group operator.  Similarly for a
5431      register's end.  */
5432 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
5433   const CHAR_TYPE **old_regstart, **old_regend;
5434 #endif
5435 
5436   /* The is_active field of reg_info helps us keep track of which (possibly
5437      nested) subexpressions we are currently in. The matched_something
5438      field of reg_info[reg_num] helps us tell whether or not we have
5439      matched any of the pattern so far this time through the reg_num-th
5440      subexpression.  These two fields get reset each time through any
5441      loop their register is in.  */
5442 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global.  */
5443   register_info_type *reg_info;
5444 #endif
5445 
5446   /* The following record the register info as found in the above
5447      variables when we find a match better than any we've seen before.
5448      This happens as we backtrack through the failure points, which in
5449      turn happens only if we have not yet matched the entire string. */
5450   unsigned best_regs_set = false;
5451 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
5452   const CHAR_TYPE **best_regstart, **best_regend;
5453 #endif
5454 
5455   /* Logically, this is `best_regend[0]'.  But we don't want to have to
5456      allocate space for that if we're not allocating space for anything
5457      else (see below).  Also, we never need info about register 0 for
5458      any of the other register vectors, and it seems rather a kludge to
5459      treat `best_regend' differently than the rest.  So we keep track of
5460      the end of the best match so far in a separate variable.  We
5461      initialize this to NULL so that when we backtrack the first time
5462      and need to test it, it's not garbage.  */
5463   const CHAR_TYPE *match_end = NULL;
5464 
5465   /* This helps SET_REGS_MATCHED avoid doing redundant work.  */
5466   int set_regs_matched_done = 0;
5467 
5468   /* Used when we pop values we don't care about.  */
5469 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
5470   const CHAR_TYPE **reg_dummy;
5471   register_info_type *reg_info_dummy;
5472 #endif
5473 
5474 #ifdef DEBUG
5475   /* Counts the total number of registers pushed.  */
5476   unsigned num_regs_pushed = 0;
5477 #endif
5478 
5479   DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5480 
5481   INIT_FAIL_STACK ();
5482 
5483 #ifdef MATCH_MAY_ALLOCATE
5484   /* Do not bother to initialize all the register variables if there are
5485      no groups in the pattern, as it takes a fair amount of time.  If
5486      there are groups, we include space for register 0 (the whole
5487      pattern), even though we never use it, since it simplifies the
5488      array indexing.  We should fix this.  */
5489   if (bufp->re_nsub)
5490     {
5491       regstart = REGEX_TALLOC (num_regs, const CHAR_TYPE *);
5492       regend = REGEX_TALLOC (num_regs, const CHAR_TYPE *);
5493       old_regstart = REGEX_TALLOC (num_regs, const CHAR_TYPE *);
5494       old_regend = REGEX_TALLOC (num_regs, const CHAR_TYPE *);
5495       best_regstart = REGEX_TALLOC (num_regs, const CHAR_TYPE *);
5496       best_regend = REGEX_TALLOC (num_regs, const CHAR_TYPE *);
5497       reg_info = REGEX_TALLOC (num_regs, register_info_type);
5498       reg_dummy = REGEX_TALLOC (num_regs, const CHAR_TYPE *);
5499       reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
5500 
5501       if (!(regstart && regend && old_regstart && old_regend && reg_info
5502             && best_regstart && best_regend && reg_dummy && reg_info_dummy))
5503         {
5504           FREE_VARIABLES ();
5505           return -2;
5506         }
5507     }
5508   else
5509     {
5510       /* We must initialize all our variables to NULL, so that
5511          `FREE_VARIABLES' doesn't try to free them.  */
5512       regstart = regend = old_regstart = old_regend = best_regstart
5513         = best_regend = reg_dummy = NULL;
5514       reg_info = reg_info_dummy = (register_info_type *) NULL;
5515     }
5516 #endif /* MATCH_MAY_ALLOCATE */
5517 
5518   /* The starting position is bogus.  */
5519 #ifdef MBS_SUPPORT
5520   if (pos < 0 || pos > csize1 + csize2)
5521 #else
5522   if (pos < 0 || pos > size1 + size2)
5523 #endif
5524     {
5525       FREE_VARIABLES ();
5526       return -1;
5527     }
5528 
5529 #ifdef MBS_SUPPORT
5530   /* Allocate wchar_t array for string1 and string2 and
5531      fill them with converted string.  */
5532   if (csize1 != 0)
5533     {
5534       string1 = REGEX_TALLOC (csize1 + 1, CHAR_TYPE);
5535       mbs_offset1 = REGEX_TALLOC (csize1 + 1, int);
5536       is_binary = REGEX_TALLOC (csize1 + 1, char);
5537       if (!string1 || !mbs_offset1 || !is_binary)
5538 	{
5539 	  FREE_VAR (string1);
5540 	  FREE_VAR (mbs_offset1);
5541 	  FREE_VAR (is_binary);
5542 	  return -2;
5543 	}
5544       size1 = convert_mbs_to_wcs(string1, cstring1, csize1,
5545 				 mbs_offset1, is_binary);
5546       string1[size1] = L'\0'; /* for a sentinel  */
5547       FREE_VAR (is_binary);
5548     }
5549   if (csize2 != 0)
5550     {
5551       string2 = REGEX_TALLOC (csize2 + 1, CHAR_TYPE);
5552       mbs_offset2 = REGEX_TALLOC (csize2 + 1, int);
5553       is_binary = REGEX_TALLOC (csize2 + 1, char);
5554       if (!string2 || !mbs_offset2 || !is_binary)
5555 	{
5556 	  FREE_VAR (string1);
5557 	  FREE_VAR (mbs_offset1);
5558 	  FREE_VAR (string2);
5559 	  FREE_VAR (mbs_offset2);
5560 	  FREE_VAR (is_binary);
5561 	  return -2;
5562 	}
5563       size2 = convert_mbs_to_wcs(string2, cstring2, csize2,
5564 				 mbs_offset2, is_binary);
5565       string2[size2] = L'\0'; /* for a sentinel  */
5566       FREE_VAR (is_binary);
5567     }
5568 
5569   /* We need to cast pattern to (wchar_t*), because we casted this compiled
5570      pattern to (char*) in regex_compile.  */
5571   p = pattern = (CHAR_TYPE*)bufp->buffer;
5572   pend = (CHAR_TYPE*)(bufp->buffer + bufp->used);
5573 
5574 #endif /* MBS_SUPPORT */
5575 
5576   /* Initialize subexpression text positions to -1 to mark ones that no
5577      start_memory/stop_memory has been seen for. Also initialize the
5578      register information struct.  */
5579   for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
5580     {
5581       regstart[mcnt] = regend[mcnt]
5582         = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
5583 
5584       REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
5585       IS_ACTIVE (reg_info[mcnt]) = 0;
5586       MATCHED_SOMETHING (reg_info[mcnt]) = 0;
5587       EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
5588     }
5589 
5590   /* We move `string1' into `string2' if the latter's empty -- but not if
5591      `string1' is null.  */
5592   if (size2 == 0 && string1 != NULL)
5593     {
5594       string2 = string1;
5595       size2 = size1;
5596       string1 = 0;
5597       size1 = 0;
5598     }
5599   end1 = string1 + size1;
5600   end2 = string2 + size2;
5601 
5602   /* Compute where to stop matching, within the two strings.  */
5603 #ifdef MBS_SUPPORT
5604   if (stop <= csize1)
5605     {
5606       mcnt = count_mbs_length(mbs_offset1, stop);
5607       end_match_1 = string1 + mcnt;
5608       end_match_2 = string2;
5609     }
5610   else
5611     {
5612       end_match_1 = end1;
5613       mcnt = count_mbs_length(mbs_offset2, stop-csize1);
5614       end_match_2 = string2 + mcnt;
5615     }
5616   if (mcnt < 0)
5617     { /* count_mbs_length return error.  */
5618       FREE_VARIABLES ();
5619       return -1;
5620     }
5621 #else
5622   if (stop <= size1)
5623     {
5624       end_match_1 = string1 + stop;
5625       end_match_2 = string2;
5626     }
5627   else
5628     {
5629       end_match_1 = end1;
5630       end_match_2 = string2 + stop - size1;
5631     }
5632 #endif /* MBS_SUPPORT */
5633 
5634   /* `p' scans through the pattern as `d' scans through the data.
5635      `dend' is the end of the input string that `d' points within.  `d'
5636      is advanced into the following input string whenever necessary, but
5637      this happens before fetching; therefore, at the beginning of the
5638      loop, `d' can be pointing at the end of a string, but it cannot
5639      equal `string2'.  */
5640 #ifdef MBS_SUPPORT
5641   if (size1 > 0 && pos <= csize1)
5642     {
5643       mcnt = count_mbs_length(mbs_offset1, pos);
5644       d = string1 + mcnt;
5645       dend = end_match_1;
5646     }
5647   else
5648     {
5649       mcnt = count_mbs_length(mbs_offset2, pos-csize1);
5650       d = string2 + mcnt;
5651       dend = end_match_2;
5652     }
5653 
5654   if (mcnt < 0)
5655     { /* count_mbs_length return error.  */
5656       FREE_VARIABLES ();
5657       return -1;
5658     }
5659 #else
5660   if (size1 > 0 && pos <= size1)
5661     {
5662       d = string1 + pos;
5663       dend = end_match_1;
5664     }
5665   else
5666     {
5667       d = string2 + pos - size1;
5668       dend = end_match_2;
5669     }
5670 #endif /* MBS_SUPPORT */
5671 
5672   DEBUG_PRINT1 ("The compiled pattern is:\n");
5673   DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
5674   DEBUG_PRINT1 ("The string to match is: `");
5675   DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
5676   DEBUG_PRINT1 ("'\n");
5677 
5678   /* This loops over pattern commands.  It exits by returning from the
5679      function if the match is complete, or it drops through if the match
5680      fails at this starting point in the input data.  */
5681   for (;;)
5682     {
5683 #ifdef _LIBC
5684       DEBUG_PRINT2 ("\n%p: ", p);
5685 #else
5686       DEBUG_PRINT2 ("\n0x%x: ", p);
5687 #endif
5688 
5689       if (p == pend)
5690 	{ /* End of pattern means we might have succeeded.  */
5691           DEBUG_PRINT1 ("end of pattern ... ");
5692 
5693 	  /* If we haven't matched the entire string, and we want the
5694              longest match, try backtracking.  */
5695           if (d != end_match_2)
5696 	    {
5697 	      /* 1 if this match ends in the same string (string1 or string2)
5698 		 as the best previous match.  */
5699 	      boolean same_str_p = (FIRST_STRING_P (match_end)
5700 				    == MATCHING_IN_FIRST_STRING);
5701 	      /* 1 if this match is the best seen so far.  */
5702 	      boolean best_match_p;
5703 
5704 	      /* AIX compiler got confused when this was combined
5705 		 with the previous declaration.  */
5706 	      if (same_str_p)
5707 		best_match_p = d > match_end;
5708 	      else
5709 		best_match_p = !MATCHING_IN_FIRST_STRING;
5710 
5711               DEBUG_PRINT1 ("backtracking.\n");
5712 
5713               if (!FAIL_STACK_EMPTY ())
5714                 { /* More failure points to try.  */
5715 
5716                   /* If exceeds best match so far, save it.  */
5717                   if (!best_regs_set || best_match_p)
5718                     {
5719                       best_regs_set = true;
5720                       match_end = d;
5721 
5722                       DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
5723 
5724                       for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
5725                         {
5726                           best_regstart[mcnt] = regstart[mcnt];
5727                           best_regend[mcnt] = regend[mcnt];
5728                         }
5729                     }
5730                   goto fail;
5731                 }
5732 
5733               /* If no failure points, don't restore garbage.  And if
5734                  last match is real best match, don't restore second
5735                  best one. */
5736               else if (best_regs_set && !best_match_p)
5737                 {
5738   	        restore_best_regs:
5739                   /* Restore best match.  It may happen that `dend ==
5740                      end_match_1' while the restored d is in string2.
