xref: /haiku/src/system/libroot/posix/glibc/arch/generic/mul_n.c (revision 1e36cfc2721ef13a187c6f7354dc9cbc485e89d3)
1 /* mpn_mul_n -- Multiply two natural numbers of length n.
2 
3 Copyright (C) 1991, 1992, 1993, 1994, 1996 Free Software Foundation, Inc.
4 
5 This file is part of the GNU MP Library.
6 
7 The GNU MP Library is free software; you can redistribute it and/or modify
8 it under the terms of the GNU Lesser General Public License as published by
9 the Free Software Foundation; either version 2.1 of the License, or (at your
10 option) any later version.
11 
12 The GNU MP Library is distributed in the hope that it will be useful, but
13 WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
15 License for more details.
16 
17 You should have received a copy of the GNU Lesser General Public License
18 along with the GNU MP Library; see the file COPYING.LIB.  If not, write to
19 the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
20 MA 02111-1307, USA. */
21 
22 #include "gmp.h"
23 #include "gmp-impl.h"
24 
25 /* Multiply the natural numbers u (pointed to by UP) and v (pointed to by VP),
26    both with SIZE limbs, and store the result at PRODP.  2 * SIZE limbs are
27    always stored.  Return the most significant limb.
28 
29    Argument constraints:
30    1. PRODP != UP and PRODP != VP, i.e. the destination
31       must be distinct from the multiplier and the multiplicand.  */
32 
33 /* If KARATSUBA_THRESHOLD is not already defined, define it to a
34    value which is good on most machines.  */
35 #ifndef KARATSUBA_THRESHOLD
36 #define KARATSUBA_THRESHOLD 32
37 #endif
38 
39 /* The code can't handle KARATSUBA_THRESHOLD smaller than 2.  */
40 #if KARATSUBA_THRESHOLD < 2
41 #undef KARATSUBA_THRESHOLD
42 #define KARATSUBA_THRESHOLD 2
43 #endif
44 
45 /* Handle simple cases with traditional multiplication.
46 
47    This is the most critical code of multiplication.  All multiplies rely
48    on this, both small and huge.  Small ones arrive here immediately.  Huge
49    ones arrive here as this is the base case for Karatsuba's recursive
50    algorithm below.  */
51 
52 void
53 #if __STDC__
54 impn_mul_n_basecase (mp_ptr prodp, mp_srcptr up, mp_srcptr vp, mp_size_t size)
55 #else
56 impn_mul_n_basecase (prodp, up, vp, size)
57      mp_ptr prodp;
58      mp_srcptr up;
59      mp_srcptr vp;
60      mp_size_t size;
61 #endif
62 {
63   mp_size_t i;
64   mp_limb_t cy_limb;
65   mp_limb_t v_limb;
66 
67   /* Multiply by the first limb in V separately, as the result can be
68      stored (not added) to PROD.  We also avoid a loop for zeroing.  */
69   v_limb = vp[0];
70   if (v_limb <= 1)
71     {
72       if (v_limb == 1)
73 	MPN_COPY (prodp, up, size);
74       else
75 	MPN_ZERO (prodp, size);
76       cy_limb = 0;
77     }
78   else
79     cy_limb = mpn_mul_1 (prodp, up, size, v_limb);
80 
81   prodp[size] = cy_limb;
82   prodp++;
83 
84   /* For each iteration in the outer loop, multiply one limb from
85      U with one limb from V, and add it to PROD.  */
86   for (i = 1; i < size; i++)
87     {
88       v_limb = vp[i];
89       if (v_limb <= 1)
90 	{
91 	  cy_limb = 0;
92 	  if (v_limb == 1)
93 	    cy_limb = mpn_add_n (prodp, prodp, up, size);
94 	}
95       else
96 	cy_limb = mpn_addmul_1 (prodp, up, size, v_limb);
97 
98       prodp[size] = cy_limb;
99       prodp++;
100     }
101 }
102 
103 void
104 #if __STDC__
105 impn_mul_n (mp_ptr prodp,
106 	     mp_srcptr up, mp_srcptr vp, mp_size_t size, mp_ptr tspace)
107 #else
108 impn_mul_n (prodp, up, vp, size, tspace)
109      mp_ptr prodp;
110      mp_srcptr up;
111      mp_srcptr vp;
112      mp_size_t size;
113      mp_ptr tspace;
114 #endif
115 {
116   if ((size & 1) != 0)
117     {
118       /* The size is odd, the code code below doesn't handle that.
