1 /* 2 * Copyright 2010-2011, Ingo Weinhold, ingo_weinhold@gmx.de. 3 * Copyright 2002-2010, Axel Dörfler, axeld@pinc-software.de. 4 * Distributed under the terms of the MIT License. 5 * 6 * Copyright 2001-2002, Travis Geiselbrecht. All rights reserved. 7 * Distributed under the terms of the NewOS License. 8 */ 9 10 11 #include <string.h> 12 #include <stdlib.h> 13 14 #include <algorithm> 15 16 #include <KernelExport.h> 17 #include <OS.h> 18 19 #include <AutoDeleter.h> 20 21 #include <arch/cpu.h> 22 #include <arch/vm_translation_map.h> 23 #include <block_cache.h> 24 #include <boot/kernel_args.h> 25 #include <condition_variable.h> 26 #include <elf.h> 27 #include <heap.h> 28 #include <kernel.h> 29 #include <low_resource_manager.h> 30 #include <thread.h> 31 #include <tracing.h> 32 #include <util/AutoLock.h> 33 #include <vfs.h> 34 #include <vm/vm.h> 35 #include <vm/vm_priv.h> 36 #include <vm/vm_page.h> 37 #include <vm/VMAddressSpace.h> 38 #include <vm/VMArea.h> 39 #include <vm/VMCache.h> 40 41 #include "IORequest.h" 42 #include "PageCacheLocker.h" 43 #include "VMAnonymousCache.h" 44 #include "VMPageQueue.h" 45 46 47 //#define TRACE_VM_PAGE 48 #ifdef TRACE_VM_PAGE 49 # define TRACE(x) dprintf x 50 #else 51 # define TRACE(x) ; 52 #endif 53 54 //#define TRACE_VM_DAEMONS 55 #ifdef TRACE_VM_DAEMONS 56 #define TRACE_DAEMON(x...) dprintf(x) 57 #else 58 #define TRACE_DAEMON(x...) do {} while (false) 59 #endif 60 61 //#define TRACK_PAGE_USAGE_STATS 1 62 63 #define PAGE_ASSERT(page, condition) \ 64 ASSERT_PRINT((condition), "page: %p", (page)) 65 66 #define SCRUB_SIZE 32 67 // this many pages will be cleared at once in the page scrubber thread 68 69 #define MAX_PAGE_WRITER_IO_PRIORITY B_URGENT_DISPLAY_PRIORITY 70 // maximum I/O priority of the page writer 71 #define MAX_PAGE_WRITER_IO_PRIORITY_THRESHOLD 10000 72 // the maximum I/O priority shall be reached when this many pages need to 73 // be written 74 75 76 // The page reserve an allocation of the certain priority must not touch. 77 static const size_t kPageReserveForPriority[] = { 78 VM_PAGE_RESERVE_USER, // user 79 VM_PAGE_RESERVE_SYSTEM, // system 80 0 // VIP 81 }; 82 83 // Minimum number of free pages the page daemon will try to achieve. 84 static uint32 sFreePagesTarget; 85 static uint32 sFreeOrCachedPagesTarget; 86 static uint32 sInactivePagesTarget; 87 88 // Wait interval between page daemon runs. 89 static const bigtime_t kIdleScanWaitInterval = 1000000LL; // 1 sec 90 static const bigtime_t kBusyScanWaitInterval = 500000LL; // 0.5 sec 91 92 // Number of idle runs after which we want to have processed the full active 93 // queue. 94 static const uint32 kIdleRunsForFullQueue = 20; 95 96 // Maximum limit for the vm_page::usage_count. 97 static const int32 kPageUsageMax = 64; 98 // vm_page::usage_count buff an accessed page receives in a scan. 99 static const int32 kPageUsageAdvance = 3; 100 // vm_page::usage_count debuff an unaccessed page receives in a scan. 101 static const int32 kPageUsageDecline = 1; 102 103 int32 gMappedPagesCount; 104 105 static VMPageQueue sPageQueues[PAGE_STATE_COUNT]; 106 107 static VMPageQueue& sFreePageQueue = sPageQueues[PAGE_STATE_FREE]; 108 static VMPageQueue& sClearPageQueue = sPageQueues[PAGE_STATE_CLEAR]; 109 static VMPageQueue& sModifiedPageQueue = sPageQueues[PAGE_STATE_MODIFIED]; 110 static VMPageQueue& sInactivePageQueue = sPageQueues[PAGE_STATE_INACTIVE]; 111 static VMPageQueue& sActivePageQueue = sPageQueues[PAGE_STATE_ACTIVE]; 112 static VMPageQueue& sCachedPageQueue = sPageQueues[PAGE_STATE_CACHED]; 113 114 static vm_page *sPages; 115 static page_num_t sPhysicalPageOffset; 116 static page_num_t sNumPages; 117 static page_num_t sNonExistingPages; 118 // pages in the sPages array that aren't backed by physical memory 119 static uint64 sIgnoredPages; 120 // pages of physical memory ignored by the boot loader (and thus not 121 // available here) 122 static int32 sUnreservedFreePages; 123 static int32 sUnsatisfiedPageReservations; 124 static int32 sModifiedTemporaryPages; 125 126 static ConditionVariable sFreePageCondition; 127 static mutex sPageDeficitLock = MUTEX_INITIALIZER("page deficit"); 128 129 // This lock must be used whenever the free or clear page queues are changed. 130 // If you need to work on both queues at the same time, you need to hold a write 131 // lock, otherwise, a read lock suffices (each queue still has a spinlock to 132 // guard against concurrent changes). 133 static rw_lock sFreePageQueuesLock 134 = RW_LOCK_INITIALIZER("free/clear page queues"); 135 136 #ifdef TRACK_PAGE_USAGE_STATS 137 static page_num_t sPageUsageArrays[512]; 138 static page_num_t* sPageUsage = sPageUsageArrays; 139 static page_num_t sPageUsagePageCount; 140 static page_num_t* sNextPageUsage = sPageUsageArrays + 256; 141 static page_num_t sNextPageUsagePageCount; 142 #endif 143 144 145 #if VM_PAGE_ALLOCATION_TRACKING_AVAILABLE 146 147 struct caller_info { 148 addr_t caller; 149 size_t count; 150 }; 151 152 static const int32 kCallerInfoTableSize = 1024; 153 static caller_info sCallerInfoTable[kCallerInfoTableSize]; 154 static int32 sCallerInfoCount = 0; 155 156 static caller_info* get_caller_info(addr_t caller); 157 158 159 RANGE_MARKER_FUNCTION_PROTOTYPES(vm_page) 160 161 static const addr_t kVMPageCodeAddressRange[] = { 162 RANGE_MARKER_FUNCTION_ADDRESS_RANGE(vm_page) 163 }; 164 165 #endif 166 167 168 RANGE_MARKER_FUNCTION_BEGIN(vm_page) 169 170 171 struct page_stats { 172 int32 totalFreePages; 173 int32 unsatisfiedReservations; 174 int32 cachedPages; 175 }; 176 177 178 struct PageReservationWaiter 179 : public DoublyLinkedListLinkImpl<PageReservationWaiter> { 180 Thread* thread; 181 uint32 dontTouch; // reserve not to touch 182 uint32 missing; // pages missing for the reservation 183 int32 threadPriority; 184 185 bool operator<(const PageReservationWaiter& other) const 186 { 187 // Implies an order by descending VM priority (ascending dontTouch) 188 // and (secondarily) descending thread priority. 189 if (dontTouch != other.dontTouch) 190 return dontTouch < other.dontTouch; 191 return threadPriority > other.threadPriority; 192 } 193 }; 194 195 typedef DoublyLinkedList<PageReservationWaiter> PageReservationWaiterList; 196 static PageReservationWaiterList sPageReservationWaiters; 197 198 199 struct DaemonCondition { 200 void Init(const char* name) 201 { 202 mutex_init(&fLock, "daemon condition"); 203 fCondition.Init(this, name); 204 fActivated = false; 205 } 206 207 bool Lock() 208 { 209 return mutex_lock(&fLock) == B_OK; 210 } 211 212 void Unlock() 213 { 214 mutex_unlock(&fLock); 215 } 216 217 bool Wait(bigtime_t timeout, bool clearActivated) 218 { 219 MutexLocker locker(fLock); 220 if (clearActivated) 221 fActivated = false; 222 else if (fActivated) 223 return true; 224 225 ConditionVariableEntry entry; 226 fCondition.Add(&entry); 227 228 locker.Unlock(); 229 230 return entry.Wait(B_RELATIVE_TIMEOUT, timeout) == B_OK; 231 } 232 233 void WakeUp() 234 { 235 if (fActivated) 236 return; 237 238 MutexLocker locker(fLock); 239 fActivated = true; 240 fCondition.NotifyOne(); 241 } 242 243 void ClearActivated() 244 { 245 MutexLocker locker(fLock); 246 fActivated = false; 247 } 248 249 private: 250 mutex fLock; 251 ConditionVariable fCondition; 252 bool fActivated; 253 }; 254 255 256 static DaemonCondition sPageWriterCondition; 257 static DaemonCondition sPageDaemonCondition; 258 259 260 #if PAGE_ALLOCATION_TRACING 261 262 namespace PageAllocationTracing { 263 264 class ReservePages : public AbstractTraceEntry { 265 public: 266 ReservePages(uint32 count) 267 : 268 fCount(count) 269 { 270 Initialized(); 271 } 272 273 virtual void AddDump(TraceOutput& out) 274 { 275 out.Print("page reserve: %" B_PRIu32, fCount); 276 } 277 278 private: 279 uint32 fCount; 280 }; 281 282 283 class UnreservePages : public AbstractTraceEntry { 284 public: 285 UnreservePages(uint32 count) 286 : 287 fCount(count) 288 { 289 Initialized(); 290 } 291 292 virtual void AddDump(TraceOutput& out) 293 { 294 out.Print("page unreserve: %" B_PRId32, fCount); 295 } 296 297 private: 298 uint32 fCount; 299 }; 300 301 302 class AllocatePage 303 : public TRACE_ENTRY_SELECTOR(PAGE_ALLOCATION_TRACING_STACK_TRACE) { 304 public: 305 AllocatePage(page_num_t pageNumber) 306 : 307 TraceEntryBase(PAGE_ALLOCATION_TRACING_STACK_TRACE, 0, true), 308 fPageNumber(pageNumber) 309 { 310 Initialized(); 311 } 312 313 virtual void AddDump(TraceOutput& out) 314 { 315 out.Print("page alloc: %#" B_PRIxPHYSADDR, fPageNumber); 316 } 317 318 private: 319 page_num_t fPageNumber; 320 }; 321 322 323 class AllocatePageRun 324 : public TRACE_ENTRY_SELECTOR(PAGE_ALLOCATION_TRACING_STACK_TRACE) { 325 public: 326 AllocatePageRun(page_num_t startPage, uint32 length) 327 : 328 TraceEntryBase(PAGE_ALLOCATION_TRACING_STACK_TRACE, 0, true), 329 fStartPage(startPage), 330 fLength(length) 331 { 332 Initialized(); 333 } 334 335 virtual void AddDump(TraceOutput& out) 336 { 337 out.Print("page alloc run: start %#" B_PRIxPHYSADDR " length: %" 338 B_PRIu32, fStartPage, fLength); 339 } 340 341 private: 342 page_num_t fStartPage; 343 uint32 fLength; 344 }; 345 346 347 class FreePage 348 : public TRACE_ENTRY_SELECTOR(PAGE_ALLOCATION_TRACING_STACK_TRACE) { 349 public: 350 FreePage(page_num_t pageNumber) 351 : 352 TraceEntryBase(PAGE_ALLOCATION_TRACING_STACK_TRACE, 0, true), 353 fPageNumber(pageNumber) 354 { 355 Initialized(); 356 } 357 358 virtual void AddDump(TraceOutput& out) 359 { 360 out.Print("page free: %#" B_PRIxPHYSADDR, fPageNumber); 361 } 362 363 private: 364 page_num_t fPageNumber; 365 }; 366 367 368 class ScrubbingPages : public AbstractTraceEntry { 369 public: 370 ScrubbingPages(uint32 count) 371 : 372 fCount(count) 373 { 374 Initialized(); 375 } 376 377 virtual void AddDump(TraceOutput& out) 378 { 379 out.Print("page scrubbing: %" B_PRId32, fCount); 380 } 381 382 private: 383 uint32 fCount; 384 }; 385 386 387 class ScrubbedPages : public AbstractTraceEntry { 388 public: 389 ScrubbedPages(uint32 count) 390 : 391 fCount(count) 392 { 393 Initialized(); 394 } 395 396 virtual void AddDump(TraceOutput& out) 397 { 398 out.Print("page scrubbed: %" B_PRId32, fCount); 399 } 400 401 private: 402 uint32 fCount; 403 }; 404 405 406 class StolenPage : public AbstractTraceEntry { 407 public: 408 StolenPage() 409 { 410 Initialized(); 411 } 412 413 virtual void AddDump(TraceOutput& out) 414 { 415 out.Print("page stolen"); 416 } 417 }; 418 419 } // namespace PageAllocationTracing 420 421 # define TA(x) new(std::nothrow) PageAllocationTracing::x 422 423 #else 424 # define TA(x) 425 #endif // PAGE_ALLOCATION_TRACING 426 427 428 #if PAGE_DAEMON_TRACING 429 430 namespace PageDaemonTracing { 431 432 class ActivatePage : public AbstractTraceEntry { 433 