1*379f1467SIngo Weinhold
2*379f1467SIngo Weinhold /*
3*379f1467SIngo Weinhold * IBM Accurate Mathematical Library
4*379f1467SIngo Weinhold * written by International Business Machines Corp.
5*379f1467SIngo Weinhold * Copyright (C) 2001 Free Software Foundation
6*379f1467SIngo Weinhold *
7*379f1467SIngo Weinhold * This program is free software; you can redistribute it and/or modify
8*379f1467SIngo Weinhold * it under the terms of the GNU Lesser General Public License as published by
9*379f1467SIngo Weinhold * the Free Software Foundation; either version 2.1 of the License, or
10*379f1467SIngo Weinhold * (at your option) any later version.
11*379f1467SIngo Weinhold *
12*379f1467SIngo Weinhold * This program is distributed in the hope that it will be useful,
13*379f1467SIngo Weinhold * but WITHOUT ANY WARRANTY; without even the implied warranty of
14*379f1467SIngo Weinhold * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15*379f1467SIngo Weinhold * GNU Lesser General Public License for more details.
16*379f1467SIngo Weinhold *
17*379f1467SIngo Weinhold * You should have received a copy of the GNU Lesser General Public License
18*379f1467SIngo Weinhold * along with this program; if not, write to the Free Software
19*379f1467SIngo Weinhold * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
20*379f1467SIngo Weinhold */
21*379f1467SIngo Weinhold /************************************************************************/
22*379f1467SIngo Weinhold /* MODULE_NAME: mpa.c */
23*379f1467SIngo Weinhold /* */
24*379f1467SIngo Weinhold /* FUNCTIONS: */
25*379f1467SIngo Weinhold /* mcr */
26*379f1467SIngo Weinhold /* acr */
27*379f1467SIngo Weinhold /* cr */
28*379f1467SIngo Weinhold /* cpy */
29*379f1467SIngo Weinhold /* cpymn */
30*379f1467SIngo Weinhold /* norm */
31*379f1467SIngo Weinhold /* denorm */
32*379f1467SIngo Weinhold /* mp_dbl */
33*379f1467SIngo Weinhold /* dbl_mp */
34*379f1467SIngo Weinhold /* add_magnitudes */
35*379f1467SIngo Weinhold /* sub_magnitudes */
36*379f1467SIngo Weinhold /* add */
37*379f1467SIngo Weinhold /* sub */
38*379f1467SIngo Weinhold /* mul */
39*379f1467SIngo Weinhold /* inv */
40*379f1467SIngo Weinhold /* dvd */
41*379f1467SIngo Weinhold /* */
42*379f1467SIngo Weinhold /* Arithmetic functions for multiple precision numbers. */
43*379f1467SIngo Weinhold /* Relative errors are bounded */
44*379f1467SIngo Weinhold /************************************************************************/
45*379f1467SIngo Weinhold
46*379f1467SIngo Weinhold
47*379f1467SIngo Weinhold #include "endian.h"
48*379f1467SIngo Weinhold #include "mpa.h"
49*379f1467SIngo Weinhold #include "mpa2.h"
50*379f1467SIngo Weinhold /* mcr() compares the sizes of the mantissas of two multiple precision */
51*379f1467SIngo Weinhold /* numbers. Mantissas are compared regardless of the signs of the */
52*379f1467SIngo Weinhold /* numbers, even if x->d[0] or y->d[0] are zero. Exponents are also */
53*379f1467SIngo Weinhold /* disregarded. */
mcr(const mp_no * x,const mp_no * y,int p)54*379f1467SIngo Weinhold static int mcr(const mp_no *x, const mp_no *y, int p) {
55*379f1467SIngo Weinhold int i;
56*379f1467SIngo Weinhold for (i=1; i<=p; i++) {