119 	 Multiply the least significant (size - 1) limbs with a recursive
120 	 call, and handle the most significant limb of S1 and S2
121 	 separately.  */
122       /* A slightly faster way to do this would be to make the Karatsuba
123 	 code below behave as if the size were even, and let it check for
124 	 odd size in the end.  I.e., in essence move this code to the end.
125 	 Doing so would save us a recursive call, and potentially make the
126 	 stack grow a lot less.  */
127 
128       mp_size_t esize = size - 1;	/* even size */
129       mp_limb_t cy_limb;
130 
131       MPN_MUL_N_RECURSE (prodp, up, vp, esize, tspace);
132       cy_limb = mpn_addmul_1 (prodp + esize, up, esize, vp[esize]);
133       prodp[esize + esize] = cy_limb;
134       cy_limb = mpn_addmul_1 (prodp + esize, vp, size, up[esize]);
135 
136       prodp[esize + size] = cy_limb;
137     }
138   else
139     {
140       /* Anatolij Alekseevich Karatsuba's divide-and-conquer algorithm.
141 
142 	 Split U in two pieces, U1 and U0, such that
143 	 U = U0 + U1*(B**n),
144 	 and V in V1 and V0, such that
145 	 V = V0 + V1*(B**n).
146 
147 	 UV is then computed recursively using the identity
148 
149 		2n   n          n                     n
150 	 UV = (B  + B )U V  +  B (U -U )(V -V )  +  (B + 1)U V
151 			1 1        1  0   0  1              0 0
152 
153 	 Where B = 2**BITS_PER_MP_LIMB.  */
154 
155       mp_size_t hsize = size >> 1;
156       mp_limb_t cy;
157       int negflg;
158 
159       /*** Product H.	 ________________  ________________
160 			|_____U1 x V1____||____U0 x V0_____|  */
161       /* Put result in upper part of PROD and pass low part of TSPACE
162 	 as new TSPACE.  */
163       MPN_MUL_N_RECURSE (prodp + size, up + hsize, vp + hsize, hsize, tspace);
164 
165       /*** Product M.	 ________________
166 			|_(U1-U0)(V0-V1)_|  */
167       if (mpn_cmp (up + hsize, up, hsize) >= 0)
168 	{
169 	  mpn_sub_n (prodp, up + hsize, up, hsize);
170 	  negflg = 0;
171 	}
172       else
173 	{
174 	  mpn_sub_n (prodp, up, up + hsize, hsize);
175 	  negflg = 1;
176 	}
177       if (mpn_cmp (vp + hsize, vp, hsize) >= 0)
178 	{
179 	  mpn_sub_n (prodp + hsize, vp + hsize, vp, hsize);
180 	  negflg ^= 1;
181 	}
182       else
183 	{
184 	  mpn_sub_n (prodp + hsize, vp, vp + hsize, hsize);
185 	  /* No change of NEGFLG.  */
186 	}
187       /* Read temporary operands from low part of PROD.
188 	 Put result in low part of TSPACE using upper part of TSPACE
189 	 as new TSPACE.  */
190       MPN_MUL_N_RECURSE (tspace, prodp, prodp + hsize, hsize, tspace + size);
191 
192       /*** Add/copy product H.  */
193       MPN_COPY (prodp + hsize, prodp + size, hsize);
194       cy = mpn_add_n (prodp + size, prodp + size, prodp + size + hsize, hsize);
195 
196       /*** Add product M (if NEGFLG M is a negative number).  */
197       if (negflg)
198 	cy -= mpn_sub_n (prodp + hsize, prodp + hsize, tspace, size);
199       else
200 	cy += mpn_add_n (prodp + hsize, prodp + hsize, tspace, size);
201 
202       /*** Product L.	 ________________  ________________
203 			|________________||____U0 x V0_____|  */
204       /* Read temporary operands from low part of PROD.