public: 434 ActivatePage(vm_page* page) 435 : 436 fCache(page->cache), 437 fPage(page) 438 { 439 Initialized(); 440 } 441 442 virtual void AddDump(TraceOutput& out) 443 { 444 out.Print("page activated: %p, cache: %p", fPage, fCache); 445 } 446 447 private: 448 VMCache* fCache; 449 vm_page* fPage; 450 }; 451 452 453 class DeactivatePage : public AbstractTraceEntry { 454 public: 455 DeactivatePage(vm_page* page) 456 : 457 fCache(page->cache), 458 fPage(page) 459 { 460 Initialized(); 461 } 462 463 virtual void AddDump(TraceOutput& out) 464 { 465 out.Print("page deactivated: %p, cache: %p", fPage, fCache); 466 } 467 468 private: 469 VMCache* fCache; 470 vm_page* fPage; 471 }; 472 473 474 class FreedPageSwap : public AbstractTraceEntry { 475 public: 476 FreedPageSwap(vm_page* page) 477 : 478 fCache(page->cache), 479 fPage(page) 480 { 481 Initialized(); 482 } 483 484 virtual void AddDump(TraceOutput& out) 485 { 486 out.Print("page swap freed: %p, cache: %p", fPage, fCache); 487 } 488 489 private: 490 VMCache* fCache; 491 vm_page* fPage; 492 }; 493 494 } // namespace PageDaemonTracing 495 496 # define TD(x) new(std::nothrow) PageDaemonTracing::x 497 498 #else 499 # define TD(x) 500 #endif // PAGE_DAEMON_TRACING 501 502 503 #if PAGE_WRITER_TRACING 504 505 namespace PageWriterTracing { 506 507 class WritePage : public AbstractTraceEntry { 508 public: 509 WritePage(vm_page* page) 510 : 511 fCache(page->Cache()), 512 fPage(page) 513 { 514 Initialized(); 515 } 516 517 virtual void AddDump(TraceOutput& out) 518 { 519 out.Print("page write: %p, cache: %p", fPage, fCache); 520 } 521 522 private: 523 VMCache* fCache; 524 vm_page* fPage; 525 }; 526 527 } // namespace PageWriterTracing 528 529 # define TPW(x) new(std::nothrow) PageWriterTracing::x 530 531 #else 532 # define TPW(x) 533 #endif // PAGE_WRITER_TRACING 534 535 536 #if PAGE_STATE_TRACING 537 538 namespace PageStateTracing { 539 540 class SetPageState : public AbstractTraceEntry { 541 public: 542 SetPageState(vm_page* page, uint8 newState) 543 : 544 fPage(page), 545 fOldState(page->State()), 546 fNewState(newState), 547 fBusy(page->busy), 548 fWired(page->WiredCount() > 0), 549 fMapped(!page->mappings.IsEmpty()), 550 fAccessed(page->accessed), 551 fModified(page->modified) 552 { 553 #if PAGE_STATE_TRACING_STACK_TRACE 554 fStackTrace = capture_tracing_stack_trace( 555 PAGE_STATE_TRACING_STACK_TRACE, 0, true); 556 // Don't capture userland stack trace to avoid potential 557 // deadlocks. 558 #endif 559 Initialized(); 560 } 561 562 #if PAGE_STATE_TRACING_STACK_TRACE 563 virtual void DumpStackTrace(TraceOutput& out) 564 { 565 out.PrintStackTrace(fStackTrace); 566 } 567 #endif 568 569 virtual void AddDump(TraceOutput& out) 570 { 571 out.Print("page set state: %p (%c%c%c%c%c): %s -> %s", fPage, 572 fBusy ? 'b' : '-', 573 fWired ? 'w' : '-', 574 fMapped ? 'm' : '-', 575 fAccessed ? 'a' : '-', 576 fModified ? 'm' : '-', 577 page_state_to_string(fOldState), 578 page_state_to_string(fNewState)); 579 } 580 581 private: 582 vm_page* fPage; 583 #if PAGE_STATE_TRACING_STACK_TRACE 584 tracing_stack_trace* fStackTrace; 585 #endif 586 uint8 fOldState; 587 uint8 fNewState; 588 bool fBusy : 1; 589 bool fWired : 1; 590 bool fMapped : 1; 591 bool fAccessed : 1; 592 bool fModified : 1; 593 }; 594 595 } // namespace PageStateTracing 596 597 # define TPS(x) new(std::nothrow) PageStateTracing::x 598 599 #else 600 # define TPS(x) 601 #endif // PAGE_STATE_TRACING 602 603 604 #if VM_PAGE_ALLOCATION_TRACKING_AVAILABLE 605 606 namespace BKernel { 607 608 class AllocationTrackingCallback { 609 public: 610 virtual ~AllocationTrackingCallback(); 611 612 virtual bool ProcessTrackingInfo( 613 AllocationTrackingInfo* info, 614 page_num_t pageNumber) = 0; 615 }; 616 617 } 618 619 using BKernel::AllocationTrackingCallback; 620 621 622 class AllocationCollectorCallback : public AllocationTrackingCallback { 623 public: 624 AllocationCollectorCallback(bool resetInfos) 625 : 626 fResetInfos(resetInfos) 627 { 628 } 629 630 virtual bool ProcessTrackingInfo(AllocationTrackingInfo* info, 631 page_num_t pageNumber) 632 { 633 if (!info->IsInitialized()) 634 return true; 635 636 addr_t caller = 0; 637 AbstractTraceEntryWithStackTrace* traceEntry = info->TraceEntry(); 638 639 if (traceEntry != NULL && info->IsTraceEntryValid()) { 640 caller = tracing_find_caller_in_stack_trace( 641 traceEntry->StackTrace(), kVMPageCodeAddressRange, 1); 642 } 643 644 caller_info* callerInfo = get_caller_info(caller); 645 if (callerInfo == NULL) { 646 kprintf("out of space for caller infos\n"); 647 return false; 648 } 649 650 callerInfo->count++; 651 652 if (fResetInfos) 653 info->Clear(); 654 655 return true; 656 } 657 658 private: 659 bool fResetInfos; 660 }; 661 662 663 class AllocationInfoPrinterCallback : public AllocationTrackingCallback { 664 public: 665 AllocationInfoPrinterCallback(bool printStackTrace, page_num_t pageFilter, 666 team_id teamFilter, thread_id threadFilter) 667 : 668 fPrintStackTrace(printStackTrace), 669 fPageFilter(pageFilter), 670 fTeamFilter(teamFilter), 671 fThreadFilter(threadFilter) 672 { 673 } 674 675 virtual bool ProcessTrackingInfo(AllocationTrackingInfo* info, 676 page_num_t pageNumber) 677 { 678 if (!info->IsInitialized()) 679 return true; 680 681 if (fPageFilter != 0 && pageNumber != fPageFilter) 682 return true; 683 684 AbstractTraceEntryWithStackTrace* traceEntry = info->TraceEntry(); 685 if (traceEntry != NULL && !info->IsTraceEntryValid()) 686 traceEntry = NULL; 687 688 if (traceEntry != NULL) { 689 if (fTeamFilter != -1 && traceEntry->TeamID() != fTeamFilter) 690 return true; 691 if (fThreadFilter != -1 && traceEntry->ThreadID() != fThreadFilter) 692 return true; 693 } else { 694 // we need the info if we have filters set 695 if (fTeamFilter != -1 || fThreadFilter != -1) 696 return true; 697 } 698 699 kprintf("page number %#" B_PRIxPHYSADDR, pageNumber); 700 701 if (traceEntry != NULL) { 702 kprintf(", team: %" B_PRId32 ", thread %" B_PRId32 703 ", time %" B_PRId64 "\n", traceEntry->TeamID(), 704 traceEntry->ThreadID(), traceEntry->Time()); 705 706 if (fPrintStackTrace) 707 tracing_print_stack_trace(traceEntry->StackTrace()); 708 } else 709 kprintf("\n"); 710 711 return true; 712 } 713 714 private: 715 bool fPrintStackTrace; 716 page_num_t fPageFilter; 717 team_id fTeamFilter; 718 thread_id fThreadFilter; 719 }; 720 721 722 class AllocationDetailPrinterCallback : public AllocationTrackingCallback { 723 public: 724 AllocationDetailPrinterCallback(addr_t caller) 725 : 726 fCaller(caller) 727 { 728 } 729 730 virtual bool ProcessTrackingInfo(AllocationTrackingInfo* info, 731 page_num_t pageNumber) 732 { 733 if (!info->IsInitialized()) 734 return true; 735 736 addr_t caller = 0; 737 AbstractTraceEntryWithStackTrace* traceEntry = info->TraceEntry(); 738 if (traceEntry != NULL && !info->IsTraceEntryValid()) 739 traceEntry = NULL; 740 741 if (traceEntry != NULL) { 742 caller = tracing_find_caller_in_stack_trace( 743 traceEntry->StackTrace(), kVMPageCodeAddressRange, 1); 744 } 745 746 if (caller != fCaller) 747 return true; 748 749 kprintf("page %#" B_PRIxPHYSADDR "\n", pageNumber); 750 if (traceEntry != NULL) 751 tracing_print_stack_trace(traceEntry->StackTrace()); 752 753 return true; 754 } 755 756 private: 757 addr_t fCaller; 758 }; 759 760 #endif // VM_PAGE_ALLOCATION_TRACKING_AVAILABLE 761 762 763 static void 764 list_page(vm_page* page) 765 { 766 kprintf("0x%08" B_PRIxADDR " ", 767 (addr_t)(page->physical_page_number * B_PAGE_SIZE)); 768 switch (page->State()) { 769 case PAGE_STATE_ACTIVE: kprintf("A"); break; 770 case PAGE_STATE_INACTIVE: kprintf("I"); break; 771 case PAGE_STATE_MODIFIED: kprintf("M"); break; 772 case PAGE_STATE_CACHED: kprintf("C"); break; 773 case PAGE_STATE_FREE: kprintf("F"); break; 774 case PAGE_STATE_CLEAR: kprintf("L"); break; 775 case PAGE_STATE_WIRED: kprintf("W"); break; 776 case PAGE_STATE_UNUSED: kprintf("-"); break; 777 } 778 kprintf(" "); 779 if (page->busy) kprintf("B"); else kprintf("-"); 780 if (page->busy_writing) kprintf("W"); else kprintf("-"); 781 if (page->accessed) kprintf("A"); else kprintf("-"); 782 if (page->modified) kprintf("M"); else kprintf("-"); 783 kprintf("-"); 784 785 kprintf(" usage:%3u", page->usage_count); 786 kprintf(" wired:%5u", page->WiredCount()); 787 788 bool first = true; 789 vm_page_mappings::Iterator iterator = page->mappings.GetIterator(); 790 vm_page_mapping* mapping; 791 while ((mapping = iterator.Next()) != NULL) { 792 if (first) { 793 kprintf(": "); 794 first = false; 795 } else 796 kprintf(", "); 797 798 kprintf("%" B_PRId32 " (%s)", mapping->area->id, mapping->area->name); 799 mapping = mapping->page_link.next; 800 } 801 } 802 803 804 static int 805 dump_page_list(int argc, char **argv) 806 { 807 kprintf("page table:\n"); 808 for (page_num_t i = 0; i < sNumPages; i++) { 809 if (sPages[i].State() != PAGE_STATE_UNUSED) { 810 list_page(&sPages[i]); 811 kprintf("\n"); 812 } 813 } 814 kprintf("end of page table\n"); 815 816 return 0; 817 } 818 819 820 static int 821 find_page(int argc, char **argv) 822 { 823 struct vm_page *page; 824 addr_t address; 825 int32 index = 1; 826 int i; 827 828 struct { 829 const char* name; 830 VMPageQueue* queue; 831 } pageQueueInfos[] = { 832 { "free", &sFreePageQueue }, 833 { "clear", &sClearPageQueue }, 834 { "modified", &sModifiedPageQueue }, 835 { "active", &sActivePageQueue }, 836 { "inactive", &sInactivePageQueue }, 837 { "cached", &sCachedPageQueue }, 838 { NULL, NULL } 839 }; 840 841 if (argc < 2 842 || strlen(argv[index]) <= 2 843 || argv[index][0] != '0' 844 || argv[index][1] != 'x') { 845 kprintf("usage: find_page <address>\n"); 846 return 0; 847 } 848 849 address = strtoul(argv[index], NULL, 0); 850 page = (vm_page*)address; 851 852 for (i = 0; pageQueueInfos[i].name; i++) { 853 VMPageQueue::Iterator it = pageQueueInfos[i].queue->GetIterator(); 854 while (vm_page* p = it.Next()) { 855 if (p == page) { 856 kprintf("found page %p in queue %p (%s)\n", page, 857 pageQueueInfos[i].queue, pageQueueInfos[i].name); 858 return 0; 859 } 860 } 861 } 862 863 kprintf("page %p isn't in any queue\n", page); 864 865 return 0; 866 } 867 868 869 const char * 870 page_state_to_string(int state) 871 { 872 switch(state) { 873 case PAGE_STATE_ACTIVE: 874 return "active"; 875 case PAGE_STATE_INACTIVE: 876 return "inactive"; 877 case PAGE_STATE_MODIFIED: 878 return "modified"; 879 case PAGE_STATE_CACHED: 880 return "cached"; 881 case PAGE_STATE_FREE: 882 return "free"; 883 case PAGE_STATE_CLEAR: 884 return "clear"; 885 case PAGE_STATE_WIRED: 886 return "wired"; 887 case PAGE_STATE_UNUSED: 888 return "unused"; 889 default: 890 return "unknown"; 891 } 892 } 893 894 895 static int 896 dump_page_long(int argc, char **argv) 897 { 898 bool addressIsPointer = true; 899 bool physical = false; 900 bool searchMappings = false; 901 int32 index = 1; 902 903 while (index < argc) { 904 if (argv[index][0] != '-') 905 break; 906 907 if (!strcmp(argv[index], "-p")) { 908 addressIsPointer = false; 909 physical = true; 910 } else if (!strcmp(argv[index], "-v")) { 911 addressIsPointer = false; 912 } else if (!strcmp(argv[index], "-m")) { 913 searchMappings = true; 914 } else { 915 print_debugger_command_usage(argv[0]); 916 return 0; 917 } 918 919 index++; 920 } 921 922 if (index + 1 != argc) { 923 print_debugger_command_usage(argv[0]); 924 return 0; 925 } 926 927 uint64 value; 928 if (!evaluate_debug_expression(argv[index], &value, false)) 929 return 0; 930 931 uint64 pageAddress = value; 932 struct vm_page* page; 933 934 if (addressIsPointer) { 935 page = (struct vm_page *)(addr_t)pageAddress; 936 } else { 937 if (!physical) { 938 VMAddressSpace *addressSpace = VMAddressSpace::Kernel(); 939 940 if (debug_get_debugged_thread()->team->address_space != NULL) 941 addressSpace = debug_get_debugged_thread()->team->address_space; 942 943 uint32 flags = 0; 944 phys_addr_t physicalAddress; 945 if (addressSpace->TranslationMap()->QueryInterrupt(pageAddress, 946 &physicalAddress, &flags) != B_OK 947 || (flags & PAGE_PRESENT) == 0) { 948 kprintf("Virtual address not mapped to a physical page in this " 949 "address space.