57*379f1467SIngo Weinhold if (X[i] == Y[i]) continue;
58*379f1467SIngo Weinhold else if (X[i] > Y[i]) return 1;
59*379f1467SIngo Weinhold else return -1; }
60*379f1467SIngo Weinhold return 0;
61*379f1467SIngo Weinhold }
62*379f1467SIngo Weinhold
63*379f1467SIngo Weinhold
64*379f1467SIngo Weinhold
65*379f1467SIngo Weinhold /* acr() compares the absolute values of two multiple precision numbers */
__acr(const mp_no * x,const mp_no * y,int p)66*379f1467SIngo Weinhold int __acr(const mp_no *x, const mp_no *y, int p) {
67*379f1467SIngo Weinhold int i;
68*379f1467SIngo Weinhold
69*379f1467SIngo Weinhold if (X[0] == ZERO) {
70*379f1467SIngo Weinhold if (Y[0] == ZERO) i= 0;
71*379f1467SIngo Weinhold else i=-1;
72*379f1467SIngo Weinhold }
73*379f1467SIngo Weinhold else if (Y[0] == ZERO) i= 1;
74*379f1467SIngo Weinhold else {
75*379f1467SIngo Weinhold if (EX > EY) i= 1;
76*379f1467SIngo Weinhold else if (EX < EY) i=-1;
77*379f1467SIngo Weinhold else i= mcr(x,y,p);
78*379f1467SIngo Weinhold }
79*379f1467SIngo Weinhold
80*379f1467SIngo Weinhold return i;
81*379f1467SIngo Weinhold }
82*379f1467SIngo Weinhold
83*379f1467SIngo Weinhold
84*379f1467SIngo Weinhold /* cr90 compares the values of two multiple precision numbers */
__cr(const mp_no * x,const mp_no * y,int p)85*379f1467SIngo Weinhold int __cr(const mp_no *x, const mp_no *y, int p) {
86*379f1467SIngo Weinhold int i;
87*379f1467SIngo Weinhold
88*379f1467SIngo Weinhold if (X[0] > Y[0]) i= 1;
89*379f1467SIngo Weinhold else if (X[0] < Y[0]) i=-1;
90*379f1467SIngo Weinhold else if (X[0] < ZERO ) i= __acr(y,x,p);
91*379f1467SIngo Weinhold else i= __acr(x,y,p);
92*379f1467SIngo Weinhold
93*379f1467SIngo Weinhold return i;
94*379f1467SIngo Weinhold }
95*379f1467SIngo Weinhold
96*379f1467SIngo Weinhold
97*379f1467SIngo Weinhold /* Copy a multiple precision number. Set *y=*x. x=y is permissible. */
__cpy(const mp_no * x,mp_no * y,int p)98*379f1467SIngo Weinhold void __cpy(const mp_no *x, mp_no *y, int p) {
99*379f1467SIngo Weinhold int i;
100*379f1467SIngo Weinhold
101*379f1467SIngo Weinhold EY = EX;
102*379f1467SIngo Weinhold for (i=0; i <= p; i++) Y[i] = X[i];
103*379f1467SIngo Weinhold
104*379f1467SIngo Weinhold return;
105*379f1467SIngo Weinhold }
106*379f1467SIngo Weinhold
107*379f1467SIngo Weinhold
108*379f1467SIngo Weinhold /* Copy a multiple precision number x of precision m into a */
109*379f1467SIngo Weinhold /* multiple precision number y of precision n. In case n>m, */
110*379f1467SIngo Weinhold /* the digits of y beyond the m'th are set to zero. In case */
111*379f1467SIngo Weinhold /* n<m, the digits of x beyond the n'th are ignored. */
112*379f1467SIngo Weinhold /* x=y is permissible. */
113*379f1467SIngo Weinhold
__cpymn(const mp_no * x,int m,mp_no * y,int n)114*379f1467SIngo Weinhold void __cpymn(const mp_no *x, int m, mp_no *y, int n) {
115*379f1467SIngo Weinhold
116*379f1467SIngo Weinhold int i,k;
117*379f1467SIngo Weinhold
118*379f1467SIngo Weinhold EY = EX; k=MIN(m,n);
119*379f1467SIngo Weinhold for (i=0; i <= k; i++) Y[i] = X[i];
120*379f1467SIngo Weinhold for ( ; i <= n; i++) Y[i] = ZERO;
121*379f1467SIngo Weinhold
122*379f1467SIngo Weinhold return;
123*379f1467SIngo Weinhold }
