xref: /haiku/src/system/libroot/os/arch/sparc/fpu_explode.c (revision c237c4ce593ee823d9867fd997e51e4c447f5623)
1 /*
2  * Copyright (c) 1992, 1993
3  *	The Regents of the University of California.  All rights reserved.
4  *
5  * This software was developed by the Computer Systems Engineering group
6  * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
7  * contributed to Berkeley.
8  *
9  * All advertising materials mentioning features or use of this software
10  * must display the following acknowledgement:
11  *	This product includes software developed by the University of
12  *	California, Lawrence Berkeley Laboratory.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)fpu_explode.c	8.1 (Berkeley) 6/11/93
39  *	$NetBSD: fpu_explode.c,v 1.5 2000/08/03 18:32:08 eeh Exp $
40  */
41 
42 #include <sys/cdefs.h>
43 
44 /*
45  * FPU subroutines: `explode' the machine's `packed binary' format numbers
46  * into our internal format.
47  */
48 
49 #include <sys/param.h>
50 
51 #ifdef FPU_DEBUG
52 #include <stdio.h>
53 #endif
54 
55 #include "fsr.h"
56 
57 #include "fpu_arith.h"
58 #include "fpu_emu.h"
59 #include "fpu_extern.h"
60 #include "ieee.h"
61 #include "instr.h"
62 
63 
64 #ifdef _KERNEL_MODE
65 extern void panic(const char*, ...);
66 #else
67 #include <OS.h>
68 #endif
69 
70 /*
71  * N.B.: in all of the following, we assume the FP format is
72  *
73  *	---------------------------
74  *	| s | exponent | fraction |
75  *	---------------------------
76  *
77  * (which represents -1**s * 1.fraction * 2**exponent), so that the
78  * sign bit is way at the top (bit 31), the exponent is next, and
79  * then the remaining bits mark the fraction.  A zero exponent means
80  * zero or denormalized (0.fraction rather than 1.fraction), and the
81  * maximum possible exponent, 2bias+1, signals inf (fraction==0) or NaN.
82  *
83  * Since the sign bit is always the topmost bit---this holds even for
84  * integers---we set that outside all the *tof functions.  Each function
85  * returns the class code for the new number (but note that we use
86  * FPC_QNAN for all NaNs; fpu_explode will fix this if appropriate).
87  */
88 
89 /*
90  * int -> fpn.
91  */
92 int
93 __fpu_itof(fp, i)
94 	struct fpn *fp;
95 	uint32_t i;
96 {
97 
98 	if (i == 0)
99 		return (FPC_ZERO);
100 	/*
101 	 * The value FP_1 represents 2^FP_LG, so set the exponent
102 	 * there and let normalization fix it up.  Convert negative
103 	 * numbers to sign-and-magnitude.  Note that this relies on
104 	 * fpu_norm()'s handling of `supernormals'; see fpu_subr.c.
105 	 */
106 	fp->fp_exp = FP_LG;
107 	/*
108 	 * The sign bit decides whether i should be interpreted as
109 	 * a signed or unsigned entity.
110 	 */
111 	if (fp->fp_sign && (int)i < 0)
112 		fp->fp_mant[0] = -i;
113 	else
114 		fp->fp_mant[0] = i;
115 	fp->fp_mant[1] = 0;
116 	fp->fp_mant[2] = 0;
117 	fp->fp_mant[3] = 0;
118 	__fpu_norm(fp);
119 	return (FPC_NUM);
120 }
121 
122 /*
123  * 64-bit int -> fpn.
124  */
125 int
126 __fpu_xtof(fp, i)
127 	struct fpn *fp;
128 	uint64_t i;
129 {
130 
131 	if (i == 0)
132 		return (FPC_ZERO);
133 	/*
134 	 * The value FP_1 represents 2^FP_LG, so set the exponent
135 	 * there and let normalization fix it up.  Convert negative
136 	 * numbers to sign-and-magnitude.  Note that this relies on
137 	 * fpu_norm()'s handling of `supernormals'; see fpu_subr.c.