\n"); 950 return 0; 951 } 952 pageAddress = physicalAddress; 953 } 954 955 page = vm_lookup_page(pageAddress / B_PAGE_SIZE); 956 } 957 958 const page_num_t expected = sPhysicalPageOffset + (page - sPages); 959 960 kprintf("PAGE: %p\n", page); 961 kprintf("queue_next,prev: %p, %p\n", page->queue_link.next, 962 page->queue_link.previous); 963 kprintf("physical_number: %#" B_PRIxPHYSADDR "\n", page->physical_page_number); 964 if (page->physical_page_number != expected) 965 kprintf("\t(expected %#" B_PRIxPHYSADDR ")!\n", expected); 966 kprintf("cache: %p\n", page->Cache()); 967 kprintf("cache_offset: %" B_PRIuPHYSADDR "\n", page->cache_offset); 968 kprintf("cache_next: %p\n", page->cache_next); 969 kprintf("state: %s\n", page_state_to_string(page->State())); 970 kprintf("wired_count: %d\n", page->WiredCount()); 971 kprintf("usage_count: %d\n", page->usage_count); 972 kprintf("busy: %d\n", page->busy); 973 kprintf("busy_writing: %d\n", page->busy_writing); 974 kprintf("accessed: %d\n", page->accessed); 975 kprintf("modified: %d\n", page->modified); 976 #if DEBUG_PAGE_QUEUE 977 kprintf("queue: %p\n", page->queue); 978 #endif 979 #if DEBUG_PAGE_ACCESS 980 kprintf("accessor: %" B_PRId32 "\n", page->accessing_thread); 981 #endif 982 kprintf("area mappings:\n"); 983 984 vm_page_mappings::Iterator iterator = page->mappings.GetIterator(); 985 vm_page_mapping *mapping; 986 while ((mapping = iterator.Next()) != NULL) { 987 kprintf(" %p (%" B_PRId32 ")\n", mapping->area, mapping->area->id); 988 mapping = mapping->page_link.next; 989 } 990 991 if (searchMappings) { 992 kprintf("all mappings:\n"); 993 VMAddressSpace* addressSpace = VMAddressSpace::DebugFirst(); 994 while (addressSpace != NULL) { 995 size_t pageCount = addressSpace->Size() / B_PAGE_SIZE; 996 for (addr_t address = addressSpace->Base(); pageCount != 0; 997 address += B_PAGE_SIZE, pageCount--) { 998 phys_addr_t physicalAddress; 999 uint32 flags = 0; 1000 if (addressSpace->TranslationMap()->QueryInterrupt(address, 1001 &physicalAddress, &flags) == B_OK 1002 && (flags & PAGE_PRESENT) != 0 1003 && physicalAddress / B_PAGE_SIZE 1004 == page->physical_page_number) { 1005 VMArea* area = addressSpace->LookupArea(address); 1006 kprintf(" aspace %" B_PRId32 ", area %" B_PRId32 ": %#" 1007 B_PRIxADDR " (%c%c%s%s)\n", addressSpace->ID(), 1008 area != NULL ? area->id : -1, address, 1009 (flags & B_KERNEL_READ_AREA) != 0 ? 'r' : '-', 1010 (flags & B_KERNEL_WRITE_AREA) != 0 ? 'w' : '-', 1011 (flags & PAGE_MODIFIED) != 0 ? " modified" : "", 1012 (flags & PAGE_ACCESSED) != 0 ? " accessed" : ""); 1013 } 1014 } 1015 addressSpace = VMAddressSpace::DebugNext(addressSpace); 1016 } 1017 } 1018 1019 set_debug_variable("_cache", (addr_t)page->Cache()); 1020 #if DEBUG_PAGE_ACCESS 1021 set_debug_variable("_accessor", page->accessing_thread); 1022 #endif 1023 1024 return 0; 1025 } 1026 1027 1028 static int 1029 dump_page_queue(int argc, char **argv) 1030 { 1031 struct VMPageQueue *queue; 1032 1033 if (argc < 2) { 1034 kprintf("usage: page_queue <address/name> [list]\n"); 1035 return 0; 1036 } 1037 1038 if (strlen(argv[1]) >= 2 && argv[1][0] == '0' && argv[1][1] == 'x') 1039 queue = (VMPageQueue*)strtoul(argv[1], NULL, 16); 1040 else if (!strcmp(argv[1], "free")) 1041 queue = &sFreePageQueue; 1042 else if (!strcmp(argv[1], "clear")) 1043 queue = &sClearPageQueue; 1044 else if (!strcmp(argv[1], "modified")) 1045 queue = &sModifiedPageQueue; 1046 else if (!strcmp(argv[1], "active")) 1047 queue = &sActivePageQueue; 1048 else if (!strcmp(argv[1], "inactive")) 1049 queue = &sInactivePageQueue; 1050 else if (!strcmp(argv[1], "cached")) 1051 queue = &sCachedPageQueue; 1052 else { 1053 kprintf("page_queue: unknown queue \"%s\".\n", argv[1]); 1054 return 0; 1055 } 1056 1057 kprintf("queue = %p, queue->head = %p, queue->tail = %p, queue->count = %" 1058 B_PRIuPHYSADDR "\n", queue, queue->Head(), queue->Tail(), 1059 queue->Count()); 1060 1061 if (argc == 3) { 1062 struct vm_page *page = queue->Head(); 1063 1064 kprintf("page cache type state wired usage\n"); 1065 for (page_num_t i = 0; page; i++, page = queue->Next(page)) { 1066 kprintf("%p %p %-7s %8s %5d %5d\n", page, page->Cache(), 1067 vm_cache_type_to_string(page->Cache()->type), 1068 page_state_to_string(page->State()), 1069 page->WiredCount(), page->usage_count); 1070 } 1071 } 1072 return 0; 1073 } 1074 1075 1076 static int 1077 dump_page_stats(int argc, char **argv) 1078 { 1079 page_num_t swappableModified = 0; 1080 page_num_t swappableModifiedInactive = 0; 1081 1082 size_t counter[8]; 1083 size_t busyCounter[8]; 1084 memset(counter, 0, sizeof(counter)); 1085 memset(busyCounter, 0, sizeof(busyCounter)); 1086 1087 struct page_run { 1088 page_num_t start; 1089 page_num_t end; 1090 1091 page_num_t Length() const { return end - start; } 1092 }; 1093 1094 page_run currentFreeRun = { 0, 0 }; 1095 page_run currentCachedRun = { 0, 0 }; 1096 page_run longestFreeRun = { 0, 0 }; 1097 page_run longestCachedRun = { 0, 0 }; 1098 1099 for (page_num_t i = 0; i < sNumPages; i++) { 1100 if (sPages[i].State() > 7) { 1101 panic("page %" B_PRIuPHYSADDR " at %p has invalid state!\n", i, 1102 &sPages[i]); 1103 } 1104 1105 uint32 pageState = sPages[i].State(); 1106 1107 counter[pageState]++; 1108 if (sPages[i].busy) 1109 busyCounter[pageState]++; 1110 1111 if (pageState == PAGE_STATE_MODIFIED 1112 && sPages[i].Cache() != NULL 1113 && sPages[i].Cache()->temporary && sPages[i].WiredCount() == 0) { 1114 swappableModified++; 1115 if (sPages[i].usage_count == 0) 1116 swappableModifiedInactive++; 1117 } 1118 1119 // track free and cached pages runs 1120 if (pageState == PAGE_STATE_FREE || pageState == PAGE_STATE_CLEAR) { 1121 currentFreeRun.end = i + 1; 1122 currentCachedRun.end = i + 1; 1123 } else { 1124 if (currentFreeRun.Length() > longestFreeRun.Length()) 1125 longestFreeRun = currentFreeRun; 1126 currentFreeRun.start = currentFreeRun.end = i + 1; 1127 1128 if (pageState == PAGE_STATE_CACHED) { 1129 currentCachedRun.end = i + 1; 1130 } else { 1131 if (currentCachedRun.Length() > longestCachedRun.Length()) 1132 longestCachedRun = currentCachedRun; 1133 currentCachedRun.start = currentCachedRun.end = i + 1; 1134 } 1135 } 1136 } 1137 1138 kprintf("page stats:\n"); 1139 kprintf("total: %" B_PRIuPHYSADDR "\n", sNumPages); 1140 1141 kprintf("active: %" B_PRIuSIZE " (busy: %" B_PRIuSIZE ")\n", 1142 counter[PAGE_STATE_ACTIVE], busyCounter[PAGE_STATE_ACTIVE]); 1143 kprintf("inactive: %" B_PRIuSIZE " (busy: %" B_PRIuSIZE ")\n", 1144 counter[PAGE_STATE_INACTIVE], busyCounter[PAGE_STATE_INACTIVE]); 1145 kprintf("cached: %" B_PRIuSIZE " (busy: %" B_PRIuSIZE ")\n", 1146 counter[PAGE_STATE_CACHED], busyCounter[PAGE_STATE_CACHED]); 1147 kprintf("unused: %" B_PRIuSIZE " (busy: %" B_PRIuSIZE ")\n", 1148 counter[PAGE_STATE_UNUSED], busyCounter[PAGE_STATE_UNUSED]); 1149 kprintf("wired: %" B_PRIuSIZE " (busy: %" B_PRIuSIZE ")\n", 1150 counter[PAGE_STATE_WIRED], busyCounter[PAGE_STATE_WIRED]); 1151 kprintf("modified: %" B_PRIuSIZE " (busy: %" B_PRIuSIZE ")\n", 1152 counter[PAGE_STATE_MODIFIED], busyCounter[PAGE_STATE_MODIFIED]); 1153 kprintf("free: %" B_PRIuSIZE "\n", counter[PAGE_STATE_FREE]); 1154 kprintf("clear: %" B_PRIuSIZE "\n", counter[PAGE_STATE_CLEAR]); 1155 1156 kprintf("unreserved free pages: %" B_PRId32 "\n", sUnreservedFreePages); 1157 kprintf("unsatisfied page reservations: %" B_PRId32 "\n", 1158 sUnsatisfiedPageReservations); 1159 kprintf("mapped pages: %" B_PRId32 "\n", gMappedPagesCount); 1160 kprintf("longest free pages run: %" B_PRIuPHYSADDR " pages (at %" 1161 B_PRIuPHYSADDR ")\n", longestFreeRun.Length(), 1162 sPages[longestFreeRun.start].physical_page_number); 1163 kprintf("longest free/cached pages run: %" B_PRIuPHYSADDR " pages (at %" 1164 B_PRIuPHYSADDR ")\n", longestCachedRun.Length(), 1165 sPages[longestCachedRun.start].physical_page_number); 1166 1167 kprintf("waiting threads:\n"); 1168 for (PageReservationWaiterList::Iterator it 1169 = sPageReservationWaiters.GetIterator(); 1170 PageReservationWaiter* waiter = it.Next();) { 1171 kprintf(" %6" B_PRId32 ": missing: %6" B_PRIu32 1172 ", don't touch: %6" B_PRIu32 "\n", waiter->thread->id, 1173 waiter->missing, waiter->dontTouch); 1174 } 1175 1176 kprintf("\nfree queue: %p, count = %" B_PRIuPHYSADDR "\n", &sFreePageQueue, 1177 sFreePageQueue.Count()); 1178 kprintf("clear queue: %p, count = %" B_PRIuPHYSADDR "\n", &sClearPageQueue, 1179 sClearPageQueue.Count()); 1180 kprintf("modified queue: %p, count = %" B_PRIuPHYSADDR " (%" B_PRId32 1181 " temporary, %" B_PRIuPHYSADDR " swappable, " "inactive: %" 1182 B_PRIuPHYSADDR ")\n", &sModifiedPageQueue, sModifiedPageQueue.Count(), 1183 sModifiedTemporaryPages, swappableModified, swappableModifiedInactive); 1184 kprintf("active queue: %p, count = %" B_PRIuPHYSADDR "\n", 1185 &sActivePageQueue, sActivePageQueue.Count()); 1186 kprintf("inactive queue: %p, count = %" B_PRIuPHYSADDR "\n", 1187 &sInactivePageQueue, sInactivePageQueue.Count()); 1188 kprintf("cached queue: %p, count = %" B_PRIuPHYSADDR "\n", 1189 &sCachedPageQueue, sCachedPageQueue.Count()); 1190 return 0; 1191 } 1192 1193 1194 #if VM_PAGE_ALLOCATION_TRACKING_AVAILABLE 1195 1196 static caller_info* 1197 get_caller_info(addr_t caller) 1198 { 1199 // find the caller info 1200 for (int32 i = 0; i < sCallerInfoCount; i++) { 1201 if (caller == sCallerInfoTable[i].caller) 