124*379f1467SIngo Weinhold
125*379f1467SIngo Weinhold /* Convert a multiple precision number *x into a double precision */
126*379f1467SIngo Weinhold /* number *y, normalized case (|x| >= 2**(-1022))) */
norm(const mp_no * x,double * y,int p)127*379f1467SIngo Weinhold static void norm(const mp_no *x, double *y, int p)
128*379f1467SIngo Weinhold {
129*379f1467SIngo Weinhold #define R radixi.d
130*379f1467SIngo Weinhold int i;
131*379f1467SIngo Weinhold #if 0
132*379f1467SIngo Weinhold int k;
133*379f1467SIngo Weinhold #endif
134*379f1467SIngo Weinhold double a,c,u,v,z[5];
135*379f1467SIngo Weinhold if (p<5) {
136*379f1467SIngo Weinhold if (p==1) c = X[1];
137*379f1467SIngo Weinhold else if (p==2) c = X[1] + R* X[2];
138*379f1467SIngo Weinhold else if (p==3) c = X[1] + R*(X[2] + R* X[3]);
139*379f1467SIngo Weinhold else if (p==4) c =(X[1] + R* X[2]) + R*R*(X[3] + R*X[4]);
140*379f1467SIngo Weinhold }
141*379f1467SIngo Weinhold else {
142*379f1467SIngo Weinhold for (a=ONE, z[1]=X[1]; z[1] < TWO23; )
143*379f1467SIngo Weinhold {a *= TWO; z[1] *= TWO; }
144*379f1467SIngo Weinhold
145*379f1467SIngo Weinhold for (i=2; i<5; i++) {
146*379f1467SIngo Weinhold z[i] = X[i]*a;
147*379f1467SIngo Weinhold u = (z[i] + CUTTER)-CUTTER;
148*379f1467SIngo Weinhold if (u > z[i]) u -= RADIX;
149*379f1467SIngo Weinhold z[i] -= u;
150*379f1467SIngo Weinhold z[i-1] += u*RADIXI;
151*379f1467SIngo Weinhold }
152*379f1467SIngo Weinhold
153*379f1467SIngo Weinhold u = (z[3] + TWO71) - TWO71;
154*379f1467SIngo Weinhold if (u > z[3]) u -= TWO19;
155*379f1467SIngo Weinhold v = z[3]-u;
156*379f1467SIngo Weinhold
157*379f1467SIngo Weinhold if (v == TWO18) {
158*379f1467SIngo Weinhold if (z[4] == ZERO) {
159*379f1467SIngo Weinhold for (i=5; i <= p; i++) {
160*379f1467SIngo Weinhold if (X[i] == ZERO) continue;
161*379f1467SIngo Weinhold else {z[3] += ONE; break; }
162*379f1467SIngo Weinhold }
163*379f1467SIngo Weinhold }
164*379f1467SIngo Weinhold else z[3] += ONE;
165*379f1467SIngo Weinhold }
166*379f1467SIngo Weinhold
167*379f1467SIngo Weinhold c = (z[1] + R *(z[2] + R * z[3]))/a;
168*379f1467SIngo Weinhold }
169*379f1467SIngo Weinhold
170*379f1467SIngo Weinhold c *= X[0];
171*379f1467SIngo Weinhold
172*379f1467SIngo Weinhold for (i=1; i<EX; i++) c *= RADIX;
173*379f1467SIngo Weinhold for (i=1; i>EX; i--) c *= RADIXI;
174*379f1467SIngo Weinhold
175*379f1467SIngo Weinhold *y = c;
176*379f1467SIngo Weinhold return;
177*379f1467SIngo Weinhold #undef R
178*379f1467SIngo Weinhold }
179*379f1467SIngo Weinhold
180*379f1467SIngo Weinhold /* Convert a multiple precision number *x into a double precision */
181*379f1467SIngo Weinhold /* number *y, denormalized case (|x| < 2**(-1022))) */
denorm(const mp_no * x,double * y,int p)182*379f1467SIngo Weinhold static void denorm(const mp_no *x, double *y, int p)
183*379f1467SIngo Weinhold {
184*379f1467SIngo Weinhold int i,k;
185*379f1467SIngo Weinhold double c,u,z[5];
186*379f1467SIngo Weinhold #if 0
187*379f1467SIngo Weinhold double a,v;
188*379f1467SIngo Weinhold #endif
189*379f1467SIngo Weinhold
190*379f1467SIngo Weinhold #define R radixi.d
191*379f1467SIngo Weinhold if (EX<-44 || (EX==-44 && X[1]<TWO5))
192*379f1467SIngo Weinhold { *y=ZERO; return; }