5741                      For example, the pattern `x.*y.*z' against the
5742                      strings `x-' and `y-z-', if the two strings are
5743                      not consecutive in memory.  */
5744                   DEBUG_PRINT1 ("Restoring best registers.\n");
5745 
5746                   d = match_end;
5747                   dend = ((d >= string1 && d <= end1)
5748 		           ? end_match_1 : end_match_2);
5749 
5750 		  for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
5751 		    {
5752 		      regstart[mcnt] = best_regstart[mcnt];
5753 		      regend[mcnt] = best_regend[mcnt];
5754 		    }
5755                 }
5756             } /* d != end_match_2 */
5757 
5758 	succeed_label:
5759           DEBUG_PRINT1 ("Accepting match.\n");
5760           /* If caller wants register contents data back, do it.  */
5761           if (regs && !bufp->no_sub)
5762 	    {
5763 	      /* Have the register data arrays been allocated?  */
5764               if (bufp->regs_allocated == REGS_UNALLOCATED)
5765                 { /* No.  So allocate them with malloc.  We need one
5766                      extra element beyond `num_regs' for the `-1' marker
5767                      GNU code uses.  */
5768                   regs->num_regs = MAX (RE_NREGS, num_regs + 1);
5769                   regs->start = TALLOC (regs->num_regs, regoff_t);
5770                   regs->end = TALLOC (regs->num_regs, regoff_t);
5771                   if (regs->start == NULL || regs->end == NULL)
5772 		    {
5773 		      FREE_VARIABLES ();
5774 		      return -2;
5775 		    }
5776                   bufp->regs_allocated = REGS_REALLOCATE;
5777                 }
5778               else if (bufp->regs_allocated == REGS_REALLOCATE)
5779                 { /* Yes.  If we need more elements than were already
5780                      allocated, reallocate them.  If we need fewer, just
5781                      leave it alone.  */
5782                   if (regs->num_regs < num_regs + 1)
5783                     {
5784                       regs->num_regs = num_regs + 1;
5785                       RETALLOC (regs->start, regs->num_regs, regoff_t);
5786                       RETALLOC (regs->end, regs->num_regs, regoff_t);
5787                       if (regs->start == NULL || regs->end == NULL)
5788 			{
5789 			  FREE_VARIABLES ();
5790 			  return -2;
5791 			}
5792                     }
5793                 }
5794               else
5795 		{
5796 		  /* These braces fend off a "empty body in an else-statement"
5797 		     warning under GCC when assert expands to nothing.  */
5798 		  assert (bufp->regs_allocated == REGS_FIXED);
5799 		}
5800 
5801               /* Convert the pointer data in `regstart' and `regend' to
5802                  indices.  Register zero has to be set differently,
5803                  since we haven't kept track of any info for it.  */
5804               if (regs->num_regs > 0)
5805                 {
5806                   regs->start[0] = pos;
5807 #ifdef MBS_SUPPORT
5808 		  if (MATCHING_IN_FIRST_STRING)
5809 		    regs->end[0] = mbs_offset1 != NULL ?
5810 					mbs_offset1[d-string1] : 0;
5811 		  else
5812 		    regs->end[0] = csize1 + (mbs_offset2 != NULL ?
5813 					     mbs_offset2[d-string2] : 0);
5814 #else
5815                   regs->end[0] = (MATCHING_IN_FIRST_STRING
5816 				  ? ((regoff_t) (d - string1))
5817 			          : ((regoff_t) (d - string2 + size1)));
5818 #endif /* MBS_SUPPORT */
5819                 }
5820 
5821               /* Go through the first `min (num_regs, regs->num_regs)'
5822                  registers, since that is all we initialized.  */
5823 	      for (mcnt = 1; (unsigned) mcnt < MIN (num_regs, regs->num_regs);
5824 		   mcnt++)
5825 		{
5826                   if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
5827                     regs->start[mcnt] = regs->end[mcnt] = -1;
5828                   else
5829                     {
5830 		      regs->start[mcnt]
5831 			= (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
5832                       regs->end[mcnt]
5833 			= (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
5834                     }
5835 		}
5836 
5837               /* If the regs structure we return has more elements than
5838                  were in the pattern, set the extra elements to -1.  If
5839                  we (re)allocated the registers, this is the case,
5840                  because we always allocate enough to have at least one
5841                  -1 at the end.  */
5842               for (mcnt = num_regs; (unsigned) mcnt < regs->num_regs; mcnt++)
5843                 regs->start[mcnt] = regs->end[mcnt] = -1;
5844 	    } /* regs && !bufp->no_sub */
5845 
5846           DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
5847                         nfailure_points_pushed, nfailure_points_popped,
5848                         nfailure_points_pushed - nfailure_points_popped);
5849           DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
5850 
5851 #ifdef MBS_SUPPORT
5852 	  if (MATCHING_IN_FIRST_STRING)
5853 	    mcnt = mbs_offset1 != NULL ? mbs_offset1[d-string1] : 0;
5854 	  else
5855 	    mcnt = (mbs_offset2 != NULL ? mbs_offset2[d-string2] : 0) +
5856 			csize1;
5857           mcnt -= pos;
5858 #else
5859           mcnt = d - pos - (MATCHING_IN_FIRST_STRING
5860 			    ? string1
5861 			    : string2 - size1);
5862 #endif /* MBS_SUPPORT */
5863 
5864           DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
5865 
5866           FREE_VARIABLES ();
5867           return mcnt;
5868         }
5869 
5870       /* Otherwise match next pattern command.  */
5871       switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
5872 	{
5873         /* Ignore these.  Used to ignore the n of succeed_n's which
5874            currently have n == 0.  */
5875         case no_op:
5876           DEBUG_PRINT1 ("EXECUTING no_op.\n");
5877           break;
5878 
5879 	case succeed:
5880           DEBUG_PRINT1 ("EXECUTING succeed.\n");
5881 	  goto succeed_label;
5882 
5883         /* Match the next n pattern characters exactly.  The following
5884            byte in the pattern defines n, and the n bytes after that
5885            are the characters to match.  */
5886 	case exactn:
5887 #ifdef MBS_SUPPORT
5888 	case exactn_bin:
5889 #endif
5890 	  mcnt = *p++;
5891           DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
5892 
5893           /* This is written out as an if-else so we don't waste time
5894              testing `translate' inside the loop.  */
5895           if (translate)
5896 	    {
5897 	      do
5898 		{
5899 		  PREFETCH ();
5900 #ifdef MBS_SUPPORT
5901 		  if (*d <= 0xff)
5902 		    {
5903 		      if ((US_CHAR_TYPE) translate[(unsigned char) *d++]
5904 			  != (US_CHAR_TYPE) *p++)
5905 			goto fail;
5906 		    }
5907 		  else
5908 		    {
5909 		      if (*d++ != (CHAR_TYPE) *p++)
5910 			goto fail;
5911 		    }
5912 #else
5913 		  if ((US_CHAR_TYPE) translate[(unsigned char) *d++]
5914 		      != (US_CHAR_TYPE) *p++)
5915                     goto fail;
5916 #endif /* MBS_SUPPORT */
5917 		}
5918 	      while (--mcnt);
5919 	    }
5920 	  else
5921 	    {
5922 	      do
5923 		{
5924 		  PREFETCH ();
5925 		  if (*d++ != (CHAR_TYPE) *p++) goto fail;
5926 		}
5927 	      while (--mcnt);
5928 	    }
5929 	  SET_REGS_MATCHED ();
5930           break;
5931 
5932 
5933         /* Match any character except possibly a newline or a null.  */
5934 	case anychar:
5935           DEBUG_PRINT1 ("EXECUTING anychar.\n");
5936 
5937           PREFETCH ();
5938 
5939           if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
5940               || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
5941 	    goto fail;
5942 
5943           SET_REGS_MATCHED ();
5944           DEBUG_PRINT2 ("  Matched `%ld'.\n", (long int) *d);
5945           d++;
5946 	  break;
5947 
5948 
5949 	case charset:
5950 	case charset_not:
5951 	  {
5952 	    register US_CHAR_TYPE c;
5953 #ifdef MBS_SUPPORT
5954 	    unsigned int i, char_class_length, coll_symbol_length,
5955               equiv_class_length, ranges_length, chars_length, length;
5956 	    CHAR_TYPE *workp, *workp2, *charset_top;
5957 #define WORK_BUFFER_SIZE 128
5958             CHAR_TYPE str_buf[WORK_BUFFER_SIZE];
5959 # ifdef _LIBC
5960 	    uint32_t nrules;
5961 # endif /* _LIBC */
5962 #endif /* MBS_SUPPORT */
5963 	    boolean not = (re_opcode_t) *(p - 1) == charset_not;
5964 
5965             DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
5966 	    PREFETCH ();
5967 	    c = TRANSLATE (*d); /* The character to match.  */
5968 #ifdef MBS_SUPPORT
5969 # ifdef _LIBC
5970 	    nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
5971 # endif /* _LIBC */
5972 	    charset_top = p - 1;
5973 	    char_class_length = *p++;
5974 	    coll_symbol_length = *p++;
5975 	    equiv_class_length = *p++;
5976 	    ranges_length = *p++;
5977 	    chars_length = *p++;
5978 	    /* p points charset[6], so the address of the next instruction
5979 	       (charset[l+m+n+2o+k+p']) equals p[l+m+n+2*o+p'],
5980 	       where l=length of char_classes, m=length of collating_symbol,
5981 	       n=equivalence_class, o=length of char_range,
5982 	       p'=length of character.  */
5983 	    workp = p;
5984 	    /* Update p to indicate the next instruction.  */
5985 	    p += char_class_length + coll_symbol_length+ equiv_class_length +
5986               2*ranges_length + chars_length;
5987 
5988             /* match with char_class?  */
5989 	    for (i = 0; i < char_class_length ; i += CHAR_CLASS_SIZE)
5990 	      {
5991 		wctype_t wctype;
5992 		uintptr_t alignedp = ((uintptr_t)workp
5993 				      + __alignof__(wctype_t) - 1)
5994 		  		      & ~(uintptr_t)(__alignof__(wctype_t) - 1);
5995 		wctype = *((wctype_t*)alignedp);
5996 		workp += CHAR_CLASS_SIZE;
5997 		if (iswctype((wint_t)c, wctype))
5998 		  goto char_set_matched;
5999 	      }
6000 
6001             /* match with collating_symbol?  */
6002 # ifdef _LIBC
6003 	    if (nrules != 0)
6004 	      {
6005 		const unsigned char *extra = (const unsigned char *)
6006 		  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB);
6007 
6008 		for (workp2 = workp + coll_symbol_length ; workp < workp2 ;
6009 		     workp++)
6010 		  {
6011 		    int32_t *wextra;
6012 		    wextra = (int32_t*)(extra + *workp++);
6013 		    for (i = 0; i < *wextra; ++i)
6014 		      if (TRANSLATE(d[i]) != wextra[1 + i])
6015 			break;
6016 
6017 		    if (i == *wextra)
6018 		      {
6019 			/* Update d, however d will be incremented at
6020 			   char_set_matched:, we decrement d here.  */
6021 			d += i - 1;
6022 			goto char_set_matched;
6023 		      }
6024 		  }
6025 	      }
6026 	    else /* (nrules == 0) */
6027 # endif
6028 	      /* If we can't look up collation data, we use wcscoll
6029 		 instead.  */
6030 	      {
6031 		for (workp2 = workp + coll_symbol_length ; workp < workp2 ;)
6032 		  {
6033 		    const CHAR_TYPE *backup_d = d, *backup_dend = dend;
6034 		    length = wcslen(workp);
6035 
6036 		    /* If wcscoll(the collating symbol, whole string) > 0,
6037 		       any substring of the string never match with the
6038 		       collating symbol.  */
6039 		    if (wcscoll(workp, d) > 0)
6040 		      {
6041 			workp += length + 1;
6042 			continue;
6043 		      }
6044 
6045 		    /* First, we compare the collating symbol with
6046 		       the first character of the string.