138 	 */
139 	fp->fp_exp = FP_LG2;
140 	/*
141 	 * The sign bit decides whether i should be interpreted as
142 	 * a signed or unsigned entity.
143 	 */
144 	if (fp->fp_sign && (int64_t)i < 0)
145 		*((int64_t *)fp->fp_mant) = -i;
146 	else
147 		*((int64_t *)fp->fp_mant) = i;
148 	fp->fp_mant[2] = 0;
149 	fp->fp_mant[3] = 0;
150 	__fpu_norm(fp);
151 	return (FPC_NUM);
152 }
153 
154 #define	mask(nbits) ((1L << (nbits)) - 1)
155 
156 /*
157  * All external floating formats convert to internal in the same manner,
158  * as defined here.  Note that only normals get an implied 1.0 inserted.
159  */
160 #define	FP_TOF(exp, expbias, allfrac, f0, f1, f2, f3) \
161 	if (exp == 0) { \
162 		if (allfrac == 0) \
163 			return (FPC_ZERO); \
164 		fp->fp_exp = 1 - expbias; \
165 		fp->fp_mant[0] = f0; \
166 		fp->fp_mant[1] = f1; \
167 		fp->fp_mant[2] = f2; \
168 		fp->fp_mant[3] = f3; \
169 		__fpu_norm(fp); \
170 		return (FPC_NUM); \
171 	} \
172 	if (exp == (2 * expbias + 1)) { \
173 		if (allfrac == 0) \
174 			return (FPC_INF); \
175 		fp->fp_mant[0] = f0; \
176 		fp->fp_mant[1] = f1; \
177 		fp->fp_mant[2] = f2; \
178 		fp->fp_mant[3] = f3; \
179 		return (FPC_QNAN); \
180 	} \
181 	fp->fp_exp = exp - expbias; \
182 	fp->fp_mant[0] = FP_1 | f0; \
183 	fp->fp_mant[1] = f1; \
184 	fp->fp_mant[2] = f2; \
185 	fp->fp_mant[3] = f3; \
186 	return (FPC_NUM)
187 
188 /*
189  * 32-bit single precision -> fpn.
190  * We assume a single occupies at most (64-FP_LG) bits in the internal
191  * format: i.e., needs at most fp_mant[0] and fp_mant[1].
192  */
193 int
194 __fpu_stof(fp, i)
195 	struct fpn *fp;
196 	uint32_t i;
197 {
198 	int exp;
199 	uint32_t frac, f0, f1;
200 #define SNG_SHIFT (SNG_FRACBITS - FP_LG)
201 
202 	exp = (i >> (32 - 1 - SNG_EXPBITS)) & mask(SNG_EXPBITS);
203 	frac = i & mask(SNG_FRACBITS);
204 	f0 = frac >> SNG_SHIFT;
205 	f1 = frac << (32 - SNG_SHIFT);
206 	FP_TOF(exp, SNG_EXP_BIAS, frac, f0, f1, 0, 0);
207 }
208 
209 /*
210  * 64-bit double -> fpn.
211  * We assume this uses at most (96-FP_LG) bits.
212  */
213 int
214 __fpu_dtof(fp, i, j)
215 	struct fpn *fp;
216 	uint32_t i, j;
217 {
218 	int exp;
219 	uint32_t frac, f0, f1, f2;
220 #define DBL_SHIFT (DBL_FRACBITS - 32 - FP_LG)
221 
222 	exp = (i >> (32 - 1 - DBL_EXPBITS)) & mask(DBL_EXPBITS);
223 	frac = i & mask(DBL_FRACBITS - 32);
224 	f0 = frac >> DBL_SHIFT;
225 	f1 = (frac << (32 - DBL_SHIFT)) | (j >> DBL_SHIFT);
226 	f2 = j << (32 - DBL_SHIFT);
227 	frac |= j;
228 	FP_TOF(exp, DBL_EXP_BIAS, frac, f0, f1, f2, 0);
229 }
230 
231 /*
232  * 128-bit extended -> fpn.
