xref: /haiku/src/system/libroot/posix/glibc/math/k_casinhf.c (revision cbe0a0c436162d78cc3f92a305b64918c839d079)
1 /* Return arc hyperbole sine for float value, with the imaginary part
2    of the result possibly adjusted for use in computing other
3    functions.
4    Copyright (C) 1997-2015 Free Software Foundation, Inc.
5    This file is part of the GNU C Library.
6 
7    The GNU C Library is free software; you can redistribute it and/or
8    modify it under the terms of the GNU Lesser General Public
9    License as published by the Free Software Foundation; either
10    version 2.1 of the License, or (at your option) any later version.
11 
12    The GNU C Library is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15    Lesser General Public License for more details.
16 
17    You should have received a copy of the GNU Lesser General Public
18    License along with the GNU C Library; if not, see
19    <http://www.gnu.org/licenses/>.  */
20 
21 #include <complex.h>
22 #include <math.h>
23 #include <math_private.h>
24 #include <float.h>
25 
26 /* Return the complex inverse hyperbolic sine of finite nonzero Z,
27    with the imaginary part of the result subtracted from pi/2 if ADJ
28    is nonzero.  */
29 
30 __complex__ float
31 __kernel_casinhf (__complex__ float x, int adj)
32 {
33   __complex__ float res;
34   float rx, ix;
35   __complex__ float y;
36 
37   /* Avoid cancellation by reducing to the first quadrant.  */
38   rx = fabsf (__real__ x);
39   ix = fabsf (__imag__ x);
40 
41   if (rx >= 1.0f / FLT_EPSILON || ix >= 1.0f / FLT_EPSILON)
42     {
43       /* For large x in the first quadrant, x + csqrt (1 + x * x)
44 	 is sufficiently close to 2 * x to make no significant
45 	 difference to the result; avoid possible overflow from
46 	 the squaring and addition.  */
47       __real__ y = rx;
48       __imag__ y = ix;
49 
50       if (adj)
51 	{
52 	  float t = __real__ y;
53 	  __real__ y = copysignf (__imag__ y, __imag__ x);
54 	  __imag__ y = t;
55 	}
56 
57       res = clogf (y);
58       __real__ res += (float) M_LN2;
59     }
60   else if (rx >= 0.5f && ix < FLT_EPSILON / 8.0f)
61     {
62       float s = hypotf (1.0f, rx);
63 
64       __real__ res = logf (rx + s);
65       if (adj)
66 	__imag__ res = atan2f (s, __imag__ x);
67       else
68 	__imag__ res = atan2f (ix, s);
69     }
70   else if (rx < FLT_EPSILON / 8.0f && ix >= 1.5f)
71     {
72       float s = sqrtf ((ix + 1.0f) * (ix - 1.0f));
73 
74       __real__ res = logf (ix + s);
75       if (adj)
76 	__imag__ res = atan2f (rx, copysignf (s, __imag__ x));
77       else
78 	__imag__ res = atan2f (s, rx);
79     }
80   else if (ix > 1.0f && ix < 1.5f && rx < 0.5f)
81     {
82       if (rx < FLT_EPSILON * FLT_EPSILON)
83 	{
84 	  float ix2m1 = (ix + 1.0f) * (ix - 1.0f);
85 	  float s = sqrtf (ix2m1);
86 
87 	  __real__ res = log1pf (2.0f * (ix2m1 + ix * s)) / 2.0f;
88 	  if (adj)
89 	    __imag__ res = atan2f (rx, copysignf (s, __imag__ x));
90 	  else
91 	    __imag__ res = atan2f (s, rx);
92 	}
93       else
94 	{
95 	  float ix2m1 = (ix + 1.0f) * (ix - 1.0f);
96 	  float rx2 = rx * rx;
97 	  float f = rx2 * (2.0f + rx2 + 2.0f * ix * ix);
98 	  float d = sqrtf (ix2m1 * ix2m1 + f);
99 	  float dp = d + ix2m1;
100 	  float dm = f / dp;