6047 		       If it don't match, we add the next character to
6048 		       the compare buffer in turn.  */
6049 		    for (i = 0 ; i < WORK_BUFFER_SIZE-1 ; i++, d++)
6050 		      {
6051 			int match;
6052 			if (d == dend)
6053 			  {
6054 			    if (dend == end_match_2)
6055 			      break;
6056 			    d = string2;
6057 			    dend = end_match_2;
6058 			  }
6059 
6060 			/* add next character to the compare buffer.  */
6061 			str_buf[i] = TRANSLATE(*d);
6062 			str_buf[i+1] = '\0';
6063 
6064 			match = wcscoll(workp, str_buf);
6065 			if (match == 0)
6066 			  goto char_set_matched;
6067 
6068 			if (match < 0)
6069 			  /* (str_buf > workp) indicate (str_buf + X > workp),
6070 			     because for all X (str_buf + X > str_buf).
6071 			     So we don't need continue this loop.  */
6072 			  break;
6073 
6074 			/* Otherwise(str_buf < workp),
6075 			   (str_buf+next_character) may equals (workp).
6076 			   So we continue this loop.  */
6077 		      }
6078 		    /* not matched */
6079 		    d = backup_d;
6080 		    dend = backup_dend;
6081 		    workp += length + 1;
6082 		  }
6083               }
6084             /* match with equivalence_class?  */
6085 # ifdef _LIBC
6086 	    if (nrules != 0)
6087 	      {
6088                 const CHAR_TYPE *backup_d = d, *backup_dend = dend;
6089 		/* Try to match the equivalence class against
6090 		   those known to the collate implementation.  */
6091 		const int32_t *table;
6092 		const int32_t *weights;
6093 		const int32_t *extra;
6094 		const int32_t *indirect;
6095 		int32_t idx, idx2;
6096 		wint_t *cp;
6097 		size_t len;
6098 
6099 		/* This #include defines a local function!  */
6100 #  include <locale/weightwc.h>
6101 
6102 		table = (const int32_t *)
6103 		  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEWC);
6104 		weights = (const wint_t *)
6105 		  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTWC);
6106 		extra = (const wint_t *)
6107 		  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAWC);
6108 		indirect = (const int32_t *)
6109 		  _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTWC);
6110 
6111 		/* Write 1 collating element to str_buf, and
6112 		   get its index.  */
6113 		idx2 = 0;
6114 
6115 		for (i = 0 ; idx2 == 0 && i < WORK_BUFFER_SIZE - 1; i++)
6116 		  {
6117 		    cp = (wint_t*)str_buf;
6118 		    if (d == dend)
6119 		      {
6120 			if (dend == end_match_2)
6121 			  break;
6122 			d = string2;
6123 			dend = end_match_2;
6124 		      }
6125 		    str_buf[i] = TRANSLATE(*(d+i));
6126 		    str_buf[i+1] = '\0'; /* sentinel */
6127 		    idx2 = findidx ((const wint_t**)&cp);
6128 		  }
6129 
6130 		/* Update d, however d will be incremented at
6131 		   char_set_matched:, we decrement d here.  */
6132 		d = backup_d + ((wchar_t*)cp - (wchar_t*)str_buf - 1);
6133 		if (d >= dend)
6134 		  {
6135 		    if (dend == end_match_2)
6136 			d = dend;
6137 		    else
6138 		      {
6139 			d = string2;
6140 			dend = end_match_2;
6141 		      }
6142 		  }
6143 
6144 		len = weights[idx2];
6145 
6146 		for (workp2 = workp + equiv_class_length ; workp < workp2 ;
6147 		     workp++)
6148 		  {
6149 		    idx = (int32_t)*workp;
6150 		    /* We already checked idx != 0 in regex_compile. */
6151 
6152 		    if (idx2 != 0 && len == weights[idx])
6153 		      {
6154 			int cnt = 0;
6155 			while (cnt < len && (weights[idx + 1 + cnt]
6156 					     == weights[idx2 + 1 + cnt]))
6157 			  ++cnt;
6158 
6159 			if (cnt == len)
6160 			  goto char_set_matched;
6161 		      }
6162 		  }
6163 		/* not matched */
6164                 d = backup_d;
6165                 dend = backup_dend;
6166 	      }
6167 	    else /* (nrules == 0) */
6168 # endif
6169 	      /* If we can't look up collation data, we use wcscoll
6170 		 instead.  */
6171 	      {
6172 		for (workp2 = workp + equiv_class_length ; workp < workp2 ;)
6173 		  {
6174 		    const CHAR_TYPE *backup_d = d, *backup_dend = dend;
6175 		    length = wcslen(workp);
6176 
6177 		    /* If wcscoll(the collating symbol, whole string) > 0,
6178 		       any substring of the string never match with the
6179 		       collating symbol.  */
6180 		    if (wcscoll(workp, d) > 0)
6181 		      {
6182 			workp += length + 1;
6183 			break;
6184 		      }
6185 
6186 		    /* First, we compare the equivalence class with
6187 		       the first character of the string.
6188 		       If it don't match, we add the next character to
6189 		       the compare buffer in turn.  */
6190 		    for (i = 0 ; i < WORK_BUFFER_SIZE - 1 ; i++, d++)
6191 		      {
6192 			int match;
6193 			if (d == dend)
6194 			  {
6195 			    if (dend == end_match_2)
6196 			      break;
6197 			    d = string2;
6198 			    dend = end_match_2;
6199 			  }
6200 
6201 			/* add next character to the compare buffer.  */
6202 			str_buf[i] = TRANSLATE(*d);
6203 			str_buf[i+1] = '\0';
6204 
6205 			match = wcscoll(workp, str_buf);
6206 
6207 			if (match == 0)
6208 			  goto char_set_matched;
6209 
6210 			if (match < 0)
6211 			/* (str_buf > workp) indicate (str_buf + X > workp),
6212 			   because for all X (str_buf + X > str_buf).
6213 			   So we don't need continue this loop.  */
6214 			  break;
6215 
6216 			/* Otherwise(str_buf < workp),
6217 			   (str_buf+next_character) may equals (workp).
6218 			   So we continue this loop.  */
6219 		      }
6220 		    /* not matched */
6221 		    d = backup_d;
6222 		    dend = backup_dend;
6223 		    workp += length + 1;
6224 		  }
6225 	      }
6226 
6227             /* match with char_range?  */
6228 #ifdef _LIBC
6229 	    if (nrules != 0)
6230 	      {
6231 		uint32_t collseqval;
6232 		const char *collseq = (const char *)
6233 		  _NL_CURRENT(LC_COLLATE, _NL_COLLATE_COLLSEQWC);
6234 
6235 		collseqval = collseq_table_lookup (collseq, c);
6236 
6237 		for (; workp < p - chars_length ;)
6238 		  {
6239 		    uint32_t start_val, end_val;
6240 
6241 		    /* We already compute the collation sequence value
6242 		       of the characters (or collating symbols).  */
6243 		    start_val = (uint32_t) *workp++; /* range_start */
6244 		    end_val = (uint32_t) *workp++; /* range_end */
6245 
6246 		    if (start_val <= collseqval && collseqval <= end_val)
6247 		      goto char_set_matched;
6248 		  }
6249 	      }
6250 	    else
6251 #endif
6252 	      {
6253 		/* We set range_start_char at str_buf[0], range_end_char
6254 		   at str_buf[4], and compared char at str_buf[2].  */
6255 		str_buf[1] = 0;
6256 		str_buf[2] = c;
6257 		str_buf[3] = 0;
6258 		str_buf[5] = 0;
6259 		for (; workp < p - chars_length ;)
6260 		  {
6261 		    wchar_t *range_start_char, *range_end_char;
6262 
6263 		    /* match if (range_start_char <= c <= range_end_char).  */
6264 
6265 		    /* If range_start(or end) < 0, we assume -range_start(end)
6266 		       is the offset of the collating symbol which is specified
6267 		       as the character of the range start(end).  */
6268 
6269 		    /* range_start */
6270 		    if (*workp < 0)
6271 		      range_start_char = charset_top - (*workp++);
6272 		    else
6273 		      {
6274 			str_buf[0] = *workp++;
6275 			range_start_char = str_buf;
6276 		      }
6277 
6278 		    /* range_end */
6279 		    if (*workp < 0)
6280 		      range_end_char = charset_top - (*workp++);
6281 		    else
6282 		      {
6283 			str_buf[4] = *workp++;
6284 			range_end_char = str_buf + 4;
6285 		      }
6286 
6287 		    if (wcscoll(range_start_char, str_buf+2) <= 0 &&
6288 			wcscoll(str_buf+2, range_end_char) <= 0)
6289 
6290 		      goto char_set_matched;
6291 		  }
6292 	      }
6293 
6294             /* match with char?  */
6295 	    for (; workp < p ; workp++)
6296 	      if (c == *workp)
6297 		goto char_set_matched;
6298 
6299 	    not = !not;
6300 
6301 	  char_set_matched:
6302 	    if (not) goto fail;
6303 #else
6304             /* Cast to `unsigned' instead of `unsigned char' in case the
6305                bit list is a full 32 bytes long.  */
6306 	    if (c < (unsigned) (*p * BYTEWIDTH)
6307 		&& p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
6308 	      not = !not;
6309 
6310 	    p += 1 + *p;
6311 
6312 	    if (!not) goto fail;
6313 #undef WORK_BUFFER_SIZE
6314 #endif /* MBS_SUPPORT */
6315 	    SET_REGS_MATCHED ();
6316             d++;
6317 	    break;
6318 	  }
6319 
6320 
6321         /* The beginning of a group is represented by start_memory.