193*379f1467SIngo Weinhold
194*379f1467SIngo Weinhold if (p==1) {
195*379f1467SIngo Weinhold if (EX==-42) {z[1]=X[1]+TWO10; z[2]=ZERO; z[3]=ZERO; k=3;}
196*379f1467SIngo Weinhold else if (EX==-43) {z[1]= TWO10; z[2]=X[1]; z[3]=ZERO; k=2;}
197*379f1467SIngo Weinhold else {z[1]= TWO10; z[2]=ZERO; z[3]=X[1]; k=1;}
198*379f1467SIngo Weinhold }
199*379f1467SIngo Weinhold else if (p==2) {
200*379f1467SIngo Weinhold if (EX==-42) {z[1]=X[1]+TWO10; z[2]=X[2]; z[3]=ZERO; k=3;}
201*379f1467SIngo Weinhold else if (EX==-43) {z[1]= TWO10; z[2]=X[1]; z[3]=X[2]; k=2;}
202*379f1467SIngo Weinhold else {z[1]= TWO10; z[2]=ZERO; z[3]=X[1]; k=1;}
203*379f1467SIngo Weinhold }
204*379f1467SIngo Weinhold else {
205*379f1467SIngo Weinhold if (EX==-42) {z[1]=X[1]+TWO10; z[2]=X[2]; k=3;}
206*379f1467SIngo Weinhold else if (EX==-43) {z[1]= TWO10; z[2]=X[1]; k=2;}
207*379f1467SIngo Weinhold else {z[1]= TWO10; z[2]=ZERO; k=1;}
208*379f1467SIngo Weinhold z[3] = X[k];
209*379f1467SIngo Weinhold }
210*379f1467SIngo Weinhold
211*379f1467SIngo Weinhold u = (z[3] + TWO57) - TWO57;
212*379f1467SIngo Weinhold if (u > z[3]) u -= TWO5;
213*379f1467SIngo Weinhold
214*379f1467SIngo Weinhold if (u==z[3]) {
215*379f1467SIngo Weinhold for (i=k+1; i <= p; i++) {
216*379f1467SIngo Weinhold if (X[i] == ZERO) continue;
217*379f1467SIngo Weinhold else {z[3] += ONE; break; }
218*379f1467SIngo Weinhold }
219*379f1467SIngo Weinhold }
220*379f1467SIngo Weinhold
221*379f1467SIngo Weinhold c = X[0]*((z[1] + R*(z[2] + R*z[3])) - TWO10);
222*379f1467SIngo Weinhold
223*379f1467SIngo Weinhold *y = c*TWOM1032;
224*379f1467SIngo Weinhold return;
225*379f1467SIngo Weinhold
226*379f1467SIngo Weinhold #undef R
227*379f1467SIngo Weinhold }
228*379f1467SIngo Weinhold
229*379f1467SIngo Weinhold /* Convert a multiple precision number *x into a double precision number *y. */
230*379f1467SIngo Weinhold /* The result is correctly rounded to the nearest/even. *x is left unchanged */
231*379f1467SIngo Weinhold
__mp_dbl(const mp_no * x,double * y,int p)232*379f1467SIngo Weinhold void __mp_dbl(const mp_no *x, double *y, int p) {
233*379f1467SIngo Weinhold #if 0
234*379f1467SIngo Weinhold int i,k;
235*379f1467SIngo Weinhold double a,c,u,v,z[5];
236*379f1467SIngo Weinhold #endif
237*379f1467SIngo Weinhold
238*379f1467SIngo Weinhold if (X[0] == ZERO) {*y = ZERO; return; }
239*379f1467SIngo Weinhold
240*379f1467SIngo Weinhold if (EX> -42) norm(x,y,p);
241*379f1467SIngo Weinhold else if (EX==-42 && X[1]>=TWO10) norm(x,y,p);
242*379f1467SIngo Weinhold else denorm(x,y,p);
243*379f1467SIngo Weinhold }
244*379f1467SIngo Weinhold
245*379f1467SIngo Weinhold
246*379f1467SIngo Weinhold /* dbl_mp() converts a double precision number x into a multiple precision */
247*379f1467SIngo Weinhold /* number *y. If the precision p is too small the result is truncated. x is */
248*379f1467SIngo Weinhold /* left unchanged. */
249*379f1467SIngo Weinhold
__dbl_mp(double x,mp_no * y,int p)250*379f1467SIngo Weinhold void __dbl_mp(double x, mp_no *y, int p) {
251*379f1467SIngo Weinhold
252*379f1467SIngo Weinhold int i,n;
253*379f1467SIngo Weinhold double u;
254*379f1467SIngo Weinhold
255*379f1467SIngo Weinhold /* Sign */
