1 /* 2 * Copyright 2010-2011, Ingo Weinhold, ingo_weinhold@gmx.de. 3 * Copyright 2002-2010, Axel Dörfler, axeld@pinc-software.de. 4 * Distributed under the terms of the MIT License. 5 * 6 * Copyright 2001-2002, Travis Geiselbrecht. All rights reserved. 7 * Distributed under the terms of the NewOS License. 8 */ 9 10 11 #include <string.h> 12 #include <stdlib.h> 13 14 #include <algorithm> 15 16 #include <KernelExport.h> 17 #include <OS.h> 18 19 #include <AutoDeleter.h> 20 21 #include <arch/cpu.h> 22 #include <arch/vm_translation_map.h> 23 #include <block_cache.h> 24 #include <boot/kernel_args.h> 25 #include <condition_variable.h> 26 #include <elf.h> 27 #include <heap.h> 28 #include <kernel.h> 29 #include <low_resource_manager.h> 30 #include <thread.h> 31 #include <tracing.h> 32 #include <util/AutoLock.h> 33 #include <vfs.h> 34 #include <vm/vm.h> 35 #include <vm/vm_priv.h> 36 #include <vm/vm_page.h> 37 #include <vm/VMAddressSpace.h> 38 #include <vm/VMArea.h> 39 #include <vm/VMCache.h> 40 41 #include "IORequest.h" 42 #include "PageCacheLocker.h" 43 #include "VMAnonymousCache.h" 44 #include "VMPageQueue.h" 45 46 47 //#define TRACE_VM_PAGE 48 #ifdef TRACE_VM_PAGE 49 # define TRACE(x) dprintf x 50 #else 51 # define TRACE(x) ; 52 #endif 53 54 //#define TRACE_VM_DAEMONS 55 #ifdef TRACE_VM_DAEMONS 56 #define TRACE_DAEMON(x...) dprintf(x) 57 #else 58 #define TRACE_DAEMON(x...) do {} while (false) 59 #endif 60 61 //#define TRACK_PAGE_USAGE_STATS 1 62 63 #define PAGE_ASSERT(page, condition) \ 64 ASSERT_PRINT((condition), "page: %p", (page)) 65 66 #define SCRUB_SIZE 16 67 // this many pages will be cleared at once in the page scrubber thread 68 69 #define MAX_PAGE_WRITER_IO_PRIORITY B_URGENT_DISPLAY_PRIORITY 70 // maximum I/O priority of the page writer 71 #define MAX_PAGE_WRITER_IO_PRIORITY_THRESHOLD 10000 72 // the maximum I/O priority shall be reached when this many pages need to 73 // be written 74 75 76 // The page reserve an allocation of the certain priority must not touch. 77 static const size_t kPageReserveForPriority[] = { 78 VM_PAGE_RESERVE_USER, // user 79 VM_PAGE_RESERVE_SYSTEM, // system 80 0 // VIP 81 }; 82 83 // Minimum number of free pages the page daemon will try to achieve. 84 static uint32 sFreePagesTarget; 85 static uint32 sFreeOrCachedPagesTarget; 86 static uint32 sInactivePagesTarget; 87 88 // Wait interval between page daemon runs. 89 static const bigtime_t kIdleScanWaitInterval = 1000000LL; // 1 sec 90 static const bigtime_t kBusyScanWaitInterval = 500000LL; // 0.5 sec 91 92 // Number of idle runs after which we want to have processed the full active 93 // queue. 94 static const uint32 kIdleRunsForFullQueue = 20; 95 96 // Maximum limit for the vm_page::usage_count. 97 static const int32 kPageUsageMax = 64; 98 // vm_page::usage_count buff an accessed page receives in a scan. 99 static const int32 kPageUsageAdvance = 3; 100 // vm_page::usage_count debuff an unaccessed page receives in a scan. 101 static const int32 kPageUsageDecline = 1; 102 103 int32 gMappedPagesCount; 104 105 static VMPageQueue sPageQueues[PAGE_STATE_COUNT]; 106 107 static VMPageQueue& sFreePageQueue = sPageQueues[PAGE_STATE_FREE]; 108 static VMPageQueue& sClearPageQueue = sPageQueues[PAGE_STATE_CLEAR]; 109 static VMPageQueue& sModifiedPageQueue = sPageQueues[PAGE_STATE_MODIFIED]; 110 static VMPageQueue& sInactivePageQueue = sPageQueues[PAGE_STATE_INACTIVE]; 111 static VMPageQueue& sActivePageQueue = sPageQueues[PAGE_STATE_ACTIVE]; 112 static VMPageQueue& sCachedPageQueue = sPageQueues[PAGE_STATE_CACHED]; 113 114 static vm_page *sPages; 115 static page_num_t sPhysicalPageOffset; 116 static page_num_t sNumPages; 117 static page_num_t sNonExistingPages; 118 // pages in the sPages array that aren't backed by physical memory 119 static uint64 sIgnoredPages; 120 // pages of physical memory ignored by the boot loader (and thus not 121 // available here) 122 static vint32 sUnreservedFreePages; 123 static vint32 sUnsatisfiedPageReservations; 124 static vint32 sModifiedTemporaryPages; 125 126 static ConditionVariable sFreePageCondition; 127 static mutex sPageDeficitLock = MUTEX_INITIALIZER("page deficit"); 128 129 // This lock must be used whenever the free or clear page queues are changed. 130 // If you need to work on both queues at the same time, you need to hold a write 131 // lock, otherwise, a read lock suffices (each queue still has a spinlock to 132 // guard against concurrent changes). 133 static rw_lock sFreePageQueuesLock 134 = RW_LOCK_INITIALIZER("free/clear page queues"); 135 136 #ifdef TRACK_PAGE_USAGE_STATS 137 static page_num_t sPageUsageArrays[512]; 138 static page_num_t* sPageUsage = sPageUsageArrays; 139 static page_num_t sPageUsagePageCount; 140 static page_num_t* sNextPageUsage = sPageUsageArrays + 256; 141 static page_num_t sNextPageUsagePageCount; 142 #endif 143 144 145 #if VM_PAGE_ALLOCATION_TRACKING_AVAILABLE 146 147 struct caller_info { 148 addr_t caller; 149 size_t count; 150 }; 151 152 static const int32 kCallerInfoTableSize = 1024; 153 static caller_info sCallerInfoTable[kCallerInfoTableSize]; 154 static int32 sCallerInfoCount = 0; 155 156 static caller_info* get_caller_info(addr_t caller); 157 158 159 RANGE_MARKER_FUNCTION_PROTOTYPES(vm_page) 160 161 static const addr_t kVMPageCodeAddressRange[] = { 162 RANGE_MARKER_FUNCTION_ADDRESS_RANGE(vm_page) 163 }; 164 165 #endif 166 167 168 RANGE_MARKER_FUNCTION_BEGIN(vm_page) 169 170 171 struct page_stats { 172 int32 totalFreePages; 173 int32 unsatisfiedReservations; 174 int32 cachedPages; 175 }; 176 177 178 struct PageReservationWaiter 179 : public DoublyLinkedListLinkImpl<PageReservationWaiter> { 180 Thread* thread; 181 uint32 dontTouch; // reserve not to touch 182 uint32 missing; // pages missing for the reservation 183 int32 threadPriority; 184 185 bool operator<(const PageReservationWaiter& other) const 186 { 187 // Implies an order by descending VM priority (ascending dontTouch) 188 // and (secondarily) descending thread priority. 189 if (dontTouch != other.dontTouch) 190 return dontTouch < other.dontTouch; 191 return threadPriority > other.threadPriority; 192 } 193 }; 194 195 typedef DoublyLinkedList<PageReservationWaiter> PageReservationWaiterList; 196 static PageReservationWaiterList sPageReservationWaiters; 197 198 199 struct DaemonCondition { 200 void Init(const char* name) 201 { 202 mutex_init(&fLock, "daemon condition"); 203 fCondition.Init(this, name); 204 fActivated = false; 205 } 206 207 bool Lock() 208 { 209 return mutex_lock(&fLock) == B_OK; 210 } 211 212 void Unlock() 213 { 214 mutex_unlock(&fLock); 215 } 216 217 bool Wait(bigtime_t timeout, bool clearActivated) 218 { 219 MutexLocker locker(fLock); 220 if (clearActivated) 221 fActivated = false; 222 else if (fActivated) 223 return true; 224 225 ConditionVariableEntry entry; 226 fCondition.Add(&entry); 227 228 locker.Unlock(); 229 230 return entry.Wait(B_RELATIVE_TIMEOUT, timeout) == B_OK; 231 } 232 233 void WakeUp() 234 { 235 if (fActivated) 236 return; 237 238 MutexLocker locker(fLock); 239 fActivated = true; 240 fCondition.NotifyOne(); 241 } 242 243 void ClearActivated() 244 { 245 MutexLocker locker(fLock); 246 fActivated = false; 247 } 248 249 private: 250 mutex fLock; 251 ConditionVariable fCondition; 252 bool fActivated; 253 }; 254 255 256 static DaemonCondition sPageWriterCondition; 257 static DaemonCondition sPageDaemonCondition; 258 259 260 #if PAGE_ALLOCATION_TRACING 261 262 namespace PageAllocationTracing { 263 264 class ReservePages : public AbstractTraceEntry { 265 public: 266 ReservePages(uint32 count) 267 : 268 fCount(count) 269 { 270 Initialized(); 271 } 272 273 virtual void AddDump(TraceOutput& out) 274 { 275 out.Print("page reserve: %lu", fCount); 276 } 277 278 private: 279 uint32 fCount; 280 }; 281 282 283 class UnreservePages : public AbstractTraceEntry { 284 public: 285 UnreservePages(uint32 count) 286 : 287 fCount(count) 288 { 289 Initialized(); 290 } 291 292 virtual void AddDump(TraceOutput& out) 293 { 294 out.Print("page unreserve: %lu", fCount); 295 } 296 297 private: 298 uint32 fCount; 299 }; 300 301 302 class AllocatePage 303 : public TRACE_ENTRY_SELECTOR(PAGE_ALLOCATION_TRACING_STACK_TRACE) { 304 public: 305 AllocatePage(page_num_t pageNumber) 306 : 307 TraceEntryBase(PAGE_ALLOCATION_TRACING_STACK_TRACE, 0, true), 308 fPageNumber(pageNumber) 309 { 310 Initialized(); 311 } 312 313 virtual void AddDump(TraceOutput& out) 314 { 315 out.Print("page alloc: %#" B_PRIxPHYSADDR, fPageNumber); 316 } 317 318 private: 319 page_num_t fPageNumber; 320 }; 321 322 323 class AllocatePageRun 324 : public TRACE_ENTRY_SELECTOR(PAGE_ALLOCATION_TRACING_STACK_TRACE) { 325 public: 326 AllocatePageRun(page_num_t startPage, uint32 length) 327 : 328 TraceEntryBase(PAGE_ALLOCATION_TRACING_STACK_TRACE, 0, true), 329 fStartPage(startPage), 330 fLength(length) 331 { 332 Initialized(); 333 } 334 335 virtual void AddDump(TraceOutput& out) 336 { 337 out.Print("page alloc run: start %#" B_PRIxPHYSADDR " length: %" 338 B_PRIu32, fStartPage, fLength); 339 } 340 341 private: 342 page_num_t fStartPage; 343 uint32 fLength; 344 }; 345 346 347 class FreePage 348 : public TRACE_ENTRY_SELECTOR(PAGE_ALLOCATION_TRACING_STACK_TRACE) { 349 public: 350 FreePage(page_num_t pageNumber) 351 : 352 TraceEntryBase(PAGE_ALLOCATION_TRACING_STACK_TRACE, 0, true), 353 fPageNumber(pageNumber) 354 { 355 Initialized(); 356 } 357 358 virtual void AddDump(TraceOutput& out) 359 { 360 out.Print("page free: %#" B_PRIxPHYSADDR, fPageNumber); 361 } 362 363 private: 364 page_num_t fPageNumber; 365 }; 366 367 368 class ScrubbingPages : public AbstractTraceEntry { 369 public: 370 ScrubbingPages(uint32 count) 371 : 372 fCount(count) 373 { 374 Initialized(); 375 } 376 377 virtual void AddDump(TraceOutput& out) 378 { 379 out.Print("page scrubbing: %lu", fCount); 380 } 381 382 private: 383 uint32 fCount; 384 }; 385 386 387 class ScrubbedPages : public AbstractTraceEntry { 388 public: 389 ScrubbedPages(uint32 count) 390 : 391 fCount(count) 392 { 393 Initialized(); 394 } 395 396 virtual void AddDump(TraceOutput& out) 397 { 398 out.Print("page scrubbed: %lu", fCount); 399 } 400 401 private: 402 uint32 fCount; 403 }; 404 405 406 class StolenPage : public AbstractTraceEntry { 407 public: 408 StolenPage() 409 { 410 Initialized(); 411 } 412 413 virtual void AddDump(TraceOutput& out) 414 { 415 out.Print("page stolen"); 416 } 417 }; 418 419 } // namespace PageAllocationTracing 420 421 # define TA(x) new(std::nothrow) PageAllocationTracing::x 422 423 #else 424 # define TA(x) 425 #endif // PAGE_ALLOCATION_TRACING 426 427 428 #if PAGE_DAEMON_TRACING 429 430 namespace PageDaemonTracing { 431 432 class ActivatePage : public AbstractTraceEntry { 433 public: 434 ActivatePage(vm_page* page) 435 : 436 fCache(page->cache), 437 fPage(page) 438 { 439 Initialized(); 440 } 441 442 virtual void AddDump(TraceOutput& out) 443 { 444 out.Print("page activated: %p, cache: %p", fPage, fCache); 445 } 446 447 private: 448 VMCache* fCache; 449 vm_page* fPage; 450 }; 451 452 453 class DeactivatePage : public AbstractTraceEntry { 454 public: 455 DeactivatePage(vm_page* page) 456 : 457 fCache(page->cache), 458 fPage(page) 459 { 460 Initialized(); 461 } 462 463 virtual void AddDump(TraceOutput& out) 464 { 465 out.Print("page deactivated: %p, cache: %p", fPage, fCache); 466 } 467 468 private: 469 VMCache* fCache; 470 vm_page* fPage; 471 }; 472 473 474 class FreedPageSwap : public AbstractTraceEntry { 475 public: 476 FreedPageSwap(vm_page* page) 477 : 478 fCache(page->cache), 479 fPage(page) 480 { 481 Initialized(); 482 } 483 484 virtual void AddDump(TraceOutput& out) 485 { 486 out.Print("page swap freed: %p, cache: %p", fPage, fCache); 487 } 488 489 private: 490 VMCache* fCache; 491 vm_page* fPage; 492 }; 493 494 } // namespace PageDaemonTracing 495 496 # define TD(x) new(std::nothrow) PageDaemonTracing::x 497 498 #else 499 # define TD(x) 500 #endif // PAGE_DAEMON_TRACING 501 502 503 #if PAGE_WRITER_TRACING 504 505 namespace PageWriterTracing { 506 507 class WritePage : public AbstractTraceEntry { 508 public: 509 WritePage(vm_page* page) 510 : 511 fCache(page->Cache()), 512 fPage(page) 513 { 514 Initialized(); 515 } 516 517 virtual void AddDump(TraceOutput& out) 518 { 519 out.Print("page write: %p, cache: %p", fPage, fCache); 520 } 521 522 private: 523 VMCache* fCache; 524 vm_page* fPage; 525 }; 526 527 } // namespace PageWriterTracing 528 529 # define TPW(x) new(std::nothrow) PageWriterTracing::x 530 531 #else 532 # define TPW(x) 533 #endif // PAGE_WRITER_TRACING 534 535 536 #if PAGE_STATE_TRACING 537 538 namespace PageStateTracing { 539 540 class SetPageState : public AbstractTraceEntry { 541 public: 542 SetPageState(vm_page* page, uint8 newState) 543 : 544 fPage(page), 545 fOldState(page->State()), 546 fNewState(newState), 547 fBusy(page->busy), 548 fWired(page->WiredCount() > 0), 549 fMapped(!page->mappings.IsEmpty()), 550 fAccessed(page->accessed), 551 fModified(page->modified) 552 { 553 #if PAGE_STATE_TRACING_STACK_TRACE 554 fStackTrace = capture_tracing_stack_trace( 555 PAGE_STATE_TRACING_STACK_TRACE, 0, true); 556 // Don't capture userland stack trace to avoid potential 557 // deadlocks. 558 #endif 559 Initialized(); 560 } 561 562 #if PAGE_STATE_TRACING_STACK_TRACE 563 virtual void DumpStackTrace(TraceOutput& out) 564 { 565 out.PrintStackTrace(fStackTrace); 566 } 567 #endif 568 569 virtual void AddDump(TraceOutput& out) 570 { 571 out.Print("page set state: %p (%c%c%c%c%c): %s -> %s", fPage, 572 fBusy ? 'b' : '-', 573 fWired ? 'w' : '-', 574 fMapped ? 'm' : '-', 575 fAccessed ? 'a' : '-', 576 fModified ? 