6322            The arguments are the register number in the next byte, and the
6323            number of groups inner to this one in the next.  The text
6324            matched within the group is recorded (in the internal
6325            registers data structure) under the register number.  */
6326         case start_memory:
6327 	  DEBUG_PRINT3 ("EXECUTING start_memory %ld (%ld):\n",
6328 			(long int) *p, (long int) p[1]);
6329 
6330           /* Find out if this group can match the empty string.  */
6331 	  p1 = p;		/* To send to group_match_null_string_p.  */
6332 
6333           if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
6334             REG_MATCH_NULL_STRING_P (reg_info[*p])
6335               = group_match_null_string_p (&p1, pend, reg_info);
6336 
6337           /* Save the position in the string where we were the last time
6338              we were at this open-group operator in case the group is
6339              operated upon by a repetition operator, e.g., with `(a*)*b'
6340              against `ab'; then we want to ignore where we are now in
6341              the string in case this attempt to match fails.  */
6342           old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
6343                              ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
6344                              : regstart[*p];
6345 	  DEBUG_PRINT2 ("  old_regstart: %d\n",
6346 			 POINTER_TO_OFFSET (old_regstart[*p]));
6347 
6348           regstart[*p] = d;
6349 	  DEBUG_PRINT2 ("  regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
6350 
6351           IS_ACTIVE (reg_info[*p]) = 1;
6352           MATCHED_SOMETHING (reg_info[*p]) = 0;
6353 
6354 	  /* Clear this whenever we change the register activity status.  */
6355 	  set_regs_matched_done = 0;
6356 
6357           /* This is the new highest active register.  */
6358           highest_active_reg = *p;
6359 
6360           /* If nothing was active before, this is the new lowest active
6361              register.  */
6362           if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
6363             lowest_active_reg = *p;
6364 
6365           /* Move past the register number and inner group count.  */
6366           p += 2;
6367 	  just_past_start_mem = p;
6368 
6369           break;
6370 
6371 
6372         /* The stop_memory opcode represents the end of a group.  Its
6373            arguments are the same as start_memory's: the register
6374            number, and the number of inner groups.  */
6375 	case stop_memory:
6376 	  DEBUG_PRINT3 ("EXECUTING stop_memory %ld (%ld):\n",
6377 			(long int) *p, (long int) p[1]);
6378 
6379           /* We need to save the string position the last time we were at
6380              this close-group operator in case the group is operated
6381              upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
6382              against `aba'; then we want to ignore where we are now in
6383              the string in case this attempt to match fails.  */
6384           old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
6385                            ? REG_UNSET (regend[*p]) ? d : regend[*p]
6386 			   : regend[*p];
6387 	  DEBUG_PRINT2 ("      old_regend: %d\n",
6388 			 POINTER_TO_OFFSET (old_regend[*p]));
6389 
6390           regend[*p] = d;
6391 	  DEBUG_PRINT2 ("      regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
6392 
6393           /* This register isn't active anymore.  */
6394           IS_ACTIVE (reg_info[*p]) = 0;
6395 
6396 	  /* Clear this whenever we change the register activity status.  */
6397 	  set_regs_matched_done = 0;
6398 
6399           /* If this was the only register active, nothing is active
6400              anymore.  */
6401           if (lowest_active_reg == highest_active_reg)
6402             {
6403               lowest_active_reg = NO_LOWEST_ACTIVE_REG;
6404               highest_active_reg = NO_HIGHEST_ACTIVE_REG;
6405             }
6406           else
6407             { /* We must scan for the new highest active register, since
6408                  it isn't necessarily one less than now: consider
6409                  (a(b)c(d(e)f)g).  When group 3 ends, after the f), the
6410                  new highest active register is 1.  */
6411               US_CHAR_TYPE r = *p - 1;
6412               while (r > 0 && !IS_ACTIVE (reg_info[r]))
6413                 r--;
6414 
6415               /* If we end up at register zero, that means that we saved
6416                  the registers as the result of an `on_failure_jump', not
6417                  a `start_memory', and we jumped to past the innermost
6418                  `stop_memory'.  For example, in ((.)*) we save
6419                  registers 1 and 2 as a result of the *, but when we pop
6420                  back to the second ), we are at the stop_memory 1.
6421                  Thus, nothing is active.  */
6422 	      if (r == 0)
6423                 {
6424                   lowest_active_reg = NO_LOWEST_ACTIVE_REG;
6425                   highest_active_reg = NO_HIGHEST_ACTIVE_REG;
6426                 }
6427               else
6428                 highest_active_reg = r;
6429             }
6430 
6431           /* If just failed to match something this time around with a
6432              group that's operated on by a repetition operator, try to
6433              force exit from the ``loop'', and restore the register
6434              information for this group that we had before trying this
6435              last match.  */
6436           if ((!MATCHED_SOMETHING (reg_info[*p])
6437                || just_past_start_mem == p - 1)
6438 	      && (p + 2) < pend)
6439             {
6440               boolean is_a_jump_n = false;
6441 
6442               p1 = p + 2;
6443               mcnt = 0;
6444               switch ((re_opcode_t) *p1++)
6445                 {
6446                   case jump_n:
6447 		    is_a_jump_n = true;
6448                   case pop_failure_jump:
6449 		  case maybe_pop_jump:
6450 		  case jump:
6451 		  case dummy_failure_jump:
6452                     EXTRACT_NUMBER_AND_INCR (mcnt, p1);
6453 		    if (is_a_jump_n)
6454 		      p1 += OFFSET_ADDRESS_SIZE;
6455                     break;
6456 
6457                   default:
6458                     /* do nothing */ ;
6459                 }
6460 	      p1 += mcnt;
6461 
6462               /* If the next operation is a jump backwards in the pattern
6463 	         to an on_failure_jump right before the start_memory
6464                  corresponding to this stop_memory, exit from the loop
6465                  by forcing a failure after pushing on the stack the
6466                  on_failure_jump's jump in the pattern, and d.  */
6467               if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
6468                   && (re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == start_memory
6469 		  && p1[2+OFFSET_ADDRESS_SIZE] == *p)
6470 		{
6471                   /* If this group ever matched anything, then restore
6472                      what its registers were before trying this last
6473                      failed match, e.g., with `(a*)*b' against `ab' for
6474                      regstart[1], and, e.g., with `((a*)*(b*)*)*'
6475                      against `aba' for regend[3].
6476 
6477                      Also restore the registers for inner groups for,
6478                      e.g., `((a*)(b*))*' against `aba' (register 3 would
6479                      otherwise get trashed).  */
6480 
6481                   if (EVER_MATCHED_SOMETHING (reg_info[*p]))
6482 		    {
6483 		      unsigned r;
6484 
6485                       EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
6486 
6487 		      /* Restore this and inner groups' (if any) registers.  */
6488                       for (r = *p; r < (unsigned) *p + (unsigned) *(p + 1);
6489 			   r++)
6490                         {
6491                           regstart[r] = old_regstart[r];
6492 
6493                           /* xx why this test?  */
6494                           if (old_regend[r] >= regstart[r])
6495                             regend[r] = old_regend[r];
6496                         }
6497                     }
6498 		  p1++;
6499                   EXTRACT_NUMBER_AND_INCR (mcnt, p1);
6500                   PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
6501 
6502                   goto fail;
6503                 }
6504             }
6505 
6506           /* Move past the register number and the inner group count.  */
6507           p += 2;
6508           break;
6509 
6510 
6511 	/* \<digit> has been turned into a `duplicate' command which is
6512            followed by the numeric value of <digit> as the register number.  */
6513         case duplicate:
6514 	  {
6515 	    register const CHAR_TYPE *d2, *dend2;
6516 	    int regno = *p++;   /* Get which register to match against.  */
6517 	    DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
6518 
6519 	    /* Can't back reference a group which we've never matched.  */
6520             if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
6521               goto fail;
6522 
6523             /* Where in input to try to start matching.  */
6524             d2 = regstart[regno];
6525 
6526             /* Where to stop matching; if both the place to start and
6527                the place to stop matching are in the same string, then
6528                set to the place to stop, otherwise, for now have to use
6529                the end of the first string.  */
6530 
6531             dend2 = ((FIRST_STRING_P (regstart[regno])
6532 		      == FIRST_STRING_P (regend[regno]))
6533 		     ? regend[regno] : end_match_1);
6534 	    for (;;)
6535 	      {
6536 		/* If necessary, advance to next segment in register
6537                    contents.  */
6538 		while (d2 == dend2)
6539 		  {
6540 		    if (dend2 == end_match_2) break;
6541 		    if (dend2 == regend[regno]) break;
6542 
6543                     /* End of string1 => advance to string2. */
6544                     d2 = string2;
6545                     dend2 = regend[regno];
6546 		  }
6547 		/* At end of register contents => success */
6548 		if (d2 == dend2) break;
6549 
6550 		/* If necessary, advance to next segment in data.  */
6551 		PREFETCH ();
6552 
6553 		/* How many characters left in this segment to match.  */
6554 		mcnt = dend - d;
6555 
6556 		/* Want how many consecutive characters we can match in
6557                    one shot, so, if necessary, adjust the count.  */
6558                 if (mcnt > dend2 - d2)
6559 		  mcnt = dend2 - d2;
6560 
6561 		/* Compare that many; failure if mismatch, else move
6562                    past them.  */
6563 		if (translate
6564                     ? bcmp_translate (d, d2, mcnt, translate)
6565                     : memcmp (d, d2, mcnt*sizeof(US_CHAR_TYPE)))
6566 		  goto fail;
6567 		d += mcnt, d2 += mcnt;
6568 
6569 		/* Do this because we've match some characters.  */
6570 		SET_REGS_MATCHED ();
6571 	      }
6572 	  }
6573 	  break;
6574 
6575 
6576         /* begline matches the empty string at the beginning of the string
6577            (unless `not_bol' is set in `bufp'), and, if
6578            `newline_anchor' is set, after newlines.  */
6579 	case begline:
6580           DEBUG_PRINT1 ("EXECUTING begline.\n");
6581 
6582           if (AT_STRINGS_BEG (d))
6583             {
6584               if (!bufp->not_bol) break;
6585             }
6586           else if (d[-1] == '\n' && bufp->newline_anchor)
6587             {
6588               break;
6589             }
6590           /* In all other cases, we fail.  */
6591           goto fail;
6592 
6593 
6594         /* endline is the dual of begline.  */
6595 	case endline:
6596           DEBUG_PRINT1 ("EXECUTING endline.\n");
6597 
6598           if (AT_STRINGS_END (d))
6599             {
6600               if (!bufp->not_eol) break;
6601             }
6602 
6603           /* We have to ``prefetch'' the next character.  */
6604           else if ((d == end1 ? *string2 : *d) == '\n'
6605                    && bufp->newline_anchor)
6606             {
6607               break;
6608             }
6609           goto fail;
6610 
6611 
6612 	/* Match at the very beginning of the data.  */
6613         case begbuf:
6614           DEBUG_PRINT1 ("EXECUTING begbuf.\n");
6615           if (AT_STRINGS_BEG (d))
6616             break;
6617           goto fail;
6618 
6619 
6620 	/* Match at the very end of the data.  */
6621         case endbuf:
6622           DEBUG_PRINT1 ("EXECUTING endbuf.\n");
6623 	  if (AT_STRINGS_END (d))
6624 	    break;
6625           goto fail;
6626 
6627 
6628         /* on_failure_keep_string_jump is used to optimize `.*\n'.  It
6629            pushes NULL as the value for the string on the stack.  Then
6630            `pop_failure_point' will keep the current value for the
6631            string, instead of restoring it.  To see why, consider
6632            matching `foo\nbar' against `.*\n'.  The .* matches the foo;
6633            then the . fails against the \n.  But the next thing we want
6634            to do is match the \n against the \n; if we restored the
6635            string value, we would be back at the foo.