101 	  float r1 = sqrtf ((dm + rx2) / 2.0f);
102 	  float r2 = rx * ix / r1;
103 
104 	  __real__ res
105 	    = log1pf (rx2 + dp + 2.0f * (rx * r1 + ix * r2)) / 2.0f;
106 	  if (adj)
107 	    __imag__ res = atan2f (rx + r1, copysignf (ix + r2,
108 								   __imag__ x));
109 	  else
110 	    __imag__ res = atan2f (ix + r2, rx + r1);
111 	}
112     }
113   else if (ix == 1.0f && rx < 0.5f)
114     {
115       if (rx < FLT_EPSILON / 8.0f)
116 	{
117 	  __real__ res = log1pf (2.0f * (rx + sqrtf (rx))) / 2.0f;
118 	  if (adj)
119 	    __imag__ res = atan2f (sqrtf (rx),
120 					     copysignf (1.0f, __imag__ x));
121 	  else
122 	    __imag__ res = atan2f (1.0f, sqrtf (rx));
123 	}
124       else
125 	{
126 	  float d = rx * sqrtf (4.0f + rx * rx);
127 	  float s1 = sqrtf ((d + rx * rx) / 2.0f);
128 	  float s2 = sqrtf ((d - rx * rx) / 2.0f);
129 
130 	  __real__ res = log1pf (rx * rx + d + 2.0f * (rx * s1 + s2)) / 2.0f;
131 	  if (adj)
132 	    __imag__ res = atan2f (rx + s1,
133 					     copysignf (1.0f + s2,
134 							  __imag__ x));
135 	  else
136 	    __imag__ res = atan2f (1.0f + s2, rx + s1);
137 	}
138     }
139   else if (ix < 1.0f && rx < 0.5f)
140     {
141       if (ix >= FLT_EPSILON)
142 	{
143 	  if (rx < FLT_EPSILON * FLT_EPSILON)
144 	    {
145 	      float onemix2 = (1.0f + ix) * (1.0f - ix);
146 	      float s = sqrtf (onemix2);
147 
148 	      __real__ res = log1pf (2.0f * rx / s) / 2.0f;
149 	      if (adj)
150 		__imag__ res = atan2f (s, __imag__ x);
151 	      else
152 		__imag__ res = atan2f (ix, s);
153 	    }
154 	  else
155 	    {
156 	      float onemix2 = (1.0f + ix) * (1.0f - ix);
157 	      float rx2 = rx * rx;
158 	      float f = rx2 * (2.0f + rx2 + 2.0f * ix * ix);
159 	      float d = sqrtf (onemix2 * onemix2 + f);
160 	      float dp = d + onemix2;
161 	      float dm = f / dp;
162 	      float r1 = sqrtf ((dp + rx2) / 2.0f);
163 	      float r2 = rx * ix / r1;
164 
165 	      __real__ res
166 		= log1pf (rx2 + dm + 2.0f * (rx * r1 + ix * r2)) / 2.0f;
167 	      if (adj)
168 		__imag__ res = atan2f (rx + r1,
169 						 copysignf (ix + r2,
170 							      __imag__ x));
171 	      else
172 		__imag__ res = atan2f (ix + r2, rx + r1);
173 	    }
174 	}
175       else
176 	{
177 	  float s = hypotf (1.0f, rx);
178 
179 	  __real__ res = log1pf (2.0f * rx * (rx + s)) / 2.0f;
180 	  if (adj)
181 	    __imag__ res = atan2f (s, __imag__ x);
182 	  else
183 	    __imag__ res = atan2f (ix, s);
184 	}
185       if (__real__ res < FLT_MIN)
186 	{
187 	  volatile float force_underflow = __real__ res * __real__ res;
188 	  (void) force_underflow;
189 	}
190     }
191   else
192     {
193       __real__ y = (rx - ix) * (rx + ix) + 1.0f;
194       __imag__ y = 2.0f * rx * ix;
195 
196       y = csqrtf (y);
197 
198       __real__ y += rx;
199       __imag__ y += ix;
200 
201       if (adj)
202 	{
203 	  float t = __real__ y;
204 	  __real__ y = copysignf (__imag__ y, __imag__ x);
205 	  __imag__ y = t;
206 	}
207 
208       res = clogf (y);
209     }
210 
211   /* Give results the correct sign for the original argument.  */
212   __real__ res = copysignf (__real__ res, __real__ x);
213   __imag__ res = copysignf (__imag__ res, (adj ? 1.0f : __imag__ x));
214 
215   return res;
216 }
217