'm' : '-', 577 page_state_to_string(fOldState), 578 page_state_to_string(fNewState)); 579 } 580 581 private: 582 vm_page* fPage; 583 #if PAGE_STATE_TRACING_STACK_TRACE 584 tracing_stack_trace* fStackTrace; 585 #endif 586 uint8 fOldState; 587 uint8 fNewState; 588 bool fBusy : 1; 589 bool fWired : 1; 590 bool fMapped : 1; 591 bool fAccessed : 1; 592 bool fModified : 1; 593 }; 594 595 } // namespace PageStateTracing 596 597 # define TPS(x) new(std::nothrow) PageStateTracing::x 598 599 #else 600 # define TPS(x) 601 #endif // PAGE_STATE_TRACING 602 603 604 #if VM_PAGE_ALLOCATION_TRACKING_AVAILABLE 605 606 namespace BKernel { 607 608 class AllocationTrackingCallback { 609 public: 610 virtual ~AllocationTrackingCallback(); 611 612 virtual bool ProcessTrackingInfo( 613 AllocationTrackingInfo* info, 614 page_num_t pageNumber) = 0; 615 }; 616 617 } 618 619 using BKernel::AllocationTrackingCallback; 620 621 622 class AllocationCollectorCallback : public AllocationTrackingCallback { 623 public: 624 AllocationCollectorCallback(bool resetInfos) 625 : 626 fResetInfos(resetInfos) 627 { 628 } 629 630 virtual bool ProcessTrackingInfo(AllocationTrackingInfo* info, 631 page_num_t pageNumber) 632 { 633 if (!info->IsInitialized()) 634 return true; 635 636 addr_t caller = 0; 637 AbstractTraceEntryWithStackTrace* traceEntry = info->TraceEntry(); 638 639 if (traceEntry != NULL && info->IsTraceEntryValid()) { 640 caller = tracing_find_caller_in_stack_trace( 641 traceEntry->StackTrace(), kVMPageCodeAddressRange, 1); 642 } 643 644 caller_info* callerInfo = get_caller_info(caller); 645 if (callerInfo == NULL) { 646 kprintf("out of space for caller infos\n"); 647 return false; 648 } 649 650 callerInfo->count++; 651 652 if (fResetInfos) 653 info->Clear(); 654 655 return true; 656 } 657 658 private: 659 bool fResetInfos; 660 }; 661 662 663 class AllocationInfoPrinterCallback : public AllocationTrackingCallback { 664 public: 665 AllocationInfoPrinterCallback(bool printStackTrace, page_num_t pageFilter, 666 team_id teamFilter, thread_id threadFilter) 667 : 668 fPrintStackTrace(printStackTrace), 669 fPageFilter(pageFilter), 670 fTeamFilter(teamFilter), 671 fThreadFilter(threadFilter) 672 { 673 } 674 675 virtual bool ProcessTrackingInfo(AllocationTrackingInfo* info, 676 page_num_t pageNumber) 677 { 678 if (!info->IsInitialized()) 679 return true; 680 681 if (fPageFilter != 0 && pageNumber != fPageFilter) 682 return true; 683 684 AbstractTraceEntryWithStackTrace* traceEntry = info->TraceEntry(); 685 if (traceEntry != NULL && !info->IsTraceEntryValid()) 686 traceEntry = NULL; 687 688 if (traceEntry != NULL) { 689 if (fTeamFilter != -1 && traceEntry->TeamID() != fTeamFilter) 690 return true; 691 if (fThreadFilter != -1 && traceEntry->ThreadID() != fThreadFilter) 692 return true; 693 } else { 694 // we need the info if we have filters set 695 if (fTeamFilter != -1 || fThreadFilter != -1) 696 return true; 697 } 698 699 kprintf("page number %#" B_PRIxPHYSADDR, pageNumber); 700 701 if (traceEntry != NULL) { 702 kprintf(", team: %" B_PRId32 ", thread %" B_PRId32 703 ", time %" B_PRId64 "\n", traceEntry->TeamID(), 704 traceEntry->ThreadID(), traceEntry->Time()); 705 706 if (fPrintStackTrace) 707 tracing_print_stack_trace(traceEntry->StackTrace()); 708 } else 709 kprintf("\n"); 710 711 return true; 712 } 713 714 private: 715 bool fPrintStackTrace; 716 page_num_t fPageFilter; 717 team_id fTeamFilter; 718 thread_id fThreadFilter; 719 }; 720 721 722 class AllocationDetailPrinterCallback : public AllocationTrackingCallback { 723 public: 724 AllocationDetailPrinterCallback(addr_t caller) 725 : 726 fCaller(caller) 727 { 728 } 729 730 virtual bool ProcessTrackingInfo(AllocationTrackingInfo* info, 731 page_num_t pageNumber) 732 { 733 if (!info->IsInitialized()) 734 return true; 735 736 addr_t caller = 0; 737 AbstractTraceEntryWithStackTrace* traceEntry = info->TraceEntry(); 738 if (traceEntry != NULL && !info->IsTraceEntryValid()) 739 traceEntry = NULL; 740 741 if (traceEntry != NULL) { 742 caller = tracing_find_caller_in_stack_trace( 743 traceEntry->StackTrace(), kVMPageCodeAddressRange, 1); 744 } 745 746 if (caller != fCaller) 747 return true; 748 749 kprintf("page %#" B_PRIxPHYSADDR "\n", pageNumber); 750 if (traceEntry != NULL) 751 tracing_print_stack_trace(traceEntry->StackTrace()); 752 753 return true; 754 } 755 756 private: 757 addr_t fCaller; 758 }; 759 760 #endif // VM_PAGE_ALLOCATION_TRACKING_AVAILABLE 761 762 763 static int 764 find_page(int argc, char **argv) 765 { 766 struct vm_page *page; 767 addr_t address; 768 int32 index = 1; 769 int i; 770 771 struct { 772 const char* name; 773 VMPageQueue* queue; 774 } pageQueueInfos[] = { 775 { "free", &sFreePageQueue }, 776 { "clear", &sClearPageQueue }, 777 { "modified", &sModifiedPageQueue }, 778 { "active", &sActivePageQueue }, 779 { "inactive", &sInactivePageQueue }, 780 { "cached", &sCachedPageQueue }, 781 { NULL, NULL } 782 }; 783 784 if (argc < 2 785 || strlen(argv[index]) <= 2 786 || argv[index][0] != '0' 787 || argv[index][1] != 'x') { 788 kprintf("usage: find_page <address>\n"); 789 return 0; 790 } 791 792 address = strtoul(argv[index], NULL, 0); 793 page = (vm_page*)address; 794 795 for (i = 0; pageQueueInfos[i].name; i++) { 796 VMPageQueue::Iterator it = pageQueueInfos[i].queue->GetIterator(); 797 while (vm_page* p = it.Next()) { 798 if (p == page) { 799 kprintf("found page %p in queue %p (%s)\n", page, 800 pageQueueInfos[i].queue, pageQueueInfos[i].name); 801 return 0; 802 } 803 } 804 } 805 806 kprintf("page %p isn't in any queue\n", page); 807 808 return 0; 809 } 810 811 812 const char * 813 page_state_to_string(int state) 814 { 815 switch(state) { 816 case PAGE_STATE_ACTIVE: 817 return "active"; 818 case PAGE_STATE_INACTIVE: 819 return "inactive"; 820 case PAGE_STATE_MODIFIED: 821 return "modified"; 822 case PAGE_STATE_CACHED: 823 return "cached"; 824 case PAGE_STATE_FREE: 825 return "free"; 826 case PAGE_STATE_CLEAR: 827 return "clear"; 828 case PAGE_STATE_WIRED: 829 return "wired"; 830 case PAGE_STATE_UNUSED: 831 return "unused"; 832 default: 833 return "unknown"; 834 } 835 } 836 837 838 static int 839 dump_page(int argc, char **argv) 840 { 841 bool addressIsPointer = true; 842 bool physical = false; 843 bool searchMappings = false; 844 int32 index = 1; 845 846 while (index < argc) { 847 if (argv[index][0] != '-') 848 break; 849 850 if (!strcmp(argv[index], "-p")) { 851 addressIsPointer = false; 852 physical = true; 853 } else if (!strcmp(argv[index], "-v")) { 854 addressIsPointer = false; 855 } else if (!strcmp(argv[index], "-m")) { 856 searchMappings = true; 857 } else { 858 print_debugger_command_usage(argv[0]); 859 return 0; 860 } 861 862 index++; 863 } 864 865 if (index + 1 != argc) { 866 print_debugger_command_usage(argv[0]); 867 return 0; 868 } 869 870 uint64 value; 871 if (!evaluate_debug_expression(argv[index], &value, false)) 872 return 0; 873 874 uint64 pageAddress = value; 875 struct vm_page* page; 876 877 if (addressIsPointer) { 878 page = (struct vm_page *)(addr_t)pageAddress; 879 } else { 880 if (!physical) { 881 VMAddressSpace *addressSpace = VMAddressSpace::Kernel(); 882 883 if (debug_get_debugged_thread()->team->address_space != NULL) 884 addressSpace = debug_get_debugged_thread()->team->address_space; 885 886 uint32 flags = 0; 887 phys_addr_t physicalAddress; 888 if (addressSpace->TranslationMap()->QueryInterrupt(pageAddress, 889 &physicalAddress, &flags) != B_OK 890 || (flags & PAGE_PRESENT) == 0) { 891 kprintf("Virtual address not mapped to a physical page in this " 892 "address space.\n"); 893 return 0; 894 } 895 pageAddress = physicalAddress; 896 } 897 898 page = vm_lookup_page(pageAddress / B_PAGE_SIZE); 899 } 900 901 kprintf("PAGE: %p\n", page); 902 kprintf("queue_next,prev: %p, %p\n", page->queue_link.next, 903 page->queue_link.previous); 904 kprintf("physical_number: %#" B_PRIxPHYSADDR "\n", 905 page->physical_page_number); 906 kprintf("cache: %p\n", page->Cache()); 907 kprintf("cache_offset: %" B_PRIuPHYSADDR "\n", page->cache_offset); 908 kprintf("cache_next: %p\n", page->cache_next); 909 kprintf("state: %s\n", page_state_to_string(page->State())); 910 kprintf("wired_count: %d\n", page->WiredCount()); 911 kprintf("usage_count: %d\n", page->usage_count); 912 kprintf("busy: %d\n", page->busy); 913 kprintf("busy_writing: %d\n", page->busy_writing); 914 kprintf("accessed: %d\n", page->accessed); 915 kprintf("modified: %d\n", page->modified); 916 #if DEBUG_PAGE_QUEUE 917 kprintf("queue: %p\n", page->queue); 918 #endif 919 #if DEBUG_PAGE_ACCESS 920 kprintf("accessor: %" B_PRId32 "\n", page->accessing_thread); 921 #endif 922 kprintf("area mappings:\n"); 923 924 vm_page_mappings::Iterator iterator = page->mappings.GetIterator(); 925 vm_page_mapping *mapping; 926 while ((mapping = iterator.Next()) != NULL) { 927 kprintf(" %p (%" B_PRId32 ")\n", mapping->area, mapping->area->id); 928 mapping = mapping->page_link.next; 929 } 930 931 if (searchMappings) { 932 kprintf("all mappings:\n"); 933 VMAddressSpace* addressSpace = VMAddressSpace::DebugFirst(); 934 while (addressSpace != NULL) { 935 size_t pageCount = addressSpace->Size() / B_PAGE_SIZE; 936 for (addr_t address = addressSpace->Base(); pageCount != 0; 937 address += B_PAGE_SIZE, pageCount--) { 938 phys_addr_t physicalAddress; 939 uint32 flags = 0; 940 if (addressSpace->TranslationMap()->QueryInterrupt(address, 941 &physicalAddress, &flags) == B_OK 942 && (flags & PAGE_PRESENT) != 0 943 && physicalAddress / B_PAGE_SIZE 944 == page->physical_page_number) { 945 VMArea* area = addressSpace->LookupArea(address); 946 kprintf(" aspace %ld, area %ld: %#" B_PRIxADDR 947 " (%c%c%s%s)\n", addressSpace->ID(), 948 area != NULL ? area->id : -1, address, 949 (flags & B_KERNEL_READ_AREA) != 0 ? 'r' : '-', 950 (flags & B_KERNEL_WRITE_AREA) != 0 ? 'w' : '-', 951 (flags & PAGE_MODIFIED) != 0 ? " modified" : "", 952 (flags & PAGE_ACCESSED) != 0 ? " accessed" : ""); 953 } 954 } 955 addressSpace = VMAddressSpace::DebugNext(addressSpace); 956 } 957 } 958 959 set_debug_variable("_cache", (addr_t)page->Cache()); 960 #if DEBUG_PAGE_ACCESS 961 set_debug_variable("_accessor", page->accessing_thread); 962 #endif 963 964 return 0; 965 } 966 967 968 static int 969 dump_page_queue(int argc, char **argv) 970 { 971 struct VMPageQueue *queue; 972 973 if (argc < 2) { 974 kprintf("usage: page_queue <address/name> [list]\n"); 975 return 0; 976 } 977 978 if (strlen(argv[1]) >= 2 && argv[1][0] == '0' && argv[1][1] == 'x') 979 queue = (VMPageQueue*)strtoul(argv[1], NULL, 16); 980 if (!strcmp(argv[1], "free")) 981 queue = &sFreePageQueue; 982 else if (!strcmp(argv[1], "clear")) 983 queue = &sClearPageQueue; 984 else if (!strcmp(argv[1], "modified")) 985 queue = &sModifiedPageQueue; 986 else if (!strcmp(argv[1], "active")) 987 queue = &sActivePageQueue; 988 else if (!strcmp(argv[1], "inactive")) 989 queue = &sInactivePageQueue; 990 else if (!strcmp(argv[1], "cached")) 991 queue = &sCachedPageQueue; 992 else { 993 kprintf("page_queue: unknown queue \"%s\".\n", argv[1]); 994 return 0; 995 } 996 997 kprintf("queue = %p, queue->head = %p, queue->tail = %p, queue->count = %" 998 B_PRIuPHYSADDR "\n", queue, queue->Head(), queue->Tail(), 999 queue->Count()); 1000 1001 if (argc == 3) { 1002 struct vm_page *page = queue->Head(); 1003 const char *type = "none"; 1004 int i; 1005 1006 if (page->Cache() != NULL) { 1007 switch (page->Cache()->type) { 1008 case CACHE_TYPE_RAM: 1009 type = "RAM"; 1010 break; 1011 case CACHE_TYPE_DEVICE: 1012 type = "device"; 1013 break; 1014 case CACHE_TYPE_VNODE: 1015 type = "vnode"; 1016 break; 1017 case CACHE_TYPE_NULL: 1018 type = "null"; 1019 break; 1020 default: 1021 type = "???"; 1022 break; 1023 } 1024 } 1025 1026 kprintf("page cache type state wired usage\n"); 1027 for (i = 0; page; i++, page = queue->Next(page)) { 1028 kprintf("%p %p %-7s %8s %5d %5d\n", page, page->Cache(), 1029 type, page_state_to_string(page->State()), 1030 page->WiredCount(), page->usage_count); 1031 } 1032 } 1033 return 0; 1034 } 1035 1036 1037 static int 1038 dump_page_stats(int argc, char **argv) 1039 { 1040 page_num_t swappableModified = 0; 1041 page_num_t swappableModifiedInactive = 0; 1042 1043 size_t counter[8]; 1044 size_t busyCounter[8]; 1045 memset(counter, 0, sizeof(counter)); 1046 memset(busyCounter, 0, sizeof(busyCounter)); 1047 1048 struct page_run { 1049 page_num_t start; 1050 page_num_t end; 1051 1052 page_num_t Length() const { return end - start; } 1053 }; 1054 1055 page_run currentFreeRun = { 0, 0 }; 1056 page_run currentCachedRun = { 0, 0 }; 1057 page_run longestFreeRun = { 0, 0 }; 1058 page_run longestCachedRun = { 0, 0 }; 1059 1060 for (page_num_t i = 0; i < sNumPages; i++) { 1061 if (sPages[i].State() > 7) { 1062 panic("page %" B_PRIuPHYSADDR " at %p has invalid state!\n", i, 1063 &sPages[i]); 1064 } 1065 1066 uint32 pageState = sPages[i].State(); 1067 1068 counter[pageState]++; 1069 if (sPages[i].busy) 1070 busyCounter[pageState]++; 1071 1072 if (pageState == PAGE_STATE_MODIFIED 1073 && sPages[i].Cache() != NULL 1074 && sPages[i].Cache()->temporary && sPages[i].WiredCount() == 0) { 1075 swappableModified++; 1076 if (sPages[i].usage_count == 0) 1077 swappableModifiedInactive++; 1078 } 1079 1080 // track free and cached pages runs 1081 if (pageState == PAGE_STATE_FREE || pageState == PAGE_STATE_CLEAR) { 1082 currentFreeRun.end = i + 1; 1083 currentCachedRun.end = i + 1; 1084 } else { 1085 if (currentFreeRun.Length() > longestFreeRun.Length()) 1086 longestFreeRun = currentFreeRun; 1087 currentFreeRun.start = currentFreeRun.end = i + 1; 1088 1089 if (pageState == PAGE_STATE_CACHED) { 1090 currentCachedRun.end = i + 1; 1091 } else { 1092 if (currentCachedRun.Length() > longestCachedRun.Length()) 1093 longestCachedRun = currentCachedRun; 1094 currentCachedRun.start = currentCachedRun.end = i + 1; 1095 } 1096 } 1097 } 1098 1099 kprintf("page stats:\n"); 1100 kprintf("total: %" B_PRIuPHYSADDR "\n", sNumPages); 1101 1102 kprintf("active: %" B_PRIuSIZE " (busy: %" B_PRIuSIZE ")\n", 1103 counter[PAGE_STATE_ACTIVE], busyCounter[PAGE_STATE_ACTIVE]); 1104 kprintf("inactive: %" B_PRIuSIZE " (busy: %" B_PRIuSIZE ")\n", 1105 counter[PAGE_STATE_INACTIVE], busyCounter[PAGE_STATE_INACTIVE]); 1106 kprintf("cached: %" B_PRIuSIZE " (busy: %" B_PRIuSIZE ")\n", 1107 counter[PAGE_STATE_CACHED], busyCounter[PAGE_STATE_CACHED]); 1108 kprintf("unused: %" B_PRIuSIZE " (busy: %" B_PRIuSIZE ")\n", 1109 counter[PAGE_STATE_UNUSED], busyCounter[PAGE_STATE_UNUSED]); 1110 kprintf("wired: %" B_PRIuSIZE " (busy: %" B_PRIuSIZE ")\n", 1111 counter[PAGE_STATE_WIRED], busyCounter[PAGE_STATE_WIRED]); 1112 kprintf("modified: %" B_PRIuSIZE " (busy: %" B_PRIuSIZE ")\n", 1113 counter[PAGE_STATE_MODIFIED], busyCounter[PAGE_STATE_MODIFIED]); 1114 kprintf("free: %" B_PRIuSIZE "\n", counter[PAGE_STATE_FREE]); 1115 kprintf("clear: %" B_PRIuSIZE "\n", counter[PAGE_STATE_CLEAR]); 1116 1117 kprintf("unreserved free pages: %" B_PRId32 "\n", sUnreservedFreePages); 1118 kprintf("unsatisfied page reservations: %" B_PRId32 "\n", 1119 sUnsatisfiedPageReservations); 1120 kprintf("mapped pages: %lu\n", gMappedPagesCount); 1121 kprintf("longest free pages run: %" B_PRIuPHYSADDR " pages (at %" 1122 B_PRIuPHYSADDR ")\n", longestFreeRun.Length(), 1123 sPages[longestFreeRun.start].physical_page_number); 1124 kprintf("longest free/cached pages run: %" B_PRIuPHYSADDR " pages (at %" 1125 B_PRIuPHYSADDR ")\n", longestCachedRun.Length(), 1126 sPages[longestCachedRun.start].physical_page_number); 1127 1128 kprintf("waiting threads:\n"); 1129 for (PageReservationWaiterList::Iterator it 1130 = sPageReservationWaiters.GetIterator(); 1131 PageReservationWaiter* waiter = it.Next();) { 1132 kprintf(" %6" B_PRId32 ": missing: %6" B_PRIu32 1133 ", don't touch: %6" B_PRIu32 "\n", waiter->thread->id, 1134 waiter->missing, waiter->dontTouch); 1135 } 1136 1137 kprintf("\nfree queue: %p, count = %" B_PRIuPHYSADDR "\n", &sFreePageQueue, 1138 sFreePageQueue.Count()); 1139 kprintf("clear queue: %p, count = %" B_PRIuPHYSADDR "\n", &sClearPageQueue, 1140 sClearPageQueue.Count()); 1141 kprintf("modified queue: %p, count = %" B_PRIuPHYSADDR " (%" B_PRId32 1142 " temporary, %" B_PRIuPHYSADDR " swappable, " "inactive: %" 1143 B_PRIuPHYSADDR ")\n", &sModifiedPageQueue, sModifiedPageQueue.Count(), 1144 sModifiedTemporaryPages, swappableModified, swappableModifiedInactive); 1145 kprintf("active queue: %p, count = %" B_PRIuPHYSADDR "\n", 1146 &sActivePageQueue, sActivePageQueue.Count()); 1147 kprintf("inactive queue: %p, count = %" B_PRIuPHYSADDR "\n", 1148 &sInactivePageQueue, sInactivePageQueue.Count()); 1149 kprintf("cached queue: %p, count = %" B_PRIuPHYSADDR "\n", 1150 &sCachedPageQueue, sCachedPageQueue.Count()); 1151 return 0; 1152 } 1153 1154 1155 #if VM_PAGE_ALLOCATION_TRACKING_AVAILABLE 1156 1157 static caller_info* 1158 get_caller_info(addr_t caller) 1159 { 1160 // find the caller info 1161 for (int32 i = 0; i < sCallerInfoCount; i++) { 1162 if (caller == sCallerInfoTable[i].caller) 1163 return &sCallerInfoTable[i]; 1164 } 1165 1166 // not found, add a new entry, if there are free slots 1167 if (sCallerInfoCount >= kCallerInfoTableSize) 1168 return NULL; 1169 1170 caller_info* info = &sCallerInfoTable[sCallerInfoCount++]; 1171 info->caller = caller; 1172 info->count = 0; 1173 1174 return info; 1175 } 1176 1177 1178 static int 1179 caller_info_compare_count(const void* _a, const void* _b) 1180 { 1181 const caller_info* a = (const caller_info*)_a; 1182 const caller_info* b = (const caller_info*)_b; 1183 return (int)(b->count - a->count); 1184 } 1185 1186 1187 static int 1188 dump_page_allocations_per_caller(int argc, char** argv) 1189 { 1190 bool resetAllocationInfos = false; 1191 bool printDetails = false; 1192 addr_t caller = 0; 1193 1194 for (int32 i = 1; i < argc; i++) { 1195 if (strcmp(argv[i], "-d") == 0) { 1196 uint64 callerAddress; 1197 if (++i >= argc 1198 || !evaluate_debug_expression(argv[i], &callerAddress, true)) { 1199 print_debugger_command_usage(argv[0]); 1200 return 0; 1201 } 1202 1203 caller = callerAddress; 1204 printDetails = true; 1205 } else if (strcmp(argv[i], "-r") == 0) { 1206 resetAllocationInfos = true; 1207 } else { 1208 print_debugger_command_usage(argv[0]); 1209 return 0; 1210 } 1211 } 1212 1213 sCallerInfoCount = 0; 1214 1215 AllocationCollectorCallback collectorCallback(resetAllocationInfos); 1216 AllocationDetailPrinterCallback detailsCallback(caller); 1217 AllocationTrackingCallback& callback = printDetails 1218 ? (AllocationTrackingCallback&)detailsCallback 1219 : (AllocationTrackingCallback&)collectorCallback; 1220 1221 for (page_num_t i = 0; i < sNumPages; i++) 1222 callback.ProcessTrackingInfo(&sPages[i].allocation_tracking_info, i); 1223 1224 if (printDetails) 1225 return 0; 1226 1227 // sort the array 1228 qsort(sCallerInfoTable, sCallerInfoCount, sizeof(caller_info), 1229 &caller_info_compare_count); 1230 1231 kprintf("%" B_PRId32 " different callers\n\n", sCallerInfoCount); 1232 1233 size_t totalAllocationCount = 0; 1234 1235 kprintf(" count caller\n"); 1236 kprintf("----------------------------------\n"); 1237 for (int32 i = 0; i < sCallerInfoCount; i++) { 1238 caller_info& info = sCallerInfoTable[i]; 1239 kprintf("%10" B_PRIuSIZE " %p", info.count, (void*)info.caller); 1240 1241 const char* symbol; 1242 const char* imageName; 1243 bool exactMatch; 1244 addr_t baseAddress; 1245 1246 if (elf_debug_lookup_symbol_address(info.caller, &baseAddress, &symbol, 1247 &imageName, &exactMatch) == B_OK) { 1248 kprintf(" %s + %#" B_PRIxADDR " (%s)%s\n", symbol, 1249 info.caller - baseAddress, imageName, 1250 exactMatch ? "" : " (nearest)"); 1251 } else 1252 kprintf("\n"); 1253 1254 totalAllocationCount += info.count; 1255 } 1256 1257 kprintf("\ntotal page allocations: %" B_PRIuSIZE "\n", 1258 totalAllocationCount); 1259 1260 return 0; 1261 } 1262 1263 1264 static int 1265 dump_page_allocation_infos(int argc, char** argv) 1266 { 1267 page_num_t pageFilter = 0; 1268 team_id teamFilter = -1; 1269 thread_id threadFilter = -1; 1270 bool printStackTraces = false; 1271 1272 for (int32 i = 1; i < argc; i++) { 1273 if (strcmp(argv[i], "--stacktrace") == 0) 1274 printStackTraces = true; 1275 else if (strcmp(argv[i], "-p") == 0) { 1276 uint64 pageNumber; 1277 if (++i >= argc 1278 || !evaluate_debug_expression(argv[i], &pageNumber, true)) { 1279 print_debugger_command_usage(argv[0]); 1280 return 0; 1281 } 1282 1283 pageFilter = pageNumber; 1284 } else if (strcmp(argv[i], "--team") == 0) { 1285 uint64 team; 1286 if (++i >= argc 1287 || !evaluate_debug_expression(argv[i], &team, true)) { 1288 print_debugger_command_usage(argv[0]); 1289 return 0; 1290 } 1291 1292 teamFilter = team; 1293 } else if (strcmp(argv[i], "--thread") == 0) { 1294 uint64 thread; 1295 if (++i >= argc 1296 || !evaluate_debug_expression(argv[i], &thread, true)) { 1297 print_debugger_command_usage(argv[0]); 1298 return 0; 1299 } 1300 1301 threadFilter = thread; 1302 } else { 1303 print_debugger_command_usage(argv[0]); 1304 return 0; 1305 } 1306 } 1307 1308 AllocationInfoPrinterCallback callback(printStackTraces, pageFilter, 1309 teamFilter, threadFilter); 1310 1311 for (page_num_t i = 0; i < sNumPages; i++) 1312 callback.ProcessTrackingInfo(&sPages[i].allocation_tracking_info, i); 1313 1314 return 0; 1315 } 1316 1317 #endif // VM_PAGE_ALLOCATION_TRACKING_AVAILABLE 1318 1319 1320 #ifdef TRACK_PAGE_USAGE_STATS 1321 1322 static void 1323 track_page_usage(vm_page* page) 1324 { 1325 if (page->WiredCount() == 0) { 1326 sNextPageUsage[(int32)page->usage_count + 128]++; 1327 sNextPageUsagePageCount++; 1328 } 1329 } 1330 1331 1332 static void 1333 update_page_usage_stats() 1334 { 1335 std::swap(sPageUsage, sNextPageUsage); 1336 sPageUsagePageCount = sNextPageUsagePageCount; 1337 1338 memset(sNextPageUsage, 0, sizeof(page_num_t) * 256); 1339 sNextPageUsagePageCount = 0; 1340 1341 // compute average 1342 if (sPageUsagePageCount > 0) { 1343 int64 sum = 0; 1344 for (int32 i = 0; i < 256; i++) 1345 sum += (int64)sPageUsage[i] * (i - 128); 1346 1347 TRACE_DAEMON("average page usage: %f (%lu pages)\n", 1348 (float)sum / sPageUsagePageCount, sPageUsagePageCount); 1349 } 1350 } 1351 1352 1353 static int 1354 dump_page_usage_stats(int argc, char** argv) 1355 { 1356 kprintf("distribution of page usage counts (%lu pages):", 1357 sPageUsagePageCount); 1358 1359 int64 sum = 0; 1360 for (int32 i = 0; i < 256; i++) { 1361 if (i % 8 == 0) 1362 kprintf("\n%4ld:", i - 128); 1363 1364 int64 count = sPageUsage[i]; 1365 sum += count * (i - 128); 1366 1367 kprintf(" %9llu", count); 1368 } 1369 1370 kprintf("\n\n"); 1371 1372 kprintf("average usage count: %f\n", 1373 sPageUsagePageCount > 0 ? (float)sum / sPageUsagePageCount : 0); 1374 1375 return 0; 1376 } 1377 1378 #endif // TRACK_PAGE_USAGE_STATS 1379 1380 1381 // #pragma mark - vm_page 1382 1383 1384 inline void 1385 vm_page::InitState(uint8 newState) 1386 { 1387 state = newState; 1388 } 1389 1390 1391 inline void 1392 vm_page::SetState(uint8 newState) 1393 { 1394 TPS(SetPageState(this, newState)); 1395 1396 state = newState; 1397 } 1398 1399 1400 // #pragma mark - 1401 1402 1403 static void 1404 get_page_stats(page_stats& _pageStats) 1405 { 1406 _pageStats.totalFreePages = sUnreservedFreePages; 1407 _pageStats.cachedPages = sCachedPageQueue.Count(); 1408 _pageStats.unsatisfiedReservations = sUnsatisfiedPageReservations; 1409 // TODO: We don't get an actual snapshot here! 1410 } 1411 1412 1413 static bool 1414 do_active_paging(const page_stats& pageStats) 1415 { 1416 return pageStats.totalFreePages + pageStats.cachedPages 1417 < pageStats.unsatisfiedReservations 1418 + (int32)sFreeOrCachedPagesTarget; 1419 } 1420 1421 1422 /*! Reserves as many pages as possible from \c sUnreservedFreePages up to 1423 \a count. Doesn't touch the last \a dontTouch pages of 1424 \c sUnreservedFreePages, though. 1425 \return The number of actually reserved pages. 1426 */ 1427 static uint32 1428 reserve_some_pages(uint32 count, uint32 dontTouch) 1429 { 1430 while (true) { 1431 int32 freePages = sUnreservedFreePages; 1432 if (freePages <= (int32)dontTouch) 1433 return 0; 1434 1435 int32 toReserve = std::min(count, freePages - dontTouch); 1436 if (atomic_test_and_set(&sUnreservedFreePages, 1437 freePages - toReserve, freePages) 1438 == freePages) { 1439 return toReserve; 1440 } 1441 1442 // the count changed in the meantime -- retry 1443 } 1444 } 1445 1446 1447 static void 1448 wake_up_page_reservation_waiters() 1449 { 1450 MutexLocker pageDeficitLocker(sPageDeficitLock); 1451 1452 // TODO: If this is a low priority thread, we might want to disable 1453 // interrupts or otherwise ensure that we aren't unscheduled. Otherwise 1454 // high priority threads wait be kept waiting while a medium priority thread 1455 // prevents us from running. 1456 1457 while (PageReservationWaiter* waiter = sPageReservationWaiters.Head()) { 1458 int32 reserved = reserve_some_pages(waiter->missing, 1459 waiter->dontTouch); 1460 if (reserved == 0) 1461 return; 1462 1463 atomic_add(&sUnsatisfiedPageReservations, -reserved); 1464 waiter->missing -= reserved; 1465 1466 if (waiter->missing > 0) 1467 return; 1468 1469 sPageReservationWaiters.Remove(waiter); 1470 1471 InterruptsSpinLocker schedulerLocker(gSchedulerLock); 1472 thread_unblock_locked(waiter->thread, B_OK); 1473 } 1474 } 1475 1476 1477 static inline void 1478 unreserve_pages(uint32 count) 1479 { 1480 atomic_add(&sUnreservedFreePages, count); 1481 if (sUnsatisfiedPageReservations != 0) 1482 wake_up_page_reservation_waiters(); 1483 } 1484 1485 1486 static void 1487 free_page(vm_page* page, bool clear) 1488 { 1489 DEBUG_PAGE_ACCESS_CHECK(page); 1490 1491 PAGE_ASSERT(page, !page->IsMapped()); 1492 1493 VMPageQueue* fromQueue; 1494 1495 switch (page->State()) { 1496 case PAGE_STATE_ACTIVE: 1497 fromQueue = &sActivePageQueue; 1498 break; 1499 case PAGE_STATE_INACTIVE: 1500 fromQueue = &sInactivePageQueue; 1501 break; 1502 case PAGE_STATE_MODIFIED: 1503 fromQueue = &sModifiedPageQueue; 1504 break; 1505 case PAGE_STATE_CACHED: 1506 fromQueue = &sCachedPageQueue; 1507 break; 1508 case PAGE_STATE_FREE: 1509 case PAGE_STATE_CLEAR: 1510 panic("free_page(): page %p already free", page); 1511 return; 1512 case PAGE_STATE_WIRED: 1513 case PAGE_STATE_UNUSED: 1514 fromQueue = NULL; 1515 break; 1516 default: 1517 panic("free_page(): page %p in invalid state %d", 1518 page, page->State()); 1519 return; 1520 } 1521 1522 if (page->CacheRef() != NULL) 1523 panic("to be freed page %p has cache", page); 1524 if (page->IsMapped()) 1525 panic("to be freed page %p has mappings", page); 1526 1527 if (fromQueue != NULL) 1528 fromQueue->RemoveUnlocked(page); 1529 1530 TA(FreePage(page->physical_page_number)); 1531 1532 #if VM_PAGE_ALLOCATION_TRACKING_AVAILABLE 1533 page->allocation_tracking_info.Clear(); 1534 #endif 1535 1536 ReadLocker locker(sFreePageQueuesLock); 1537 1538 DEBUG_PAGE_ACCESS_END(page); 1539 1540 if (clear) { 1541 page->SetState(PAGE_STATE_CLEAR); 1542 sClearPageQueue.PrependUnlocked(page); 1543 } else { 1544 page->SetState(PAGE_STATE_FREE); 1545 sFreePageQueue.PrependUnlocked(page); 1546 } 1547 1548 locker.Unlock(); 1549 1550 unreserve_pages(1); 1551 } 1552 1553 1554 /*! The caller must make sure that no-one else tries to change the page's state 1555 while the function is called. If the page has a cache, this can be done by 1556 locking the cache. 1557 */ 1558 static void 1559 set_page_state(vm_page *page, int pageState) 1560 { 1561 DEBUG_PAGE_ACCESS_CHECK(page); 1562 1563 if (pageState == page->State()) 1564 return; 1565 1566 VMPageQueue* fromQueue; 1567 1568 switch (page->State()) { 1569 case PAGE_STATE_ACTIVE: 1570 fromQueue = &sActivePageQueue; 1571 break; 1572 case PAGE_STATE_INACTIVE: 1573 fromQueue = &sInactivePageQueue; 1574 break; 1575 case PAGE_STATE_MODIFIED: 1576 fromQueue = &sModifiedPageQueue; 1577 break; 1578 case PAGE_STATE_CACHED: 1579 fromQueue = &sCachedPageQueue; 1580 break; 1581 case PAGE_STATE_FREE: 1582 case PAGE_STATE_CLEAR: 1583 panic("set_page_state(): page %p is free/clear", page); 1584 return; 1585 case PAGE_STATE_WIRED: 1586 case PAGE_STATE_UNUSED: 1587 fromQueue = NULL; 1588 break; 1589 default: 1590 panic("set_page_state(): page %p in invalid state %d", 1591 page, page->State()); 1592 return; 1593 } 1594 1595 VMPageQueue* toQueue; 1596 1597 switch (pageState) { 1598 case PAGE_STATE_ACTIVE: 1599 toQueue = &sActivePageQueue; 1600 break; 1601 case PAGE_STATE_INACTIVE: 1602 toQueue = &sInactivePageQueue; 1603 break; 1604 case PAGE_STATE_MODIFIED: 1605 toQueue = &sModifiedPageQueue; 1606 break; 1607 case PAGE_STATE_CACHED: 1608 PAGE_ASSERT(page, !page->IsMapped()); 1609 PAGE_ASSERT(page, !page->modified); 1610 toQueue = &sCachedPageQueue; 1611 break; 1612 case PAGE_STATE_FREE: 1613 case PAGE_STATE_CLEAR: 1614 panic("set_page_state(): target state is free/clear"); 1615 return; 1616 case PAGE_STATE_WIRED: 1617 case PAGE_STATE_UNUSED: 1618 toQueue = NULL; 1619 break; 1620 default: 1621 panic("set_page_state(): invalid target state %d", pageState); 1622 return; 1623 } 1624 1625 VMCache* cache = page->Cache(); 1626 if (cache != NULL && cache->temporary) { 1627 if (pageState == PAGE_STATE_MODIFIED) 1628 atomic_add(&sModifiedTemporaryPages, 1); 1629 else if (page->State() == PAGE_STATE_MODIFIED) 1630 atomic_add(&sModifiedTemporaryPages, -1); 1631 } 1632 1633 // move the page 1634 if (toQueue == fromQueue) { 1635 // Note: Theoretically we are required to lock when changing the page 1636 // state, even if we don't change the queue. We actually don't have to 1637 // do this, though, since only for the active queue there are different 1638 // page states and active pages have a cache that must be locked at 1639 // this point. So we rely on the fact that everyone must lock the cache 1640 // before trying to change/interpret the page state. 1641 PAGE_ASSERT(page, cache != NULL); 1642 cache->AssertLocked(); 1643 page->SetState(pageState); 1644 } else { 1645 if (fromQueue != NULL) 1646 fromQueue->RemoveUnlocked(page); 1647 1648 page->SetState(pageState); 1649 1650 if (toQueue != NULL) 1651 toQueue->AppendUnlocked(page); 1652 } 1653 } 1654 1655 1656 /*! Moves a previously modified page into a now appropriate queue. 1657 The page queues must not be locked. 