6636 
6637            Because this is used only in specific cases, we don't need to
6638            check all the things that `on_failure_jump' does, to make
6639            sure the right things get saved on the stack.  Hence we don't
6640            share its code.  The only reason to push anything on the
6641            stack at all is that otherwise we would have to change
6642            `anychar's code to do something besides goto fail in this
6643            case; that seems worse than this.  */
6644         case on_failure_keep_string_jump:
6645           DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
6646 
6647           EXTRACT_NUMBER_AND_INCR (mcnt, p);
6648 #ifdef _LIBC
6649           DEBUG_PRINT3 (" %d (to %p):\n", mcnt, p + mcnt);
6650 #else
6651           DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
6652 #endif
6653 
6654           PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
6655           break;
6656 
6657 
6658 	/* Uses of on_failure_jump:
6659 
6660            Each alternative starts with an on_failure_jump that points
6661            to the beginning of the next alternative.  Each alternative
6662            except the last ends with a jump that in effect jumps past
6663            the rest of the alternatives.  (They really jump to the
6664            ending jump of the following alternative, because tensioning
6665            these jumps is a hassle.)
6666 
6667            Repeats start with an on_failure_jump that points past both
6668            the repetition text and either the following jump or
6669            pop_failure_jump back to this on_failure_jump.  */
6670 	case on_failure_jump:
6671         on_failure:
6672           DEBUG_PRINT1 ("EXECUTING on_failure_jump");
6673 
6674           EXTRACT_NUMBER_AND_INCR (mcnt, p);
6675 #ifdef _LIBC
6676           DEBUG_PRINT3 (" %d (to %p)", mcnt, p + mcnt);
6677 #else
6678           DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
6679 #endif
6680 
6681           /* If this on_failure_jump comes right before a group (i.e.,
6682              the original * applied to a group), save the information
6683              for that group and all inner ones, so that if we fail back
6684              to this point, the group's information will be correct.
6685              For example, in \(a*\)*\1, we need the preceding group,
6686              and in \(zz\(a*\)b*\)\2, we need the inner group.  */
6687 
6688           /* We can't use `p' to check ahead because we push
6689              a failure point to `p + mcnt' after we do this.  */
6690           p1 = p;
6691 
6692           /* We need to skip no_op's before we look for the
6693              start_memory in case this on_failure_jump is happening as
6694              the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
6695              against aba.  */
6696           while (p1 < pend && (re_opcode_t) *p1 == no_op)
6697             p1++;
6698 
6699           if (p1 < pend && (re_opcode_t) *p1 == start_memory)
6700             {
6701               /* We have a new highest active register now.  This will
6702                  get reset at the start_memory we are about to get to,
6703                  but we will have saved all the registers relevant to
6704                  this repetition op, as described above.  */
6705               highest_active_reg = *(p1 + 1) + *(p1 + 2);
6706               if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
6707                 lowest_active_reg = *(p1 + 1);
6708             }
6709 
6710           DEBUG_PRINT1 (":\n");
6711           PUSH_FAILURE_POINT (p + mcnt, d, -2);
6712           break;
6713 
6714 
6715         /* A smart repeat ends with `maybe_pop_jump'.
6716 	   We change it to either `pop_failure_jump' or `jump'.  */
6717         case maybe_pop_jump:
6718           EXTRACT_NUMBER_AND_INCR (mcnt, p);
6719           DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
6720           {
6721 	    register US_CHAR_TYPE *p2 = p;
6722 
6723             /* Compare the beginning of the repeat with what in the
6724                pattern follows its end. If we can establish that there
6725                is nothing that they would both match, i.e., that we
6726                would have to backtrack because of (as in, e.g., `a*a')
6727                then we can change to pop_failure_jump, because we'll
6728                never have to backtrack.
6729 
6730                This is not true in the case of alternatives: in
6731                `(a|ab)*' we do need to backtrack to the `ab' alternative
6732                (e.g., if the string was `ab').  But instead of trying to
6733                detect that here, the alternative has put on a dummy
6734                failure point which is what we will end up popping.  */
6735 
6736 	    /* Skip over open/close-group commands.
6737 	       If what follows this loop is a ...+ construct,
6738 	       look at what begins its body, since we will have to
6739 	       match at least one of that.  */
6740 	    while (1)
6741 	      {
6742 		if (p2 + 2 < pend
6743 		    && ((re_opcode_t) *p2 == stop_memory
6744 			|| (re_opcode_t) *p2 == start_memory))
6745 		  p2 += 3;
6746 		else if (p2 + 2 + 2 * OFFSET_ADDRESS_SIZE < pend
6747 			 && (re_opcode_t) *p2 == dummy_failure_jump)
6748 		  p2 += 2 + 2 * OFFSET_ADDRESS_SIZE;
6749 		else
6750 		  break;
6751 	      }
6752 
6753 	    p1 = p + mcnt;
6754 	    /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
6755 	       to the `maybe_finalize_jump' of this case.  Examine what
6756 	       follows.  */
6757 
6758             /* If we're at the end of the pattern, we can change.  */
6759             if (p2 == pend)
6760 	      {
6761 		/* Consider what happens when matching ":\(.*\)"
6762 		   against ":/".  I don't really understand this code
6763 		   yet.  */
6764   	        p[-(1+OFFSET_ADDRESS_SIZE)] = (US_CHAR_TYPE)
6765 		  pop_failure_jump;
6766                 DEBUG_PRINT1
6767                   ("  End of pattern: change to `pop_failure_jump'.\n");
6768               }
6769 
6770             else if ((re_opcode_t) *p2 == exactn
6771 #ifdef MBS_SUPPORT
6772 		     || (re_opcode_t) *p2 == exactn_bin
6773 #endif
6774 		     || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
6775 	      {
6776 		register US_CHAR_TYPE c
6777                   = *p2 == (US_CHAR_TYPE) endline ? '\n' : p2[2];
6778 
6779                 if (((re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == exactn
6780 #ifdef MBS_SUPPORT
6781 		     || (re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == exactn_bin
6782 #endif
6783 		    ) && p1[3+OFFSET_ADDRESS_SIZE] != c)
6784                   {
6785   		    p[-(1+OFFSET_ADDRESS_SIZE)] = (US_CHAR_TYPE)
6786 		      pop_failure_jump;
6787 #ifdef MBS_SUPPORT
6788 		    if (MB_CUR_MAX != 1)
6789 		      DEBUG_PRINT3 ("  %C != %C => pop_failure_jump.\n",
6790 				    (wint_t) c,
6791 				    (wint_t) p1[3+OFFSET_ADDRESS_SIZE]);
6792 		    else
6793 #endif
6794 		      DEBUG_PRINT3 ("  %c != %c => pop_failure_jump.\n",
6795 				    (char) c,
6796 				    (char) p1[3+OFFSET_ADDRESS_SIZE]);
6797                   }
6798 
6799 #ifndef MBS_SUPPORT
6800 		else if ((re_opcode_t) p1[3] == charset
6801 			 || (re_opcode_t) p1[3] == charset_not)
6802 		  {
6803 		    int not = (re_opcode_t) p1[3] == charset_not;
6804 
6805 		    if (c < (unsigned) (p1[4] * BYTEWIDTH)
6806 			&& p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
6807 		      not = !not;
6808 
6809                     /* `not' is equal to 1 if c would match, which means
6810                         that we can't change to pop_failure_jump.  */
6811 		    if (!not)
6812                       {
6813   		        p[-3] = (unsigned char) pop_failure_jump;
6814                         DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
6815                       }
6816 		  }
6817 #endif /* not MBS_SUPPORT */
6818 	      }
6819 #ifndef MBS_SUPPORT
6820             else if ((re_opcode_t) *p2 == charset)
6821 	      {
6822 		/* We win if the first character of the loop is not part
6823                    of the charset.  */
6824                 if ((re_opcode_t) p1[3] == exactn
6825  		    && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5]
6826  			  && (p2[2 + p1[5] / BYTEWIDTH]
6827  			      & (1 << (p1[5] % BYTEWIDTH)))))
6828 		  {
6829 		    p[-3] = (unsigned char) pop_failure_jump;
6830 		    DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
6831                   }
6832 
6833 		else if ((re_opcode_t) p1[3] == charset_not)
6834 		  {
6835 		    int idx;
6836 		    /* We win if the charset_not inside the loop
6837 		       lists every character listed in the charset after.  */
6838 		    for (idx = 0; idx < (int) p2[1]; idx++)
6839 		      if (! (p2[2 + idx] == 0
6840 			     || (idx < (int) p1[4]
6841 				 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
6842 			break;
6843 
6844 		    if (idx == p2[1])
6845                       {
6846   		        p[-3] = (unsigned char) pop_failure_jump;
6847                         DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
6848                       }
6849 		  }
6850 		else if ((re_opcode_t) p1[3] == charset)
6851 		  {
6852 		    int idx;
6853 		    /* We win if the charset inside the loop
6854 		       has no overlap with the one after the loop.  */
6855 		    for (idx = 0;
6856 			 idx < (int) p2[1] && idx < (int) p1[4];
6857 			 idx++)
6858 		      if ((p2[2 + idx] & p1[5 + idx]) != 0)
6859 			break;
6860 
6861 		    if (idx == p2[1] || idx == p1[4])
6862                       {
6863   		        p[-3] = (unsigned char) pop_failure_jump;
6864                         DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
6865                       }
6866 		  }
6867 	      }
6868 #endif /* not MBS_SUPPORT */
6869 	  }
6870 	  p -= OFFSET_ADDRESS_SIZE;	/* Point at relative address again.  */
6871 	  if ((re_opcode_t) p[-1] != pop_failure_jump)
6872 	    {
6873 	      p[-1] = (US_CHAR_TYPE) jump;
6874               DEBUG_PRINT1 ("  Match => jump.\n");
6875 	      goto unconditional_jump;
6876 	    }
6877         /* Note fall through.  */
6878 
6879 
6880 	/* The end of a simple repeat has a pop_failure_jump back to
6881            its matching on_failure_jump, where the latter will push a
6882            failure point.  The pop_failure_jump takes off failure
6883            points put on by this pop_failure_jump's matching
6884            on_failure_jump; we got through the pattern to here from the
6885            matching on_failure_jump, so didn't fail.  */
6886         case pop_failure_jump:
6887           {
6888             /* We need to pass separate storage for the lowest and
6889                highest registers, even though we don't care about the
6890                actual values.  Otherwise, we will restore only one
6891                register from the stack, since lowest will == highest in
6892                `pop_failure_point'.  */
6893             active_reg_t dummy_low_reg, dummy_high_reg;
6894             US_CHAR_TYPE *pdummy = NULL;
6895             const CHAR_TYPE *sdummy = NULL;
6896 
6897             DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
6898             POP_FAILURE_POINT (sdummy, pdummy,
6899                                dummy_low_reg, dummy_high_reg,
6900                                reg_dummy, reg_dummy, reg_info_dummy);
6901           }
6902 	  /* Note fall through.  */
6903 
6904 	unconditional_jump:
6905 #ifdef _LIBC
6906 	  DEBUG_PRINT2 ("\n%p: ", p);
6907 #else
6908 	  DEBUG_PRINT2 ("\n0x%x: ", p);
6909 #endif
6910           /* Note fall through.  */
6911 
6912         /* Unconditionally jump (without popping any failure points).  */
6913         case jump:
6914 	  EXTRACT_NUMBER_AND_INCR (mcnt, p);	/* Get the amount to jump.  */
6915           DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
6916 	  p += mcnt;				/* Do the jump.  */
6917 #ifdef _LIBC
6918           DEBUG_PRINT2 ("(to %p).\n", p);
6919 #else
6920           DEBUG_PRINT2 ("(to 0x%x).\n", p);
6921 #endif
6922 	  break;
6923 
6924 
6925         /* We need this opcode so we can detect where alternatives end
6926            in `group_match_null_string_p' et al.  */
6927         case jump_past_alt:
6928           DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
6929           goto unconditional_jump;
6930 
6931 
6932         /* Normally, the on_failure_jump pushes a failure point, which
6933            then gets popped at pop_failure_jump.  We will end up at
6934            pop_failure_jump, also, and with a pattern of, say, `a+', we
6935            are skipping over the on_failure_jump, so we have to push
6936            something meaningless for pop_failure_jump to pop.  */
6937         case dummy_failure_jump:
6938           DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
6939           /* It doesn't matter what we push for the string here.  What
6940              the code at `fail' tests is the value for the pattern.  */
6941           PUSH_FAILURE_POINT (NULL, NULL, -2);
6942           goto unconditional_jump;
6943 
6944 
6945         /* At the end of an alternative, we need to push a dummy failure
6946            point in case we are followed by a `pop_failure_jump', because
6947            we don't want the failure point for the alternative to be
6948            popped.  For example, matching `(a|ab)*' against `aab'
6949            requires that we match the `ab' alternative.  */
6950         case push_dummy_failure:
6951           DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
6952           /* See comments just above at `dummy_failure_jump' about the
6953              two zeroes.  */
6954           PUSH_FAILURE_POINT (NULL, NULL, -2);
6955           break;
6956 
6957         /* Have to succeed matching what follows at least n times.