256*379f1467SIngo Weinhold if (x == ZERO) {Y[0] = ZERO; return; }
257*379f1467SIngo Weinhold else if (x > ZERO) Y[0] = ONE;
258*379f1467SIngo Weinhold else {Y[0] = MONE; x=-x; }
259*379f1467SIngo Weinhold
260*379f1467SIngo Weinhold /* Exponent */
261*379f1467SIngo Weinhold for (EY=ONE; x >= RADIX; EY += ONE) x *= RADIXI;
262*379f1467SIngo Weinhold for ( ; x < ONE; EY -= ONE) x *= RADIX;
263*379f1467SIngo Weinhold
264*379f1467SIngo Weinhold /* Digits */
265*379f1467SIngo Weinhold n=MIN(p,4);
266*379f1467SIngo Weinhold for (i=1; i<=n; i++) {
267*379f1467SIngo Weinhold u = (x + TWO52) - TWO52;
268*379f1467SIngo Weinhold if (u>x) u -= ONE;
269*379f1467SIngo Weinhold Y[i] = u; x -= u; x *= RADIX; }
270*379f1467SIngo Weinhold for ( ; i<=p; i++) Y[i] = ZERO;
271*379f1467SIngo Weinhold return;
272*379f1467SIngo Weinhold }
273*379f1467SIngo Weinhold
274*379f1467SIngo Weinhold
275*379f1467SIngo Weinhold /* add_magnitudes() adds the magnitudes of *x & *y assuming that */
276*379f1467SIngo Weinhold /* abs(*x) >= abs(*y) > 0. */
277*379f1467SIngo Weinhold /* The sign of the sum *z is undefined. x&y may overlap but not x&z or y&z. */
278*379f1467SIngo Weinhold /* No guard digit is used. The result equals the exact sum, truncated. */
279*379f1467SIngo Weinhold /* *x & *y are left unchanged. */
280*379f1467SIngo Weinhold
add_magnitudes(const mp_no * x,const mp_no * y,mp_no * z,int p)281*379f1467SIngo Weinhold static void add_magnitudes(const mp_no *x, const mp_no *y, mp_no *z, int p) {
282*379f1467SIngo Weinhold
283*379f1467SIngo Weinhold int i,j,k;
284*379f1467SIngo Weinhold
285*379f1467SIngo Weinhold EZ = EX;
286*379f1467SIngo Weinhold
287*379f1467SIngo Weinhold i=p; j=p+ EY - EX; k=p+1;
288*379f1467SIngo Weinhold
289*379f1467SIngo Weinhold if (j<1)
290*379f1467SIngo Weinhold {__cpy(x,z,p); return; }
291*379f1467SIngo Weinhold else Z[k] = ZERO;
292*379f1467SIngo Weinhold
293*379f1467SIngo Weinhold for (; j>0; i--,j--) {
294*379f1467SIngo Weinhold Z[k] += X[i] + Y[j];
295*379f1467SIngo Weinhold if (Z[k] >= RADIX) {
296*379f1467SIngo Weinhold Z[k] -= RADIX;
297*379f1467SIngo Weinhold Z[--k] = ONE; }
298*379f1467SIngo Weinhold else
299*379f1467SIngo Weinhold Z[--k] = ZERO;
300*379f1467SIngo Weinhold }
301*379f1467SIngo Weinhold
302*379f1467SIngo Weinhold for (; i>0; i--) {
303*379f1467SIngo Weinhold Z[k] += X[i];
304*379f1467SIngo Weinhold if (Z[k] >= RADIX) {
305*379f1467SIngo Weinhold Z[k] -= RADIX;
306*379f1467SIngo Weinhold Z[--k] = ONE; }
307*379f1467SIngo Weinhold else
308*379f1467SIngo Weinhold Z[--k] = ZERO;
309*379f1467SIngo Weinhold }
310*379f1467SIngo Weinhold
311*379f1467SIngo Weinhold if (Z[1] == ZERO) {
312*379f1467SIngo Weinhold for (i=1; i<=p; i++) Z[i] = Z[i+1]; }
313*379f1467SIngo Weinhold else EZ += ONE;
314*379f1467SIngo Weinhold }
315*379f1467SIngo Weinhold
316*379f1467SIngo Weinhold
317*379f1467SIngo Weinhold /* sub_magnitudes() subtracts the magnitudes of *x & *y assuming that */
318*379f1467SIngo Weinhold /* abs(*x) > abs(*y) > 0. */
319*379f1467SIngo Weinhold /* The sign of the difference *z is undefined. x&y may overlap but not x&z */
320*379f1467SIngo Weinhold /* or y&z. One guard digit is used. The error is less than one ulp. */