1202 return &sCallerInfoTable[i]; 1203 } 1204 1205 // not found, add a new entry, if there are free slots 1206 if (sCallerInfoCount >= kCallerInfoTableSize) 1207 return NULL; 1208 1209 caller_info* info = &sCallerInfoTable[sCallerInfoCount++]; 1210 info->caller = caller; 1211 info->count = 0; 1212 1213 return info; 1214 } 1215 1216 1217 static int 1218 caller_info_compare_count(const void* _a, const void* _b) 1219 { 1220 const caller_info* a = (const caller_info*)_a; 1221 const caller_info* b = (const caller_info*)_b; 1222 return (int)(b->count - a->count); 1223 } 1224 1225 1226 static int 1227 dump_page_allocations_per_caller(int argc, char** argv) 1228 { 1229 bool resetAllocationInfos = false; 1230 bool printDetails = false; 1231 addr_t caller = 0; 1232 1233 for (int32 i = 1; i < argc; i++) { 1234 if (strcmp(argv[i], "-d") == 0) { 1235 uint64 callerAddress; 1236 if (++i >= argc 1237 || !evaluate_debug_expression(argv[i], &callerAddress, true)) { 1238 print_debugger_command_usage(argv[0]); 1239 return 0; 1240 } 1241 1242 caller = callerAddress; 1243 printDetails = true; 1244 } else if (strcmp(argv[i], "-r") == 0) { 1245 resetAllocationInfos = true; 1246 } else { 1247 print_debugger_command_usage(argv[0]); 1248 return 0; 1249 } 1250 } 1251 1252 sCallerInfoCount = 0; 1253 1254 AllocationCollectorCallback collectorCallback(resetAllocationInfos); 1255 AllocationDetailPrinterCallback detailsCallback(caller); 1256 AllocationTrackingCallback& callback = printDetails 1257 ? (AllocationTrackingCallback&)detailsCallback 1258 : (AllocationTrackingCallback&)collectorCallback; 1259 1260 for (page_num_t i = 0; i < sNumPages; i++) 1261 callback.ProcessTrackingInfo(&sPages[i].allocation_tracking_info, i); 1262 1263 if (printDetails) 1264 return 0; 1265 1266 // sort the array 1267 qsort(sCallerInfoTable, sCallerInfoCount, sizeof(caller_info), 1268 &caller_info_compare_count); 1269 1270 kprintf("%" B_PRId32 " different callers\n\n", sCallerInfoCount); 1271 1272 size_t totalAllocationCount = 0; 1273 1274 kprintf(" count caller\n"); 1275 kprintf("----------------------------------\n"); 1276 for (int32 i = 0; i < sCallerInfoCount; i++) { 1277 caller_info& info = sCallerInfoTable[i]; 1278 kprintf("%10" B_PRIuSIZE " %p", info.count, (void*)info.caller); 1279 1280 const char* symbol; 1281 const char* imageName; 1282 bool exactMatch; 1283 addr_t baseAddress; 1284 1285 if (elf_debug_lookup_symbol_address(info.caller, &baseAddress, &symbol, 1286 &imageName, &exactMatch) == B_OK) { 1287 kprintf(" %s + %#" B_PRIxADDR " (%s)%s\n", symbol, 1288 info.caller - baseAddress, imageName, 1289 exactMatch ? "" : " (nearest)"); 1290 } else 1291 kprintf("\n"); 1292 1293 totalAllocationCount += info.count; 1294 } 1295 1296 kprintf("\ntotal page allocations: %" B_PRIuSIZE "\n", 1297 totalAllocationCount); 1298 1299 return 0; 1300 } 1301 1302 1303 static int 1304 dump_page_allocation_infos(int argc, char** argv) 1305 { 1306 page_num_t pageFilter = 0; 1307 team_id teamFilter = -1; 1308 thread_id threadFilter = -1; 1309 bool printStackTraces = false; 1310 1311 for (int32 i = 1; i < argc; i++) { 1312 if (strcmp(argv[i], "--stacktrace") == 0) 1313 printStackTraces = true; 1314 else if (strcmp(argv[i], "-p") == 0) { 1315 uint64 pageNumber; 1316 if (++i >= argc 1317 || !evaluate_debug_expression(argv[i], &pageNumber, true)) { 1318 print_debugger_command_usage(argv[0]); 1319 return 0; 1320 } 1321 1322 pageFilter = pageNumber; 1323 } else if (strcmp(argv[i], "--team") == 0) { 1324 uint64 team; 1325 if (++i >= argc 1326 || !evaluate_debug_expression(argv[i], &team, true)) { 1327 print_debugger_command_usage(argv[0]); 1328 return 0; 1329 } 1330 1331 teamFilter = team; 1332 } else if (strcmp(argv[i], "--thread") == 0) { 1333 uint64 thread; 1334 if (++i >= argc 1335 || !evaluate_debug_expression(argv[i], &thread, true)) { 1336 print_debugger_command_usage(argv[0]); 1337 return 0; 1338 } 1339 1340 threadFilter = thread; 1341 } else { 1342 print_debugger_command_usage(argv[0]); 1343 return 0; 1344 } 1345 } 1346 1347 AllocationInfoPrinterCallback callback(printStackTraces, pageFilter, 1348 teamFilter, threadFilter); 1349 1350 for (page_num_t i = 0; i < sNumPages; i++) 1351 callback.ProcessTrackingInfo(&sPages[i].allocation_tracking_info, i); 1352 1353 return 0; 1354 } 1355 1356 #endif // VM_PAGE_ALLOCATION_TRACKING_AVAILABLE 1357 1358 1359 #ifdef TRACK_PAGE_USAGE_STATS 1360 1361 static void 1362 track_page_usage(vm_page* page) 1363 { 1364 if (page->WiredCount() == 0) { 1365 sNextPageUsage[(int32)page->usage_count + 128]++; 1366 sNextPageUsagePageCount++; 1367 } 1368 } 1369 1370 1371 static void 1372 update_page_usage_stats() 1373 { 1374 std::swap(sPageUsage, sNextPageUsage); 1375 sPageUsagePageCount = sNextPageUsagePageCount; 1376 1377 memset(sNextPageUsage, 0, sizeof(page_num_t) * 256); 1378 sNextPageUsagePageCount = 0; 1379 1380 // compute average 1381 if (sPageUsagePageCount > 0) { 1382 int64 sum = 0; 1383 for (int32 i = 0; i < 256; i++) 1384 sum += (int64)sPageUsage[i] * (i - 128); 1385 1386 TRACE_DAEMON("average page usage: %f (%lu pages)\n", 1387 (float)sum / sPageUsagePageCount, sPageUsagePageCount); 1388 } 1389 } 1390 1391 1392 static int 1393 dump_page_usage_stats(int argc, char** argv) 1394 { 1395 kprintf("distribution of page usage counts (%lu pages):", 1396 sPageUsagePageCount); 1397 1398 int64 sum = 0; 1399 for (int32 i = 0; i < 256; i++) { 1400 if (i % 8 == 0) 1401 kprintf("\n%4ld:", i - 128); 1402 1403 int64 count = sPageUsage[i]; 1404 sum += count * (i - 128); 1405 1406 kprintf(" %9llu", count); 1407 } 1408 1409 kprintf("\n\n"); 1410 1411 kprintf("average usage count: %f\n", 1412 sPageUsagePageCount > 0 ? (float)sum / sPageUsagePageCount : 0); 1413 1414 return 0; 1415 } 1416 1417 #endif // TRACK_PAGE_USAGE_STATS 1418 1419 1420 // #pragma mark - vm_page 1421 1422 1423 inline void 1424 vm_page::InitState(uint8 newState) 1425 { 1426 state = newState; 1427 } 1428 1429 1430 inline void 1431 vm_page::SetState(uint8 newState) 1432 { 1433 TPS(SetPageState(this, newState)); 1434 1435 state = newState; 1436 } 1437 1438 1439 // #pragma mark - 1440 1441 1442 static void 1443 get_page_stats(page_stats& _pageStats) 1444 { 1445 _pageStats.totalFreePages = sUnreservedFreePages; 1446 _pageStats.cachedPages = sCachedPageQueue.Count(); 1447 _pageStats.unsatisfiedReservations = sUnsatisfiedPageReservations; 1448 // TODO: We don't get an actual snapshot here! 1449 } 1450 1451 1452 static bool 1453 do_active_paging(const page_stats& pageStats) 1454 { 1455 return pageStats.totalFreePages + pageStats.cachedPages 1456 < pageStats.unsatisfiedReservations 1457 + (int32)sFreeOrCachedPagesTarget; 1458 } 1459 1460 1461 /*! Reserves as many pages as possible from \c sUnreservedFreePages up to 1462 \a count. Doesn't touch the last \a dontTouch pages of 1463 \c sUnreservedFreePages, though. 1464 \return The number of actually reserved pages. 1465 */ 1466 static uint32 1467 reserve_some_pages(uint32 count, uint32 dontTouch) 1468 { 1469 while (true) { 1470 int32 freePages = atomic_get(&sUnreservedFreePages); 1471 if (freePages <= (int32)dontTouch) 1472 return 0; 1473 1474 int32 toReserve = std::min(count, freePages - dontTouch); 1475 if (atomic_test_and_set(&sUnreservedFreePages, 1476 freePages - toReserve, freePages) 1477 == freePages) { 1478 return toReserve; 1479 } 1480 1481 // the count changed in the meantime -- retry 1482 } 1483 } 1484 1485 1486 static void 1487 wake_up_page_reservation_waiters() 1488 { 1489 MutexLocker pageDeficitLocker(sPageDeficitLock); 1490 1491 // TODO: If this is a low priority thread, we might want to disable 1492 // interrupts or otherwise ensure that we aren't unscheduled. Otherwise 1493 // high priority threads wait be kept waiting while a medium priority thread 1494 // prevents us from running. 1495 1496 while (PageReservationWaiter* waiter = sPageReservationWaiters.Head()) { 1497 int32 reserved = reserve_some_pages(waiter->missing, 1498 waiter->dontTouch); 1499 if (reserved == 0) 1500 return; 1501 1502 atomic_add(&sUnsatisfiedPageReservations, -reserved); 1503 waiter->missing -= reserved; 1504 1505 if (waiter->missing > 0) 1506 return; 1507 1508 sPageReservationWaiters.Remove(waiter); 1509 1510 thread_unblock(waiter->thread, B_OK); 1511 } 1512 } 1513 1514 1515 static inline void 1516 unreserve_pages(uint32 count) 1517 { 1518 atomic_add(&sUnreservedFreePages, count); 1519 if (atomic_get(&sUnsatisfiedPageReservations) != 0) 1520 wake_up_page_reservation_waiters(); 1521 } 1522 1523 1524 static void 1525 free_page(vm_page* page, bool clear) 1526 { 1527 DEBUG_PAGE_ACCESS_CHECK(page); 1528 1529 PAGE_ASSERT(page, !page->IsMapped()); 1530 1531 VMPageQueue* fromQueue; 1532 1533 switch (page->State()) { 1534 case PAGE_STATE_ACTIVE: 1535 fromQueue = &sActivePageQueue; 1536 break; 1537 case PAGE_STATE_INACTIVE: 1538 fromQueue = &sInactivePageQueue; 1539 break; 1540 case PAGE_STATE_MODIFIED: 1541 fromQueue = &sModifiedPageQueue; 1542 break; 1543 case PAGE_STATE_CACHED: 1544 fromQueue = &sCachedPageQueue; 1545 break; 1546 case PAGE_STATE_FREE: 1547 case PAGE_STATE_CLEAR: 1548 panic("free_page(): page %p already free", page); 1549 return; 1550 case PAGE_STATE_WIRED: 1551 case PAGE_STATE_UNUSED: 1552 fromQueue = NULL; 1553 break; 1554 default: 1555 panic("free_page(): page %p in invalid state %d", 1556 page, page->State()); 1557 return; 1558 } 1559 1560 if (page->CacheRef() != NULL) 1561 panic("to be freed page %p has cache", page); 1562 if (page->IsMapped()) 1563 panic("to be freed page %p has mappings", page); 1564 1565 if (fromQueue != NULL) 1566 fromQueue->RemoveUnlocked(page); 1567 1568 TA(FreePage(page->physical_page_number)); 1569 1570 #if VM_PAGE_ALLOCATION_TRACKING_AVAILABLE 1571 page->allocation_tracking_info.Clear(); 1572 #endif 1573 1574 ReadLocker locker(sFreePageQueuesLock); 1575 1576 DEBUG_PAGE_ACCESS_END(page); 1577 1578 if (clear) { 1579 page->SetState(PAGE_STATE_CLEAR); 1580 sClearPageQueue.PrependUnlocked(page); 1581 } else { 1582 page->SetState(PAGE_STATE_FREE); 1583 sFreePageQueue.PrependUnlocked(page); 1584 sFreePageCondition.NotifyAll(); 1585 } 1586 1587 locker.Unlock(); 1588 } 1589 1590 1591 /*! The caller must make sure that no-one else tries to change the page's state 1592 while the function is called. If the page has a cache, this can be done by 1593 locking the cache. 