6958            After that, handle like `on_failure_jump'.  */
6959         case succeed_n:
6960           EXTRACT_NUMBER (mcnt, p + OFFSET_ADDRESS_SIZE);
6961           DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
6962 
6963           assert (mcnt >= 0);
6964           /* Originally, this is how many times we HAVE to succeed.  */
6965           if (mcnt > 0)
6966             {
6967                mcnt--;
6968 	       p += OFFSET_ADDRESS_SIZE;
6969                STORE_NUMBER_AND_INCR (p, mcnt);
6970 #ifdef _LIBC
6971                DEBUG_PRINT3 ("  Setting %p to %d.\n", p - OFFSET_ADDRESS_SIZE
6972 			     , mcnt);
6973 #else
6974                DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p - OFFSET_ADDRESS_SIZE
6975 			     , mcnt);
6976 #endif
6977             }
6978 	  else if (mcnt == 0)
6979             {
6980 #ifdef _LIBC
6981               DEBUG_PRINT2 ("  Setting two bytes from %p to no_op.\n",
6982 			    p + OFFSET_ADDRESS_SIZE);
6983 #else
6984               DEBUG_PRINT2 ("  Setting two bytes from 0x%x to no_op.\n",
6985 			    p + OFFSET_ADDRESS_SIZE);
6986 #endif /* _LIBC */
6987 
6988 #ifdef MBS_SUPPORT
6989 	      p[1] = (US_CHAR_TYPE) no_op;
6990 #else
6991 	      p[2] = (US_CHAR_TYPE) no_op;
6992               p[3] = (US_CHAR_TYPE) no_op;
6993 #endif /* MBS_SUPPORT */
6994               goto on_failure;
6995             }
6996           break;
6997 
6998         case jump_n:
6999           EXTRACT_NUMBER (mcnt, p + OFFSET_ADDRESS_SIZE);
7000           DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
7001 
7002           /* Originally, this is how many times we CAN jump.  */
7003           if (mcnt)
7004             {
7005                mcnt--;
7006                STORE_NUMBER (p + OFFSET_ADDRESS_SIZE, mcnt);
7007 
7008 #ifdef _LIBC
7009                DEBUG_PRINT3 ("  Setting %p to %d.\n", p + OFFSET_ADDRESS_SIZE,
7010 			     mcnt);
7011 #else
7012                DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p + OFFSET_ADDRESS_SIZE,
7013 			     mcnt);
7014 #endif /* _LIBC */
7015 	       goto unconditional_jump;
7016             }
7017           /* If don't have to jump any more, skip over the rest of command.  */
7018 	  else
7019 	    p += 2 * OFFSET_ADDRESS_SIZE;
7020           break;
7021 
7022 	case set_number_at:
7023 	  {
7024             DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
7025 
7026             EXTRACT_NUMBER_AND_INCR (mcnt, p);
7027             p1 = p + mcnt;
7028             EXTRACT_NUMBER_AND_INCR (mcnt, p);
7029 #ifdef _LIBC
7030             DEBUG_PRINT3 ("  Setting %p to %d.\n", p1, mcnt);
7031 #else
7032             DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p1, mcnt);
7033 #endif
7034 	    STORE_NUMBER (p1, mcnt);
7035             break;
7036           }
7037 
7038 #if 0
7039 	/* The DEC Alpha C compiler 3.x generates incorrect code for the
7040 	   test  WORDCHAR_P (d - 1) != WORDCHAR_P (d)  in the expansion of
7041 	   AT_WORD_BOUNDARY, so this code is disabled.  Expanding the
7042 	   macro and introducing temporary variables works around the bug.  */
7043 
7044 	case wordbound:
7045 	  DEBUG_PRINT1 ("EXECUTING wordbound.\n");
7046 	  if (AT_WORD_BOUNDARY (d))
7047 	    break;
7048 	  goto fail;
7049 
7050 	case notwordbound:
7051 	  DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
7052 	  if (AT_WORD_BOUNDARY (d))
7053 	    goto fail;
7054 	  break;
7055 #else
7056 	case wordbound:
7057 	{
7058 	  boolean prevchar, thischar;
7059 
7060 	  DEBUG_PRINT1 ("EXECUTING wordbound.\n");
7061 	  if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
7062 	    break;
7063 
7064 	  prevchar = WORDCHAR_P (d - 1);
7065 	  thischar = WORDCHAR_P (d);
7066 	  if (prevchar != thischar)
7067 	    break;
7068 	  goto fail;
7069 	}
7070 
7071       case notwordbound:
7072 	{
7073 	  boolean prevchar, thischar;
7074 
7075 	  DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
7076 	  if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
7077 	    goto fail;
7078 
7079 	  prevchar = WORDCHAR_P (d - 1);
7080 	  thischar = WORDCHAR_P (d);
7081 	  if (prevchar != thischar)
7082 	    goto fail;
7083 	  break;
7084 	}
7085 #endif
7086 
7087 	case wordbeg:
7088           DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
7089 	  if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
7090 	    break;
7091           goto fail;
7092 
7093 	case wordend:
7094           DEBUG_PRINT1 ("EXECUTING wordend.\n");
7095 	  if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
7096               && (!WORDCHAR_P (d) || AT_STRINGS_END (d)))
7097 	    break;
7098           goto fail;
7099 
7100 #ifdef emacs
7101   	case before_dot:
7102           DEBUG_PRINT1 ("EXECUTING before_dot.\n");
7103  	  if (PTR_CHAR_POS ((unsigned char *) d) >= point)
7104   	    goto fail;
7105   	  break;
7106 
7107   	case at_dot:
7108           DEBUG_PRINT1 ("EXECUTING at_dot.\n");
7109  	  if (PTR_CHAR_POS ((unsigned char *) d) != point)
7110   	    goto fail;
7111   	  break;
7112 
7113   	case after_dot:
7114           DEBUG_PRINT1 ("EXECUTING after_dot.\n");
7115           if (PTR_CHAR_POS ((unsigned char *) d) <= point)
7116   	    goto fail;
7117   	  break;
7118 
7119 	case syntaxspec:
7120           DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
7121 	  mcnt = *p++;
7122 	  goto matchsyntax;
7123 
7124         case wordchar:
7125           DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
7126 	  mcnt = (int) Sword;
7127         matchsyntax:
7128 	  PREFETCH ();
7129 	  /* Can't use *d++ here; SYNTAX may be an unsafe macro.  */
7130 	  d++;
7131 	  if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt)
7132 	    goto fail;
7133           SET_REGS_MATCHED ();
7134 	  break;
7135 
7136 	case notsyntaxspec:
7137           DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
7138 	  mcnt = *p++;
7139 	  goto matchnotsyntax;
7140 
7141         case notwordchar:
7142           DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
7143 	  mcnt = (int) Sword;
7144         matchnotsyntax:
7145 	  PREFETCH ();
7146 	  /* Can't use *d++ here; SYNTAX may be an unsafe macro.  */
7147 	  d++;
7148 	  if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt)
7149 	    goto fail;
7150 	  SET_REGS_MATCHED ();
7151           break;
7152 
7153 #else /* not emacs */
7154 	case wordchar:
7155           DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
7156 	  PREFETCH ();
7157           if (!WORDCHAR_P (d))
7158             goto fail;
7159 	  SET_REGS_MATCHED ();
7160           d++;
7161 	  break;
7162 
7163 	case notwordchar:
7164           DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
7165 	  PREFETCH ();
7166 	  if (WORDCHAR_P (d))
7167             goto fail;
7168           SET_REGS_MATCHED ();
7169           d++;
7170 	  break;
7171 #endif /* not emacs */
7172 
7173         default:
7174           abort ();
7175 	}
7176       continue;  /* Successfully executed one pattern command; keep going.  */
7177 
7178 
7179     /* We goto here if a matching operation fails. */
7180     fail:
7181       if (!FAIL_STACK_EMPTY ())
7182 	{ /* A restart point is known.  Restore to that state.  */
7183           DEBUG_PRINT1 ("\nFAIL:\n");
7184           POP_FAILURE_POINT (d, p,
7185                              lowest_active_reg, highest_active_reg,
7186                              regstart, regend, reg_info);
7187 
7188           /* If this failure point is a dummy, try the next one.  */
7189           if (!p)
7190 	    goto fail;
7191 
7192           /* If we failed to the end of the pattern, don't examine *p.  */
7193 	  assert (p <= pend);
7194           if (p < pend)
7195             {
7196               boolean is_a_jump_n = false;
7197 
7198               /* If failed to a backwards jump that's part of a repetition
7199                  loop, need to pop this failure point and use the next one.  */
7200               switch ((re_opcode_t) *p)
7201                 {
7202                 case jump_n:
7203                   is_a_jump_n = true;
7204                 case maybe_pop_jump:
7205                 case pop_failure_jump:
7206                 case jump:
7207                   p1 = p + 1;
7208                   EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7209                   p1 += mcnt;
7210 
7211                   if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
7212                       || (!is_a_jump_n
7213                           && (re_opcode_t) *p1 == on_failure_jump))
7214                     goto fail;
7215                   break;
7216                 default:
7217                   /* do nothing */ ;
7218                 }
7219             }
7220 
7221           if (d >= string1 && d <= end1)
7222 	    dend = end_match_1;
7223         }
7224       else
7225         break;   /* Matching at this starting point really fails.  */
7226     } /* for (;;) */
7227 
7228   if (best_regs_set)
7229     goto restore_best_regs;
7230 
7231   FREE_VARIABLES ();
7232 
7233   return -1;         			/* Failure to match.  */
7234 } /* re_match_2 */
7235 
7236 /* Subroutine definitions for re_match_2.  */
7237 
7238 
7239 /* We are passed P pointing to a register number after a start_memory.
