xref: /haiku/src/system/libroot/posix/glibc/math/k_casinhl.c (revision a127b88ecbfab58f64944c98aa47722a18e363b2)
1 /* Return arc hyperbole sine for long double value, with the imaginary
2    part of the result possibly adjusted for use in computing other
3    functions.
4    Copyright (C) 1997-2015 Free Software Foundation, Inc.
5    This file is part of the GNU C Library.
6 
7    The GNU C Library is free software; you can redistribute it and/or
8    modify it under the terms of the GNU Lesser General Public
9    License as published by the Free Software Foundation; either
10    version 2.1 of the License, or (at your option) any later version.
11 
12    The GNU C Library is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15    Lesser General Public License for more details.
16 
17    You should have received a copy of the GNU Lesser General Public
18    License along with the GNU C Library; if not, see
19    <http://www.gnu.org/licenses/>.  */
20 
21 #include <complex.h>
22 #include <math.h>
23 #include <math_private.h>
24 #include <float.h>
25 
26 /* To avoid spurious overflows, use this definition to treat IBM long
27    double as approximating an IEEE-style format.  */
28 #if LDBL_MANT_DIG == 106
29 # undef LDBL_EPSILON
30 # define LDBL_EPSILON 0x1p-106L
31 #endif
32 
33 /* Return the complex inverse hyperbolic sine of finite nonzero Z,
34    with the imaginary part of the result subtracted from pi/2 if ADJ
35    is nonzero.  */
36 
37 __complex__ long double
38 __kernel_casinhl (__complex__ long double x, int adj)
39 {
40   __complex__ long double res;
41   long double rx, ix;
42   __complex__ long double y;
43 
44   /* Avoid cancellation by reducing to the first quadrant.  */
45   rx = fabsl (__real__ x);
46   ix = fabsl (__imag__ x);
47 
48   if (rx >= 1.0L / LDBL_EPSILON || ix >= 1.0L / LDBL_EPSILON)
49     {
50       /* For large x in the first quadrant, x + csqrt (1 + x * x)
51 	 is sufficiently close to 2 * x to make no significant
52 	 difference to the result; avoid possible overflow from
53 	 the squaring and addition.  */
54       __real__ y = rx;
55       __imag__ y = ix;
56 
57       if (adj)
58 	{
59 	  long double t = __real__ y;
60 	  __real__ y = copysignl (__imag__ y, __imag__ x);
61 	  __imag__ y = t;
62 	}
63 
64       res = clogl (y);
65       __real__ res += M_LN2l;
66     }
67   else if (rx >= 0.5L && ix < LDBL_EPSILON / 8.0L)
68     {
69       long double s = hypotl (1.0L, rx);
70 
71       __real__ res = logl (rx + s);
72       if (adj)
73 	__imag__ res = atan2l (s, __imag__ x);
74       else
75 	__imag__ res = atan2l (ix, s);
76     }
77   else if (rx < LDBL_EPSILON / 8.0L && ix >= 1.5L)
78     {
79       long double s = sqrtl ((ix + 1.0L) * (ix - 1.0L));
80 
81       __real__ res = logl (ix + s);
82       if (adj)
83 	__imag__ res = atan2l (rx, copysignl (s, __imag__ x));
84       else
85 	__imag__ res = atan2l (s, rx);
86     }
87   else if (ix > 1.0L && ix < 1.5L && rx < 0.5L)
88     {
89       if (rx < LDBL_EPSILON * LDBL_EPSILON)
90 	{
91 	  long double ix2m1 = (ix + 1.0L) * (ix - 1.0L);
92 	  long double s = sqrtl (ix2m1);
93 
94 	  __real__ res = log1pl (2.0L * (ix2m1 + ix * s)) / 2.0L;
95 	  if (adj)
96 	    __imag__ res = atan2l (rx, copysignl (s, __imag__ x));
97 	  else
98 	    __imag__ res = atan2l (s, rx);
99 	}
100       else
101 	{
102 	  long double ix2m1 = (ix + 1.0L) * (ix - 1.0L);
103 	  long double rx2 = rx * rx;
104 	  long double f = rx2 * (2.0L + rx2 + 2.0L * ix * ix);
