xref: /haiku/src/system/libroot/posix/glibc/arch/generic/mpa.c (revision f2b4344867e97c3f4e742a1b4a15e6879644601a)
1 
2 /*
3  * IBM Accurate Mathematical Library
4  * written by International Business Machines Corp.
5  * Copyright (C) 2001 Free Software Foundation
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU Lesser General Public License as published by
9  * the Free Software Foundation; either version 2.1 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20  */
21 /************************************************************************/
22 /*  MODULE_NAME: mpa.c                                                  */
23 /*                                                                      */
24 /*  FUNCTIONS:                                                          */
25 /*               mcr                                                    */
26 /*               acr                                                    */
27 /*               cr                                                     */
28 /*               cpy                                                    */
29 /*               cpymn                                                  */
30 /*               norm                                                   */
31 /*               denorm                                                 */
32 /*               mp_dbl                                                 */
33 /*               dbl_mp                                                 */
34 /*               add_magnitudes                                         */
35 /*               sub_magnitudes                                         */
36 /*               add                                                    */
37 /*               sub                                                    */
38 /*               mul                                                    */
39 /*               inv                                                    */
40 /*               dvd                                                    */
41 /*                                                                      */
42 /* Arithmetic functions for multiple precision numbers.                 */
43 /* Relative errors are bounded                                          */
44 /************************************************************************/
45 
46 
47 #include "endian.h"
48 #include "mpa.h"
49 #include "mpa2.h"
50 /* mcr() compares the sizes of the mantissas of two multiple precision  */
51 /* numbers. Mantissas are compared regardless of the signs of the       */
52 /* numbers, even if x->d[0] or y->d[0] are zero. Exponents are also     */
53 /* disregarded.                                                         */
54 static int mcr(const mp_no *x, const mp_no *y, int p) {
55   int i;
56   for (i=1; i<=p; i++) {
57     if      (X[i] == Y[i])  continue;
58     else if (X[i] >  Y[i])  return  1;
59     else                    return -1; }
60   return 0;
61 }
62 
63 
64 
65 /* acr() compares the absolute values of two multiple precision numbers */
66 int __acr(const mp_no *x, const mp_no *y, int p) {
67   int i;
68 
69   if      (X[0] == ZERO) {
70     if    (Y[0] == ZERO) i= 0;
71     else                 i=-1;
72   }
73   else if (Y[0] == ZERO) i= 1;
74   else {
75     if      (EX >  EY)   i= 1;
76     else if (EX <  EY)   i=-1;
77     else                 i= mcr(x,y,p);
78   }
79 
80   return i;
81 }
82 
83 
84 /* cr90 compares the values of two multiple precision numbers           */
85 int  __cr(const mp_no *x, const mp_no *y, int p) {
86   int i;
87 
88   if      (X[0] > Y[0])  i= 1;
89   else if (X[0] < Y[0])  i=-1;
90   else if (X[0] < ZERO ) i= __acr(y,x,p);
91   else                   i= __acr(x,y,p);
92 
93   return i;
94 }
95 
96 
97 /* Copy a multiple precision number. Set *y=*x. x=y is permissible.      */
98 void __cpy(const mp_no *x, mp_no *y, int p) {
99   int i;
100 
101   EY = EX;
102   for (i=0; i <= p; i++)    Y[i] = X[i];
103 
104   return;
105 }
106 
107 
108 /* Copy a multiple precision number x of precision m into a */