1658 */ 1659 static void 1660 move_page_to_appropriate_queue(vm_page *page) 1661 { 1662 DEBUG_PAGE_ACCESS_CHECK(page); 1663 1664 // Note, this logic must be in sync with what the page daemon does. 1665 int32 state; 1666 if (page->IsMapped()) 1667 state = PAGE_STATE_ACTIVE; 1668 else if (page->modified) 1669 state = PAGE_STATE_MODIFIED; 1670 else 1671 state = PAGE_STATE_CACHED; 1672 1673 // TODO: If free + cached pages are low, we might directly want to free the 1674 // page. 1675 set_page_state(page, state); 1676 } 1677 1678 1679 static void 1680 clear_page(struct vm_page *page) 1681 { 1682 vm_memset_physical(page->physical_page_number << PAGE_SHIFT, 0, 1683 B_PAGE_SIZE); 1684 } 1685 1686 1687 static status_t 1688 mark_page_range_in_use(page_num_t startPage, page_num_t length, bool wired) 1689 { 1690 TRACE(("mark_page_range_in_use: start %#" B_PRIxPHYSADDR ", len %#" 1691 B_PRIxPHYSADDR "\n", startPage, length)); 1692 1693 if (sPhysicalPageOffset > startPage) { 1694 dprintf("mark_page_range_in_use(%#" B_PRIxPHYSADDR ", %#" B_PRIxPHYSADDR 1695 "): start page is before free list\n", startPage, length); 1696 if (sPhysicalPageOffset - startPage >= length) 1697 return B_OK; 1698 length -= sPhysicalPageOffset - startPage; 1699 startPage = sPhysicalPageOffset; 1700 } 1701 1702 startPage -= sPhysicalPageOffset; 1703 1704 if (startPage + length > sNumPages) { 1705 dprintf("mark_page_range_in_use(%#" B_PRIxPHYSADDR ", %#" B_PRIxPHYSADDR 1706 "): range would extend past free list\n", startPage, length); 1707 if (startPage >= sNumPages) 1708 return B_OK; 1709 length = sNumPages - startPage; 1710 } 1711 1712 WriteLocker locker(sFreePageQueuesLock); 1713 1714 for (page_num_t i = 0; i < length; i++) { 1715 vm_page *page = &sPages[startPage + i]; 1716 switch (page->State()) { 1717 case PAGE_STATE_FREE: 1718 case PAGE_STATE_CLEAR: 1719 { 1720 // TODO: This violates the page reservation policy, since we remove pages from 1721 // the free/clear queues without having reserved them before. This should happen 1722 // in the early boot process only, though. 1723 DEBUG_PAGE_ACCESS_START(page); 1724 VMPageQueue& queue = page->State() == PAGE_STATE_FREE 1725 ? sFreePageQueue : sClearPageQueue; 1726 queue.Remove(page); 1727 page->SetState(wired ? PAGE_STATE_UNUSED : PAGE_STATE_UNUSED); 1728 page->busy = false; 1729 atomic_add(&sUnreservedFreePages, -1); 1730 DEBUG_PAGE_ACCESS_END(page); 1731 break; 1732 } 1733 case PAGE_STATE_WIRED: 1734 case PAGE_STATE_UNUSED: 1735 break; 1736 case PAGE_STATE_ACTIVE: 1737 case PAGE_STATE_INACTIVE: 1738 case PAGE_STATE_MODIFIED: 1739 case PAGE_STATE_CACHED: 1740 default: 1741 // uh 1742 dprintf("mark_page_range_in_use: page %#" B_PRIxPHYSADDR 1743 " in non-free state %d!\n", startPage + i, page->State()); 1744 break; 1745 } 1746 } 1747 1748 return B_OK; 1749 } 1750 1751 1752 /*! 1753 This is a background thread that wakes up every now and then (every 100ms) 1754 and moves some pages from the free queue over to the clear queue. 1755 Given enough time, it will clear out all pages from the free queue - we 1756 could probably slow it down after having reached a certain threshold. 1757 */ 1758 static int32 1759 page_scrubber(void *unused) 1760 { 1761 (void)(unused); 1762 1763 TRACE(("page_scrubber starting...\n")); 1764 1765 for (;;) { 1766 snooze(100000); // 100ms 1767 1768 if (sFreePageQueue.Count() == 0 1769 || sUnreservedFreePages < (int32)sFreePagesTarget) { 1770 continue; 1771 } 1772 1773 // Since we temporarily remove pages from the free pages reserve, 1774 // we must make sure we don't cause a violation of the page 1775 // reservation warranty. The following is usually stricter than 1776 // necessary, because we don't have information on how many of the 1777 // reserved pages have already been allocated. 1778 int32 reserved = reserve_some_pages(SCRUB_SIZE, 1779 kPageReserveForPriority[VM_PRIORITY_USER]); 1780 if (reserved == 0) 1781 continue; 1782 1783 // get some pages from the free queue 1784 ReadLocker locker(sFreePageQueuesLock); 1785 1786 vm_page *page[SCRUB_SIZE]; 1787 int32 scrubCount = 0; 1788 for (int32 i = 0; i < reserved; i++) { 1789 page[i] = sFreePageQueue.RemoveHeadUnlocked(); 1790 if (page[i] == NULL) 1791 break; 1792 1793 DEBUG_PAGE_ACCESS_START(page[i]); 1794 1795 page[i]->SetState(PAGE_STATE_ACTIVE); 1796 page[i]->busy = true; 1797 scrubCount++; 1798 } 1799 1800 locker.Unlock(); 1801 1802 if (scrubCount == 0) { 1803 unreserve_pages(reserved); 1804 continue; 1805 } 1806 1807 TA(ScrubbingPages(scrubCount)); 1808 1809 // clear them 1810 for (int32 i = 0; i < scrubCount; i++) 1811 clear_page(page[i]); 1812 1813 locker.Lock(); 1814 1815 // and put them into the clear queue 1816 for (int32 i = 0; i < scrubCount; i++) { 1817 page[i]->SetState(PAGE_STATE_CLEAR); 1818 page[i]->busy = false; 1819 DEBUG_PAGE_ACCESS_END(page[i]); 1820 sClearPageQueue.PrependUnlocked(page[i]); 1821 } 1822 1823 locker.Unlock(); 1824 1825 unreserve_pages(reserved); 1826 1827 TA(ScrubbedPages(scrubCount)); 1828 } 1829 1830 return 0; 1831 } 1832 1833 1834 static void 1835 init_page_marker(vm_page &marker) 1836 { 1837 marker.SetCacheRef(NULL); 1838 marker.InitState(PAGE_STATE_UNUSED); 1839 marker.busy = true; 1840 #if DEBUG_PAGE_QUEUE 1841 marker.queue = NULL; 1842 #endif 1843 #if DEBUG_PAGE_ACCESS 1844 marker.accessing_thread = thread_get_current_thread_id(); 1845 #endif 1846 } 1847 1848 1849 static void 1850 remove_page_marker(struct vm_page &marker) 1851 { 1852 DEBUG_PAGE_ACCESS_CHECK(&marker); 1853 1854 if (marker.State() < PAGE_STATE_FIRST_UNQUEUED) 1855 sPageQueues[marker.State()].RemoveUnlocked(&marker); 1856 1857 marker.SetState(PAGE_STATE_UNUSED); 1858 } 1859 1860 1861 static vm_page* 1862 next_modified_page(page_num_t& maxPagesToSee) 1863 { 1864 InterruptsSpinLocker locker(sModifiedPageQueue.GetLock()); 1865 1866 while (maxPagesToSee > 0) { 1867 vm_page* page = sModifiedPageQueue.Head(); 1868 if (page == NULL) 1869 return NULL; 1870 1871 sModifiedPageQueue.Requeue(page, true); 1872 1873 maxPagesToSee--; 1874 1875 if (!page->busy) 1876 return page; 1877 } 1878 1879 return NULL; 1880 } 1881 1882 1883 // #pragma mark - 1884 1885 1886 class PageWriteTransfer; 1887 class PageWriteWrapper; 1888 1889 1890 class PageWriterRun { 1891 public: 1892 status_t Init(uint32 maxPages); 1893 1894 void PrepareNextRun(); 1895 void AddPage(vm_page* page); 1896 uint32 Go(); 1897 1898 void PageWritten(PageWriteTransfer* transfer, status_t status, 1899 bool partialTransfer, size_t bytesTransferred); 1900 1901 private: 1902 uint32 fMaxPages; 1903 uint32 fWrapperCount; 1904 uint32 fTransferCount; 1905 vint32 fPendingTransfers; 1906 PageWriteWrapper* fWrappers; 1907 PageWriteTransfer* fTransfers; 1908 ConditionVariable fAllFinishedCondition; 1909 }; 1910 1911 1912 class PageWriteTransfer : public AsyncIOCallback { 1913 public: 1914 void SetTo(PageWriterRun* run, vm_page* page, int32 maxPages); 1915 bool AddPage(vm_page* page); 1916 1917 status_t Schedule(uint32 flags); 1918 1919 void SetStatus(status_t status, size_t transferred); 1920 1921 status_t Status() const { return fStatus; } 1922 struct VMCache* Cache() const { return fCache; } 1923 uint32 PageCount() const { return fPageCount; } 1924 1925 virtual void IOFinished(status_t status, bool partialTransfer, 1926 generic_size_t bytesTransferred); 1927 private: 1928 PageWriterRun* fRun; 1929 struct VMCache* fCache; 1930 off_t fOffset; 1931 uint32 fPageCount; 1932 int32 fMaxPages; 1933 status_t fStatus; 1934 uint32 fVecCount; 1935 generic_io_vec fVecs[32]; // TODO: make dynamic/configurable 1936 }; 1937 1938 1939 class PageWriteWrapper { 1940 public: 1941 PageWriteWrapper(); 1942 ~PageWriteWrapper(); 1943 void SetTo(vm_page* page); 1944 bool Done(status_t result); 1945 1946 private: 1947 vm_page* fPage; 1948 struct VMCache* fCache; 1949 bool fIsActive; 1950 }; 1951 1952 1953 PageWriteWrapper::PageWriteWrapper() 1954 : 1955 fIsActive(false) 1956 { 1957 } 1958 1959 1960 PageWriteWrapper::~PageWriteWrapper() 1961 { 1962 if (fIsActive) 1963 panic("page write wrapper going out of scope but isn't completed"); 1964 } 1965 1966 1967 /*! The page's cache must be locked. 1968 */ 1969 void 1970 PageWriteWrapper::SetTo(vm_page* page) 1971 { 1972 DEBUG_PAGE_ACCESS_CHECK(page); 1973 1974 if (page->busy) 1975 panic("setting page write wrapper to busy page"); 1976 1977 if (fIsActive) 1978 panic("re-setting page write wrapper that isn't completed"); 1979 1980 fPage = page; 1981 fCache = page->Cache(); 1982 fIsActive = true; 1983 1984 fPage->busy = true; 1985 fPage->busy_writing = true; 1986 1987 // We have a modified page -- however, while we're writing it back, 1988 // the page might still be mapped. In order not to lose any changes to the 1989 // page, we mark it clean before actually writing it back; if 1990 // writing the page fails for some reason, we'll just keep it in the 1991 // modified page list, but that should happen only rarely. 1992 1993 // If the page is changed after we cleared the dirty flag, but before we 1994 // had the chance to write it back, then we'll write it again later -- that 1995 // will probably not happen that often, though. 1996 1997 vm_clear_map_flags(fPage, PAGE_MODIFIED); 1998 } 1999 2000 2001 /*! The page's cache must be locked. 2002 The page queues must not be locked. 2003 \return \c true if the page was written successfully respectively could be 2004 handled somehow, \c false otherwise. 2005 */ 2006 bool 2007 PageWriteWrapper::Done(status_t result) 2008 { 2009 if (!fIsActive) 2010 panic("completing page write wrapper that is not active"); 2011 2012 DEBUG_PAGE_ACCESS_START(fPage); 2013 2014 fPage->busy = false; 2015 // Set unbusy and notify later by hand, since we might free the page. 2016 2017 bool success = true; 2018 2019 if (result == B_OK) { 2020 // put it into the active/inactive queue 2021 move_page_to_appropriate_queue(fPage); 2022 fPage->busy_writing = false; 2023 DEBUG_PAGE_ACCESS_END(fPage); 2024 } else { 2025 // Writing the page failed. One reason would be that the cache has been 2026 // shrunk and the page does no longer belong to the file. Otherwise the 2027 // actual I/O failed, in which case we'll simply keep the page modified. 2028 2029 if (!fPage->busy_writing) { 2030 // The busy_writing flag was cleared. That means the cache has been 2031 // shrunk while we were trying to write the page and we have to free 2032 // it now. 2033 vm_remove_all_page_mappings(fPage); 2034 // TODO: Unmapping should already happen when resizing the cache! 2035 fCache->RemovePage(fPage); 2036 free_page(fPage, false); 2037 } else { 2038 // Writing the page failed -- mark the page modified and move it to 2039 // an appropriate queue other than the modified queue, so we don't 2040 // keep trying to write it over and over again. We keep 2041 // non-temporary pages in the modified queue, though, so they don't 2042 // get lost in the inactive queue. 2043 dprintf("PageWriteWrapper: Failed to write page %p: %s\n", fPage, 2044 strerror(result)); 2045 2046 fPage->modified = true; 2047 if (!fCache->temporary) 2048 set_page_state(fPage, PAGE_STATE_MODIFIED); 2049 else if (fPage->IsMapped()) 2050 set_page_state(fPage, PAGE_STATE_ACTIVE); 2051 else 2052 set_page_state(fPage, PAGE_STATE_INACTIVE); 2053 2054 fPage->busy_writing = false; 2055 DEBUG_PAGE_ACCESS_END(fPage); 2056 2057 success = false; 2058 } 2059 } 2060 2061 fCache->NotifyPageEvents(fPage, PAGE_EVENT_NOT_BUSY); 2062 fIsActive = false; 2063 2064 return success; 2065 } 2066 2067 2068 /*! The page's cache must be locked. 2069 */ 2070 void 2071 PageWriteTransfer::SetTo(PageWriterRun* run, vm_page* page, int32 maxPages) 2072 { 2073 fRun = run; 2074 fCache = page->Cache(); 2075 fOffset = page->cache_offset; 2076 fPageCount = 1; 2077 fMaxPages = maxPages; 2078 fStatus = B_OK; 2079 2080 fVecs[0].base = (phys_addr_t)page->physical_page_number << PAGE_SHIFT; 2081 fVecs[0].length = B_PAGE_SIZE; 2082 fVecCount = 1; 2083 } 2084 2085 2086 /*! The page's cache must be locked. 2087 */ 2088 bool 2089 PageWriteTransfer::AddPage(vm_page* page) 2090 { 2091 if (page->Cache() != fCache 2092 || (fMaxPages >= 0 && fPageCount >= (uint32)fMaxPages)) 2093 return false; 2094 2095 phys_addr_t nextBase = fVecs[fVecCount - 1].base 2096 + fVecs[fVecCount - 1].length; 2097 2098 if ((phys_addr_t)page->physical_page_number << PAGE_SHIFT == nextBase 2099 && (off_t)page->cache_offset == fOffset + fPageCount) { 2100 // append to last iovec 2101 fVecs[fVecCount - 1].length += B_PAGE_SIZE; 2102 fPageCount++; 2103 return true; 2104 } 2105 2106 nextBase = fVecs[0].base - B_PAGE_SIZE; 2107 if ((phys_addr_t)page->physical_page_number << PAGE_SHIFT == nextBase 2108 && (off_t)page->cache_offset == fOffset - 1) { 2109 // prepend to first iovec and adjust offset 2110 fVecs[0].base = nextBase; 2111 fVecs[0].length += B_PAGE_SIZE; 2112 fOffset = page->cache_offset; 2113 fPageCount++; 2114 return true; 2115 } 2116 2117 if (((off_t)page->cache_offset == fOffset + fPageCount 2118 || (off_t)page->cache_offset == fOffset - 1) 2119 && fVecCount < sizeof(fVecs) / sizeof(fVecs[0])) { 2120 // not physically contiguous or not in the right order 2121 uint32 vectorIndex; 2122 if ((off_t)page->cache_offset < fOffset) { 2123 // we are pre-pending another vector, move the other vecs 2124 for (uint32 i = fVecCount; i > 0; i--) 2125 fVecs[i] = fVecs[i - 1]; 2126 2127 fOffset = page->cache_offset; 2128 vectorIndex = 0; 2129 } else 2130 vectorIndex = fVecCount; 2131 2132 fVecs[vectorIndex].base 2133 = (phys_addr_t)page->physical_page_number << PAGE_SHIFT; 2134 fVecs[vectorIndex].length = B_PAGE_SIZE; 2135 2136 fVecCount++; 2137 fPageCount++; 2138 return true; 2139 } 2140 2141 return false; 2142 } 2143 2144 2145 status_t 2146 PageWriteTransfer::Schedule(uint32 flags) 2147 { 2148 off_t writeOffset = (off_t)fOffset << PAGE_SHIFT; 2149 generic_size_t writeLength = (phys_size_t)fPageCount << PAGE_SHIFT; 2150 2151 if (fRun != NULL) { 2152 return fCache->WriteAsync(writeOffset, fVecs, fVecCount, writeLength, 2153 flags | B_PHYSICAL_IO_REQUEST, this); 2154 } 2155 2156 status_t status = fCache->Write(writeOffset, fVecs, fVecCount, 2157 flags | B_PHYSICAL_IO_REQUEST, &writeLength); 2158 2159 SetStatus(status, writeLength); 2160 return fStatus; 2161 } 2162 2163 2164 void 2165 PageWriteTransfer::SetStatus(status_t status, size_t transferred) 2166 { 2167 // only succeed if all pages up to the last one have been written fully 2168 // and the last page has at least been written partially 2169 if (status == B_OK && transferred <= (fPageCount - 1) * B_PAGE_SIZE) 2170 status = B_ERROR; 2171 2172 fStatus = status; 2173 } 2174 2175 2176 void 2177 PageWriteTransfer::IOFinished(status_t status, bool partialTransfer, 2178 generic_size_t bytesTransferred) 2179 { 2180 SetStatus(status, bytesTransferred); 2181 fRun->PageWritten(this, fStatus, partialTransfer, bytesTransferred); 2182 } 2183 2184 2185 status_t 2186 PageWriterRun::Init(uint32 maxPages) 2187 { 2188 fMaxPages = maxPages; 2189 fWrapperCount = 0; 2190 fTransferCount = 0; 2191 fPendingTransfers = 0; 2192 2193 fWrappers = new(std::nothrow) PageWriteWrapper[maxPages]; 2194 fTransfers = new(std::nothrow) PageWriteTransfer[maxPages]; 2195 if (fWrappers == NULL || fTransfers == NULL) 2196 return B_NO_MEMORY; 2197 2198 return B_OK; 2199 } 2200 2201 2202 void 2203 PageWriterRun::PrepareNextRun() 2204 { 2205 fWrapperCount = 0; 2206 fTransferCount = 0; 2207 fPendingTransfers = 0; 2208 } 2209 2210 2211 /*! The page's cache must be locked. 