1594 */ 1595 static void 1596 set_page_state(vm_page *page, int pageState) 1597 { 1598 DEBUG_PAGE_ACCESS_CHECK(page); 1599 1600 if (pageState == page->State()) 1601 return; 1602 1603 VMPageQueue* fromQueue; 1604 1605 switch (page->State()) { 1606 case PAGE_STATE_ACTIVE: 1607 fromQueue = &sActivePageQueue; 1608 break; 1609 case PAGE_STATE_INACTIVE: 1610 fromQueue = &sInactivePageQueue; 1611 break; 1612 case PAGE_STATE_MODIFIED: 1613 fromQueue = &sModifiedPageQueue; 1614 break; 1615 case PAGE_STATE_CACHED: 1616 fromQueue = &sCachedPageQueue; 1617 break; 1618 case PAGE_STATE_FREE: 1619 case PAGE_STATE_CLEAR: 1620 panic("set_page_state(): page %p is free/clear", page); 1621 return; 1622 case PAGE_STATE_WIRED: 1623 case PAGE_STATE_UNUSED: 1624 fromQueue = NULL; 1625 break; 1626 default: 1627 panic("set_page_state(): page %p in invalid state %d", 1628 page, page->State()); 1629 return; 1630 } 1631 1632 VMPageQueue* toQueue; 1633 1634 switch (pageState) { 1635 case PAGE_STATE_ACTIVE: 1636 toQueue = &sActivePageQueue; 1637 break; 1638 case PAGE_STATE_INACTIVE: 1639 toQueue = &sInactivePageQueue; 1640 break; 1641 case PAGE_STATE_MODIFIED: 1642 toQueue = &sModifiedPageQueue; 1643 break; 1644 case PAGE_STATE_CACHED: 1645 PAGE_ASSERT(page, !page->IsMapped()); 1646 PAGE_ASSERT(page, !page->modified); 1647 toQueue = &sCachedPageQueue; 1648 break; 1649 case PAGE_STATE_FREE: 1650 case PAGE_STATE_CLEAR: 1651 panic("set_page_state(): target state is free/clear"); 1652 return; 1653 case PAGE_STATE_WIRED: 1654 case PAGE_STATE_UNUSED: 1655 toQueue = NULL; 1656 break; 1657 default: 1658 panic("set_page_state(): invalid target state %d", pageState); 1659 return; 1660 } 1661 1662 VMCache* cache = page->Cache(); 1663 if (cache != NULL && cache->temporary) { 1664 if (pageState == PAGE_STATE_MODIFIED) 1665 atomic_add(&sModifiedTemporaryPages, 1); 1666 else if (page->State() == PAGE_STATE_MODIFIED) 1667 atomic_add(&sModifiedTemporaryPages, -1); 1668 } 1669 1670 // move the page 1671 if (toQueue == fromQueue) { 1672 // Note: Theoretically we are required to lock when changing the page 1673 // state, even if we don't change the queue. We actually don't have to 1674 // do this, though, since only for the active queue there are different 1675 // page states and active pages have a cache that must be locked at 1676 // this point. So we rely on the fact that everyone must lock the cache 1677 // before trying to change/interpret the page state. 1678 PAGE_ASSERT(page, cache != NULL); 1679 cache->AssertLocked(); 1680 page->SetState(pageState); 1681 } else { 1682 if (fromQueue != NULL) 1683 fromQueue->RemoveUnlocked(page); 1684 1685 page->SetState(pageState); 1686 1687 if (toQueue != NULL) 1688 toQueue->AppendUnlocked(page); 1689 } 1690 } 1691 1692 1693 /*! Moves a previously modified page into a now appropriate queue. 1694 The page queues must not be locked. 1695 */ 1696 static void 1697 move_page_to_appropriate_queue(vm_page *page) 1698 { 1699 DEBUG_PAGE_ACCESS_CHECK(page); 1700 1701 // Note, this logic must be in sync with what the page daemon does. 1702 int32 state; 1703 if (page->IsMapped()) 1704 state = PAGE_STATE_ACTIVE; 1705 else if (page->modified) 1706 state = PAGE_STATE_MODIFIED; 1707 else 1708 state = PAGE_STATE_CACHED; 1709 1710 // TODO: If free + cached pages are low, we might directly want to free the 1711 // page. 1712 set_page_state(page, state); 1713 } 1714 1715 1716 static void 1717 clear_page(struct vm_page *page) 1718 { 1719 vm_memset_physical(page->physical_page_number << PAGE_SHIFT, 0, 1720 B_PAGE_SIZE); 1721 } 1722 1723 1724 static status_t 1725 mark_page_range_in_use(page_num_t startPage, page_num_t length, bool wired) 1726 { 1727 TRACE(("mark_page_range_in_use: start %#" B_PRIxPHYSADDR ", len %#" 1728 B_PRIxPHYSADDR "\n", startPage, length)); 1729 1730 if (sPhysicalPageOffset > startPage) { 1731 dprintf("mark_page_range_in_use(%#" B_PRIxPHYSADDR ", %#" B_PRIxPHYSADDR 1732 "): start page is before free list\n", startPage, length); 1733 if (sPhysicalPageOffset - startPage >= length) 1734 return B_OK; 1735 length -= sPhysicalPageOffset - startPage; 1736 startPage = sPhysicalPageOffset; 1737 } 1738 1739 startPage -= sPhysicalPageOffset; 1740 1741 if (startPage + length > sNumPages) { 1742 dprintf("mark_page_range_in_use(%#" B_PRIxPHYSADDR ", %#" B_PRIxPHYSADDR 1743 "): range would extend past free list\n", startPage, length); 1744 if (startPage >= sNumPages) 1745 return B_OK; 1746 length = sNumPages - startPage; 1747 } 1748 1749 WriteLocker locker(sFreePageQueuesLock); 1750 1751 for (page_num_t i = 0; i < length; i++) { 1752 vm_page *page = &sPages[startPage + i]; 1753 switch (page->State()) { 1754 case PAGE_STATE_FREE: 1755 case PAGE_STATE_CLEAR: 1756 { 1757 // TODO: This violates the page reservation policy, since we remove pages from 1758 // the free/clear queues without having reserved them before. This should happen 1759 // in the early boot process only, though. 1760 DEBUG_PAGE_ACCESS_START(page); 1761 VMPageQueue& queue = page->State() == PAGE_STATE_FREE 1762 ? sFreePageQueue : sClearPageQueue; 1763 queue.Remove(page); 1764 page->SetState(wired ? PAGE_STATE_WIRED : PAGE_STATE_UNUSED); 1765 page->busy = false; 1766 atomic_add(&sUnreservedFreePages, -1); 1767 DEBUG_PAGE_ACCESS_END(page); 1768 break; 1769 } 1770 case PAGE_STATE_WIRED: 1771 case PAGE_STATE_UNUSED: 1772 break; 1773 case PAGE_STATE_ACTIVE: 1774 case PAGE_STATE_INACTIVE: 1775 case PAGE_STATE_MODIFIED: 1776 case PAGE_STATE_CACHED: 1777 default: 1778 // uh 1779 dprintf("mark_page_range_in_use: page %#" B_PRIxPHYSADDR 1780 " in non-free state %d!\n", startPage + i, page->State()); 1781 break; 1782 } 1783 } 1784 1785 return B_OK; 1786 } 1787 1788 1789 /*! 1790 This is a background thread that wakes up when its condition is notified 1791 and moves some pages from the free queue over to the clear queue. 1792 Given enough time, it will clear out all pages from the free queue - we 1793 could probably slow it down after having reached a certain threshold. 1794 */ 1795 static int32 1796 page_scrubber(void *unused) 1797 { 1798 (void)(unused); 1799 1800 TRACE(("page_scrubber starting...\n")); 1801 1802 ConditionVariableEntry entry; 1803 for (;;) { 1804 while (sFreePageQueue.Count() == 0 1805 || atomic_get(&sUnreservedFreePages) 1806 < (int32)sFreePagesTarget) { 1807 sFreePageCondition.Add(&entry); 1808 entry.Wait(); 1809 } 1810 1811 // Since we temporarily remove pages from the free pages reserve, 1812 // we must make sure we don't cause a violation of the page 1813 // reservation warranty. The following is usually stricter than 1814 // necessary, because we don't have information on how many of the 1815 // reserved pages have already been allocated. 1816 int32 reserved = reserve_some_pages(SCRUB_SIZE, 1817 kPageReserveForPriority[VM_PRIORITY_USER]); 1818 if (reserved == 0) 1819 continue; 1820 1821 // get some pages from the free queue, mostly sorted 1822 ReadLocker locker(sFreePageQueuesLock); 1823 1824 vm_page *page[SCRUB_SIZE]; 1825 int32 scrubCount = 0; 1826 for (int32 i = 0; i < reserved; i++) { 1827 page[i] = sFreePageQueue.RemoveHeadUnlocked(); 1828 if (page[i] == NULL) 1829 break; 1830 1831 DEBUG_PAGE_ACCESS_START(page[i]); 1832 1833 page[i]->SetState(PAGE_STATE_ACTIVE); 1834 page[i]->busy = true; 1835 scrubCount++; 1836 } 1837 1838 locker.Unlock(); 1839 1840 if (scrubCount == 0) { 1841 unreserve_pages(reserved); 1842 continue; 1843 } 1844 1845 TA(ScrubbingPages(scrubCount)); 1846 1847 // clear them 1848 for (int32 i = 0; i < scrubCount; i++) 1849 clear_page(page[i]); 1850 1851 locker.Lock(); 1852 1853 // and put them into the clear queue 1854 // process the array reversed when prepending to preserve sequential order 1855 for (int32 i = scrubCount - 1; i >= 0; i--) { 1856 page[i]->SetState(PAGE_STATE_CLEAR); 1857 page[i]->busy = false; 1858 DEBUG_PAGE_ACCESS_END(page[i]); 1859 sClearPageQueue.PrependUnlocked(page[i]); 1860 } 1861 1862 locker.Unlock(); 1863 1864 unreserve_pages(reserved); 1865 1866 TA(ScrubbedPages(scrubCount)); 1867 1868 // wait at least 100ms between runs 1869 snooze(100 * 1000); 1870 } 1871 1872 return 0; 1873 } 1874 1875 1876 static void 1877 init_page_marker(vm_page &marker) 1878 { 1879 marker.SetCacheRef(NULL); 1880 marker.InitState(PAGE_STATE_UNUSED); 1881 marker.busy = true; 1882 #if DEBUG_PAGE_QUEUE 1883 marker.queue = NULL; 1884 #endif 1885 #if DEBUG_PAGE_ACCESS 1886 marker.accessing_thread = thread_get_current_thread_id(); 1887 #endif 1888 } 1889 1890 1891 static void 1892 remove_page_marker(struct vm_page &marker) 1893 { 1894 DEBUG_PAGE_ACCESS_CHECK(&marker); 1895 1896 if (marker.State() < PAGE_STATE_FIRST_UNQUEUED) 1897 sPageQueues[marker.State()].RemoveUnlocked(&marker); 1898 1899 marker.SetState(PAGE_STATE_UNUSED); 1900 } 1901 1902 1903 static vm_page* 1904 next_modified_page(page_num_t& maxPagesToSee) 1905 { 1906 InterruptsSpinLocker locker(sModifiedPageQueue.GetLock()); 1907 1908 while (maxPagesToSee > 0) { 1909 vm_page* page = sModifiedPageQueue.Head(); 1910 if (page == NULL) 1911 return NULL; 1912 1913 sModifiedPageQueue.Requeue(page, true); 1914 1915 maxPagesToSee--; 1916 1917 if (!page->busy) 1918 return page; 1919 } 1920 1921 return NULL; 1922 } 1923 1924 1925 // #pragma mark - 1926 1927 1928 class PageWriteTransfer; 1929 class PageWriteWrapper; 1930 1931 1932 class PageWriterRun { 1933 public: 1934 status_t Init(uint32 maxPages); 1935 1936 void PrepareNextRun(); 1937 void AddPage(vm_page* page); 1938 uint32 Go(); 1939 1940 void PageWritten(PageWriteTransfer* transfer, status_t status, 1941 bool partialTransfer, size_t bytesTransferred); 1942 1943 private: 1944 uint32 fMaxPages; 1945 uint32 fWrapperCount; 1946 uint32 fTransferCount; 1947 int32 fPendingTransfers; 1948 PageWriteWrapper* fWrappers; 1949 PageWriteTransfer* fTransfers; 1950 ConditionVariable fAllFinishedCondition; 1951 }; 1952 1953 1954 class PageWriteTransfer : public AsyncIOCallback { 1955 public: 1956 void SetTo(PageWriterRun* run, vm_page* page, int32 maxPages); 1957 bool AddPage(vm_page* page); 1958 1959 status_t Schedule(uint32 flags); 1960 1961 void SetStatus(status_t status, size_t transferred); 1962 1963 status_t Status() const { return fStatus; } 1964 struct VMCache* Cache() const { return fCache; } 1965 uint32 PageCount() const { return fPageCount; } 1966 1967 virtual void IOFinished(status_t status, bool partialTransfer, 1968 generic_size_t bytesTransferred); 1969 1970 private: 1971 PageWriterRun* fRun; 1972 struct VMCache* fCache; 1973 off_t fOffset; 1974 uint32 fPageCount; 1975 int32 fMaxPages; 1976 status_t fStatus; 1977 uint32 fVecCount; 1978 generic_io_vec fVecs[32]; // TODO: make dynamic/configurable 1979 }; 1980 1981 1982 class PageWriteWrapper { 1983 public: 1984 PageWriteWrapper(); 1985 ~PageWriteWrapper(); 1986 void SetTo(vm_page* page); 1987 bool Done(status_t result); 1988 1989 private: 1990 vm_page* fPage; 1991 struct VMCache* fCache; 1992 bool fIsActive; 1993 }; 1994 1995 1996 PageWriteWrapper::PageWriteWrapper() 1997 : 1998 fIsActive(false) 1999 { 2000 } 2001 2002 2003 PageWriteWrapper::~PageWriteWrapper() 2004 { 2005 if (fIsActive) 2006 panic("page write wrapper going out of scope but isn't completed"); 2007 } 2008 2009 2010 /*! The page's cache must be locked. 