233  */
234 int
235 __fpu_qtof(fp, i, j, k, l)
236 	struct fpn *fp;
237 	uint32_t i, j, k, l;
238 {
239 	int exp;
240 	uint32_t frac, f0, f1, f2, f3;
241 #define EXT_SHIFT (-(EXT_FRACBITS - 3 * 32 - FP_LG))	/* left shift! */
242 
243 	/*
244 	 * Note that ext and fpn `line up', hence no shifting needed.
245 	 */
246 	exp = (i >> (32 - 1 - EXT_EXPBITS)) & mask(EXT_EXPBITS);
247 	frac = i & mask(EXT_FRACBITS - 3 * 32);
248 	f0 = (frac << EXT_SHIFT) | (j >> (32 - EXT_SHIFT));
249 	f1 = (j << EXT_SHIFT) | (k >> (32 - EXT_SHIFT));
250 	f2 = (k << EXT_SHIFT) | (l >> (32 - EXT_SHIFT));
251 	f3 = l << EXT_SHIFT;
252 	frac |= j | k | l;
253 	FP_TOF(exp, EXT_EXP_BIAS, frac, f0, f1, f2, f3);
254 }
255 
256 /*
257  * Explode the contents of a / regpair / regquad.
258  * If the input is a signalling NaN, an NV (invalid) exception
259  * will be set.  (Note that nothing but NV can occur until ALU
260  * operations are performed.)
261  */
262 void
263 __fpu_explode(fe, fp, type, reg)
264 	struct fpemu *fe;
265 	struct fpn *fp;
266 	int type, reg;
267 {
268 	uint64_t l0 = 0, l1;
269 	uint32_t s = 0;
270 
271 	if (type == FTYPE_LNG || type == FTYPE_DBL || type == FTYPE_EXT) {
272 		l0 = __fpu_getreg64(reg & ~1);
273 		fp->fp_sign = l0 >> 63;
274 	} else {
275 		s = __fpu_getreg(reg);
276 		fp->fp_sign = s >> 31;
277 	}
278 	fp->fp_sticky = 0;
279 	switch (type) {
280 	case FTYPE_LNG:
281 		s = __fpu_xtof(fp, l0);
282 		break;
283 
284 	case FTYPE_INT:
285 		s = __fpu_itof(fp, s);
286 		break;
287 
288 	case FTYPE_SNG:
289 		s = __fpu_stof(fp, s);
290 		break;
291 
292 	case FTYPE_DBL:
293 		s = __fpu_dtof(fp, l0 >> 32, l0 & 0xffffffff);
294 		break;
295 
296 	case FTYPE_EXT:
297 		l1 = __fpu_getreg64((reg & ~1) + 2);
298 		s = __fpu_qtof(fp, l0 >> 32, l0 & 0xffffffff, l1 >> 32,
299 		    l1 & 0xffffffff);
300 		break;
301 
302 	default:
303 #ifdef _KERNEL_MODE
304 		panic("fpu_explode");
305 #else
306 		debugger("fpu_explode");
307 #endif
308 	}
309 
310 	if (s == (uint32_t)FPC_QNAN && (fp->fp_mant[0] & FP_QUIETBIT) == 0) {
311 		/*
312 		 * Input is a signalling NaN.  All operations that return
313 		 * an input NaN operand put it through a ``NaN conversion'',
314 		 * which basically just means ``turn on the quiet bit''.
315 		 * We do this here so that all NaNs internally look quiet
316 		 * (we can tell signalling ones by their class).
317 		 */
318 		fp->fp_mant[0] |= FP_QUIETBIT;
319 		fe->fe_cx = FSR_NV;	/* assert invalid operand */
320 		s = FPC_SNAN;
321 	}
322 	fp->fp_class = s;
323 	DPRINTF(FPE_REG, ("fpu_explode: %%%c%d => ", (type == FTYPE_LNG) ? 'x' :
324 		((type == FTYPE_INT) ? 'i' :
325 			((type == FTYPE_SNG) ? 's' :
326 				((type == FTYPE_DBL) ? 'd' :
327 					((type == FTYPE_EXT) ? 'q' : '?')))),
328 		reg));
329 	DUMPFPN(FPE_REG, fp);
330 	DPRINTF(FPE_REG, ("\n"));
331 }
332