2212 */ 2213 void 2214 PageWriterRun::AddPage(vm_page* page) 2215 { 2216 fWrappers[fWrapperCount++].SetTo(page); 2217 2218 if (fTransferCount == 0 || !fTransfers[fTransferCount - 1].AddPage(page)) { 2219 fTransfers[fTransferCount++].SetTo(this, page, 2220 page->Cache()->MaxPagesPerAsyncWrite()); 2221 } 2222 } 2223 2224 2225 /*! Writes all pages previously added. 2226 \return The number of pages that could not be written or otherwise handled. 2227 */ 2228 uint32 2229 PageWriterRun::Go() 2230 { 2231 fPendingTransfers = fTransferCount; 2232 2233 fAllFinishedCondition.Init(this, "page writer wait for I/O"); 2234 ConditionVariableEntry waitEntry; 2235 fAllFinishedCondition.Add(&waitEntry); 2236 2237 // schedule writes 2238 for (uint32 i = 0; i < fTransferCount; i++) 2239 fTransfers[i].Schedule(B_VIP_IO_REQUEST); 2240 2241 // wait until all pages have been written 2242 waitEntry.Wait(); 2243 2244 // mark pages depending on whether they could be written or not 2245 2246 uint32 failedPages = 0; 2247 uint32 wrapperIndex = 0; 2248 for (uint32 i = 0; i < fTransferCount; i++) { 2249 PageWriteTransfer& transfer = fTransfers[i]; 2250 transfer.Cache()->Lock(); 2251 2252 for (uint32 j = 0; j < transfer.PageCount(); j++) { 2253 if (!fWrappers[wrapperIndex++].Done(transfer.Status())) 2254 failedPages++; 2255 } 2256 2257 transfer.Cache()->Unlock(); 2258 } 2259 2260 ASSERT(wrapperIndex == fWrapperCount); 2261 2262 for (uint32 i = 0; i < fTransferCount; i++) { 2263 PageWriteTransfer& transfer = fTransfers[i]; 2264 struct VMCache* cache = transfer.Cache(); 2265 2266 // We've acquired a references for each page 2267 for (uint32 j = 0; j < transfer.PageCount(); j++) { 2268 // We release the cache references after all pages were made 2269 // unbusy again - otherwise releasing a vnode could deadlock. 2270 cache->ReleaseStoreRef(); 2271 cache->ReleaseRef(); 2272 } 2273 } 2274 2275 return failedPages; 2276 } 2277 2278 2279 void 2280 PageWriterRun::PageWritten(PageWriteTransfer* transfer, status_t status, 2281 bool partialTransfer, size_t bytesTransferred) 2282 { 2283 if (atomic_add(&fPendingTransfers, -1) == 1) 2284 fAllFinishedCondition.NotifyAll(); 2285 } 2286 2287 2288 /*! The page writer continuously takes some pages from the modified 2289 queue, writes them back, and moves them back to the active queue. 2290 It runs in its own thread, and is only there to keep the number 2291 of modified pages low, so that more pages can be reused with 2292 fewer costs. 2293 */ 2294 status_t 2295 page_writer(void* /*unused*/) 2296 { 2297 const uint32 kNumPages = 256; 2298 uint32 writtenPages = 0; 2299 bigtime_t lastWrittenTime = 0; 2300 bigtime_t pageCollectionTime = 0; 2301 bigtime_t pageWritingTime = 0; 2302 2303 PageWriterRun run; 2304 if (run.Init(kNumPages) != B_OK) { 2305 panic("page writer: Failed to init PageWriterRun!"); 2306 return B_ERROR; 2307 } 2308 2309 page_num_t pagesSinceLastSuccessfulWrite = 0; 2310 2311 while (true) { 2312 // TODO: Maybe wait shorter when memory is low! 2313 if (sModifiedPageQueue.Count() < kNumPages) { 2314 sPageWriterCondition.Wait(3000000, true); 2315 // all 3 seconds when no one triggers us 2316 } 2317 2318 page_num_t modifiedPages = sModifiedPageQueue.Count(); 2319 if (modifiedPages == 0) 2320 continue; 2321 2322 if (modifiedPages <= pagesSinceLastSuccessfulWrite) { 2323 // We ran through the whole queue without being able to write a 2324 // single page. Take a break. 2325 snooze(500000); 2326 pagesSinceLastSuccessfulWrite = 0; 2327 } 2328 2329 #if ENABLE_SWAP_SUPPORT 2330 page_stats pageStats; 2331 get_page_stats(pageStats); 2332 bool activePaging = do_active_paging(pageStats); 2333 #endif 2334 2335 // depending on how urgent it becomes to get pages to disk, we adjust 2336 // our I/O priority 2337 uint32 lowPagesState = low_resource_state(B_KERNEL_RESOURCE_PAGES); 2338 int32 ioPriority = B_IDLE_PRIORITY; 2339 if (lowPagesState >= B_LOW_RESOURCE_CRITICAL 2340 || modifiedPages > MAX_PAGE_WRITER_IO_PRIORITY_THRESHOLD) { 2341 ioPriority = MAX_PAGE_WRITER_IO_PRIORITY; 2342 } else { 2343 ioPriority = (uint64)MAX_PAGE_WRITER_IO_PRIORITY * modifiedPages 2344 / MAX_PAGE_WRITER_IO_PRIORITY_THRESHOLD; 2345 } 2346 2347 thread_set_io_priority(ioPriority); 2348 2349 uint32 numPages = 0; 2350 run.PrepareNextRun(); 2351 2352 // TODO: make this laptop friendly, too (ie. only start doing 2353 // something if someone else did something or there is really 2354 // enough to do). 2355 2356 // collect pages to be written 2357 pageCollectionTime -= system_time(); 2358 2359 page_num_t maxPagesToSee = modifiedPages; 2360 2361 while (numPages < kNumPages && maxPagesToSee > 0) { 2362 vm_page *page = next_modified_page(maxPagesToSee); 2363 if (page == NULL) 2364 break; 2365 2366 PageCacheLocker cacheLocker(page, false); 2367 if (!cacheLocker.IsLocked()) 2368 continue; 2369 2370 VMCache *cache = page->Cache(); 2371 2372 // If the page is busy or its state has changed while we were 2373 // locking the cache, just ignore it. 2374 if (page->busy || page->State() != PAGE_STATE_MODIFIED) 2375 continue; 2376 2377 DEBUG_PAGE_ACCESS_START(page); 2378 2379 // Don't write back wired (locked) pages. 2380 if (page->WiredCount() > 0) { 2381 set_page_state(page, PAGE_STATE_ACTIVE); 2382 DEBUG_PAGE_ACCESS_END(page); 2383 continue; 2384 } 2385 2386 // Write back temporary pages only when we're actively paging. 2387 if (cache->temporary 2388 #if ENABLE_SWAP_SUPPORT 2389 && (!activePaging 2390 || !cache->CanWritePage( 2391 (off_t)page->cache_offset << PAGE_SHIFT)) 2392 #endif 2393 ) { 2394 // We can't/don't want to do anything with this page, so move it 2395 // to one of the other queues. 2396 if (page->mappings.IsEmpty()) 2397 set_page_state(page, PAGE_STATE_INACTIVE); 2398 else 2399 set_page_state(page, PAGE_STATE_ACTIVE); 2400 2401 DEBUG_PAGE_ACCESS_END(page); 2402 continue; 2403 } 2404 2405 // We need our own reference to the store, as it might currently be 2406 // destroyed. 2407 if (cache->AcquireUnreferencedStoreRef() != B_OK) { 2408 DEBUG_PAGE_ACCESS_END(page); 2409 cacheLocker.Unlock(); 2410 thread_yield(true); 2411 continue; 2412 } 2413 2414 run.AddPage(page); 2415 // TODO: We're possibly adding pages of different caches and 2416 // thus maybe of different underlying file systems here. This 2417 // is a potential problem for loop file systems/devices, since 2418 // we could mark a page busy that would need to be accessed 2419 // when writing back another page, thus causing a deadlock. 2420 2421 DEBUG_PAGE_ACCESS_END(page); 2422 2423 //dprintf("write page %p, cache %p (%ld)\n", page, page->cache, page->cache->ref_count); 2424 TPW(WritePage(page)); 2425 2426 cache->AcquireRefLocked(); 2427 numPages++; 2428 } 2429 2430 pageCollectionTime += system_time(); 2431 2432 if (numPages == 0) 2433 continue; 2434 2435 // write pages to disk and do all the cleanup 2436 pageWritingTime -= system_time(); 2437 uint32 failedPages = run.Go(); 2438 pageWritingTime += system_time(); 2439 2440 // debug output only... 2441 writtenPages += numPages; 2442 if (writtenPages >= 1024) { 2443 bigtime_t now = system_time(); 2444 TRACE(("page writer: wrote 1024 pages (total: %llu ms, " 2445 "collect: %llu ms, write: %llu ms)\n", 2446 (now - lastWrittenTime) / 1000, 2447 pageCollectionTime / 1000, pageWritingTime / 1000)); 2448 writtenPages -= 1024; 2449 lastWrittenTime = now; 2450 pageCollectionTime = 0; 2451 pageWritingTime = 0; 2452 } 2453 2454 if (failedPages == numPages) 2455 pagesSinceLastSuccessfulWrite += modifiedPages - maxPagesToSee; 2456 else 2457 pagesSinceLastSuccessfulWrite = 0; 2458 } 2459 2460 return B_OK; 2461 } 2462 2463 2464 // #pragma mark - 2465 2466 2467 // TODO: This should be done in the page daemon! 2468 #if 0 2469 #if ENABLE_SWAP_SUPPORT 2470 static bool 2471 free_page_swap_space(int32 index) 2472 { 2473 vm_page *page = vm_page_at_index(index); 2474 PageCacheLocker locker(page); 2475 if (!locker.IsLocked()) 2476 return false; 2477 2478 DEBUG_PAGE_ACCESS_START(page); 2479 2480 VMCache* cache = page->Cache(); 2481 if (cache->temporary && page->WiredCount() == 0 2482 && cache->HasPage(page->cache_offset << PAGE_SHIFT) 2483 && page->usage_count > 0) { 2484 // TODO: how to judge a page is highly active? 2485 if (swap_free_page_swap_space(page)) { 2486 // We need to mark the page modified, since otherwise it could be 2487 // stolen and we'd lose its data. 2488 vm_page_set_state(page, PAGE_STATE_MODIFIED); 2489 TD(FreedPageSwap(page)); 2490 DEBUG_PAGE_ACCESS_END(page); 2491 return true; 2492 } 2493 } 2494 DEBUG_PAGE_ACCESS_END(page); 2495 return false; 2496 } 2497 #endif 2498 #endif // 0 2499 2500 2501 static vm_page * 2502 find_cached_page_candidate(struct vm_page &marker) 2503 { 2504 DEBUG_PAGE_ACCESS_CHECK(&marker); 2505 2506 InterruptsSpinLocker locker(sCachedPageQueue.GetLock()); 2507 vm_page *page; 2508 2509 if (marker.State() == PAGE_STATE_UNUSED) { 2510 // Get the first free pages of the (in)active queue 2511 page = sCachedPageQueue.Head(); 2512 } else { 2513 // Get the next page of the current queue 2514 if (marker.State() != PAGE_STATE_CACHED) { 2515 panic("invalid marker %p state", &marker); 2516 return NULL; 2517 } 2518 2519 page = sCachedPageQueue.Next(&marker); 2520 sCachedPageQueue.Remove(&marker); 2521 marker.SetState(PAGE_STATE_UNUSED); 2522 } 2523 2524 while (page != NULL) { 2525 if (!page->busy) { 2526 // we found a candidate, insert marker 2527 marker.SetState(PAGE_STATE_CACHED); 2528 sCachedPageQueue.InsertAfter(page, &marker); 2529 return page; 2530 } 2531 2532 page = sCachedPageQueue.Next(page); 2533 } 2534 2535 return NULL; 2536 } 2537 2538 2539 static bool 2540 free_cached_page(vm_page *page, bool dontWait) 2541 { 2542 // try to lock the page's cache 2543 if (vm_cache_acquire_locked_page_cache(page, dontWait) == NULL) 2544 return false; 2545 VMCache* cache = page->Cache(); 2546 2547 AutoLocker<VMCache> cacheLocker(cache, true); 2548 MethodDeleter<VMCache> _2(cache, &VMCache::ReleaseRefLocked); 2549 2550 // check again if that page is still a candidate 2551 if (page->busy || page->State() != PAGE_STATE_CACHED) 2552 return false; 2553 2554 DEBUG_PAGE_ACCESS_START(page); 2555 2556 PAGE_ASSERT(page, !page->IsMapped()); 2557 PAGE_ASSERT(page, !page->modified); 2558 2559 // we can now steal this page 2560 2561 cache->RemovePage(page); 2562 // Now the page doesn't have cache anymore, so no one else (e.g. 2563 // vm_page_allocate_page_run() can pick it up), since they would be 2564 // required to lock the cache first, which would fail. 2565 2566 sCachedPageQueue.RemoveUnlocked(page); 2567 return true; 2568 } 2569 2570 2571 static uint32 2572 free_cached_pages(uint32 pagesToFree, bool dontWait) 2573 { 2574 vm_page marker; 2575 init_page_marker(marker); 2576 2577 uint32 pagesFreed = 0; 2578 2579 while (pagesFreed < pagesToFree) { 2580 vm_page *page = find_cached_page_candidate(marker); 2581 if (page == NULL) 2582 break; 2583 2584 if (free_cached_page(page, dontWait)) { 2585 ReadLocker locker(sFreePageQueuesLock); 2586 page->SetState(PAGE_STATE_FREE); 2587 DEBUG_PAGE_ACCESS_END(page); 2588 sFreePageQueue.PrependUnlocked(page); 2589 locker.Unlock(); 2590 2591 TA(StolenPage()); 2592 2593 pagesFreed++; 2594 } 2595 } 2596 2597 remove_page_marker(marker); 2598 2599 return pagesFreed; 2600 } 2601 2602 2603 static void 2604 idle_scan_active_pages(page_stats& pageStats) 2605 { 2606 VMPageQueue& queue = sActivePageQueue; 2607 2608 // We want to scan the whole queue in roughly kIdleRunsForFullQueue runs. 2609 uint32 maxToScan = queue.Count() / kIdleRunsForFullQueue + 1; 2610 2611 while (maxToScan > 0) { 2612 maxToScan--; 2613 2614 // Get the next page. Note that we don't bother to lock here. We go with 2615 // the assumption that on all architectures reading/writing pointers is 2616 // atomic. Beyond that it doesn't really matter. We have to unlock the 2617 // queue anyway to lock the page's cache, and we'll recheck afterwards. 2618 vm_page* page = queue.Head(); 2619 if (page == NULL) 2620 break; 2621 2622 // lock the page's cache 2623 VMCache* cache = vm_cache_acquire_locked_page_cache(page, true); 2624 if (cache == NULL) 2625 continue; 2626 2627 if (page->State() != PAGE_STATE_ACTIVE) { 2628 // page is no longer in the cache or in this queue 2629 cache->ReleaseRefAndUnlock(); 2630 continue; 2631 } 2632 2633 if (page->busy) { 2634 // page is busy -- requeue at the end 2635 vm_page_requeue(page, true); 2636 cache->ReleaseRefAndUnlock(); 2637 continue; 2638 } 2639 2640 DEBUG_PAGE_ACCESS_START(page); 2641 2642 // Get the page active/modified flags and update the page's usage count. 2643 // We completely unmap inactive temporary pages. This saves us to 2644 // iterate through the inactive list as well, since we'll be notified 2645 // via page fault whenever such an inactive page is used again. 2646 // We don't remove the mappings of non-temporary pages, since we 2647 // wouldn't notice when those would become unused and could thus be 2648 // moved to the cached list. 2649 int32 usageCount; 2650 if (page->WiredCount() > 0 || page->usage_count > 0 2651 || !cache->temporary) { 2652 usageCount = vm_clear_page_mapping_accessed_flags(page); 2653 } else 2654 usageCount = vm_remove_all_page_mappings_if_unaccessed(page); 2655 2656 if (usageCount > 0) { 2657 usageCount += page->usage_count + kPageUsageAdvance; 2658 if (usageCount > kPageUsageMax) 2659 usageCount = kPageUsageMax; 2660 // TODO: This would probably also be the place to reclaim swap space. 