xref: /haiku/src/system/libroot/posix/crypt/pbkdf2.cpp (revision c237c4ce593ee823d9867fd997e51e4c447f5623)
1 /* This file is distributed under the following terms:
2 
3  * Copyright 2005-2014 Colin Percival.  All rights reserved.
4  * Copyright 2014 Sean Kelly.  All rights reserved.
5 
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1. Redistributions of source code must retain the above copyright
10  *    notice, this list of conditions and the following disclaimer.
11  * 2. Redistributions in binary form must reproduce the above copyright
12  *    notice, this list of conditions and the following disclaimer in the
13  *    documentation and/or other materials provided with the distribution.
14  *
15  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25  * SUCH DAMAGE.
26  */
27 
28 #include <assert.h>
29 #include <stdint.h>
30 #include <string.h>
31 #include <ByteOrder.h>
32 
33 #include "pbkdf2.h"
34 
35 /* Function which does the zeroing. */
36 static void
37 insecure_memzero_func(volatile void * buf, size_t len)
38 {
39 	volatile uint8_t * _buf = (volatile uint8_t *)buf;
40 	size_t i;
41 
42 	for (i = 0; i < len; i++)
43 		_buf[i] = 0;
44 }
45 
46 /* Pointer to memory-zeroing function. */
47 void (* volatile insecure_memzero_ptr)(volatile void *, size_t) =
48     insecure_memzero_func;
49 
50 /**
51  * HMAC_SHA256_Init(ctx, K, Klen):
52  * Initialize the HMAC-SHA256 context ${ctx} with ${Klen} bytes of key from
53  * ${K}.
54  */
55 void
56 HMAC_SHA256_Init(HMAC_SHA256_CTX * ctx, const void * _K, size_t Klen)
57 {
58 	uint8_t pad[64];
59 	uint8_t khash[32];
60 	const uint8_t * K = (const uint8_t *)_K;
61 	size_t i;
62 
63 	/* If Klen > 64, the key is really SHA256(K). */
64 	if (Klen > 64) {
65 		ctx->ictx.Init();
66 		ctx->ictx.Update(K, Klen);
67 		memcpy(khash, ctx->ictx.Digest(), 32);
68 		K = khash;
69 		Klen = 32;
70 	}
71 
72 	/* Inner SHA256 operation is SHA256(K xor [block of 0x36] || data). */
73 	ctx->ictx.Init();
74 	memset(pad, 0x36, 64);
75 	for (i = 0; i < Klen; i++)
76 		pad[i] ^= K[i];
77 	ctx->ictx.Update(pad, 64);
78 
79 	/* Outer SHA256 operation is SHA256(K xor [block of 0x5c] || hash). */
80 	ctx->octx.Init();
81 	memset(pad, 0x5c, 64);
82 	for (i = 0; i < Klen; i++)
83 		pad[i] ^= K[i];
84 	ctx->octx.Update(pad, 64);
85 
86 	/* Clean the stack. */
87 	insecure_memzero(khash, 32);
88 	insecure_memzero(pad, 64);
89 }
90 
91 /**
92  * HMAC_SHA256_Update(ctx, in, len):
93  * Input ${len} bytes from ${in} into the HMAC-SHA256 context ${ctx}.
94  */
95 void
96 HMAC_SHA256_Update(HMAC_SHA256_CTX * ctx, const void * in, size_t len)
97 {
98 
99 	/* Feed data to the inner SHA256 operation. */
100 	ctx->ictx.Update(in, len);
101 }
102 
103 /**
104  * HMAC_SHA256_Final(digest, ctx):
105  * Output the HMAC-SHA256 of the data input to the context ${ctx} into the
106  * buffer ${digest}.
107  */
108 void
109 HMAC_SHA256_Final(uint8_t digest[32], HMAC_SHA256_CTX * ctx)
110 {
111 	uint8_t ihash[32];
112 
113 	/* Finish the inner SHA256 operation. */
114 	memcpy(ihash, ctx->ictx.Digest(), 32);
115 
116 	/* Feed the inner hash to the outer SHA256 operation. */
117 	ctx->octx.Update(ihash, 32);
118 
119 	/* Finish the outer SHA256 operation. */
120 	memcpy(digest, ctx->octx.Digest(), 32);
121 
122 	/* Clean the stack. */
123 	insecure_memzero(ihash, 32);
124 }
125 
126 /**
127  * PBKDF2_SHA256(passwd, passwdlen, salt, saltlen, c, buf, dkLen):
128  * Compute PBKDF2(passwd, salt, c, dkLen) using HMAC-SHA256 as the PRF, and
129  * write the output to buf.  The value dkLen must be at most 32 * (2^32 - 1).
130  */
131 void
132 PBKDF2_SHA256(const uint8_t * passwd, size_t passwdlen, const uint8_t * salt,
133     size_t saltlen, uint64_t c, uint8_t * buf, size_t dkLen)
134 {
135 	HMAC_SHA256_CTX PShctx, hctx;
136 	size_t i;
137 	uint32_t ivec;
138 	uint8_t U[32];
139 	uint8_t T[32];
140 	uint64_t j;
141 	int k;
142 	size_t clen;
143 
144 	/* Sanity-check. */
145 	assert(dkLen <= 32 * (size_t)(UINT32_MAX));
146 
147 	/* Compute HMAC state after processing P and S. */
148 	HMAC_SHA256_Init(&PShctx, passwd, passwdlen);
149 	HMAC_SHA256_Update(&PShctx, salt, saltlen);
150 
151 	/* Iterate through the blocks. */
152 	for (i = 0; i * 32 < dkLen; i++) {
153 		/* Generate INT(i + 1). */
154 		ivec = B_HOST_TO_BENDIAN_INT32((uint32_t)(i + 1));
155 
156 		/* Compute U_1 = PRF(P, S || INT(i)). */
157 		memcpy(&hctx, &PShctx, sizeof(HMAC_SHA256_CTX));
158 		HMAC_SHA256_Update(&hctx, &ivec, 4);
159 		HMAC_SHA256_Final(U, &hctx);
160 
161 		/* T_i = U_1 ... */
162 		memcpy(T, U, 32);
163 
164 		for (j = 2; j <= c; j++) {
165 			/* Compute U_j. */
166 			HMAC_SHA256_Init(&hctx, passwd, passwdlen);
167 			HMAC_SHA256_Update(&hctx, U, 32);
168 			HMAC_SHA256_Final(U, &hctx);
169 
170 			/* ... xor U_j ... */
171 			for (k = 0; k < 32; k++)
172 				T[k] ^= U[k];
173 		}
174 
175 		/* Copy as many bytes as necessary into buf. */
176 		clen = dkLen - i * 32;
177 		if (clen > 32)
178 			clen = 32;
179 		memcpy(&buf[i * 32], T, clen);
180 	}
181 
182 	/* Clean PShctx, since we never called _Final on it. */
183 	insecure_memzero(&PShctx, sizeof(HMAC_SHA256_CTX));
184 }
185