109 /* multiple precision number y of precision n. In case n>m, */
110 /* the digits of y beyond the m'th are set to zero. In case */
111 /* n<m, the digits of x beyond the n'th are ignored.        */
112 /* x=y is permissible.                                      */
113 
114 void __cpymn(const mp_no *x, int m, mp_no *y, int n) {
115 
116   int i,k;
117 
118   EY = EX;     k=MIN(m,n);
119   for (i=0; i <= k; i++)    Y[i] = X[i];
120   for (   ; i <= n; i++)    Y[i] = ZERO;
121 
122   return;
123 }
124 
125 /* Convert a multiple precision number *x into a double precision */
126 /* number *y, normalized case  (|x| >= 2**(-1022))) */
127 static void norm(const mp_no *x, double *y, int p)
128 {
129   #define R  radixi.d
130   int i;
131 #if 0
132   int k;
133 #endif
134   double a,c,u,v,z[5];
135   if (p<5) {
136     if      (p==1) c = X[1];
137     else if (p==2) c = X[1] + R* X[2];
138     else if (p==3) c = X[1] + R*(X[2]  +   R* X[3]);
139     else if (p==4) c =(X[1] + R* X[2]) + R*R*(X[3] + R*X[4]);
140   }
141   else {
142     for (a=ONE, z[1]=X[1]; z[1] < TWO23; )
143         {a *= TWO;   z[1] *= TWO; }
144 
145     for (i=2; i<5; i++) {
146       z[i] = X[i]*a;
147       u = (z[i] + CUTTER)-CUTTER;
148       if  (u > z[i])  u -= RADIX;
149       z[i] -= u;
150       z[i-1] += u*RADIXI;
151     }
152 
153     u = (z[3] + TWO71) - TWO71;
154     if (u > z[3])   u -= TWO19;
155     v = z[3]-u;
156 
157     if (v == TWO18) {
158       if (z[4] == ZERO) {
159         for (i=5; i <= p; i++) {
160           if (X[i] == ZERO)   continue;
161           else                {z[3] += ONE;   break; }
162         }
163       }
164       else              z[3] += ONE;
165     }
166 
167     c = (z[1] + R *(z[2] + R * z[3]))/a;
168   }
169 
170   c *= X[0];
171 
172   for (i=1; i<EX; i++)   c *= RADIX;
173   for (i=1; i>EX; i--)   c *= RADIXI;
174 
175   *y = c;
176   return;
177 #undef R
178 }
179 
180 /* Convert a multiple precision number *x into a double precision */
181 /* number *y, denormalized case  (|x| < 2**(-1022))) */
182 static void denorm(const mp_no *x, double *y, int p)
183 {
184   int i,k;
185   double c,u,z[5];
186 #if 0
187   double a,v;
188 #endif
189 
190 #define R  radixi.d
191   if (EX<-44 || (EX==-44 && X[1]<TWO5))
192      { *y=ZERO; return; }
193 
194   if      (p==1) {
195     if      (EX==-42) {z[1]=X[1]+TWO10;  z[2]=ZERO;  z[3]=ZERO;  k=3;}
196     else if (EX==-43) {z[1]=     TWO10;  z[2]=X[1];  z[3]=ZERO;  k=2;}
197     else              {z[1]=     TWO10;  z[2]=ZERO;  z[3]=X[1];  k=1;}
198   }
199   else if (p==2) {
200     if      (EX==-42) {z[1]=X[1]+TWO10;  z[2]=X[2];  z[3]=ZERO;  k=3;}
201     else if (EX==-43) {z[1]=     TWO10;  z[2]=X[1];  z[3]=X[2];  k=2;}
202     else              {z[1]=     TWO10;  z[2]=ZERO;  z[3]=X[1];  k=1;}
203   }
204   else {
205     if      (EX==-42) {z[1]=X[1]+TWO10;  z[2]=X[2];  k=3;}
206     else if (EX==-43) {z[1]=     TWO10;  z[2]=X[1];  k=2;}
207     else              {z[1]=     TWO10;  z[2]=ZERO;  k=1;}
208     z[3] = X[k];
209   }
210 
211   u = (z[3] + TWO57) - TWO57;
212   if  (u > z[3])   u -= TWO5;
213 
214   if (u==z[3]) {
215     for (i=k+1; i <= p; i++) {
216       if (X[i] == ZERO)   continue;
217       else {z[3] += ONE;   break; }
218     }
219   }
220 
221   c = X[0]*((z[1] + R*(z[2] + R*z[3])) - TWO10);
222 
223   *y = c*TWOM1032;
224   return;
225 
226 #undef R
227 }
228 
229 /* Convert a multiple precision number *x into a double precision number *y. */
230 /* The result is correctly rounded to the nearest/even. *x is left unchanged */
231 
232 void __mp_dbl(const mp_no *x, double *y, int p) {
233 #if 0
234   int i,k;
235   double a,c,u,v,z[5];
236 #endif
237 
238   if (X[0] == ZERO)  {*y = ZERO;  return; }
239 
240   if      (EX> -42)                 norm(x,y,p);
241   else if (EX==-42 && X[1]>=TWO10)  norm(x,y,p);
242   else                              denorm(x,y,p);
243 }
244 
245 
246 /* dbl_mp() converts a double precision number x into a multiple precision  */
247 /* number *y. If the precision p is too small the result is truncated. x is */
248 /* left unchanged.                                                          */