205 	 Put result in low part of TSPACE using upper part of TSPACE
206 	 as new TSPACE.  */
207       MPN_MUL_N_RECURSE (tspace, up, vp, hsize, tspace + size);
208 
209       /*** Add/copy Product L (twice).  */
210 
211       cy += mpn_add_n (prodp + hsize, prodp + hsize, tspace, size);
212       if (cy)
213 	mpn_add_1 (prodp + hsize + size, prodp + hsize + size, hsize, cy);
214 
215       MPN_COPY (prodp, tspace, hsize);
216       cy = mpn_add_n (prodp + hsize, prodp + hsize, tspace + hsize, hsize);
217       if (cy)
218 	mpn_add_1 (prodp + size, prodp + size, size, 1);
219     }
220 }
221 
222 void
223 #if __STDC__
224 impn_sqr_n_basecase (mp_ptr prodp, mp_srcptr up, mp_size_t size)
225 #else
226 impn_sqr_n_basecase (prodp, up, size)
227      mp_ptr prodp;
228      mp_srcptr up;
229      mp_size_t size;
230 #endif
231 {
232   mp_size_t i;
233   mp_limb_t cy_limb;
234   mp_limb_t v_limb;
235 
236   /* Multiply by the first limb in V separately, as the result can be
237      stored (not added) to PROD.  We also avoid a loop for zeroing.  */
238   v_limb = up[0];
239   if (v_limb <= 1)
240     {
241       if (v_limb == 1)
242 	MPN_COPY (prodp, up, size);
243       else
244 	MPN_ZERO (prodp, size);
245       cy_limb = 0;
246     }
247   else
248     cy_limb = mpn_mul_1 (prodp, up, size, v_limb);
249 
250   prodp[size] = cy_limb;
251   prodp++;
252 
253   /* For each iteration in the outer loop, multiply one limb from
254      U with one limb from V, and add it to PROD.  */
255   for (i = 1; i < size; i++)
256     {
257       v_limb = up[i];
258       if (v_limb <= 1)
259 	{
260 	  cy_limb = 0;
261 	  if (v_limb == 1)
262 	    cy_limb = mpn_add_n (prodp, prodp, up, size);
263 	}
264       else
265 	cy_limb = mpn_addmul_1 (prodp, up, size, v_limb);
266 
267       prodp[size] = cy_limb;
268       prodp++;
269     }
270 }
271 
272 void
273 #if __STDC__
274 impn_sqr_n (mp_ptr prodp,
275 	     mp_srcptr up, mp_size_t size, mp_ptr tspace)
276 #else
277 impn_sqr_n (prodp, up, size, tspace)
278      mp_ptr prodp;
279      mp_srcptr up;
280      mp_size_t size;
281      mp_ptr tspace;
282 #endif
283 {
284   if ((size & 1) != 0)
285     {
286       /* The size is odd, the code code below doesn't handle that.
287 	 Multiply the least significant (size - 1) limbs with a recursive
288 	 call, and handle the most significant limb of S1 and S2
289 	 separately.  */
290       /* A slightly faster way to do this would be to make the Karatsuba
291 	 code below behave as if the size were even, and let it check for
292 	 odd size in the end.  I.e., in essence move this code to the end.