2011 */ 2012 void 2013 PageWriteWrapper::SetTo(vm_page* page) 2014 { 2015 DEBUG_PAGE_ACCESS_CHECK(page); 2016 2017 if (page->busy) 2018 panic("setting page write wrapper to busy page"); 2019 2020 if (fIsActive) 2021 panic("re-setting page write wrapper that isn't completed"); 2022 2023 fPage = page; 2024 fCache = page->Cache(); 2025 fIsActive = true; 2026 2027 fPage->busy = true; 2028 fPage->busy_writing = true; 2029 2030 // We have a modified page -- however, while we're writing it back, 2031 // the page might still be mapped. In order not to lose any changes to the 2032 // page, we mark it clean before actually writing it back; if 2033 // writing the page fails for some reason, we'll just keep it in the 2034 // modified page list, but that should happen only rarely. 2035 2036 // If the page is changed after we cleared the dirty flag, but before we 2037 // had the chance to write it back, then we'll write it again later -- that 2038 // will probably not happen that often, though. 2039 2040 vm_clear_map_flags(fPage, PAGE_MODIFIED); 2041 } 2042 2043 2044 /*! The page's cache must be locked. 2045 The page queues must not be locked. 2046 \return \c true if the page was written successfully respectively could be 2047 handled somehow, \c false otherwise. 2048 */ 2049 bool 2050 PageWriteWrapper::Done(status_t result) 2051 { 2052 if (!fIsActive) 2053 panic("completing page write wrapper that is not active"); 2054 2055 DEBUG_PAGE_ACCESS_START(fPage); 2056 2057 fPage->busy = false; 2058 // Set unbusy and notify later by hand, since we might free the page. 2059 2060 bool success = true; 2061 2062 if (result == B_OK) { 2063 // put it into the active/inactive queue 2064 move_page_to_appropriate_queue(fPage); 2065 fPage->busy_writing = false; 2066 DEBUG_PAGE_ACCESS_END(fPage); 2067 } else { 2068 // Writing the page failed. One reason would be that the cache has been 2069 // shrunk and the page does no longer belong to the file. Otherwise the 2070 // actual I/O failed, in which case we'll simply keep the page modified. 2071 2072 if (!fPage->busy_writing) { 2073 // The busy_writing flag was cleared. That means the cache has been 2074 // shrunk while we were trying to write the page and we have to free 2075 // it now. 2076 vm_remove_all_page_mappings(fPage); 2077 // TODO: Unmapping should already happen when resizing the cache! 2078 fCache->RemovePage(fPage); 2079 free_page(fPage, false); 2080 unreserve_pages(1); 2081 } else { 2082 // Writing the page failed -- mark the page modified and move it to 2083 // an appropriate queue other than the modified queue, so we don't 2084 // keep trying to write it over and over again. We keep 2085 // non-temporary pages in the modified queue, though, so they don't 2086 // get lost in the inactive queue. 2087 dprintf("PageWriteWrapper: Failed to write page %p: %s\n", fPage, 2088 strerror(result)); 2089 2090 fPage->modified = true; 2091 if (!fCache->temporary) 2092 set_page_state(fPage, PAGE_STATE_MODIFIED); 2093 else if (fPage->IsMapped()) 2094 set_page_state(fPage, PAGE_STATE_ACTIVE); 2095 else 2096 set_page_state(fPage, PAGE_STATE_INACTIVE); 2097 2098 fPage->busy_writing = false; 2099 DEBUG_PAGE_ACCESS_END(fPage); 2100 2101 success = false; 2102 } 2103 } 2104 2105 fCache->NotifyPageEvents(fPage, PAGE_EVENT_NOT_BUSY); 2106 fIsActive = false; 2107 2108 return success; 2109 } 2110 2111 2112 /*! The page's cache must be locked. 2113 */ 2114 void 2115 PageWriteTransfer::SetTo(PageWriterRun* run, vm_page* page, int32 maxPages) 2116 { 2117 fRun = run; 2118 fCache = page->Cache(); 2119 fOffset = page->cache_offset; 2120 fPageCount = 1; 2121 fMaxPages = maxPages; 2122 fStatus = B_OK; 2123 2124 fVecs[0].base = (phys_addr_t)page->physical_page_number << PAGE_SHIFT; 2125 fVecs[0].length = B_PAGE_SIZE; 2126 fVecCount = 1; 2127 } 2128 2129 2130 /*! The page's cache must be locked. 2131 */ 2132 bool 2133 PageWriteTransfer::AddPage(vm_page* page) 2134 { 2135 if (page->Cache() != fCache 2136 || (fMaxPages >= 0 && fPageCount >= (uint32)fMaxPages)) 2137 return false; 2138 2139 phys_addr_t nextBase = fVecs[fVecCount - 1].base 2140 + fVecs[fVecCount - 1].length; 2141 2142 if ((phys_addr_t)page->physical_page_number << PAGE_SHIFT == nextBase 2143 && (off_t)page->cache_offset == fOffset + fPageCount) { 2144 // append to last iovec 2145 fVecs[fVecCount - 1].length += B_PAGE_SIZE; 2146 fPageCount++; 2147 return true; 2148 } 2149 2150 nextBase = fVecs[0].base - B_PAGE_SIZE; 2151 if ((phys_addr_t)page->physical_page_number << PAGE_SHIFT == nextBase 2152 && (off_t)page->cache_offset == fOffset - 1) { 2153 // prepend to first iovec and adjust offset 2154 fVecs[0].base = nextBase; 2155 fVecs[0].length += B_PAGE_SIZE; 2156 fOffset = page->cache_offset; 2157 fPageCount++; 2158 return true; 2159 } 2160 2161 if (((off_t)page->cache_offset == fOffset + fPageCount 2162 || (off_t)page->cache_offset == fOffset - 1) 2163 && fVecCount < sizeof(fVecs) / sizeof(fVecs[0])) { 2164 // not physically contiguous or not in the right order 2165 uint32 vectorIndex; 2166 if ((off_t)page->cache_offset < fOffset) { 2167 // we are pre-pending another vector, move the other vecs 2168 for (uint32 i = fVecCount; i > 0; i--) 2169 fVecs[i] = fVecs[i - 1]; 2170 2171 fOffset = page->cache_offset; 2172 vectorIndex = 0; 2173 } else 2174 vectorIndex = fVecCount; 2175 2176 fVecs[vectorIndex].base 2177 = (phys_addr_t)page->physical_page_number << PAGE_SHIFT; 2178 fVecs[vectorIndex].length = B_PAGE_SIZE; 2179 2180 fVecCount++; 2181 fPageCount++; 2182 return true; 2183 } 2184 2185 return false; 2186 } 2187 2188 2189 status_t 2190 PageWriteTransfer::Schedule(uint32 flags) 2191 { 2192 off_t writeOffset = (off_t)fOffset << PAGE_SHIFT; 2193 generic_size_t writeLength = (phys_size_t)fPageCount << PAGE_SHIFT; 2194 2195 if (fRun != NULL) { 2196 return fCache->WriteAsync(writeOffset, fVecs, fVecCount, writeLength, 2197 flags | B_PHYSICAL_IO_REQUEST, this); 2198 } 2199 2200 status_t status = fCache->Write(writeOffset, fVecs, fVecCount, 2201 flags | B_PHYSICAL_IO_REQUEST, &writeLength); 2202 2203 SetStatus(status, writeLength); 2204 return fStatus; 2205 } 2206 2207 2208 void 2209 PageWriteTransfer::SetStatus(status_t status, size_t transferred) 2210 { 2211 // only succeed if all pages up to the last one have been written fully 2212 // and the last page has at least been written partially 2213 if (status == B_OK && transferred <= (fPageCount - 1) * B_PAGE_SIZE) 2214 status = B_ERROR; 2215 2216 fStatus = status; 2217 } 2218 2219 2220 void 2221 PageWriteTransfer::IOFinished(status_t status, bool partialTransfer, 2222 generic_size_t bytesTransferred) 2223 { 2224 SetStatus(status, bytesTransferred); 2225 fRun->PageWritten(this, fStatus, partialTransfer, bytesTransferred); 2226 } 2227 2228 2229 status_t 2230 PageWriterRun::Init(uint32 maxPages) 2231 { 2232 fMaxPages = maxPages; 2233 fWrapperCount = 0; 2234 fTransferCount = 0; 2235 fPendingTransfers = 0; 2236 2237 fWrappers = new(std::nothrow) PageWriteWrapper[maxPages]; 2238 fTransfers = new(std::nothrow) PageWriteTransfer[maxPages]; 2239 if (fWrappers == NULL || fTransfers == NULL) 2240 return B_NO_MEMORY; 2241 2242 return B_OK; 2243 } 2244 2245 2246 void 2247 PageWriterRun::PrepareNextRun() 2248 { 2249 fWrapperCount = 0; 2250 fTransferCount = 0; 2251 fPendingTransfers = 0; 2252 } 2253 2254 2255 /*! The page's cache must be locked. 2256 */ 2257 void 2258 PageWriterRun::AddPage(vm_page* page) 2259 { 2260 fWrappers[fWrapperCount++].SetTo(page); 2261 2262 if (fTransferCount == 0 || !fTransfers[fTransferCount - 1].AddPage(page)) { 2263 fTransfers[fTransferCount++].SetTo(this, page, 2264 page->Cache()->MaxPagesPerAsyncWrite()); 2265 } 2266 } 2267 2268 2269 /*! Writes all pages previously added. 2270 \return The number of pages that could not be written or otherwise handled. 2271 */ 2272 uint32 2273 PageWriterRun::Go() 2274 { 2275 atomic_set(&fPendingTransfers, fTransferCount); 2276 2277 fAllFinishedCondition.Init(this, "page writer wait for I/O"); 2278 ConditionVariableEntry waitEntry; 2279 fAllFinishedCondition.Add(&waitEntry); 2280 2281 // schedule writes 2282 for (uint32 i = 0; i < fTransferCount; i++) 2283 fTransfers[i].Schedule(B_VIP_IO_REQUEST); 2284 2285 // wait until all pages have been written 2286 waitEntry.Wait(); 2287 2288 // mark pages depending on whether they could be written or not 2289 2290 uint32 failedPages = 0; 2291 uint32 wrapperIndex = 0; 2292 for (uint32 i = 0; i < fTransferCount; i++) { 2293 PageWriteTransfer& transfer = fTransfers[i]; 2294 transfer.Cache()->Lock(); 2295 2296 for (uint32 j = 0; j < transfer.PageCount(); j++) { 2297 if (!fWrappers[wrapperIndex++].Done(transfer.Status())) 2298 failedPages++; 2299 } 2300 2301 transfer.Cache()->Unlock(); 2302 } 2303 2304 ASSERT(wrapperIndex == fWrapperCount); 2305 2306 for (uint32 i = 0; i < fTransferCount; i++) { 2307 PageWriteTransfer& transfer = fTransfers[i]; 2308 struct VMCache* cache = transfer.Cache(); 2309 2310 // We've acquired a references for each page 2311 for (uint32 j = 0; j < transfer.PageCount(); j++) { 2312 // We release the cache references after all pages were made 2313 // unbusy again - otherwise releasing a vnode could deadlock. 2314 cache->ReleaseStoreRef(); 2315 cache->ReleaseRef(); 2316 } 2317 } 2318 2319 return failedPages; 2320 } 2321 2322 2323 void 2324 PageWriterRun::PageWritten(PageWriteTransfer* transfer, status_t status, 2325 bool partialTransfer, size_t bytesTransferred) 2326 { 2327 if (atomic_add(&fPendingTransfers, -1) == 1) 2328 fAllFinishedCondition.NotifyAll(); 2329 } 2330 2331 2332 /*! The page writer continuously takes some pages from the modified 2333 queue, writes them back, and moves them back to the active queue. 2334 It runs in its own thread, and is only there to keep the number 2335 of modified pages low, so that more pages can be reused with 2336 fewer costs. 2337 */ 2338 status_t 2339 page_writer(void* /*unused*/) 2340 { 2341 const uint32 kNumPages = 256; 2342 #ifdef TRACE_VM_PAGE 2343 uint32 writtenPages = 0; 2344 bigtime_t lastWrittenTime = 0; 2345 bigtime_t pageCollectionTime = 0; 2346 bigtime_t pageWritingTime = 0; 2347 #endif 2348 2349 PageWriterRun run; 2350 if (run.Init(kNumPages) != B_OK) { 2351 panic("page writer: Failed to init PageWriterRun!"); 2352 return B_ERROR; 2353 } 2354 2355 page_num_t pagesSinceLastSuccessfulWrite = 0; 2356 2357 while (true) { 2358 // TODO: Maybe wait shorter when memory is low! 2359 if (sModifiedPageQueue.Count() < kNumPages) { 2360 sPageWriterCondition.Wait(3000000, true); 2361 // all 3 seconds when no one triggers us 2362 } 2363 2364 page_num_t modifiedPages = sModifiedPageQueue.Count(); 2365 if (modifiedPages == 0) 2366 continue; 2367 2368 if (modifiedPages <= pagesSinceLastSuccessfulWrite) { 2369 // We ran through the whole queue without being able to write a 2370 // single page. Take a break. 