249 
250 void __dbl_mp(double x, mp_no *y, int p) {
251 
252   int i,n;
253   double u;
254 
255   /* Sign */
256   if      (x == ZERO)  {Y[0] = ZERO;  return; }
257   else if (x >  ZERO)   Y[0] = ONE;
258   else                 {Y[0] = MONE;  x=-x;   }
259 
260   /* Exponent */
261   for (EY=ONE; x >= RADIX; EY += ONE)   x *= RADIXI;
262   for (      ; x <  ONE;   EY -= ONE)   x *= RADIX;
263 
264   /* Digits */
265   n=MIN(p,4);
266   for (i=1; i<=n; i++) {
267     u = (x + TWO52) - TWO52;
268     if (u>x)   u -= ONE;
269     Y[i] = u;     x -= u;    x *= RADIX; }
270   for (   ; i<=p; i++)     Y[i] = ZERO;
271   return;
272 }
273 
274 
275 /*  add_magnitudes() adds the magnitudes of *x & *y assuming that           */
276 /*  abs(*x) >= abs(*y) > 0.                                                 */
277 /* The sign of the sum *z is undefined. x&y may overlap but not x&z or y&z. */
278 /* No guard digit is used. The result equals the exact sum, truncated.      */
279 /* *x & *y are left unchanged.                                              */
280 
281 static void add_magnitudes(const mp_no *x, const mp_no *y, mp_no *z, int p) {
282 
283   int i,j,k;
284 
285   EZ = EX;
286 
287   i=p;    j=p+ EY - EX;    k=p+1;
288 
289   if (j<1)
290      {__cpy(x,z,p);  return; }
291   else   Z[k] = ZERO;
292 
293   for (; j>0; i--,j--) {
294     Z[k] += X[i] + Y[j];
295     if (Z[k] >= RADIX) {
296       Z[k]  -= RADIX;
297       Z[--k] = ONE; }
298     else
299       Z[--k] = ZERO;
300   }
301 
302   for (; i>0; i--) {
303     Z[k] += X[i];
304     if (Z[k] >= RADIX) {
305       Z[k]  -= RADIX;
306       Z[--k] = ONE; }
307     else
308       Z[--k] = ZERO;
309   }
310 
311   if (Z[1] == ZERO) {
312     for (i=1; i<=p; i++)    Z[i] = Z[i+1]; }
313   else   EZ += ONE;
314 }
315 
316 
317 /*  sub_magnitudes() subtracts the magnitudes of *x & *y assuming that      */
318 /*  abs(*x) > abs(*y) > 0.                                                  */
319 /* The sign of the difference *z is undefined. x&y may overlap but not x&z  */
320 /* or y&z. One guard digit is used. The error is less than one ulp.         */
321 /* *x & *y are left unchanged.                                              */
322 
323 static void sub_magnitudes(const mp_no *x, const mp_no *y, mp_no *z, int p) {
324 
325   int i,j,k;
326 
327   EZ = EX;
328 
329   if (EX == EY) {
330     i=j=k=p;
331     Z[k] = Z[k+1] = ZERO; }
332   else {
333     j= EX - EY;
334     if (j > p)  {__cpy(x,z,p);  return; }
335     else {
336       i=p;   j=p+1-j;   k=p;
337       if (Y[j] > ZERO) {
338         Z[k+1] = RADIX - Y[j--];
339         Z[k]   = MONE; }
340       else {
341         Z[k+1] = ZERO;
342         Z[k]   = ZERO;   j--;}
343     }
344   }
345 
346   for (; j>0; i--,j--) {
347     Z[k] += (X[i] - Y[j]);
348     if (Z[k] < ZERO) {
349       Z[k]  += RADIX;
350       Z[--k] = MONE; }
351     else
352       Z[--k] = ZERO;
353   }
354 
355   for (; i>0; i--) {
356     Z[k] += X[i];
357     if (Z[k] < ZERO) {
358       Z[k]  += RADIX;
359       Z[--k] = MONE; }
360     else
361       Z[--k] = ZERO;
362   }
363 
364   for (i=1; Z[i] == ZERO; i++) ;
365   EZ = EZ - i + 1;
366   for (k=1; i <= p+1; )
367     Z[k++] = Z[i++];
368   for (; k <= p; )
369     Z[k++] = ZERO;
370 
371   return;
372 }
373 
374 
375 /* Add two multiple precision numbers. Set *z = *x + *y. x&y may overlap  */
376 /* but not x&z or y&z. One guard digit is used. The error is less than    */
377 /* one ulp. *x & *y are left unchanged.                                   */
378 
379 void __add(const mp_no *x, const mp_no *y, mp_no *z, int p) {
380 
381   int n;
382 
383   if      (X[0] == ZERO)     {__cpy(y,z,p);  return; }
384   else if (Y[0] == ZERO)     {__cpy(x,z,p);  return; }
385 
386   if (X[0] == Y[0])   {
387     if (__acr(x,y,p) > 0)      {add_magnitudes(x,y,z,p);  Z[0] = X[0]; }
388     else                     {add_magnitudes(y,x,z,p);  Z[0] = Y[0]; }
389   }
390   else                       {
391     if ((n=__acr(x,y,p)) == 1) {sub_magnitudes(x,y,z,p);  Z[0] = X[0]; }