7240 
7241    Return true if the pattern up to the corresponding stop_memory can
7242    match the empty string, and false otherwise.
7243 
7244    If we find the matching stop_memory, sets P to point to one past its number.
7245    Otherwise, sets P to an undefined byte less than or equal to END.
7246 
7247    We don't handle duplicates properly (yet).  */
7248 
7249 static boolean
7250 group_match_null_string_p (p, end, reg_info)
7251     US_CHAR_TYPE **p, *end;
7252     register_info_type *reg_info;
7253 {
7254   int mcnt;
7255   /* Point to after the args to the start_memory.  */
7256   US_CHAR_TYPE *p1 = *p + 2;
7257 
7258   while (p1 < end)
7259     {
7260       /* Skip over opcodes that can match nothing, and return true or
7261 	 false, as appropriate, when we get to one that can't, or to the
7262          matching stop_memory.  */
7263 
7264       switch ((re_opcode_t) *p1)
7265         {
7266         /* Could be either a loop or a series of alternatives.  */
7267         case on_failure_jump:
7268           p1++;
7269           EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7270 
7271           /* If the next operation is not a jump backwards in the
7272 	     pattern.  */
7273 
7274 	  if (mcnt >= 0)
7275 	    {
7276               /* Go through the on_failure_jumps of the alternatives,
7277                  seeing if any of the alternatives cannot match nothing.
7278                  The last alternative starts with only a jump,
7279                  whereas the rest start with on_failure_jump and end
7280                  with a jump, e.g., here is the pattern for `a|b|c':
7281 
7282                  /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
7283                  /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
7284                  /exactn/1/c
7285 
7286                  So, we have to first go through the first (n-1)
7287                  alternatives and then deal with the last one separately.  */
7288 
7289 
7290               /* Deal with the first (n-1) alternatives, which start
7291                  with an on_failure_jump (see above) that jumps to right
7292                  past a jump_past_alt.  */
7293 
7294               while ((re_opcode_t) p1[mcnt-(1+OFFSET_ADDRESS_SIZE)] ==
7295 		     jump_past_alt)
7296                 {
7297                   /* `mcnt' holds how many bytes long the alternative
7298                      is, including the ending `jump_past_alt' and
7299                      its number.  */
7300 
7301                   if (!alt_match_null_string_p (p1, p1 + mcnt -
7302 						(1 + OFFSET_ADDRESS_SIZE),
7303 						reg_info))
7304                     return false;
7305 
7306                   /* Move to right after this alternative, including the
7307 		     jump_past_alt.  */
7308                   p1 += mcnt;
7309 
7310                   /* Break if it's the beginning of an n-th alternative
7311                      that doesn't begin with an on_failure_jump.  */
7312                   if ((re_opcode_t) *p1 != on_failure_jump)
7313                     break;
7314 
7315 		  /* Still have to check that it's not an n-th
7316 		     alternative that starts with an on_failure_jump.  */
7317 		  p1++;
7318                   EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7319                   if ((re_opcode_t) p1[mcnt-(1+OFFSET_ADDRESS_SIZE)] !=
7320 		      jump_past_alt)
7321                     {
7322 		      /* Get to the beginning of the n-th alternative.  */
7323                       p1 -= 1 + OFFSET_ADDRESS_SIZE;
7324                       break;
7325                     }
7326                 }
7327 
7328               /* Deal with the last alternative: go back and get number
7329                  of the `jump_past_alt' just before it.  `mcnt' contains
7330                  the length of the alternative.  */
7331               EXTRACT_NUMBER (mcnt, p1 - OFFSET_ADDRESS_SIZE);
7332 
7333               if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
7334                 return false;
7335 
7336               p1 += mcnt;	/* Get past the n-th alternative.  */
7337             } /* if mcnt > 0 */
7338           break;
7339 
7340 
7341         case stop_memory:
7342 	  assert (p1[1] == **p);
7343           *p = p1 + 2;
7344           return true;
7345 
7346 
7347         default:
7348           if (!common_op_match_null_string_p (&p1, end, reg_info))
7349             return false;
7350         }
7351     } /* while p1 < end */
7352 
7353   return false;
7354 } /* group_match_null_string_p */
7355 
7356 
7357 /* Similar to group_match_null_string_p, but doesn't deal with alternatives:
7358    It expects P to be the first byte of a single alternative and END one
7359    byte past the last. The alternative can contain groups.  */
7360 
7361 static boolean
7362 alt_match_null_string_p (p, end, reg_info)
7363     US_CHAR_TYPE *p, *end;
7364     register_info_type *reg_info;
7365 {
7366   int mcnt;
7367   US_CHAR_TYPE *p1 = p;
7368 
7369   while (p1 < end)
7370     {
7371       /* Skip over opcodes that can match nothing, and break when we get
7372          to one that can't.  */
7373 
7374       switch ((re_opcode_t) *p1)
7375         {
7376 	/* It's a loop.  */
7377         case on_failure_jump:
7378           p1++;
7379           EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7380           p1 += mcnt;
7381           break;
7382 
7383 	default:
7384           if (!common_op_match_null_string_p (&p1, end, reg_info))
7385             return false;
7386         }
7387     }  /* while p1 < end */
7388 
7389   return true;
7390 } /* alt_match_null_string_p */
7391 
7392 
7393 /* Deals with the ops common to group_match_null_string_p and
7394    alt_match_null_string_p.
7395 
7396    Sets P to one after the op and its arguments, if any.  */
7397 
7398 static boolean
7399 common_op_match_null_string_p (p, end, reg_info)
7400     US_CHAR_TYPE **p, *end;
7401     register_info_type *reg_info;
7402 {
7403   int mcnt;
7404   boolean ret;
7405   int reg_no;
7406   US_CHAR_TYPE *p1 = *p;
7407 
7408   switch ((re_opcode_t) *p1++)
7409     {
7410     case no_op:
7411     case begline:
7412     case endline:
7413     case begbuf:
7414     case endbuf:
7415     case wordbeg:
7416     case wordend:
7417     case wordbound:
7418     case notwordbound:
7419 #ifdef emacs
7420     case before_dot:
7421     case at_dot:
7422     case after_dot:
7423 #endif
7424       break;
7425 
7426     case start_memory:
7427       reg_no = *p1;
7428       assert (reg_no > 0 && reg_no <= MAX_REGNUM);
7429       ret = group_match_null_string_p (&p1, end, reg_info);
7430 
7431       /* Have to set this here in case we're checking a group which
7432          contains a group and a back reference to it.  */
7433 
7434       if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
7435         REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
7436 
7437       if (!ret)
7438         return false;
7439       break;
7440 
7441     /* If this is an optimized succeed_n for zero times, make the jump.  */
7442     case jump:
7443       EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7444       if (mcnt >= 0)
7445         p1 += mcnt;
7446       else
7447         return false;
7448       break;
7449 
7450     case succeed_n:
7451       /* Get to the number of times to succeed.  */
7452       p1 += OFFSET_ADDRESS_SIZE;
7453       EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7454 
7455       if (mcnt == 0)
7456         {
7457           p1 -= 2 * OFFSET_ADDRESS_SIZE;
7458           EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7459           p1 += mcnt;
7460         }
7461       else
7462         return false;
7463       break;
7464 
7465     case duplicate:
7466       if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
7467         return false;
7468       break;
7469 
7470     case set_number_at:
7471       p1 += 2 * OFFSET_ADDRESS_SIZE;
7472 
7473     default:
7474       /* All other opcodes mean we cannot match the empty string.  */
7475       return false;
7476   }
7477 
7478   *p = p1;
7479   return true;
7480 } /* common_op_match_null_string_p */
7481 
7482 
7483 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
7484    bytes; nonzero otherwise.  */
7485 
7486 static int
7487 bcmp_translate (s1, s2, len, translate)
7488      const CHAR_TYPE *s1, *s2;
7489      register int len;
7490      RE_TRANSLATE_TYPE translate;
7491 {
7492   register const US_CHAR_TYPE *p1 = (const US_CHAR_TYPE *) s1;
7493   register const US_CHAR_TYPE *p2 = (const US_CHAR_TYPE *) s2;
7494   while (len)
7495     {
7496 #ifdef MBS_SUPPORT
7497       if (((*p1<=0xff)?translate[*p1++]:*p1++)
7498 	  != ((*p2<=0xff)?translate[*p2++]:*p2++))
7499 	return 1;
7500 #else
7501       if (translate[*p1++] != translate[*p2++]) return 1;
7502 #endif /* MBS_SUPPORT */
7503       len--;
7504     }
7505   return 0;
7506 }
7507 
7508 /* Entry points for GNU code.  */
7509 
7510 /* re_compile_pattern is the GNU regular expression compiler: it
7511    compiles PATTERN (of length SIZE) and puts the result in BUFP.
7512    Returns 0 if the pattern was valid, otherwise an error string.
7513 
7514    Assumes the `allocated' (and perhaps `buffer') and `translate' fields
7515    are set in BUFP on entry.