2371 snooze(500000); 2372 pagesSinceLastSuccessfulWrite = 0; 2373 } 2374 2375 #if ENABLE_SWAP_SUPPORT 2376 page_stats pageStats; 2377 get_page_stats(pageStats); 2378 bool activePaging = do_active_paging(pageStats); 2379 #endif 2380 2381 // depending on how urgent it becomes to get pages to disk, we adjust 2382 // our I/O priority 2383 uint32 lowPagesState = low_resource_state(B_KERNEL_RESOURCE_PAGES); 2384 int32 ioPriority = B_IDLE_PRIORITY; 2385 if (lowPagesState >= B_LOW_RESOURCE_CRITICAL 2386 || modifiedPages > MAX_PAGE_WRITER_IO_PRIORITY_THRESHOLD) { 2387 ioPriority = MAX_PAGE_WRITER_IO_PRIORITY; 2388 } else { 2389 ioPriority = (uint64)MAX_PAGE_WRITER_IO_PRIORITY * modifiedPages 2390 / MAX_PAGE_WRITER_IO_PRIORITY_THRESHOLD; 2391 } 2392 2393 thread_set_io_priority(ioPriority); 2394 2395 uint32 numPages = 0; 2396 run.PrepareNextRun(); 2397 2398 // TODO: make this laptop friendly, too (ie. only start doing 2399 // something if someone else did something or there is really 2400 // enough to do). 2401 2402 // collect pages to be written 2403 #ifdef TRACE_VM_PAGE 2404 pageCollectionTime -= system_time(); 2405 #endif 2406 2407 page_num_t maxPagesToSee = modifiedPages; 2408 2409 while (numPages < kNumPages && maxPagesToSee > 0) { 2410 vm_page *page = next_modified_page(maxPagesToSee); 2411 if (page == NULL) 2412 break; 2413 2414 PageCacheLocker cacheLocker(page, false); 2415 if (!cacheLocker.IsLocked()) 2416 continue; 2417 2418 VMCache *cache = page->Cache(); 2419 2420 // If the page is busy or its state has changed while we were 2421 // locking the cache, just ignore it. 2422 if (page->busy || page->State() != PAGE_STATE_MODIFIED) 2423 continue; 2424 2425 DEBUG_PAGE_ACCESS_START(page); 2426 2427 // Don't write back wired (locked) pages. 2428 if (page->WiredCount() > 0) { 2429 set_page_state(page, PAGE_STATE_ACTIVE); 2430 DEBUG_PAGE_ACCESS_END(page); 2431 continue; 2432 } 2433 2434 // Write back temporary pages only when we're actively paging. 2435 if (cache->temporary 2436 #if ENABLE_SWAP_SUPPORT 2437 && (!activePaging 2438 || !cache->CanWritePage( 2439 (off_t)page->cache_offset << PAGE_SHIFT)) 2440 #endif 2441 ) { 2442 // We can't/don't want to do anything with this page, so move it 2443 // to one of the other queues. 2444 if (page->mappings.IsEmpty()) 2445 set_page_state(page, PAGE_STATE_INACTIVE); 2446 else 2447 set_page_state(page, PAGE_STATE_ACTIVE); 2448 2449 DEBUG_PAGE_ACCESS_END(page); 2450 continue; 2451 } 2452 2453 // We need our own reference to the store, as it might currently be 2454 // destroyed. 2455 if (cache->AcquireUnreferencedStoreRef() != B_OK) { 2456 DEBUG_PAGE_ACCESS_END(page); 2457 cacheLocker.Unlock(); 2458 thread_yield(); 2459 continue; 2460 } 2461 2462 run.AddPage(page); 2463 // TODO: We're possibly adding pages of different caches and 2464 // thus maybe of different underlying file systems here. This 2465 // is a potential problem for loop file systems/devices, since 2466 // we could mark a page busy that would need to be accessed 2467 // when writing back another page, thus causing a deadlock. 2468 2469 DEBUG_PAGE_ACCESS_END(page); 2470 2471 //dprintf("write page %p, cache %p (%ld)\n", page, page->cache, page->cache->ref_count); 2472 TPW(WritePage(page)); 2473 2474 cache->AcquireRefLocked(); 2475 numPages++; 2476 } 2477 2478 #ifdef TRACE_VM_PAGE 2479 pageCollectionTime += system_time(); 2480 #endif 2481 if (numPages == 0) 2482 continue; 2483 2484 // write pages to disk and do all the cleanup 2485 #ifdef TRACE_VM_PAGE 2486 pageWritingTime -= system_time(); 2487 #endif 2488 uint32 failedPages = run.Go(); 2489 #ifdef TRACE_VM_PAGE 2490 pageWritingTime += system_time(); 2491 2492 // debug output only... 2493 writtenPages += numPages; 2494 if (writtenPages >= 1024) { 2495 bigtime_t now = system_time(); 2496 TRACE(("page writer: wrote 1024 pages (total: %" B_PRIu64 " ms, " 2497 "collect: %" B_PRIu64 " ms, write: %" B_PRIu64 " ms)\n", 2498 (now - lastWrittenTime) / 1000, 2499 pageCollectionTime / 1000, pageWritingTime / 1000)); 2500 lastWrittenTime = now; 2501 2502 writtenPages -= 1024; 2503 pageCollectionTime = 0; 2504 pageWritingTime = 0; 2505 } 2506 #endif 2507 2508 if (failedPages == numPages) 2509 pagesSinceLastSuccessfulWrite += modifiedPages - maxPagesToSee; 2510 else 2511 pagesSinceLastSuccessfulWrite = 0; 2512 } 2513 2514 return B_OK; 2515 } 2516 2517 2518 // #pragma mark - 2519 2520 2521 // TODO: This should be done in the page daemon! 2522 #if 0 2523 #if ENABLE_SWAP_SUPPORT 2524 static bool 2525 free_page_swap_space(int32 index) 2526 { 2527 vm_page *page = vm_page_at_index(index); 2528 PageCacheLocker locker(page); 2529 if (!locker.IsLocked()) 2530 return false; 2531 2532 DEBUG_PAGE_ACCESS_START(page); 2533 2534 VMCache* cache = page->Cache(); 2535 if (cache->temporary && page->WiredCount() == 0 2536 && cache->HasPage(page->cache_offset << PAGE_SHIFT) 2537 && page->usage_count > 0) { 2538 // TODO: how to judge a page is highly active? 2539 if (swap_free_page_swap_space(page)) { 2540 // We need to mark the page modified, since otherwise it could be 2541 // stolen and we'd lose its data. 2542 vm_page_set_state(page, PAGE_STATE_MODIFIED); 2543 TD(FreedPageSwap(page)); 2544 DEBUG_PAGE_ACCESS_END(page); 2545 return true; 2546 } 2547 } 2548 DEBUG_PAGE_ACCESS_END(page); 2549 return false; 2550 } 2551 #endif 2552 #endif // 0 2553 2554 2555 static vm_page * 2556 find_cached_page_candidate(struct vm_page &marker) 2557 { 2558 DEBUG_PAGE_ACCESS_CHECK(&marker); 2559 2560 InterruptsSpinLocker locker(sCachedPageQueue.GetLock()); 2561 vm_page *page; 2562 2563 if (marker.State() == PAGE_STATE_UNUSED) { 2564 // Get the first free pages of the (in)active queue 2565 page = sCachedPageQueue.Head(); 2566 } else { 2567 // Get the next page of the current queue 2568 if (marker.State() != PAGE_STATE_CACHED) { 2569 panic("invalid marker %p state", &marker); 2570 return NULL; 2571 } 2572 2573 page = sCachedPageQueue.Next(&marker); 2574 sCachedPageQueue.Remove(&marker); 2575 marker.SetState(PAGE_STATE_UNUSED); 2576 } 2577 2578 while (page != NULL) { 2579 if (!page->busy) { 2580 // we found a candidate, insert marker 2581 marker.SetState(PAGE_STATE_CACHED); 2582 sCachedPageQueue.InsertAfter(page, &marker); 2583 return page; 2584 } 2585 2586 page = sCachedPageQueue.Next(page); 2587 } 2588 2589 return NULL; 2590 } 2591 2592 2593 static bool 2594 free_cached_page(vm_page *page, bool dontWait) 2595 { 2596 // try to lock the page's cache 2597 if (vm_cache_acquire_locked_page_cache(page, dontWait) == NULL) 2598 return false; 2599 VMCache* cache = page->Cache(); 2600 2601 AutoLocker<VMCache> cacheLocker(cache, true); 2602 MethodDeleter<VMCache, void, &VMCache::ReleaseRefLocked> _2(cache); 2603 2604 // check again if that page is still a candidate 2605 if (page->busy || page->State() != PAGE_STATE_CACHED) 2606 return false; 2607 2608 DEBUG_PAGE_ACCESS_START(page); 2609 2610 PAGE_ASSERT(page, !page->IsMapped()); 2611 PAGE_ASSERT(page, !page->modified); 2612 2613 // we can now steal this page 2614 2615 cache->RemovePage(page); 2616 // Now the page doesn't have cache anymore, so no one else (e.g. 2617 // vm_page_allocate_page_run() can pick it up), since they would be 2618 // required to lock the cache first, which would fail. 2619 2620 sCachedPageQueue.RemoveUnlocked(page); 2621 return true; 2622 } 2623 2624 2625 static uint32 2626 free_cached_pages(uint32 pagesToFree, bool dontWait) 2627 { 2628 vm_page marker; 2629 init_page_marker(marker); 2630 2631 uint32 pagesFreed = 0; 2632 2633 while (pagesFreed < pagesToFree) { 2634 vm_page *page = find_cached_page_candidate(marker); 2635 if (page == NULL) 2636 break; 2637 2638 if (free_cached_page(page, dontWait)) { 2639 ReadLocker locker(sFreePageQueuesLock); 2640 page->SetState(PAGE_STATE_FREE); 2641 DEBUG_PAGE_ACCESS_END(page); 2642 sFreePageQueue.PrependUnlocked(page); 2643 locker.Unlock(); 2644 2645 TA(StolenPage()); 2646 2647 pagesFreed++; 2648 } 2649 } 2650 2651 remove_page_marker(marker); 2652 2653 sFreePageCondition.NotifyAll(); 2654 2655 return pagesFreed; 2656 } 2657 2658 2659 static void 2660 idle_scan_active_pages(page_stats& pageStats) 2661 { 2662 VMPageQueue& queue = sActivePageQueue; 2663 2664 // We want to scan the whole queue in roughly kIdleRunsForFullQueue runs. 2665 uint32 maxToScan = queue.Count() / kIdleRunsForFullQueue + 1; 2666 2667 while (maxToScan > 0) { 2668 maxToScan--; 2669 2670 // Get the next page. Note that we don't bother to lock here. We go with 2671 // the assumption that on all architectures reading/writing pointers is 2672 // atomic. Beyond that it doesn't really matter. We have to unlock the 2673 // queue anyway to lock the page's cache, and we'll recheck afterwards. 2674 vm_page* page = queue.Head(); 2675 if (page == NULL) 2676 break; 2677 2678 // lock the page's cache 2679 VMCache* cache = vm_cache_acquire_locked_page_cache(page, true); 2680 if (cache == NULL) 2681 continue; 2682 2683 if (page->State() != PAGE_STATE_ACTIVE) { 2684 // page is no longer in the cache or in this queue 2685 cache->ReleaseRefAndUnlock(); 2686 continue; 2687 } 2688 2689 if (page->busy) { 2690 // page is busy -- requeue at the end 2691 vm_page_requeue(page, true); 2692 cache->ReleaseRefAndUnlock(); 2693 continue; 2694 } 2695 2696 DEBUG_PAGE_ACCESS_START(page); 2697 2698 // Get the page active/modified flags and update the page's usage count. 2699 // We completely unmap inactive temporary pages. This saves us to 2700 // iterate through the inactive list as well, since we'll be notified 2701 // via page fault whenever such an inactive page is used again. 2702 // We don't remove the mappings of non-temporary pages, since we 2703 // wouldn't notice when those would become unused and could thus be 2704 // moved to the cached list. 2705 int32 usageCount; 2706 if (page->WiredCount() > 0 || page->usage_count > 0 2707 || !cache->temporary) { 2708 usageCount = vm_clear_page_mapping_accessed_flags(page); 2709 } else 2710 usageCount = vm_remove_all_page_mappings_if_unaccessed(page); 2711 2712 if (usageCount > 0) { 2713 usageCount += page->usage_count + kPageUsageAdvance; 2714 if (usageCount > kPageUsageMax) 2715 usageCount = kPageUsageMax; 2716 // TODO: This would probably also be the place to reclaim swap space. 