xref: /haiku/src/system/libroot/posix/glibc/math/k_casinh.c (revision 02354704729d38c3b078c696adc1bbbd33cbcf72)
1 /* Return arc hyperbole sine for double value, with the imaginary part
2    of the result possibly adjusted for use in computing other
3    functions.
4    Copyright (C) 1997-2015 Free Software Foundation, Inc.
5    This file is part of the GNU C Library.
6 
7    The GNU C Library is free software; you can redistribute it and/or
8    modify it under the terms of the GNU Lesser General Public
9    License as published by the Free Software Foundation; either
10    version 2.1 of the License, or (at your option) any later version.
11 
12    The GNU C Library is distributed in the hope that it will be useful,
13    but WITHOUT ANY WARRANTY; without even the implied warranty of
14    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15    Lesser General Public License for more details.
16 
17    You should have received a copy of the GNU Lesser General Public
18    License along with the GNU C Library; if not, see
19    <http://www.gnu.org/licenses/>.  */
20 
21 #include <complex.h>
22 #include <math.h>
23 #include <math_private.h>
24 #include <float.h>
25 
26 /* Return the complex inverse hyperbolic sine of finite nonzero Z,
27    with the imaginary part of the result subtracted from pi/2 if ADJ
28    is nonzero.  */
29 
30 __complex__ double
31 __kernel_casinh (__complex__ double x, int adj)
32 {
33   __complex__ double res;
34   double rx, ix;
35   __complex__ double y;
36 
37   /* Avoid cancellation by reducing to the first quadrant.  */
38   rx = fabs (__real__ x);
39   ix = fabs (__imag__ x);
40 
41   if (rx >= 1.0 / DBL_EPSILON || ix >= 1.0 / DBL_EPSILON)
42     {
43       /* For large x in the first quadrant, x + csqrt (1 + x * x)
44 	 is sufficiently close to 2 * x to make no significant
45 	 difference to the result; avoid possible overflow from
46 	 the squaring and addition.  */
47       __real__ y = rx;
48       __imag__ y = ix;
49 
50       if (adj)
51 	{
52 	  double t = __real__ y;
53 	  __real__ y = copysign (__imag__ y, __imag__ x);
54 	  __imag__ y = t;
55 	}
56 
57       res = clog (y);
58       __real__ res += M_LN2;
59     }
60   else if (rx >= 0.5 && ix < DBL_EPSILON / 8.0)
61     {
62       double s = hypot (1.0, rx);
63 
64       __real__ res = log (rx + s);
65       if (adj)
66 	__imag__ res = atan2 (s, __imag__ x);
67       else
68 	__imag__ res = atan2 (ix, s);
69     }
70   else if (rx < DBL_EPSILON / 8.0 && ix >= 1.5)
71     {
72       double s = sqrt ((ix + 1.0) * (ix - 1.0));
73 
74       __real__ res = log (ix + s);
75       if (adj)
76 	__imag__ res = atan2 (rx, copysign (s, __imag__ x));
77       else
78 	__imag__ res = atan2 (s, rx);
79     }
80   else if (ix > 1.0 && ix < 1.5 && rx < 0.5)
81     {
82       if (rx < DBL_EPSILON * DBL_EPSILON)
83 	{
84 	  double ix2m1 = (ix + 1.0) * (ix - 1.0);
85 	  double s = sqrt (ix2m1);
86 
87 	  __real__ res = log1p (2.0 * (ix2m1 + ix * s)) / 2.0;
88 	  if (adj)
89 	    __imag__ res = atan2 (rx, copysign (s, __imag__ x));
90 	  else
91 	    __imag__ res = atan2 (s, rx);
92 	}
93       else
94 	{
95 	  double ix2m1 = (ix + 1.0) * (ix - 1.0);
96 	  double rx2 = rx * rx;
97 	  double f = rx2 * (2.0 + rx2 + 2.0 * ix * ix);