321*379f1467SIngo Weinhold /* *x & *y are left unchanged. */
322*379f1467SIngo Weinhold
sub_magnitudes(const mp_no * x,const mp_no * y,mp_no * z,int p)323*379f1467SIngo Weinhold static void sub_magnitudes(const mp_no *x, const mp_no *y, mp_no *z, int p) {
324*379f1467SIngo Weinhold
325*379f1467SIngo Weinhold int i,j,k;
326*379f1467SIngo Weinhold
327*379f1467SIngo Weinhold EZ = EX;
328*379f1467SIngo Weinhold
329*379f1467SIngo Weinhold if (EX == EY) {
330*379f1467SIngo Weinhold i=j=k=p;
331*379f1467SIngo Weinhold Z[k] = Z[k+1] = ZERO; }
332*379f1467SIngo Weinhold else {
333*379f1467SIngo Weinhold j= EX - EY;
334*379f1467SIngo Weinhold if (j > p) {__cpy(x,z,p); return; }
335*379f1467SIngo Weinhold else {
336*379f1467SIngo Weinhold i=p; j=p+1-j; k=p;
337*379f1467SIngo Weinhold if (Y[j] > ZERO) {
338*379f1467SIngo Weinhold Z[k+1] = RADIX - Y[j--];
339*379f1467SIngo Weinhold Z[k] = MONE; }
340*379f1467SIngo Weinhold else {
341*379f1467SIngo Weinhold Z[k+1] = ZERO;
342*379f1467SIngo Weinhold Z[k] = ZERO; j--;}
343*379f1467SIngo Weinhold }
344*379f1467SIngo Weinhold }
345*379f1467SIngo Weinhold
346*379f1467SIngo Weinhold for (; j>0; i--,j--) {
347*379f1467SIngo Weinhold Z[k] += (X[i] - Y[j]);
348*379f1467SIngo Weinhold if (Z[k] < ZERO) {
349*379f1467SIngo Weinhold Z[k] += RADIX;
350*379f1467SIngo Weinhold Z[--k] = MONE; }
351*379f1467SIngo Weinhold else
352*379f1467SIngo Weinhold Z[--k] = ZERO;
353*379f1467SIngo Weinhold }
354*379f1467SIngo Weinhold
355*379f1467SIngo Weinhold for (; i>0; i--) {
356*379f1467SIngo Weinhold Z[k] += X[i];
357*379f1467SIngo Weinhold if (Z[k] < ZERO) {
358*379f1467SIngo Weinhold Z[k] += RADIX;
359*379f1467SIngo Weinhold Z[--k] = MONE; }
360*379f1467SIngo Weinhold else
361*379f1467SIngo Weinhold Z[--k] = ZERO;
362*379f1467SIngo Weinhold }
363*379f1467SIngo Weinhold
364*379f1467SIngo Weinhold for (i=1; Z[i] == ZERO; i++) ;
365*379f1467SIngo Weinhold EZ = EZ - i + 1;
366*379f1467SIngo Weinhold for (k=1; i <= p+1; )
367*379f1467SIngo Weinhold Z[k++] = Z[i++];
368*379f1467SIngo Weinhold for (; k <= p; )
369*379f1467SIngo Weinhold Z[k++] = ZERO;
370*379f1467SIngo Weinhold
371*379f1467SIngo Weinhold return;
372*379f1467SIngo Weinhold }
373*379f1467SIngo Weinhold
374*379f1467SIngo Weinhold
375*379f1467SIngo Weinhold /* Add two multiple precision numbers. Set *z = *x + *y. x&y may overlap */
376*379f1467SIngo Weinhold /* but not x&z or y&z. One guard digit is used. The error is less than */
377*379f1467SIngo Weinhold /* one ulp. *x & *y are left unchanged. */
378*379f1467SIngo Weinhold
__add(const mp_no * x,const mp_no * y,mp_no * z,int p)379*379f1467SIngo Weinhold void __add(const mp_no *x, const mp_no *y, mp_no *z, int p) {
380*379f1467SIngo Weinhold
381*379f1467SIngo Weinhold int n;
382*379f1467SIngo Weinhold
383*379f1467SIngo Weinhold if (X[0] == ZERO) {__cpy(y,z,p); return; }
384*379f1467SIngo Weinhold else if (Y[0] == ZERO) {__cpy(x,z,p); return; }
385*379f1467SIngo Weinhold
386*379f1467SIngo Weinhold if (X[0] == Y[0]) {
387*379f1467SIngo Weinhold if (__acr(x,y,p) > 0) {add_magnitudes(x,y,z,p); Z[0] = X[0]; }
388*379f1467SIngo Weinhold else {add_magnitudes(y,x,z,p); Z[0] = Y[0]; }
389*379f1467SIngo Weinhold }