2661 } else { 2662 usageCount += page->usage_count - (int32)kPageUsageDecline; 2663 if (usageCount < 0) { 2664 usageCount = 0; 2665 set_page_state(page, PAGE_STATE_INACTIVE); 2666 } 2667 } 2668 2669 page->usage_count = usageCount; 2670 2671 DEBUG_PAGE_ACCESS_END(page); 2672 2673 cache->ReleaseRefAndUnlock(); 2674 } 2675 } 2676 2677 2678 static void 2679 full_scan_inactive_pages(page_stats& pageStats, int32 despairLevel) 2680 { 2681 int32 pagesToFree = pageStats.unsatisfiedReservations 2682 + sFreeOrCachedPagesTarget 2683 - (pageStats.totalFreePages + pageStats.cachedPages); 2684 if (pagesToFree <= 0) 2685 return; 2686 2687 bigtime_t time = system_time(); 2688 uint32 pagesScanned = 0; 2689 uint32 pagesToCached = 0; 2690 uint32 pagesToModified = 0; 2691 uint32 pagesToActive = 0; 2692 2693 // Determine how many pages at maximum to send to the modified queue. Since 2694 // it is relatively expensive to page out pages, we do that on a grander 2695 // scale only when things get desperate. 2696 uint32 maxToFlush = despairLevel <= 1 ? 32 : 10000; 2697 2698 vm_page marker; 2699 init_page_marker(marker); 2700 2701 VMPageQueue& queue = sInactivePageQueue; 2702 InterruptsSpinLocker queueLocker(queue.GetLock()); 2703 uint32 maxToScan = queue.Count(); 2704 2705 vm_page* nextPage = queue.Head(); 2706 2707 while (pagesToFree > 0 && maxToScan > 0) { 2708 maxToScan--; 2709 2710 // get the next page 2711 vm_page* page = nextPage; 2712 if (page == NULL) 2713 break; 2714 nextPage = queue.Next(page); 2715 2716 if (page->busy) 2717 continue; 2718 2719 // mark the position 2720 queue.InsertAfter(page, &marker); 2721 queueLocker.Unlock(); 2722 2723 // lock the page's cache 2724 VMCache* cache = vm_cache_acquire_locked_page_cache(page, true); 2725 if (cache == NULL || page->busy 2726 || page->State() != PAGE_STATE_INACTIVE) { 2727 if (cache != NULL) 2728 cache->ReleaseRefAndUnlock(); 2729 queueLocker.Lock(); 2730 nextPage = queue.Next(&marker); 2731 queue.Remove(&marker); 2732 continue; 2733 } 2734 2735 pagesScanned++; 2736 2737 DEBUG_PAGE_ACCESS_START(page); 2738 2739 // Get the accessed count, clear the accessed/modified flags and 2740 // unmap the page, if it hasn't been accessed. 2741 int32 usageCount; 2742 if (page->WiredCount() > 0) 2743 usageCount = vm_clear_page_mapping_accessed_flags(page); 2744 else 2745 usageCount = vm_remove_all_page_mappings_if_unaccessed(page); 2746 2747 // update usage count 2748 if (usageCount > 0) { 2749 usageCount += page->usage_count + kPageUsageAdvance; 2750 if (usageCount > kPageUsageMax) 2751 usageCount = kPageUsageMax; 2752 } else { 2753 usageCount += page->usage_count - (int32)kPageUsageDecline; 2754 if (usageCount < 0) 2755 usageCount = 0; 2756 } 2757 2758 page->usage_count = usageCount; 2759 2760 // Move to fitting queue or requeue: 2761 // * Active mapped pages go to the active queue. 2762 // * Inactive mapped (i.e. wired) pages are requeued. 2763 // * The remaining pages are cachable. Thus, if unmodified they go to 2764 // the cached queue, otherwise to the modified queue (up to a limit). 2765 // Note that until in the idle scanning we don't exempt pages of 2766 // temporary caches. Apparently we really need memory, so we better 2767 // page out memory as well. 2768 bool isMapped = page->IsMapped(); 2769 if (usageCount > 0) { 2770 if (isMapped) { 2771 set_page_state(page, PAGE_STATE_ACTIVE); 2772 pagesToActive++; 2773 } else 2774 vm_page_requeue(page, true); 2775 } else if (isMapped) { 2776 vm_page_requeue(page, true); 2777 } else if (!page->modified) { 2778 set_page_state(page, PAGE_STATE_CACHED); 2779 pagesToFree--; 2780 pagesToCached++; 2781 } else if (maxToFlush > 0) { 2782 set_page_state(page, PAGE_STATE_MODIFIED); 2783 maxToFlush--; 2784 pagesToModified++; 2785 } else 2786 vm_page_requeue(page, true); 2787 2788 DEBUG_PAGE_ACCESS_END(page); 2789 2790 cache->ReleaseRefAndUnlock(); 2791 2792 // remove the marker 2793 queueLocker.Lock(); 2794 nextPage = queue.Next(&marker); 2795 queue.Remove(&marker); 2796 } 2797 2798 queueLocker.Unlock(); 2799 2800 time = system_time() - time; 2801 TRACE_DAEMON(" -> inactive scan (%7lld us): scanned: %7lu, " 2802 "moved: %lu -> cached, %lu -> modified, %lu -> active\n", time, 2803 pagesScanned, pagesToCached, pagesToModified, pagesToActive); 2804 2805 // wake up the page writer, if we tossed it some pages 2806 if (pagesToModified > 0) 2807 sPageWriterCondition.WakeUp(); 2808 } 2809 2810 2811 static void 2812 full_scan_active_pages(page_stats& pageStats, int32 despairLevel) 2813 { 2814 vm_page marker; 2815 init_page_marker(marker); 2816 2817 VMPageQueue& queue = sActivePageQueue; 2818 InterruptsSpinLocker queueLocker(queue.GetLock()); 2819 uint32 maxToScan = queue.Count(); 2820 2821 int32 pagesToDeactivate = pageStats.unsatisfiedReservations 2822 + sFreeOrCachedPagesTarget 2823 - (pageStats.totalFreePages + pageStats.cachedPages) 2824 + std::max((int32)sInactivePagesTarget - (int32)maxToScan, (int32)0); 2825 if (pagesToDeactivate <= 0) 2826 return; 2827 2828 bigtime_t time = system_time(); 2829 uint32 pagesAccessed = 0; 2830 uint32 pagesToInactive = 0; 2831 uint32 pagesScanned = 0; 2832 2833 vm_page* nextPage = queue.Head(); 2834 2835 while (pagesToDeactivate > 0 && maxToScan > 0) { 2836 maxToScan--; 2837 2838 // get the next page 2839 vm_page* page = nextPage; 2840 if (page == NULL) 2841 break; 2842 nextPage = queue.Next(page); 2843 2844 if (page->busy) 2845 continue; 2846 2847 // mark the position 2848 queue.InsertAfter(page, &marker); 2849 queueLocker.Unlock(); 2850 2851 // lock the page's cache 2852 VMCache* cache = vm_cache_acquire_locked_page_cache(page, true); 2853 if (cache == NULL || page->busy || page->State() != PAGE_STATE_ACTIVE) { 2854 if (cache != NULL) 2855 cache->ReleaseRefAndUnlock(); 2856 queueLocker.Lock(); 2857 nextPage = queue.Next(&marker); 2858 queue.Remove(&marker); 2859 continue; 2860 } 2861 2862 pagesScanned++; 2863 2864 DEBUG_PAGE_ACCESS_START(page); 2865 2866 // Get the page active/modified flags and update the page's usage count. 2867 int32 usageCount = vm_clear_page_mapping_accessed_flags(page); 2868 2869 if (usageCount > 0) { 2870 usageCount += page->usage_count + kPageUsageAdvance; 2871 if (usageCount > kPageUsageMax) 2872 usageCount = kPageUsageMax; 2873 pagesAccessed++; 2874 // TODO: This would probably also be the place to reclaim swap space. 2875 } else { 2876 usageCount += page->usage_count - (int32)kPageUsageDecline; 2877 if (usageCount <= 0) { 2878 usageCount = 0; 2879 set_page_state(page, PAGE_STATE_INACTIVE); 2880 pagesToInactive++; 2881 } 2882 } 2883 2884 page->usage_count = usageCount; 2885 2886 DEBUG_PAGE_ACCESS_END(page); 2887 2888 cache->ReleaseRefAndUnlock(); 2889 2890 // remove the marker 2891 queueLocker.Lock(); 2892 nextPage = queue.Next(&marker); 2893 queue.Remove(&marker); 2894 } 2895 2896 time = system_time() - time; 2897 TRACE_DAEMON(" -> active scan (%7lld us): scanned: %7lu, " 2898 "moved: %lu -> inactive, encountered %lu accessed ones\n", time, 2899 pagesScanned, pagesToInactive, pagesAccessed); 2900 } 2901 2902 2903 static void 2904 page_daemon_idle_scan(page_stats& pageStats) 2905 { 2906 TRACE_DAEMON("page daemon: idle run\n"); 2907 2908 if (pageStats.totalFreePages < (int32)sFreePagesTarget) { 2909 // We want more actually free pages, so free some from the cached 2910 // ones. 2911 uint32 freed = free_cached_pages( 2912 sFreePagesTarget - pageStats.totalFreePages, false); 2913 if (freed > 0) 2914 unreserve_pages(freed); 2915 get_page_stats(pageStats); 2916 } 2917 2918 // Walk the active list and move pages to the inactive queue. 2919 get_page_stats(pageStats); 2920 idle_scan_active_pages(pageStats); 2921 } 2922 2923 2924 static void 2925 page_daemon_full_scan(page_stats& pageStats, int32 despairLevel) 2926 { 2927 TRACE_DAEMON("page daemon: full run: free: %lu, cached: %lu, " 2928 "to free: %lu\n", pageStats.totalFreePages, pageStats.cachedPages, 2929 pageStats.unsatisfiedReservations + sFreeOrCachedPagesTarget 2930 - (pageStats.totalFreePages + pageStats.cachedPages)); 2931 2932 // Walk the inactive list and transfer pages to the cached and modified 2933 // queues. 2934 full_scan_inactive_pages(pageStats, despairLevel); 2935 2936 // Free cached pages. Also wake up reservation waiters. 2937 get_page_stats(pageStats); 2938 int32 pagesToFree = pageStats.unsatisfiedReservations + sFreePagesTarget 2939 - (pageStats.totalFreePages); 2940 if (pagesToFree > 0) { 2941 uint32 freed = free_cached_pages(pagesToFree, true); 2942 if (freed > 0) 2943 unreserve_pages(freed); 2944 } 2945 2946 // Walk the active list and move pages to the inactive queue. 2947 get_page_stats(pageStats); 2948 full_scan_active_pages(pageStats, despairLevel); 2949 } 2950 2951 2952 static status_t 2953 page_daemon(void* /*unused*/) 2954 { 2955 int32 despairLevel = 0; 2956 2957 while (true) { 2958 sPageDaemonCondition.ClearActivated(); 2959 2960 // evaluate the free pages situation 2961 page_stats pageStats; 2962 get_page_stats(pageStats); 2963 2964 if (!do_active_paging(pageStats)) { 2965 // Things look good -- just maintain statistics and keep the pool 2966 // of actually free pages full enough. 2967 despairLevel = 0; 2968 page_daemon_idle_scan(pageStats); 2969 sPageDaemonCondition.Wait(kIdleScanWaitInterval, false); 2970 } else { 2971 // Not enough free pages. We need to do some real work. 2972 despairLevel = std::max(despairLevel + 1, (int32)3); 2973 page_daemon_full_scan(pageStats, despairLevel); 2974 2975 // Don't wait after the first full scan, but rather immediately 2976 // check whether we were successful in freeing enough pages and 2977 // re-run with increased despair level. The first scan is 2978 // conservative with respect to moving inactive modified pages to 2979 // the modified list to avoid thrashing. The second scan, however, 2980 // will not hold back. 2981 if (despairLevel > 1) 2982 snooze(kBusyScanWaitInterval); 2983 } 2984 } 2985 2986 return B_OK; 2987 } 2988 2989 2990 /*! Returns how many pages could *not* be reserved. 2991 */ 2992 static uint32 2993 reserve_pages(uint32 count, int priority, bool dontWait) 2994 { 2995 int32 dontTouch = kPageReserveForPriority[priority]; 2996 2997 while (true) { 2998 count -= reserve_some_pages(count, dontTouch); 2999 if (count == 0) 3000 return 0; 3001 3002 if (sUnsatisfiedPageReservations == 0) { 3003 count -= free_cached_pages(count, dontWait); 3004 if (count == 0) 3005 return count; 3006 } 3007 3008 if (dontWait) 3009 return count; 3010 3011 // we need to wait for pages to become available 3012 3013 MutexLocker pageDeficitLocker(sPageDeficitLock); 3014 3015 bool notifyDaemon = sUnsatisfiedPageReservations == 0; 3016 sUnsatisfiedPageReservations += count; 3017 3018 if (sUnreservedFreePages > dontTouch) { 3019 // the situation changed 3020 sUnsatisfiedPageReservations -= count; 3021 continue; 3022 } 3023 3024 PageReservationWaiter waiter; 3025 waiter.dontTouch = dontTouch; 3026 waiter.missing = count; 3027 waiter.thread = thread_get_current_thread(); 3028 waiter.threadPriority = waiter.thread->priority; 3029 3030 // insert ordered (i.e. after all waiters with higher or equal priority) 3031 PageReservationWaiter* otherWaiter = NULL; 3032 for (PageReservationWaiterList::Iterator it 3033 = sPageReservationWaiters.GetIterator(); 3034 (otherWaiter = it.Next()) != NULL;) { 3035 if (waiter < *otherWaiter) 3036 break; 3037 } 3038 3039 sPageReservationWaiters.InsertBefore(otherWaiter, &waiter); 3040 3041 thread_prepare_to_block(waiter.thread, 0, THREAD_BLOCK_TYPE_OTHER, 3042 "waiting for pages"); 3043 3044 if (notifyDaemon) 3045 sPageDaemonCondition.WakeUp(); 3046 3047 pageDeficitLocker.Unlock(); 3048 3049 low_resource(B_KERNEL_RESOURCE_PAGES, count, B_RELATIVE_TIMEOUT, 0); 3050 thread_block(); 3051 3052 pageDeficitLocker.Lock(); 3053 3054 return 0; 3055 } 3056 } 3057 3058 3059 // #pragma mark - private kernel API 3060 3061 3062 /*! Writes a range of modified pages of a cache to disk. 3063 You need to hold the VMCache lock when calling this function. 3064 Note that the cache lock is released in this function. 3065 \param cache The cache. 3066 \param firstPage Offset (in page size units) of the first page in the range. 3067 \param endPage End offset (in page size units) of the page range. The page 3068 at this offset is not included. 3069 */ 3070 status_t 3071 vm_page_write_modified_page_range(struct VMCache* cache, uint32 firstPage, 3072 uint32 endPage) 3073 { 3074 static const int32 kMaxPages = 256; 3075 int32 maxPages = cache->MaxPagesPerWrite(); 3076 if (maxPages < 0 || maxPages > kMaxPages) 3077 maxPages = kMaxPages; 3078 3079 const uint32 allocationFlags = HEAP_DONT_WAIT_FOR_MEMORY 3080 | HEAP_DONT_LOCK_KERNEL_SPACE; 3081 3082 PageWriteWrapper stackWrappers[2]; 3083 PageWriteWrapper* wrapperPool 3084 = new(malloc_flags(allocationFlags)) PageWriteWrapper[maxPages + 1]; 3085 if (wrapperPool == NULL) { 3086 // don't fail, just limit our capabilities 3087 wrapperPool = stackWrappers; 3088 maxPages = 1; 3089 } 3090 3091 int32 nextWrapper = 0; 3092 3093 PageWriteWrapper* wrappers[maxPages]; 3094 int32 usedWrappers = 0; 3095 3096 PageWriteTransfer transfer; 3097 bool transferEmpty = true; 3098 3099 VMCachePagesTree::Iterator it 3100 = cache->pages.GetIterator(firstPage, true, true); 3101 3102 while (true) { 3103 vm_page* page = it.Next(); 3104 if (page == NULL || page->cache_offset >= endPage) { 3105 if (transferEmpty) 3106 break; 3107 3108 page = NULL; 3109 } 3110 3111 if (page != NULL) { 3112 if (page->busy 3113 || (page->State() != PAGE_STATE_MODIFIED 3114 && !vm_test_map_modification(page))) { 3115 page = NULL; 3116 } 3117 } 3118 3119 PageWriteWrapper* wrapper = NULL; 3120 if (page != NULL) { 3121 wrapper = &wrapperPool[nextWrapper++]; 3122 if (nextWrapper > maxPages) 3123 nextWrapper = 0; 3124 3125 DEBUG_PAGE_ACCESS_START(page); 3126 3127 wrapper->SetTo(page); 3128 3129 if (transferEmpty || transfer.AddPage(page)) { 3130 if (transferEmpty) { 3131 transfer.SetTo(NULL, page, maxPages); 3132 transferEmpty = false; 3133 } 3134 3135 DEBUG_PAGE_ACCESS_END(page); 3136 3137 wrappers[usedWrappers++] = wrapper; 3138 continue; 3139 } 3140 3141 DEBUG_PAGE_ACCESS_END(page); 3142 } 3143 3144 if (transferEmpty) 3145 continue; 3146 3147 cache->Unlock(); 3148 status_t status = transfer.Schedule(0); 3149 cache->Lock(); 3150 3151 for (int32 i = 0; i < usedWrappers; i++) 3152 wrappers[i]->Done(status); 3153 3154 usedWrappers = 0; 3155 3156 if (page != NULL) { 3157 transfer.SetTo(NULL, page, maxPages); 3158 wrappers[usedWrappers++] = wrapper; 3159 } else 3160 transferEmpty = true; 3161 } 3162 3163 if (wrapperPool != stackWrappers) 3164 delete[] wrapperPool; 3165 3166 return B_OK; 3167 } 3168 3169 3170 /*! You need to hold the VMCache lock when calling this function. 3171 Note that the cache lock is released in this function. 