392     else if (n == -1)        {sub_magnitudes(y,x,z,p);  Z[0] = Y[0]; }
393     else                      Z[0] = ZERO;
394   }
395   return;
396 }
397 
398 
399 /* Subtract two multiple precision numbers. *z is set to *x - *y. x&y may */
400 /* overlap but not x&z or y&z. One guard digit is used. The error is      */
401 /* less than one ulp. *x & *y are left unchanged.                         */
402 
403 void __sub(const mp_no *x, const mp_no *y, mp_no *z, int p) {
404 
405   int n;
406 
407   if      (X[0] == ZERO)     {__cpy(y,z,p);  Z[0] = -Z[0];  return; }
408   else if (Y[0] == ZERO)     {__cpy(x,z,p);                 return; }
409 
410   if (X[0] != Y[0])    {
411     if (__acr(x,y,p) > 0)      {add_magnitudes(x,y,z,p);  Z[0] =  X[0]; }
412     else                     {add_magnitudes(y,x,z,p);  Z[0] = -Y[0]; }
413   }
414   else                       {
415     if ((n=__acr(x,y,p)) == 1) {sub_magnitudes(x,y,z,p);  Z[0] =  X[0]; }
416     else if (n == -1)        {sub_magnitudes(y,x,z,p);  Z[0] = -Y[0]; }
417     else                      Z[0] = ZERO;
418   }
419   return;
420 }
421 
422 
423 /* Multiply two multiple precision numbers. *z is set to *x * *y. x&y      */
424 /* may overlap but not x&z or y&z. In case p=1,2,3 the exact result is     */
425 /* truncated to p digits. In case p>3 the error is bounded by 1.001 ulp.   */
426 /* *x & *y are left unchanged.                                             */
427 
428 void __mul(const mp_no *x, const mp_no *y, mp_no *z, int p) {
429 
430   int i, i1, i2, j, k, k2;
431   double u;
432 
433                       /* Is z=0? */
434   if (X[0]*Y[0]==ZERO)
435      { Z[0]=ZERO;  return; }
436 
437                        /* Multiply, add and carry */
438   k2 = (p<3) ? p+p : p+3;
439   Z[k2]=ZERO;
440   for (k=k2; k>1; ) {
441     if (k > p)  {i1=k-p; i2=p+1; }
442     else        {i1=1;   i2=k;   }
443     for (i=i1,j=i2-1; i<i2; i++,j--)  Z[k] += X[i]*Y[j];
444 
445     u = (Z[k] + CUTTER)-CUTTER;
446     if  (u > Z[k])  u -= RADIX;
447     Z[k]  -= u;
448     Z[--k] = u*RADIXI;
449   }
450 
451                  /* Is there a carry beyond the most significant digit? */
452   if (Z[1] == ZERO) {
453     for (i=1; i<=p; i++)  Z[i]=Z[i+1];
454     EZ = EX + EY - 1; }
455   else
456     EZ = EX + EY;
457 
458   Z[0] = X[0] * Y[0];
459   return;
460 }
461 
462 
463 /* Invert a multiple precision number. Set *y = 1 / *x.                     */
464 /* Relative error bound = 1.001*r**(1-p) for p=2, 1.063*r**(1-p) for p=3,   */
465 /* 2.001*r**(1-p) for p>3.                                                  */
466 /* *x=0 is not permissible. *x is left unchanged.                           */
467 
468 void __inv(const mp_no *x, mp_no *y, int p) {
469   int i;
470 #if 0
471   int l;
472 #endif
473   double t;
474   mp_no z,w;
475   static const int np1[] = {0,0,0,0,1,2,2,2,2,3,3,3,3,3,3,3,3,3,
476                             4,4,4,4,4,4,4,4,4,4,4,4,4,4,4};
477   const mp_no mptwo = {1,{1.0,2.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
478                          0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
479                          0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
480                          0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0}};
481 
482   __cpy(x,&z,p);  z.e=0;  __mp_dbl(&z,&t,p);
483   t=ONE/t;   __dbl_mp(t,y,p);    EY -= EX;
484 
485   for (i=0; i<np1[p]; i++) {
486     __cpy(y,&w,p);
487     __mul(x,&w,y,p);
488     __sub(&mptwo,y,&z,p);
489     __mul(&w,&z,y,p);
490   }
491   return;
492 }
493 
494 
495 /* Divide one multiple precision number by another.Set *z = *x / *y. *x & *y */
496 /* are left unchanged. x&y may overlap but not x&z or y&z.                   */
497 /* Relative error bound = 2.001*r**(1-p) for p=2, 2.063*r**(1-p) for p=3     */
498 /* and 3.001*r**(1-p) for p>3. *y=0 is not permissible.                      */
499 
500 void __dvd(const mp_no *x, const mp_no *y, mp_no *z, int p) {
501 
502   mp_no w;
503 
504   if (X[0] == ZERO)    Z[0] = ZERO;
505   else                {__inv(y,&w,p);   __mul(x,&w,z,p);}
506   return;
507 }
508