390*379f1467SIngo Weinhold else {
391*379f1467SIngo Weinhold if ((n=__acr(x,y,p)) == 1) {sub_magnitudes(x,y,z,p); Z[0] = X[0]; }
392*379f1467SIngo Weinhold else if (n == -1) {sub_magnitudes(y,x,z,p); Z[0] = Y[0]; }
393*379f1467SIngo Weinhold else Z[0] = ZERO;
394*379f1467SIngo Weinhold }
395*379f1467SIngo Weinhold return;
396*379f1467SIngo Weinhold }
397*379f1467SIngo Weinhold
398*379f1467SIngo Weinhold
399*379f1467SIngo Weinhold /* Subtract two multiple precision numbers. *z is set to *x - *y. x&y may */
400*379f1467SIngo Weinhold /* overlap but not x&z or y&z. One guard digit is used. The error is */
401*379f1467SIngo Weinhold /* less than one ulp. *x & *y are left unchanged. */
402*379f1467SIngo Weinhold
__sub(const mp_no * x,const mp_no * y,mp_no * z,int p)403*379f1467SIngo Weinhold void __sub(const mp_no *x, const mp_no *y, mp_no *z, int p) {
404*379f1467SIngo Weinhold
405*379f1467SIngo Weinhold int n;
406*379f1467SIngo Weinhold
407*379f1467SIngo Weinhold if (X[0] == ZERO) {__cpy(y,z,p); Z[0] = -Z[0]; return; }
408*379f1467SIngo Weinhold else if (Y[0] == ZERO) {__cpy(x,z,p); return; }
409*379f1467SIngo Weinhold
410*379f1467SIngo Weinhold if (X[0] != Y[0]) {
411*379f1467SIngo Weinhold if (__acr(x,y,p) > 0) {add_magnitudes(x,y,z,p); Z[0] = X[0]; }
412*379f1467SIngo Weinhold else {add_magnitudes(y,x,z,p); Z[0] = -Y[0]; }
413*379f1467SIngo Weinhold }
414*379f1467SIngo Weinhold else {
415*379f1467SIngo Weinhold if ((n=__acr(x,y,p)) == 1) {sub_magnitudes(x,y,z,p); Z[0] = X[0]; }
416*379f1467SIngo Weinhold else if (n == -1) {sub_magnitudes(y,x,z,p); Z[0] = -Y[0]; }
417*379f1467SIngo Weinhold else Z[0] = ZERO;
418*379f1467SIngo Weinhold }
419*379f1467SIngo Weinhold return;
420*379f1467SIngo Weinhold }
421*379f1467SIngo Weinhold
422*379f1467SIngo Weinhold
423*379f1467SIngo Weinhold /* Multiply two multiple precision numbers. *z is set to *x * *y. x&y */
424*379f1467SIngo Weinhold /* may overlap but not x&z or y&z. In case p=1,2,3 the exact result is */
425*379f1467SIngo Weinhold /* truncated to p digits. In case p>3 the error is bounded by 1.001 ulp. */
426*379f1467SIngo Weinhold /* *x & *y are left unchanged. */
427*379f1467SIngo Weinhold
__mul(const mp_no * x,const mp_no * y,mp_no * z,int p)428*379f1467SIngo Weinhold void __mul(const mp_no *x, const mp_no *y, mp_no *z, int p) {
429*379f1467SIngo Weinhold
430*379f1467SIngo Weinhold int i, i1, i2, j, k, k2;
431*379f1467SIngo Weinhold double u;
432*379f1467SIngo Weinhold
433*379f1467SIngo Weinhold /* Is z=0? */
434*379f1467SIngo Weinhold if (X[0]*Y[0]==ZERO)
435*379f1467SIngo Weinhold { Z[0]=ZERO; return; }
436*379f1467SIngo Weinhold
437*379f1467SIngo Weinhold /* Multiply, add and carry */
438*379f1467SIngo Weinhold k2 = (p<3) ? p+p : p+3;
439*379f1467SIngo Weinhold Z[k2]=ZERO;
440*379f1467SIngo Weinhold for (k=k2; k>1; ) {
441*379f1467SIngo Weinhold if (k > p) {i1=k-p; i2=p+1; }
442*379f1467SIngo Weinhold else {i1=1; i2=k; }
443*379f1467SIngo Weinhold for (i=i1,j=i2-1; i<i2; i++,j--) Z[k] += X[i]*Y[j];
444*379f1467SIngo Weinhold
445*379f1467SIngo Weinhold u = (Z[k] + CUTTER)-CUTTER;
446*379f1467SIngo Weinhold if (u > Z[k]) u -= RADIX;
447*379f1467SIngo Weinhold Z[k] -= u;