98 	  double d = sqrt (ix2m1 * ix2m1 + f);
99 	  double dp = d + ix2m1;
100 	  double dm = f / dp;
101 	  double r1 = sqrt ((dm + rx2) / 2.0);
102 	  double r2 = rx * ix / r1;
103 
104 	  __real__ res = log1p (rx2 + dp + 2.0 * (rx * r1 + ix * r2)) / 2.0;
105 	  if (adj)
106 	    __imag__ res = atan2 (rx + r1, copysign (ix + r2,
107 								 __imag__ x));
108 	  else
109 	    __imag__ res = atan2 (ix + r2, rx + r1);
110 	}
111     }
112   else if (ix == 1.0 && rx < 0.5)
113     {
114       if (rx < DBL_EPSILON / 8.0)
115 	{
116 	  __real__ res = log1p (2.0 * (rx + sqrt (rx))) / 2.0;
117 	  if (adj)
118 	    __imag__ res = atan2 (sqrt (rx),
119 					    copysign (1.0, __imag__ x));
120 	  else
121 	    __imag__ res = atan2 (1.0, sqrt (rx));
122 	}
123       else
124 	{
125 	  double d = rx * sqrt (4.0 + rx * rx);
126 	  double s1 = sqrt ((d + rx * rx) / 2.0);
127 	  double s2 = sqrt ((d - rx * rx) / 2.0);
128 
129 	  __real__ res = log1p (rx * rx + d + 2.0 * (rx * s1 + s2)) / 2.0;
130 	  if (adj)
131 	    __imag__ res = atan2 (rx + s1, copysign (1.0 + s2,
132 								 __imag__ x));
133 	  else
134 	    __imag__ res = atan2 (1.0 + s2, rx + s1);
135 	}
136     }
137   else if (ix < 1.0 && rx < 0.5)
138     {
139       if (ix >= DBL_EPSILON)
140 	{
141 	  if (rx < DBL_EPSILON * DBL_EPSILON)
142 	    {
143 	      double onemix2 = (1.0 + ix) * (1.0 - ix);
144 	      double s = sqrt (onemix2);
145 
146 	      __real__ res = log1p (2.0 * rx / s) / 2.0;
147 	      if (adj)
148 		__imag__ res = atan2 (s, __imag__ x);
149 	      else
150 		__imag__ res = atan2 (ix, s);
151 	    }
152 	  else
153 	    {
154 	      double onemix2 = (1.0 + ix) * (1.0 - ix);
155 	      double rx2 = rx * rx;
156 	      double f = rx2 * (2.0 + rx2 + 2.0 * ix * ix);
157 	      double d = sqrt (onemix2 * onemix2 + f);
158 	      double dp = d + onemix2;
159 	      double dm = f / dp;
160 	      double r1 = sqrt ((dp + rx2) / 2.0);
161 	      double r2 = rx * ix / r1;
162 
163 	      __real__ res
164 		= log1p (rx2 + dm + 2.0 * (rx * r1 + ix * r2)) / 2.0;
165 	      if (adj)
166 		__imag__ res = atan2 (rx + r1,
167 						copysign (ix + r2,
168 							    __imag__ x));
169 	      else
170 		__imag__ res = atan2 (ix + r2, rx + r1);
171 	    }
172 	}
173       else
174 	{
175 	  double s = hypot (1.0, rx);
176 
177 	  __real__ res = log1p (2.0 * rx * (rx + s)) / 2.0;
178 	  if (adj)
179 	    __imag__ res = atan2 (s, __imag__ x);
180 	  else
181 	    __imag__ res = atan2 (ix, s);
182 	}
183       if (__real__ res < DBL_MIN)
184 	{
185 	  volatile double force_underflow = __real__ res * __real__ res;
186 	  (void) force_underflow;
187 	}
188     }
189   else
190     {
191       __real__ y = (rx - ix) * (rx + ix) + 1.0;
192       __imag__ y = 2.0 * rx * ix;
193 
194       y = csqrt (y);
195 
196       __real__ y += rx;
197       __imag__ y += ix;
198 
199       if (adj)
200 	{
201 	  double t = __real__ y;
202 	  __real__ y = copysign (__imag__ y, __imag__ x);
203 	  __imag__ y = t;
204 	}
205 
206       res = clog (y);
207     }
208 
209   /* Give results the correct sign for the original argument.  */
210   __real__ res = copysign (__real__ res, __real__ x);
211   __imag__ res = copysign (__imag__ res, (adj ? 1.0 : __imag__ x));
212 
213   return res;
214 }
215