3172 */ 3173 status_t 3174 vm_page_write_modified_pages(VMCache *cache) 3175 { 3176 return vm_page_write_modified_page_range(cache, 0, 3177 (cache->virtual_end + B_PAGE_SIZE - 1) >> PAGE_SHIFT); 3178 } 3179 3180 3181 /*! Schedules the page writer to write back the specified \a page. 3182 Note, however, that it might not do this immediately, and it can well 3183 take several seconds until the page is actually written out. 3184 */ 3185 void 3186 vm_page_schedule_write_page(vm_page *page) 3187 { 3188 PAGE_ASSERT(page, page->State() == PAGE_STATE_MODIFIED); 3189 3190 vm_page_requeue(page, false); 3191 3192 sPageWriterCondition.WakeUp(); 3193 } 3194 3195 3196 /*! Cache must be locked. 3197 */ 3198 void 3199 vm_page_schedule_write_page_range(struct VMCache *cache, uint32 firstPage, 3200 uint32 endPage) 3201 { 3202 uint32 modified = 0; 3203 for (VMCachePagesTree::Iterator it 3204 = cache->pages.GetIterator(firstPage, true, true); 3205 vm_page *page = it.Next();) { 3206 if (page->cache_offset >= endPage) 3207 break; 3208 3209 if (!page->busy && page->State() == PAGE_STATE_MODIFIED) { 3210 DEBUG_PAGE_ACCESS_START(page); 3211 vm_page_requeue(page, false); 3212 modified++; 3213 DEBUG_PAGE_ACCESS_END(page); 3214 } 3215 } 3216 3217 if (modified > 0) 3218 sPageWriterCondition.WakeUp(); 3219 } 3220 3221 3222 void 3223 vm_page_init_num_pages(kernel_args *args) 3224 { 3225 // calculate the size of memory by looking at the physical_memory_range array 3226 sPhysicalPageOffset = args->physical_memory_range[0].start / B_PAGE_SIZE; 3227 page_num_t physicalPagesEnd = sPhysicalPageOffset 3228 + args->physical_memory_range[0].size / B_PAGE_SIZE; 3229 3230 sNonExistingPages = 0; 3231 sIgnoredPages = args->ignored_physical_memory / B_PAGE_SIZE; 3232 3233 for (uint32 i = 0; i < args->num_physical_memory_ranges; i++) { 3234 page_num_t start = args->physical_memory_range[i].start / B_PAGE_SIZE; 3235 if (start > physicalPagesEnd) 3236 sNonExistingPages += start - physicalPagesEnd; 3237 physicalPagesEnd = start 3238 + args->physical_memory_range[i].size / B_PAGE_SIZE; 3239 } 3240 3241 TRACE(("first phys page = %#" B_PRIxPHYSADDR ", end %#" B_PRIxPHYSADDR "\n", 3242 sPhysicalPageOffset, physicalPagesEnd)); 3243 3244 sNumPages = physicalPagesEnd - sPhysicalPageOffset; 3245 3246 #ifdef LIMIT_AVAILABLE_MEMORY 3247 if (sNumPages > LIMIT_AVAILABLE_MEMORY * (1024 * 1024 / B_PAGE_SIZE)) 3248 sNumPages = LIMIT_AVAILABLE_MEMORY * (1024 * 1024 / B_PAGE_SIZE); 3249 #endif 3250 } 3251 3252 3253 status_t 3254 vm_page_init(kernel_args *args) 3255 { 3256 TRACE(("vm_page_init: entry\n")); 3257 3258 // init page queues 3259 sModifiedPageQueue.Init("modified pages queue"); 3260 sInactivePageQueue.Init("inactive pages queue"); 3261 sActivePageQueue.Init("active pages queue"); 3262 sCachedPageQueue.Init("cached pages queue"); 3263 sFreePageQueue.Init("free pages queue"); 3264 sClearPageQueue.Init("clear pages queue"); 3265 3266 new (&sPageReservationWaiters) PageReservationWaiterList; 3267 3268 // map in the new free page table 3269 sPages = (vm_page *)vm_allocate_early(args, sNumPages * sizeof(vm_page), 3270 ~0L, B_KERNEL_READ_AREA | B_KERNEL_WRITE_AREA, 0); 3271 3272 TRACE(("vm_init: putting free_page_table @ %p, # ents %" B_PRIuPHYSADDR 3273 " (size %#" B_PRIxPHYSADDR ")\n", sPages, sNumPages, 3274 (phys_addr_t)(sNumPages * sizeof(vm_page)))); 3275 3276 // initialize the free page table 3277 for (uint32 i = 0; i < sNumPages; i++) { 3278 sPages[i].Init(sPhysicalPageOffset + i); 3279 sFreePageQueue.Append(&sPages[i]); 3280 3281 #if VM_PAGE_ALLOCATION_TRACKING_AVAILABLE 3282 sPages[i].allocation_tracking_info.Clear(); 3283 #endif 3284 } 3285 3286 sUnreservedFreePages = sNumPages; 3287 3288 TRACE(("initialized table\n")); 3289 3290 // mark the ranges between usable physical memory unused 3291 phys_addr_t previousEnd = 0; 3292 for (uint32 i = 0; i < args->num_physical_memory_ranges; i++) { 3293 phys_addr_t base = args->physical_memory_range[i].start; 3294 phys_size_t size = args->physical_memory_range[i].size; 3295 if (base > previousEnd) { 3296 mark_page_range_in_use(previousEnd / B_PAGE_SIZE, 3297 (base - previousEnd) / B_PAGE_SIZE, false); 3298 } 3299 previousEnd = base + size; 3300 } 3301 3302 // mark the allocated physical page ranges wired 3303 for (uint32 i = 0; i < args->num_physical_allocated_ranges; i++) { 3304 mark_page_range_in_use( 3305 args->physical_allocated_range[i].start / B_PAGE_SIZE, 3306 args->physical_allocated_range[i].size / B_PAGE_SIZE, true); 3307 } 3308 3309 // The target of actually free pages. This must be at least the system 3310 // reserve, but should be a few more pages, so we don't have to extract 3311 // a cached page with each allocation. 3312 sFreePagesTarget = VM_PAGE_RESERVE_USER 3313 + std::max((page_num_t)32, (sNumPages - sNonExistingPages) / 1024); 3314 3315 // The target of free + cached and inactive pages. On low-memory machines 3316 // keep things tight. free + cached is the pool of immediately allocatable 3317 // pages. We want a few inactive pages, so when we're actually paging, we 3318 // have a reasonably large set of pages to work with. 3319 if (sUnreservedFreePages < 16 * 1024) { 3320 sFreeOrCachedPagesTarget = sFreePagesTarget + 128; 3321 sInactivePagesTarget = sFreePagesTarget / 3; 3322 } else { 3323 sFreeOrCachedPagesTarget = 2 * sFreePagesTarget; 3324 sInactivePagesTarget = sFreePagesTarget / 2; 3325 } 3326 3327 TRACE(("vm_page_init: exit\n")); 3328 3329 return B_OK; 3330 } 3331 3332 3333 status_t 3334 vm_page_init_post_area(kernel_args *args) 3335 { 3336 void *dummy; 3337 3338 dummy = sPages; 3339 create_area("page structures", &dummy, B_EXACT_ADDRESS, 3340 PAGE_ALIGN(sNumPages * sizeof(vm_page)), B_ALREADY_WIRED, 3341 B_KERNEL_READ_AREA | B_KERNEL_WRITE_AREA); 3342 3343 add_debugger_command("page_stats", &dump_page_stats, 3344 "Dump statistics about page usage"); 3345 add_debugger_command_etc("page", &dump_page, 3346 "Dump page info", 3347 "[ \"-p\" | \"-v\" ] [ \"-m\" ] <address>\n" 3348 "Prints information for the physical page. If neither \"-p\" nor\n" 3349 "\"-v\" are given, the provided address is interpreted as address of\n" 3350 "the vm_page data structure for the page in question. If \"-p\" is\n" 3351 "given, the address is the physical address of the page. If \"-v\" is\n" 3352 "given, the address is interpreted as virtual address in the current\n" 3353 "thread's address space and for the page it is mapped to (if any)\n" 3354 "information are printed. If \"-m\" is specified, the command will\n" 3355 "search all known address spaces for mappings to that page and print\n" 3356 "them.\n", 0); 3357 add_debugger_command("page_queue", &dump_page_queue, "Dump page queue"); 3358 add_debugger_command("find_page", &find_page, 3359 "Find out which queue a page is actually in"); 3360 3361 #ifdef TRACK_PAGE_USAGE_STATS 3362 add_debugger_command_etc("page_usage", &dump_page_usage_stats, 3363 "Dumps statistics about page usage counts", 3364 "\n" 3365 "Dumps statistics about page usage counts.\n", 3366 B_KDEBUG_DONT_PARSE_ARGUMENTS); 3367 #endif 3368 3369 #if VM_PAGE_ALLOCATION_TRACKING_AVAILABLE 3370 add_debugger_command_etc("page_allocations_per_caller", 3371 &dump_page_allocations_per_caller, 3372 "Dump current page allocations summed up per caller", 3373 "[ -d <caller> ] [ -r ]\n" 3374 "The current allocations will by summed up by caller (their count)\n" 3375 "printed in decreasing order by count.\n" 3376 "If \"-d\" is given, each allocation for caller <caller> is printed\n" 3377 "including the respective stack trace.\n" 3378 "If \"-r\" is given, the allocation infos are reset after gathering\n" 3379 "the information, so the next command invocation will only show the\n" 3380 "allocations made after the reset.\n", 0); 3381 add_debugger_command_etc("page_allocation_infos", 3382 &dump_page_allocation_infos, 3383 "Dump current page allocations", 3384 "[ --stacktrace ] [ -p <page number> ] [ --team <team ID> ] " 3385 "[ --thread <thread ID> ]\n" 3386 "The current allocations filtered by optional values will be printed.\n" 3387 "The optional \"-p\" page number filters for a specific page,\n" 3388 "with \"--team\" and \"--thread\" allocations by specific teams\n" 3389 "and/or threads can be filtered (these only work if a corresponding\n" 3390 "tracing entry is still available).\n" 3391 "If \"--stacktrace\" is given, then stack traces of the allocation\n" 3392 "callers are printed, where available\n", 0); 3393 #endif 3394 3395 return B_OK; 3396 } 3397 3398 3399 status_t 3400 vm_page_init_post_thread(kernel_args *args) 3401 { 3402 new (&sFreePageCondition) ConditionVariable; 3403 sFreePageCondition.Publish(&sFreePageQueue, "free page"); 3404 3405 // create a kernel thread to clear out pages 3406 3407 thread_id thread = spawn_kernel_thread(&page_scrubber, "page scrubber", 3408 B_LOWEST_ACTIVE_PRIORITY, NULL); 3409 resume_thread(thread); 3410 3411 // start page writer 3412 3413 sPageWriterCondition.Init("page writer"); 3414 3415 thread = spawn_kernel_thread(&page_writer, "page writer", 3416 B_NORMAL_PRIORITY + 1, NULL); 3417 resume_thread(thread); 3418 3419 // start page daemon 3420 3421 sPageDaemonCondition.Init("page daemon"); 3422 3423 thread = spawn_kernel_thread(&page_daemon, "page daemon", 3424 B_NORMAL_PRIORITY, NULL); 3425 resume_thread(thread); 3426 3427 return B_OK; 3428 } 3429 3430 3431 status_t 3432 vm_mark_page_inuse(page_num_t page) 3433 { 3434 return vm_mark_page_range_inuse(page, 1); 3435 } 3436 3437 3438 status_t 3439 vm_mark_page_range_inuse(page_num_t startPage, page_num_t length) 3440 { 3441 return mark_page_range_in_use(startPage, length, false); 3442 } 3443 3444 3445 /*! Unreserve pages previously reserved with vm_page_reserve_pages(). 3446 */ 3447 void 3448 vm_page_unreserve_pages(vm_page_reservation* reservation) 3449 { 3450 uint32 count = reservation->count; 3451 reservation->count = 0; 3452 3453 if (count == 0) 3454 return; 3455 3456 TA(UnreservePages(count)); 3457 3458 unreserve_pages(count); 3459 } 3460 3461 3462 /*! With this call, you can reserve a number of free pages in the system. 3463 They will only be handed out to someone who has actually reserved them. 3464 This call returns as soon as the number of requested pages has been 3465 reached. 3466 The caller must not hold any cache lock or the function might deadlock. 3467 */ 3468 void 3469 vm_page_reserve_pages(vm_page_reservation* reservation, uint32 count, 3470 int priority) 3471 { 3472 reservation->count = count; 3473 3474 if (count == 0) 3475 return; 3476 3477 TA(ReservePages(count)); 3478 3479 reserve_pages(count, priority, false); 3480 } 3481 3482 3483 bool 3484 vm_page_try_reserve_pages(vm_page_reservation* reservation, uint32 count, 3485 int priority) 3486 { 3487 if (count == 0) { 3488 reservation->count = count; 3489 return true; 3490 } 3491 3492 uint32 remaining = reserve_pages(count, priority, true); 3493 if (remaining == 0) { 3494 TA(ReservePages(count)); 3495 reservation->count = count; 3496 return true; 3497 } 3498 3499 unreserve_pages(count - remaining); 3500 3501 return false; 3502 } 3503 3504 3505 vm_page * 3506 vm_page_allocate_page(vm_page_reservation* reservation, uint32 flags) 3507 { 3508 uint32 pageState = flags & VM_PAGE_ALLOC_STATE; 3509 ASSERT(pageState != PAGE_STATE_FREE); 3510 ASSERT(pageState != PAGE_STATE_CLEAR); 3511 3512 ASSERT(reservation->count > 0); 3513 reservation->count--; 3514 3515 VMPageQueue* queue; 3516 VMPageQueue* otherQueue; 3517 3518 if ((flags & VM_PAGE_ALLOC_CLEAR) != 0) { 3519 queue = &sClearPageQueue; 3520 otherQueue = &sFreePageQueue; 3521 } else { 3522 queue = &sFreePageQueue; 3523 otherQueue = &sClearPageQueue; 3524 } 3525 3526 ReadLocker locker(sFreePageQueuesLock); 3527 3528 vm_page* page = queue->RemoveHeadUnlocked(); 3529 if (page == NULL) { 3530 // if the primary queue was empty, grab the page from the 3531 // secondary queue 3532 page = otherQueue->RemoveHeadUnlocked(); 3533 3534 if (page == NULL) { 3535 // Unlikely, but possible: the page we have reserved has moved 3536 // between the queues after we checked the first queue. Grab the 3537 // write locker to make sure this doesn't happen again. 3538 locker.Unlock(); 3539 WriteLocker writeLocker(sFreePageQueuesLock); 3540 3541 page = queue->RemoveHead(); 3542 if (page == NULL) 3543 otherQueue->RemoveHead(); 3544 3545 if (page == NULL) { 3546 panic("Had reserved page, but there is none!"); 3547 return NULL; 3548 } 3549 3550 // downgrade to read lock 3551 locker.Lock(); 3552 } 3553 } 3554 3555 if (page->CacheRef() != NULL) 3556 panic("supposed to be free page %p has cache\n", page); 3557 3558 DEBUG_PAGE_ACCESS_START(page); 3559 3560 int oldPageState = page->State(); 3561 page->SetState(pageState); 3562 page->busy = (flags & VM_PAGE_ALLOC_BUSY) != 0; 3563 page->usage_count = 0; 3564 page->accessed = false; 3565 page->modified = false; 3566 3567 locker.Unlock(); 3568 3569 if (pageState < PAGE_STATE_FIRST_UNQUEUED) 3570 sPageQueues[pageState].AppendUnlocked(page); 3571 3572 // clear the page, if we had to take it from the free queue and a clear 3573 // page was requested 3574 if ((flags & VM_PAGE_ALLOC_CLEAR) != 0 && oldPageState != PAGE_STATE_CLEAR) 3575 clear_page(page); 3576 3577 #if VM_PAGE_ALLOCATION_TRACKING_AVAILABLE 3578 page->allocation_tracking_info.Init( 3579 TA(AllocatePage(page->physical_page_number))); 3580 #else 3581 TA(AllocatePage(page->physical_page_number)); 3582 #endif 3583 3584 return page; 3585 } 3586 3587 3588 static void 3589 allocate_page_run_cleanup(VMPageQueue::PageList& freePages, 3590 VMPageQueue::PageList& clearPages) 3591 { 3592 while (vm_page* page = freePages.RemoveHead()) { 3593 page->busy = false; 3594 page->SetState(PAGE_STATE_FREE); 3595 DEBUG_PAGE_ACCESS_END(page); 3596 sFreePageQueue.PrependUnlocked(page); 3597 } 3598 3599 while (vm_page* page = clearPages.RemoveHead()) { 3600 page->busy = false; 3601 page->SetState(PAGE_STATE_CLEAR); 3602 DEBUG_PAGE_ACCESS_END(page); 3603 sClearPageQueue.PrependUnlocked(page); 3604 } 3605 } 3606 3607 3608 /*! Tries to allocate the a contiguous run of \a length pages starting at 3609 index \a start. 3610 3611 The caller must have write-locked the free/clear page queues. The function 3612 will unlock regardless of whether it succeeds or fails. 3613 3614 If the function fails, it cleans up after itself, i.e. it will free all 3615 pages it managed to allocate. 3616 3617 \param start The start index (into \c sPages) of the run. 3618 \param length The number of pages to allocate. 3619 \param flags Page allocation flags. Encodes the state the function shall 3620 set the allocated pages to, whether the pages shall be marked busy 3621 (VM_PAGE_ALLOC_BUSY), and whether the pages shall be cleared 3622 (VM_PAGE_ALLOC_CLEAR). 3623 \param freeClearQueueLocker Locked WriteLocker for the free/clear page 3624 queues in locked state. Will be unlocked by the function. 3625 \return The index of the first page that could not be allocated. \a length 3626 is returned when the function was successful. 