448*379f1467SIngo Weinhold Z[--k] = u*RADIXI;
449*379f1467SIngo Weinhold }
450*379f1467SIngo Weinhold
451*379f1467SIngo Weinhold /* Is there a carry beyond the most significant digit? */
452*379f1467SIngo Weinhold if (Z[1] == ZERO) {
453*379f1467SIngo Weinhold for (i=1; i<=p; i++) Z[i]=Z[i+1];
454*379f1467SIngo Weinhold EZ = EX + EY - 1; }
455*379f1467SIngo Weinhold else
456*379f1467SIngo Weinhold EZ = EX + EY;
457*379f1467SIngo Weinhold
458*379f1467SIngo Weinhold Z[0] = X[0] * Y[0];
459*379f1467SIngo Weinhold return;
460*379f1467SIngo Weinhold }
461*379f1467SIngo Weinhold
462*379f1467SIngo Weinhold
463*379f1467SIngo Weinhold /* Invert a multiple precision number. Set *y = 1 / *x. */
464*379f1467SIngo Weinhold /* Relative error bound = 1.001*r**(1-p) for p=2, 1.063*r**(1-p) for p=3, */
465*379f1467SIngo Weinhold /* 2.001*r**(1-p) for p>3. */
466*379f1467SIngo Weinhold /* *x=0 is not permissible. *x is left unchanged. */
467*379f1467SIngo Weinhold
__inv(const mp_no * x,mp_no * y,int p)468*379f1467SIngo Weinhold void __inv(const mp_no *x, mp_no *y, int p) {
469*379f1467SIngo Weinhold int i;
470*379f1467SIngo Weinhold #if 0
471*379f1467SIngo Weinhold int l;
472*379f1467SIngo Weinhold #endif
473*379f1467SIngo Weinhold double t;
474*379f1467SIngo Weinhold mp_no z,w;
475*379f1467SIngo Weinhold static const int np1[] = {0,0,0,0,1,2,2,2,2,3,3,3,3,3,3,3,3,3,
476*379f1467SIngo Weinhold 4,4,4,4,4,4,4,4,4,4,4,4,4,4,4};
477*379f1467SIngo Weinhold const mp_no mptwo = {1,{1.0,2.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
478*379f1467SIngo Weinhold 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
479*379f1467SIngo Weinhold 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,
480*379f1467SIngo Weinhold 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0}};
481*379f1467SIngo Weinhold
482*379f1467SIngo Weinhold __cpy(x,&z,p); z.e=0; __mp_dbl(&z,&t,p);
483*379f1467SIngo Weinhold t=ONE/t; __dbl_mp(t,y,p); EY -= EX;
484*379f1467SIngo Weinhold
485*379f1467SIngo Weinhold for (i=0; i<np1[p]; i++) {
486*379f1467SIngo Weinhold __cpy(y,&w,p);
487*379f1467SIngo Weinhold __mul(x,&w,y,p);
488*379f1467SIngo Weinhold __sub(&mptwo,y,&z,p);
489*379f1467SIngo Weinhold __mul(&w,&z,y,p);
490*379f1467SIngo Weinhold }
491*379f1467SIngo Weinhold return;
492*379f1467SIngo Weinhold }
493*379f1467SIngo Weinhold
494*379f1467SIngo Weinhold
495*379f1467SIngo Weinhold /* Divide one multiple precision number by another.Set *z = *x / *y. *x & *y */
496*379f1467SIngo Weinhold /* are left unchanged. x&y may overlap but not x&z or y&z. */
497*379f1467SIngo Weinhold /* Relative error bound = 2.001*r**(1-p) for p=2, 2.063*r**(1-p) for p=3 */
498*379f1467SIngo Weinhold /* and 3.001*r**(1-p) for p>3. *y=0 is not permissible. */
499*379f1467SIngo Weinhold
__dvd(const mp_no * x,const mp_no * y,mp_no * z,int p)500*379f1467SIngo Weinhold void __dvd(const mp_no *x, const mp_no *y, mp_no *z, int p) {
501*379f1467SIngo Weinhold
502*379f1467SIngo Weinhold mp_no w;
503*379f1467SIngo Weinhold
504*379f1467SIngo Weinhold if (X[0] == ZERO) Z[0] = ZERO;
505*379f1467SIngo Weinhold else {__inv(y,&w,p); __mul(x,&w,z,p);}
506*379f1467SIngo Weinhold return;
507*379f1467SIngo Weinhold }
508