293 	 Doing so would save us a recursive call, and potentially make the
294 	 stack grow a lot less.  */
295 
296       mp_size_t esize = size - 1;	/* even size */
297       mp_limb_t cy_limb;
298 
299       MPN_SQR_N_RECURSE (prodp, up, esize, tspace);
300       cy_limb = mpn_addmul_1 (prodp + esize, up, esize, up[esize]);
301       prodp[esize + esize] = cy_limb;
302       cy_limb = mpn_addmul_1 (prodp + esize, up, size, up[esize]);
303 
304       prodp[esize + size] = cy_limb;
305     }
306   else
307     {
308       mp_size_t hsize = size >> 1;
309       mp_limb_t cy;
310 
311       /*** Product H.	 ________________  ________________
312 			|_____U1 x U1____||____U0 x U0_____|  */
313       /* Put result in upper part of PROD and pass low part of TSPACE
314 	 as new TSPACE.  */
315       MPN_SQR_N_RECURSE (prodp + size, up + hsize, hsize, tspace);
316 
317       /*** Product M.	 ________________
318 			|_(U1-U0)(U0-U1)_|  */
319       if (mpn_cmp (up + hsize, up, hsize) >= 0)
320 	{
321 	  mpn_sub_n (prodp, up + hsize, up, hsize);
322 	}
323       else
324 	{
325 	  mpn_sub_n (prodp, up, up + hsize, hsize);
326 	}
327 
328       /* Read temporary operands from low part of PROD.
329 	 Put result in low part of TSPACE using upper part of TSPACE
330 	 as new TSPACE.  */
331       MPN_SQR_N_RECURSE (tspace, prodp, hsize, tspace + size);
332 
333       /*** Add/copy product H.  */
334       MPN_COPY (prodp + hsize, prodp + size, hsize);
335       cy = mpn_add_n (prodp + size, prodp + size, prodp + size + hsize, hsize);
336 
337       /*** Add product M (if NEGFLG M is a negative number).  */
338       cy -= mpn_sub_n (prodp + hsize, prodp + hsize, tspace, size);
339 
340       /*** Product L.	 ________________  ________________
341 			|________________||____U0 x U0_____|  */
342       /* Read temporary operands from low part of PROD.
343 	 Put result in low part of TSPACE using upper part of TSPACE
344 	 as new TSPACE.  */
345       MPN_SQR_N_RECURSE (tspace, up, hsize, tspace + size);
346 
347       /*** Add/copy Product L (twice).  */
348 
349       cy += mpn_add_n (prodp + hsize, prodp + hsize, tspace, size);
350       if (cy)
351 	mpn_add_1 (prodp + hsize + size, prodp + hsize + size, hsize, cy);
352 
353       MPN_COPY (prodp, tspace, hsize);
354       cy = mpn_add_n (prodp + hsize, prodp + hsize, tspace + hsize, hsize);
355       if (cy)
356 	mpn_add_1 (prodp + size, prodp + size, size, 1);
357     }
358 }
359 
360 /* This should be made into an inline function in gmp.h.  */
361 void
362 #if __STDC__
363 mpn_mul_n (mp_ptr prodp, mp_srcptr up, mp_srcptr vp, mp_size_t size)
364 #else
365 mpn_mul_n (prodp, up, vp, size)
366      mp_ptr prodp;
367      mp_srcptr up;
368      mp_srcptr vp;
369      mp_size_t size;
370 #endif
371 {
372   TMP_DECL (marker);
373   TMP_MARK (marker);
374   if (up == vp)
375     {
376       if (size < KARATSUBA_THRESHOLD)
377 	{
378 	  impn_sqr_n_basecase (prodp, up, size);
379 	}
380       else
381 	{
382 	  mp_ptr tspace;
383 	  tspace = (mp_ptr) TMP_ALLOC (2 * size * BYTES_PER_MP_LIMB);
384 	  impn_sqr_n (prodp, up, size, tspace);
385 	}
386     }
387   else
388     {
389       if (size < KARATSUBA_THRESHOLD)
390 	{
391 	  impn_mul_n_basecase (prodp, up, vp, size);
392 	}
393       else
394 	{
395 	  mp_ptr tspace;
396 	  tspace = (mp_ptr) TMP_ALLOC (2 * size * BYTES_PER_MP_LIMB);
397 	  impn_mul_n (prodp, up, vp, size, tspace);
398 	}
399     }
400   TMP_FREE (marker);
401 }
402