3627 */ 3628 static page_num_t 3629 allocate_page_run(page_num_t start, page_num_t length, uint32 flags, 3630 WriteLocker& freeClearQueueLocker) 3631 { 3632 uint32 pageState = flags & VM_PAGE_ALLOC_STATE; 3633 ASSERT(pageState != PAGE_STATE_FREE); 3634 ASSERT(pageState != PAGE_STATE_CLEAR); 3635 ASSERT(start + length <= sNumPages); 3636 3637 // Pull the free/clear pages out of their respective queues. Cached pages 3638 // are allocated later. 3639 page_num_t cachedPages = 0; 3640 VMPageQueue::PageList freePages; 3641 VMPageQueue::PageList clearPages; 3642 page_num_t i = 0; 3643 for (; i < length; i++) { 3644 bool pageAllocated = true; 3645 bool noPage = false; 3646 vm_page& page = sPages[start + i]; 3647 switch (page.State()) { 3648 case PAGE_STATE_CLEAR: 3649 DEBUG_PAGE_ACCESS_START(&page); 3650 sClearPageQueue.Remove(&page); 3651 clearPages.Add(&page); 3652 break; 3653 case PAGE_STATE_FREE: 3654 DEBUG_PAGE_ACCESS_START(&page); 3655 sFreePageQueue.Remove(&page); 3656 freePages.Add(&page); 3657 break; 3658 case PAGE_STATE_CACHED: 3659 // We allocate cached pages later. 3660 cachedPages++; 3661 pageAllocated = false; 3662 break; 3663 3664 default: 3665 // Probably a page was cached when our caller checked. Now it's 3666 // gone and we have to abort. 3667 noPage = true; 3668 break; 3669 } 3670 3671 if (noPage) 3672 break; 3673 3674 if (pageAllocated) { 3675 page.SetState(flags & VM_PAGE_ALLOC_STATE); 3676 page.busy = (flags & VM_PAGE_ALLOC_BUSY) != 0; 3677 page.usage_count = 0; 3678 page.accessed = false; 3679 page.modified = false; 3680 } 3681 } 3682 3683 if (i < length) { 3684 // failed to allocate a page -- free all that we've got 3685 allocate_page_run_cleanup(freePages, clearPages); 3686 return i; 3687 } 3688 3689 freeClearQueueLocker.Unlock(); 3690 3691 if (cachedPages > 0) { 3692 // allocate the pages that weren't free but cached 3693 page_num_t freedCachedPages = 0; 3694 page_num_t nextIndex = start; 3695 vm_page* freePage = freePages.Head(); 3696 vm_page* clearPage = clearPages.Head(); 3697 while (cachedPages > 0) { 3698 // skip, if we've already got the page 3699 if (freePage != NULL && size_t(freePage - sPages) == nextIndex) { 3700 freePage = freePages.GetNext(freePage); 3701 nextIndex++; 3702 continue; 3703 } 3704 if (clearPage != NULL && size_t(clearPage - sPages) == nextIndex) { 3705 clearPage = clearPages.GetNext(clearPage); 3706 nextIndex++; 3707 continue; 3708 } 3709 3710 // free the page, if it is still cached 3711 vm_page& page = sPages[nextIndex]; 3712 if (!free_cached_page(&page, false)) { 3713 // TODO: if the page turns out to have been freed already, 3714 // there would be no need to fail 3715 break; 3716 } 3717 3718 page.SetState(flags & VM_PAGE_ALLOC_STATE); 3719 page.busy = (flags & VM_PAGE_ALLOC_BUSY) != 0; 3720 page.usage_count = 0; 3721 page.accessed = false; 3722 page.modified = false; 3723 3724 freePages.InsertBefore(freePage, &page); 3725 freedCachedPages++; 3726 cachedPages--; 3727 nextIndex++; 3728 } 3729 3730 // If we have freed cached pages, we need to balance things. 3731 if (freedCachedPages > 0) 3732 unreserve_pages(freedCachedPages); 3733 3734 if (nextIndex - start < length) { 3735 // failed to allocate all cached pages -- free all that we've got 3736 freeClearQueueLocker.Lock(); 3737 allocate_page_run_cleanup(freePages, clearPages); 3738 freeClearQueueLocker.Unlock(); 3739 3740 return nextIndex - start; 3741 } 3742 } 3743 3744 // clear pages, if requested 3745 if ((flags & VM_PAGE_ALLOC_CLEAR) != 0) { 3746 for (VMPageQueue::PageList::Iterator it = freePages.GetIterator(); 3747 vm_page* page = it.Next();) { 3748 clear_page(page); 3749 } 3750 } 3751 3752 // add pages to target queue 3753 if (pageState < PAGE_STATE_FIRST_UNQUEUED) { 3754 freePages.MoveFrom(&clearPages); 3755 sPageQueues[pageState].AppendUnlocked(freePages, length); 3756 } 3757 3758 // Note: We don't unreserve the pages since we pulled them out of the 3759 // free/clear queues without adjusting sUnreservedFreePages. 3760 3761 #if VM_PAGE_ALLOCATION_TRACKING_AVAILABLE 3762 AbstractTraceEntryWithStackTrace* traceEntry 3763 = TA(AllocatePageRun(start, length)); 3764 3765 for (page_num_t i = start; i < start + length; i++) 3766 sPages[i].allocation_tracking_info.Init(traceEntry); 3767 #else 3768 TA(AllocatePageRun(start, length)); 3769 #endif 3770 3771 return length; 3772 } 3773 3774 3775 /*! Allocate a physically contiguous range of pages. 3776 3777 \param flags Page allocation flags. Encodes the state the function shall 3778 set the allocated pages to, whether the pages shall be marked busy 3779 (VM_PAGE_ALLOC_BUSY), and whether the pages shall be cleared 3780 (VM_PAGE_ALLOC_CLEAR). 3781 \param length The number of contiguous pages to allocate. 3782 \param restrictions Restrictions to the physical addresses of the page run 3783 to allocate, including \c low_address, the first acceptable physical 3784 address where the page run may start, \c high_address, the last 3785 acceptable physical address where the page run may end (i.e. it must 3786 hold \code runStartAddress + length <= high_address \endcode), 3787 \c alignment, the alignment of the page run start address, and 3788 \c boundary, multiples of which the page run must not cross. 3789 Values set to \c 0 are ignored. 3790 \param priority The page reservation priority (as passed to 3791 vm_page_reserve_pages()). 3792 \return The first page of the allocated page run on success; \c NULL 3793 when the allocation failed. 3794 */ 3795 vm_page* 3796 vm_page_allocate_page_run(uint32 flags, page_num_t length, 3797 const physical_address_restrictions* restrictions, int priority) 3798 { 3799 // compute start and end page index 3800 page_num_t requestedStart 3801 = std::max(restrictions->low_address / B_PAGE_SIZE, sPhysicalPageOffset) 3802 - sPhysicalPageOffset; 3803 page_num_t start = requestedStart; 3804 page_num_t end; 3805 if (restrictions->high_address > 0) { 3806 end = std::max(restrictions->high_address / B_PAGE_SIZE, 3807 sPhysicalPageOffset) 3808 - sPhysicalPageOffset; 3809 end = std::min(end, sNumPages); 3810 } else 3811 end = sNumPages; 3812 3813 // compute alignment mask 3814 page_num_t alignmentMask 3815 = std::max(restrictions->alignment / B_PAGE_SIZE, (phys_addr_t)1) - 1; 3816 ASSERT(((alignmentMask + 1) & alignmentMask) == 0); 3817 // alignment must be a power of 2 3818 3819 // compute the boundary shift 3820 uint32 boundaryShift = 0; 3821 if (restrictions->boundary != 0) { 3822 page_num_t boundary = restrictions->boundary / B_PAGE_SIZE; 3823 // boundary must be a power of two and not less than alignment and 3824 // length 3825 ASSERT(((boundary - 1) & boundary) == 0); 3826 ASSERT(boundary >= alignmentMask + 1); 3827 ASSERT(boundary >= length); 3828 3829 while ((boundary >>= 1) > 0) 3830 boundaryShift++; 3831 } 3832 3833 vm_page_reservation reservation; 3834 vm_page_reserve_pages(&reservation, length, priority); 3835 3836 WriteLocker freeClearQueueLocker(sFreePageQueuesLock); 3837 3838 // First we try to get a run with free pages only. If that fails, we also 3839 // consider cached pages. If there are only few free pages and many cached 3840 // ones, the odds are that we won't find enough contiguous ones, so we skip 3841 // the first iteration in this case. 3842 int32 freePages = sUnreservedFreePages; 3843 int useCached = freePages > 0 && (page_num_t)freePages > 2 * length ? 0 : 1; 3844 3845 for (;;) { 3846 if (alignmentMask != 0 || boundaryShift != 0) { 3847 page_num_t offsetStart = start + sPhysicalPageOffset; 3848 3849 // enforce alignment 3850 if ((offsetStart & alignmentMask) != 0) { 3851 offsetStart = ((offsetStart + alignmentMask) & ~alignmentMask) 3852 - sPhysicalPageOffset; 3853 } 3854 3855 // enforce boundary 3856 if (offsetStart << boundaryShift 3857 != (offsetStart + length - 1) << boundaryShift) { 3858 offsetStart = (offsetStart + length - 1) << boundaryShift 3859 >> boundaryShift; 3860 } 3861 3862 start = offsetStart - sPhysicalPageOffset; 3863 } 3864 3865 if (start + length > end) { 3866 if (useCached == 0) { 3867 // The first iteration with free pages only was unsuccessful. 3868 // Try again also considering cached pages. 3869 useCached = 1; 3870 start = requestedStart; 3871 continue; 3872 } 3873 3874 dprintf("vm_page_allocate_page_run(): Failed to allocate run of " 3875 "length %" B_PRIuPHYSADDR " in second iteration!", length); 3876 3877 freeClearQueueLocker.Unlock(); 3878 vm_page_unreserve_pages(&reservation); 3879 return NULL; 3880 } 3881 3882 bool foundRun = true; 3883 page_num_t i; 3884 for (i = 0; i < length; i++) { 3885 uint32 pageState = sPages[start + i].State(); 3886 if (pageState != PAGE_STATE_FREE 3887 && pageState != PAGE_STATE_CLEAR 3888 && (pageState != PAGE_STATE_CACHED || useCached == 0)) { 3889 foundRun = false; 3890 break; 3891 } 3892 } 3893 3894 if (foundRun) { 3895 i = allocate_page_run(start, length, flags, freeClearQueueLocker); 3896 if (i == length) 3897 return &sPages[start]; 3898 3899 // apparently a cached page couldn't be allocated -- skip it and 3900 // continue 3901 freeClearQueueLocker.Lock(); 3902 } 3903 3904 start += i + 1; 3905 } 3906 } 3907 3908 3909 vm_page * 3910 vm_page_at_index(int32 index) 3911 { 3912 return &sPages[index]; 3913 } 3914 3915 3916 vm_page * 3917 vm_lookup_page(page_num_t pageNumber) 3918 { 3919 if (pageNumber < sPhysicalPageOffset) 3920 return NULL; 3921 3922 pageNumber -= sPhysicalPageOffset; 3923 if (pageNumber >= sNumPages) 3924 return NULL; 3925 3926 return &sPages[pageNumber]; 3927 } 3928 3929 3930 bool 3931 vm_page_is_dummy(struct vm_page *page) 3932 { 3933 return page < sPages || page >= sPages + sNumPages; 3934 } 3935 3936 3937 /*! Free the page that belonged to a certain cache. 3938 You can use vm_page_set_state() manually if you prefer, but only 3939 if the page does not equal PAGE_STATE_MODIFIED. 3940 */ 3941 void 3942 vm_page_free(VMCache *cache, vm_page *page) 3943 { 3944 PAGE_ASSERT(page, page->State() != PAGE_STATE_FREE 3945 && page->State() != PAGE_STATE_CLEAR); 3946 3947 if (page->State() == PAGE_STATE_MODIFIED && cache->temporary) 3948 atomic_add(&sModifiedTemporaryPages, -1); 3949 3950 free_page(page, false); 3951 } 3952 3953 3954 void 3955 vm_page_set_state(vm_page *page, int pageState) 3956 { 3957 PAGE_ASSERT(page, page->State() != PAGE_STATE_FREE 3958 && page->State() != PAGE_STATE_CLEAR); 3959 3960 if (pageState == PAGE_STATE_FREE || pageState == PAGE_STATE_CLEAR) 3961 free_page(page, pageState == PAGE_STATE_CLEAR); 3962 else 3963 set_page_state(page, pageState); 3964 } 3965 3966 3967 /*! Moves a page to either the tail of the head of its current queue, 3968 depending on \a tail. 3969 The page must have a cache and the cache must be locked! 3970 */ 3971 void 3972 vm_page_requeue(struct vm_page *page, bool tail) 3973 { 3974 PAGE_ASSERT(page, page->Cache() != NULL); 3975 page->Cache()->AssertLocked(); 3976 // DEBUG_PAGE_ACCESS_CHECK(page); 3977 // TODO: This assertion cannot be satisfied by idle_scan_active_pages() 3978 // when it requeues busy pages. The reason is that vm_soft_fault() 3979 // (respectively fault_get_page()) and the file cache keep newly 3980 // allocated pages accessed while they are reading them from disk. It 3981 // would probably be better to change that code and reenable this 3982 // check. 3983 3984 VMPageQueue *queue = NULL; 3985 3986 switch (page->State()) { 3987 case PAGE_STATE_ACTIVE: 3988 queue = &sActivePageQueue; 3989 break; 3990 case PAGE_STATE_INACTIVE: 3991 queue = &sInactivePageQueue; 3992 break; 3993 case PAGE_STATE_MODIFIED: 3994 queue = &sModifiedPageQueue; 3995 break; 3996 case PAGE_STATE_CACHED: 3997 queue = &sCachedPageQueue; 3998 break; 3999 case PAGE_STATE_FREE: 4000 case PAGE_STATE_CLEAR: 4001 panic("vm_page_requeue() called for free/clear page %p", page); 4002 return; 4003 case PAGE_STATE_WIRED: 4004 case PAGE_STATE_UNUSED: 4005 return; 4006 default: 4007 panic("vm_page_touch: vm_page %p in invalid state %d\n", 4008 page, page->State()); 4009 break; 4010 } 4011 4012 queue->RequeueUnlocked(page, tail); 4013 } 4014 4015 4016 page_num_t 4017 vm_page_num_pages(void) 4018 { 4019 return sNumPages - sNonExistingPages; 4020 } 4021 4022 4023 /*! There is a subtle distinction between the page counts returned by 4024 this function and vm_page_num_free_pages(): 4025 The latter returns the number of pages that are completely uncommitted, 4026 whereas this one returns the number of pages that are available for 4027 use by being reclaimed as well (IOW it factors in things like cache pages 4028 as available). 4029 */ 4030 page_num_t 4031 vm_page_num_available_pages(void) 4032 { 4033 return vm_available_memory() / B_PAGE_SIZE; 4034 } 4035 4036 4037 page_num_t 4038 vm_page_num_free_pages(void) 4039 { 4040 int32 count = sUnreservedFreePages + sCachedPageQueue.Count(); 4041 return count > 0 ? count : 0; 4042 } 4043 4044 4045 page_num_t 4046 vm_page_num_unused_pages(void) 4047 { 4048 int32 count = sUnreservedFreePages; 4049 return count > 0 ? count : 0; 4050 } 4051 4052 4053 void 4054 vm_page_get_stats(system_info *info) 4055 { 4056 // Get free pages count -- not really exact, since we don't know how many 4057 // of the reserved pages have already been allocated, but good citizens 4058 // unreserve chunk-wise as they are allocating the pages, if they have 4059 // reserved a larger quantity. 4060 int32 free = sUnreservedFreePages; 4061 if (free < 0) 4062 free = 0; 4063 4064 // The pages used for the block cache buffers. Those should not be counted 4065 // as used but as cached pages. 4066 // TODO: We should subtract the blocks that are in use ATM, since those 4067 // can't really be freed in a low memory situation. 4068 page_num_t blockCachePages = block_cache_used_memory() / B_PAGE_SIZE; 4069 4070 info->max_pages = sNumPages - sNonExistingPages; 4071 info->used_pages = gMappedPagesCount + sInactivePageQueue.Count() 4072 - blockCachePages; 4073 info->cached_pages = info->max_pages >= free + info->used_pages 4074 ? info->max_pages - free - info->used_pages : 0; 4075 info->page_faults = vm_num_page_faults(); 4076 info->ignored_pages = sIgnoredPages; 4077 4078 // TODO: We don't consider pages used for page directories/tables yet. 4079 } 4080 4081 4082 /*! Returns the greatest address within the last page of accessible physical 4083 memory. 4084 The value is inclusive, i.e. in case of a 32 bit phys_addr_t 0xffffffff 4085 means the that the last page ends at exactly 4 GB. 4086 */ 4087 phys_addr_t 4088 vm_page_max_address() 4089 { 4090 return ((phys_addr_t)sPhysicalPageOffset + sNumPages) * B_PAGE_SIZE - 1; 4091 } 4092 4093 4094 RANGE_MARKER_FUNCTION_END(vm_page) 4095