7516 
7517    We call regex_compile to do the actual compilation.  */
7518 
7519 const char *
7520 re_compile_pattern (pattern, length, bufp)
7521      const char *pattern;
7522      size_t length;
7523      struct re_pattern_buffer *bufp;
7524 {
7525   reg_errcode_t ret;
7526 
7527   /* GNU code is written to assume at least RE_NREGS registers will be set
7528      (and at least one extra will be -1).  */
7529   bufp->regs_allocated = REGS_UNALLOCATED;
7530 
7531   /* And GNU code determines whether or not to get register information
7532      by passing null for the REGS argument to re_match, etc., not by
7533      setting no_sub.  */
7534   bufp->no_sub = 0;
7535 
7536   /* Match anchors at newline.  */
7537   bufp->newline_anchor = 1;
7538 
7539   ret = regex_compile (pattern, length, re_syntax_options, bufp);
7540 
7541   if (!ret)
7542     return NULL;
7543   return gettext (re_error_msgid + re_error_msgid_idx[(int) ret]);
7544 }
7545 #ifdef _LIBC
7546 weak_alias (__re_compile_pattern, re_compile_pattern)
7547 #endif
7548 
7549 /* Entry points compatible with 4.2 BSD regex library.  We don't define
7550    them unless specifically requested.  */
7551 
7552 #if defined _REGEX_RE_COMP || defined _LIBC
7553 
7554 /* BSD has one and only one pattern buffer.  */
7555 static struct re_pattern_buffer re_comp_buf;
7556 
7557 char *
7558 #ifdef _LIBC
7559 /* Make these definitions weak in libc, so POSIX programs can redefine
7560    these names if they don't use our functions, and still use
7561    regcomp/regexec below without link errors.  */
7562 weak_function
7563 #endif
7564 re_comp (s)
7565     const char *s;
7566 {
7567   reg_errcode_t ret;
7568 
7569   if (!s)
7570     {
7571       if (!re_comp_buf.buffer)
7572 	return gettext ("No previous regular expression");
7573       return 0;
7574     }
7575 
7576   if (!re_comp_buf.buffer)
7577     {
7578       re_comp_buf.buffer = (unsigned char *) malloc (200);
7579       if (re_comp_buf.buffer == NULL)
7580         return (char *) gettext (re_error_msgid
7581 				 + re_error_msgid_idx[(int) REG_ESPACE]);
7582       re_comp_buf.allocated = 200;
7583 
7584       re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
7585       if (re_comp_buf.fastmap == NULL)
7586 	return (char *) gettext (re_error_msgid
7587 				 + re_error_msgid_idx[(int) REG_ESPACE]);
7588     }
7589 
7590   /* Since `re_exec' always passes NULL for the `regs' argument, we
7591      don't need to initialize the pattern buffer fields which affect it.  */
7592 
7593   /* Match anchors at newlines.  */
7594   re_comp_buf.newline_anchor = 1;
7595 
7596   ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
7597 
7598   if (!ret)
7599     return NULL;
7600 
7601   /* Yes, we're discarding `const' here if !HAVE_LIBINTL.  */
7602   return (char *) gettext (re_error_msgid + re_error_msgid_idx[(int) ret]);
7603 }
7604 
7605 
7606 int
7607 #ifdef _LIBC
7608 weak_function
7609 #endif
7610 re_exec (s)
7611     const char *s;
7612 {
7613   const int len = strlen (s);
7614   return
7615     0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
7616 }
7617 
7618 #endif /* _REGEX_RE_COMP */
7619 
7620 /* POSIX.2 functions.  Don't define these for Emacs.  */
7621 
7622 #ifndef emacs
7623 
7624 /* regcomp takes a regular expression as a string and compiles it.
7625 
7626    PREG is a regex_t *.  We do not expect any fields to be initialized,
7627    since POSIX says we shouldn't.  Thus, we set
7628 
7629      `buffer' to the compiled pattern;
7630      `used' to the length of the compiled pattern;
7631      `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
7632        REG_EXTENDED bit in CFLAGS is set; otherwise, to
7633        RE_SYNTAX_POSIX_BASIC;
7634      `newline_anchor' to REG_NEWLINE being set in CFLAGS;
7635      `fastmap' to an allocated space for the fastmap;
7636      `fastmap_accurate' to zero;
7637      `re_nsub' to the number of subexpressions in PATTERN.
7638 
7639    PATTERN is the address of the pattern string.
7640 
7641    CFLAGS is a series of bits which affect compilation.
7642 
7643      If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
7644      use POSIX basic syntax.
7645 
7646      If REG_NEWLINE is set, then . and [^...] don't match newline.
7647      Also, regexec will try a match beginning after every newline.
7648 
7649      If REG_ICASE is set, then we considers upper- and lowercase
7650      versions of letters to be equivalent when matching.
7651 
7652      If REG_NOSUB is set, then when PREG is passed to regexec, that
7653      routine will report only success or failure, and nothing about the
7654      registers.
7655 
7656    It returns 0 if it succeeds, nonzero if it doesn't.  (See regex.h for
7657    the return codes and their meanings.)  */
7658 
7659 int
7660 regcomp (preg, pattern, cflags)
7661     regex_t *preg;
7662     const char *pattern;
7663     int cflags;
7664 {
7665   reg_errcode_t ret;
7666   reg_syntax_t syntax
7667     = (cflags & REG_EXTENDED) ?
7668       RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
7669 
7670   /* regex_compile will allocate the space for the compiled pattern.  */
7671   preg->buffer = 0;
7672   preg->allocated = 0;
7673   preg->used = 0;
7674 
7675   /* Try to allocate space for the fastmap.  */
7676   preg->fastmap = (char *) malloc (1 << BYTEWIDTH);
7677 
7678   if (cflags & REG_ICASE)
7679     {
7680       unsigned i;
7681 
7682       preg->translate
7683 	= (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
7684 				      * sizeof (*(RE_TRANSLATE_TYPE)0));
7685       if (preg->translate == NULL)
7686         return (int) REG_ESPACE;
7687 
7688       /* Map uppercase characters to corresponding lowercase ones.  */
7689       for (i = 0; i < CHAR_SET_SIZE; i++)
7690         preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
7691     }
7692   else
7693     preg->translate = NULL;
7694 
7695   /* If REG_NEWLINE is set, newlines are treated differently.  */
7696   if (cflags & REG_NEWLINE)
7697     { /* REG_NEWLINE implies neither . nor [^...] match newline.  */
7698       syntax &= ~RE_DOT_NEWLINE;
7699       syntax |= RE_HAT_LISTS_NOT_NEWLINE;
7700       /* It also changes the matching behavior.  */
7701       preg->newline_anchor = 1;
7702     }
7703   else
7704     preg->newline_anchor = 0;
7705 
7706   preg->no_sub = !!(cflags & REG_NOSUB);
7707 
7708   /* POSIX says a null character in the pattern terminates it, so we
7709      can use strlen here in compiling the pattern.  */
7710   ret = regex_compile (pattern, strlen (pattern), syntax, preg);
7711 
7712   /* POSIX doesn't distinguish between an unmatched open-group and an
7713      unmatched close-group: both are REG_EPAREN.  */
7714   if (ret == REG_ERPAREN) ret = REG_EPAREN;
7715 
7716   if (ret == REG_NOERROR && preg->fastmap)
7717     {
7718       /* Compute the fastmap now, since regexec cannot modify the pattern
7719 	 buffer.  */
7720       if (re_compile_fastmap (preg) == -2)
7721 	{
7722 	  /* Some error occurred while computing the fastmap, just forget
7723 	     about it.  */
7724 	  free (preg->fastmap);
7725 	  preg->fastmap = NULL;
7726 	}
7727     }
7728 
7729   return (int) ret;
7730 }
7731 #ifdef _LIBC
7732 weak_alias (__regcomp, regcomp)
7733 #endif
7734 
7735 
7736 /* regexec searches for a given pattern, specified by PREG, in the
7737    string STRING.
7738 
7739    If NMATCH is zero or REG_NOSUB was set in the cflags argument to
7740    `regcomp', we ignore PMATCH.  Otherwise, we assume PMATCH has at
7741    least NMATCH elements, and we set them to the offsets of the
7742    corresponding matched substrings.
7743 
7744    EFLAGS specifies `execution flags' which affect matching: if
7745    REG_NOTBOL is set, then ^ does not match at the beginning of the
7746    string; if REG_NOTEOL is set, then $ does not match at the end.
7747 
7748    We return 0 if we find a match and REG_NOMATCH if not.  */
7749 
7750 int
7751 regexec (preg, string, nmatch, pmatch, eflags)
7752     const regex_t *preg;
7753     const char *string;
7754     size_t nmatch;
7755     regmatch_t pmatch[];
7756     int eflags;
7757 {
7758   int ret;
7759   struct re_registers regs;
7760   regex_t private_preg;
7761   int len = strlen (string);
7762   boolean want_reg_info = !preg->no_sub && nmatch > 0;
7763 
7764   private_preg = *preg;
7765 
7766   private_preg.not_bol = !!(eflags & REG_NOTBOL);
7767   private_preg.not_eol = !!(eflags & REG_NOTEOL);
7768 
7769   /* The user has told us exactly how many registers to return
7770      information about, via `nmatch'.  We have to pass that on to the
7771      matching routines.  */
7772   private_preg.regs_allocated = REGS_FIXED;
7773 
7774   if (want_reg_info)
7775     {
7776       regs.num_regs = nmatch;
7777       regs.start = TALLOC (nmatch * 2, regoff_t);
7778       if (regs.start == NULL)
7779         return (int) REG_NOMATCH;
7780       regs.end = regs.start + nmatch;
7781     }
7782 
7783   /* Perform the searching operation.  */
7784   ret = re_search (&private_preg, string, len,
7785                    /* start: */ 0, /* range: */ len,
7786                    want_reg_info ? &regs : (struct re_registers *) 0);
7787 
7788   /* Copy the register information to the POSIX structure.  */
7789   if (want_reg_info)
7790     {
7791       if (ret >= 0)
7792         {
7793           unsigned r;
7794 
7795           for (r = 0; r < nmatch; r++)
7796             {
7797               pmatch[r].rm_so = regs.start[r];
7798               pmatch[r].rm_eo = regs.end[r];
7799             }
7800         }
7801 
7802       /* If we needed the temporary register info, free the space now.  */
7803       free (regs.start);
7804     }
7805 
7806   /* We want zero return to mean success, unlike `re_search'.  */
7807   return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
7808 }
7809 #ifdef _LIBC
7810 weak_alias (__regexec, regexec)
7811 #endif
7812 
7813 
7814 /* Returns a message corresponding to an error code, ERRCODE, returned
7815    from either regcomp or regexec.   We don't use PREG here.  */
7816 
7817 size_t
7818 regerror (errcode, preg, errbuf, errbuf_size)
7819     int errcode;
7820     const regex_t *preg;
7821     char *errbuf;
7822     size_t errbuf_size;
7823 {
7824   const char *msg;
7825   size_t msg_size;
7826 
7827   if (errcode < 0
7828       || errcode >= (int) (sizeof (re_error_msgid_idx)
7829 			   / sizeof (re_error_msgid_idx[0])))
7830     /* Only error codes returned by the rest of the code should be passed
7831        to this routine.  If we are given anything else, or if other regex
7832        code generates an invalid error code, then the program has a bug.
7833        Dump core so we can fix it.  */
7834     abort ();
7835 
7836   msg = gettext (re_error_msgid + re_error_msgid_idx[errcode]);
7837 
7838   msg_size = strlen (msg) + 1; /* Includes the null.  */
7839 
7840   if (errbuf_size != 0)
7841     {
7842       if (msg_size > errbuf_size)
7843         {
7844 #if defined HAVE_MEMPCPY || defined _LIBC
7845 	  *((char *) __mempcpy (errbuf, msg, errbuf_size - 1)) = '\0';
7846 #else
7847           memcpy (errbuf, msg, errbuf_size - 1);
7848           errbuf[errbuf_size - 1] = 0;
7849 #endif
7850         }
7851       else
7852         memcpy (errbuf, msg, msg_size);
7853     }
7854 
7855   return msg_size;
7856 }
7857 #ifdef _LIBC
7858 weak_alias (__regerror, regerror)
7859 #endif
7860 
7861 
7862 /* Free dynamically allocated space used by PREG.  */
7863 
7864 void
7865 regfree (preg)
7866     regex_t *preg;
7867 {
7868   if (preg->buffer != NULL)
7869     free (preg->buffer);
7870   preg->buffer = NULL;
7871 
7872   preg->allocated = 0;
7873   preg->used = 0;
7874 
7875   if (preg->fastmap != NULL)
7876     free (preg->fastmap);
7877   preg->fastmap = NULL;
7878   preg->fastmap_accurate = 0;
7879 
7880   if (preg->translate != NULL)
7881     free (preg->translate);
7882   preg->translate = NULL;
7883 }
7884 #ifdef _LIBC
7885 weak_alias (__regfree, regfree)
7886 #endif
7887 
7888 #endif /* not emacs  */
7889