105 	  long double d = sqrtl (ix2m1 * ix2m1 + f);
106 	  long double dp = d + ix2m1;
107 	  long double dm = f / dp;
108 	  long double r1 = sqrtl ((dm + rx2) / 2.0L);
109 	  long double r2 = rx * ix / r1;
110 
111 	  __real__ res
112 	    = log1pl (rx2 + dp + 2.0L * (rx * r1 + ix * r2)) / 2.0L;
113 	  if (adj)
114 	    __imag__ res = atan2l (rx + r1, copysignl (ix + r2,
115 								   __imag__ x));
116 	  else
117 	    __imag__ res = atan2l (ix + r2, rx + r1);
118 	}
119     }
120   else if (ix == 1.0L && rx < 0.5L)
121     {
122       if (rx < LDBL_EPSILON / 8.0L)
123 	{
124 	  __real__ res = log1pl (2.0L * (rx + sqrtl (rx))) / 2.0L;
125 	  if (adj)
126 	    __imag__ res = atan2l (sqrtl (rx),
127 					     copysignl (1.0L, __imag__ x));
128 	  else
129 	    __imag__ res = atan2l (1.0L, sqrtl (rx));
130 	}
131       else
132 	{
133 	  long double d = rx * sqrtl (4.0L + rx * rx);
134 	  long double s1 = sqrtl ((d + rx * rx) / 2.0L);
135 	  long double s2 = sqrtl ((d - rx * rx) / 2.0L);
136 
137 	  __real__ res = log1pl (rx * rx + d + 2.0L * (rx * s1 + s2)) / 2.0L;
138 	  if (adj)
139 	    __imag__ res = atan2l (rx + s1,
140 					     copysignl (1.0L + s2,
141 							  __imag__ x));
142 	  else
143 	    __imag__ res = atan2l (1.0L + s2, rx + s1);
144 	}
145     }
146   else if (ix < 1.0L && rx < 0.5L)
147     {
148       if (ix >= LDBL_EPSILON)
149 	{
150 	  if (rx < LDBL_EPSILON * LDBL_EPSILON)
151 	    {
152 	      long double onemix2 = (1.0L + ix) * (1.0L - ix);
153 	      long double s = sqrtl (onemix2);
154 
155 	      __real__ res = log1pl (2.0L * rx / s) / 2.0L;
156 	      if (adj)
157 		__imag__ res = atan2l (s, __imag__ x);
158 	      else
159 		__imag__ res = atan2l (ix, s);
160 	    }
161 	  else
162 	    {
163 	      long double onemix2 = (1.0L + ix) * (1.0L - ix);
164 	      long double rx2 = rx * rx;
165 	      long double f = rx2 * (2.0L + rx2 + 2.0L * ix * ix);
166 	      long double d = sqrtl (onemix2 * onemix2 + f);
167 	      long double dp = d + onemix2;
168 	      long double dm = f / dp;
169 	      long double r1 = sqrtl ((dp + rx2) / 2.0L);
170 	      long double r2 = rx * ix / r1;
171 
172 	      __real__ res
173 		= log1pl (rx2 + dm + 2.0L * (rx * r1 + ix * r2)) / 2.0L;
174 	      if (adj)
175 		__imag__ res = atan2l (rx + r1,
176 						 copysignl (ix + r2,
177 							      __imag__ x));
178 	      else
179 		__imag__ res = atan2l (ix + r2, rx + r1);
180 	    }
181 	}
182       else
183 	{
184 	  long double s = hypotl (1.0L, rx);
185 
186 	  __real__ res = log1pl (2.0L * rx * (rx + s)) / 2.0L;
187 	  if (adj)
188 	    __imag__ res = atan2l (s, __imag__ x);
189 	  else
190 	    __imag__ res = atan2l (ix, s);
191 	}
192       if (__real__ res < LDBL_MIN)
193 	{
194 	  volatile long double force_underflow = __real__ res * __real__ res;
195 	  (void) force_underflow;
196 	}
197     }
198   else
199     {
200       __real__ y = (rx - ix) * (rx + ix) + 1.0L;
201       __imag__ y = 2.0L * rx * ix;
202 
203       y = csqrtl (y);
204 
205       __real__ y += rx;
206       __imag__ y += ix;
207 
208       if (adj)
209 	{
210 	  long double t = __real__ y;
211 	  __real__ y = copysignl (__imag__ y, __imag__ x);
212 	  __imag__ y = t;
213 	}
214 
215       res = clogl (y);
216     }
217 
218   /* Give results the correct sign for the original argument.  */
219   __real__ res = copysignl (__real__ res, __real__ x);
220   __imag__ res = copysignl (__imag__ res, (adj ? 1.0L : __imag__ x));
221 
222   return res;
223 }
224