2717 } else { 2718 usageCount += page->usage_count - (int32)kPageUsageDecline; 2719 if (usageCount < 0) { 2720 usageCount = 0; 2721 set_page_state(page, PAGE_STATE_INACTIVE); 2722 } 2723 } 2724 2725 page->usage_count = usageCount; 2726 2727 DEBUG_PAGE_ACCESS_END(page); 2728 2729 cache->ReleaseRefAndUnlock(); 2730 } 2731 } 2732 2733 2734 static void 2735 full_scan_inactive_pages(page_stats& pageStats, int32 despairLevel) 2736 { 2737 int32 pagesToFree = pageStats.unsatisfiedReservations 2738 + sFreeOrCachedPagesTarget 2739 - (pageStats.totalFreePages + pageStats.cachedPages); 2740 if (pagesToFree <= 0) 2741 return; 2742 2743 bigtime_t time = system_time(); 2744 uint32 pagesScanned = 0; 2745 uint32 pagesToCached = 0; 2746 uint32 pagesToModified = 0; 2747 uint32 pagesToActive = 0; 2748 2749 // Determine how many pages at maximum to send to the modified queue. Since 2750 // it is relatively expensive to page out pages, we do that on a grander 2751 // scale only when things get desperate. 2752 uint32 maxToFlush = despairLevel <= 1 ? 32 : 10000; 2753 2754 vm_page marker; 2755 init_page_marker(marker); 2756 2757 VMPageQueue& queue = sInactivePageQueue; 2758 InterruptsSpinLocker queueLocker(queue.GetLock()); 2759 uint32 maxToScan = queue.Count(); 2760 2761 vm_page* nextPage = queue.Head(); 2762 2763 while (pagesToFree > 0 && maxToScan > 0) { 2764 maxToScan--; 2765 2766 // get the next page 2767 vm_page* page = nextPage; 2768 if (page == NULL) 2769 break; 2770 nextPage = queue.Next(page); 2771 2772 if (page->busy) 2773 continue; 2774 2775 // mark the position 2776 queue.InsertAfter(page, &marker); 2777 queueLocker.Unlock(); 2778 2779 // lock the page's cache 2780 VMCache* cache = vm_cache_acquire_locked_page_cache(page, true); 2781 if (cache == NULL || page->busy 2782 || page->State() != PAGE_STATE_INACTIVE) { 2783 if (cache != NULL) 2784 cache->ReleaseRefAndUnlock(); 2785 queueLocker.Lock(); 2786 nextPage = queue.Next(&marker); 2787 queue.Remove(&marker); 2788 continue; 2789 } 2790 2791 pagesScanned++; 2792 2793 DEBUG_PAGE_ACCESS_START(page); 2794 2795 // Get the accessed count, clear the accessed/modified flags and 2796 // unmap the page, if it hasn't been accessed. 2797 int32 usageCount; 2798 if (page->WiredCount() > 0) 2799 usageCount = vm_clear_page_mapping_accessed_flags(page); 2800 else 2801 usageCount = vm_remove_all_page_mappings_if_unaccessed(page); 2802 2803 // update usage count 2804 if (usageCount > 0) { 2805 usageCount += page->usage_count + kPageUsageAdvance; 2806 if (usageCount > kPageUsageMax) 2807 usageCount = kPageUsageMax; 2808 } else { 2809 usageCount += page->usage_count - (int32)kPageUsageDecline; 2810 if (usageCount < 0) 2811 usageCount = 0; 2812 } 2813 2814 page->usage_count = usageCount; 2815 2816 // Move to fitting queue or requeue: 2817 // * Active mapped pages go to the active queue. 2818 // * Inactive mapped (i.e. wired) pages are requeued. 2819 // * The remaining pages are cachable. Thus, if unmodified they go to 2820 // the cached queue, otherwise to the modified queue (up to a limit). 2821 // Note that until in the idle scanning we don't exempt pages of 2822 // temporary caches. Apparently we really need memory, so we better 2823 // page out memory as well. 2824 bool isMapped = page->IsMapped(); 2825 if (usageCount > 0) { 2826 if (isMapped) { 2827 set_page_state(page, PAGE_STATE_ACTIVE); 2828 pagesToActive++; 2829 } else 2830 vm_page_requeue(page, true); 2831 } else if (isMapped) { 2832 vm_page_requeue(page, true); 2833 } else if (!page->modified) { 2834 set_page_state(page, PAGE_STATE_CACHED); 2835 pagesToFree--; 2836 pagesToCached++; 2837 } else if (maxToFlush > 0) { 2838 set_page_state(page, PAGE_STATE_MODIFIED); 2839 maxToFlush--; 2840 pagesToModified++; 2841 } else 2842 vm_page_requeue(page, true); 2843 2844 DEBUG_PAGE_ACCESS_END(page); 2845 2846 cache->ReleaseRefAndUnlock(); 2847 2848 // remove the marker 2849 queueLocker.Lock(); 2850 nextPage = queue.Next(&marker); 2851 queue.Remove(&marker); 2852 } 2853 2854 queueLocker.Unlock(); 2855 2856 time = system_time() - time; 2857 TRACE_DAEMON(" -> inactive scan (%7" B_PRId64 " us): scanned: %7" B_PRIu32 2858 ", moved: %" B_PRIu32 " -> cached, %" B_PRIu32 " -> modified, %" 2859 B_PRIu32 " -> active\n", time, pagesScanned, pagesToCached, 2860 pagesToModified, pagesToActive); 2861 2862 // wake up the page writer, if we tossed it some pages 2863 if (pagesToModified > 0) 2864 sPageWriterCondition.WakeUp(); 2865 } 2866 2867 2868 static void 2869 full_scan_active_pages(page_stats& pageStats, int32 despairLevel) 2870 { 2871 vm_page marker; 2872 init_page_marker(marker); 2873 2874 VMPageQueue& queue = sActivePageQueue; 2875 InterruptsSpinLocker queueLocker(queue.GetLock()); 2876 uint32 maxToScan = queue.Count(); 2877 2878 int32 pagesToDeactivate = pageStats.unsatisfiedReservations 2879 + sFreeOrCachedPagesTarget 2880 - (pageStats.totalFreePages + pageStats.cachedPages) 2881 + std::max((int32)sInactivePagesTarget - (int32)maxToScan, (int32)0); 2882 if (pagesToDeactivate <= 0) 2883 return; 2884 2885 bigtime_t time = system_time(); 2886 uint32 pagesAccessed = 0; 2887 uint32 pagesToInactive = 0; 2888 uint32 pagesScanned = 0; 2889 2890 vm_page* nextPage = queue.Head(); 2891 2892 while (pagesToDeactivate > 0 && maxToScan > 0) { 2893 maxToScan--; 2894 2895 // get the next page 2896 vm_page* page = nextPage; 2897 if (page == NULL) 2898 break; 2899 nextPage = queue.Next(page); 2900 2901 if (page->busy) 2902 continue; 2903 2904 // mark the position 2905 queue.InsertAfter(page, &marker); 2906 queueLocker.Unlock(); 2907 2908 // lock the page's cache 2909 VMCache* cache = vm_cache_acquire_locked_page_cache(page, true); 2910 if (cache == NULL || page->busy || page->State() != PAGE_STATE_ACTIVE) { 2911 if (cache != NULL) 2912 cache->ReleaseRefAndUnlock(); 2913 queueLocker.Lock(); 2914 nextPage = queue.Next(&marker); 2915 queue.Remove(&marker); 2916 continue; 2917 } 2918 2919 pagesScanned++; 2920 2921 DEBUG_PAGE_ACCESS_START(page); 2922 2923 // Get the page active/modified flags and update the page's usage count. 2924 int32 usageCount = vm_clear_page_mapping_accessed_flags(page); 2925 2926 if (usageCount > 0) { 2927 usageCount += page->usage_count + kPageUsageAdvance; 2928 if (usageCount > kPageUsageMax) 2929 usageCount = kPageUsageMax; 2930 pagesAccessed++; 2931 // TODO: This would probably also be the place to reclaim swap space. 2932 } else { 2933 usageCount += page->usage_count - (int32)kPageUsageDecline; 2934 if (usageCount <= 0) { 2935 usageCount = 0; 2936 set_page_state(page, PAGE_STATE_INACTIVE); 2937 pagesToInactive++; 2938 } 2939 } 2940 2941 page->usage_count = usageCount; 2942 2943 DEBUG_PAGE_ACCESS_END(page); 2944 2945 cache->ReleaseRefAndUnlock(); 2946 2947 // remove the marker 2948 queueLocker.Lock(); 2949 nextPage = queue.Next(&marker); 2950 queue.Remove(&marker); 2951 } 2952 2953 time = system_time() - time; 2954 TRACE_DAEMON(" -> active scan (%7" B_PRId64 " us): scanned: %7" B_PRIu32 2955 ", moved: %" B_PRIu32 " -> inactive, encountered %" B_PRIu32 " accessed" 2956 " ones\n", time, pagesScanned, pagesToInactive, pagesAccessed); 2957 } 2958 2959 2960 static void 2961 page_daemon_idle_scan(page_stats& pageStats) 2962 { 2963 TRACE_DAEMON("page daemon: idle run\n"); 2964 2965 if (pageStats.totalFreePages < (int32)sFreePagesTarget) { 2966 // We want more actually free pages, so free some from the cached 2967 // ones. 2968 uint32 freed = free_cached_pages( 2969 sFreePagesTarget - pageStats.totalFreePages, false); 2970 if (freed > 0) 2971 unreserve_pages(freed); 2972 get_page_stats(pageStats); 2973 } 2974 2975 // Walk the active list and move pages to the inactive queue. 2976 get_page_stats(pageStats); 2977 idle_scan_active_pages(pageStats); 2978 } 2979 2980 2981 static void 2982 page_daemon_full_scan(page_stats& pageStats, int32 despairLevel) 2983 { 2984 TRACE_DAEMON("page daemon: full run: free: %" B_PRIu32 ", cached: %" 2985 B_PRIu32 ", to free: %" B_PRIu32 "\n", pageStats.totalFreePages, 2986 pageStats.cachedPages, pageStats.unsatisfiedReservations 2987 + sFreeOrCachedPagesTarget 2988 - (pageStats.totalFreePages + pageStats.cachedPages)); 2989 2990 // Walk the inactive list and transfer pages to the cached and modified 2991 // queues. 2992 full_scan_inactive_pages(pageStats, despairLevel); 2993 2994 // Free cached pages. Also wake up reservation waiters. 2995 get_page_stats(pageStats); 2996 int32 pagesToFree = pageStats.unsatisfiedReservations + sFreePagesTarget 2997 - (pageStats.totalFreePages); 2998 if (pagesToFree > 0) { 2999 uint32 freed = free_cached_pages(pagesToFree, true); 3000 if (freed > 0) 3001 unreserve_pages(freed); 3002 } 3003 3004 // Walk the active list and move pages to the inactive queue. 3005 get_page_stats(pageStats); 3006 full_scan_active_pages(pageStats, despairLevel); 3007 } 3008 3009 3010 static status_t 3011 page_daemon(void* /*unused*/) 3012 { 3013 int32 despairLevel = 0; 3014 3015 while (true) { 3016 sPageDaemonCondition.ClearActivated(); 3017 3018 // evaluate the free pages situation 3019 page_stats pageStats; 3020 get_page_stats(pageStats); 3021 3022 if (!do_active_paging(pageStats)) { 3023 // Things look good -- just maintain statistics and keep the pool 3024 // of actually free pages full enough. 3025 despairLevel = 0; 3026 page_daemon_idle_scan(pageStats); 3027 sPageDaemonCondition.Wait(kIdleScanWaitInterval, false); 3028 } else { 3029 // Not enough free pages. We need to do some real work. 3030 despairLevel = std::max(despairLevel + 1, (int32)3); 3031 page_daemon_full_scan(pageStats, despairLevel); 3032 3033 // Don't wait after the first full scan, but rather immediately 3034 // check whether we were successful in freeing enough pages and 3035 // re-run with increased despair level. The first scan is 3036 // conservative with respect to moving inactive modified pages to 3037 // the modified list to avoid thrashing. The second scan, however, 3038 // will not hold back. 3039 if (despairLevel > 1) 3040 snooze(kBusyScanWaitInterval); 3041 } 3042 } 3043 3044 return B_OK; 3045 } 3046 3047 3048 /*! Returns how many pages could *not* be reserved. 3049 */ 3050 static uint32 3051 reserve_pages(uint32 count, int priority, bool dontWait) 3052 { 3053 int32 dontTouch = kPageReserveForPriority[priority]; 3054 3055 while (true) { 3056 count -= reserve_some_pages(count, dontTouch); 3057 if (count == 0) 3058 return 0; 3059 3060 if (sUnsatisfiedPageReservations == 0) { 3061 count -= free_cached_pages(count, dontWait); 3062 if (count == 0) 3063 return count; 3064 } 3065 3066 if (dontWait) 3067 return count; 3068 3069 // we need to wait for pages to become available 3070 3071 MutexLocker pageDeficitLocker(sPageDeficitLock); 3072 3073 bool notifyDaemon = sUnsatisfiedPageReservations == 0; 3074 sUnsatisfiedPageReservations += count; 3075 3076 if (atomic_get(&sUnreservedFreePages) > dontTouch) { 3077 // the situation changed 3078 sUnsatisfiedPageReservations -= count; 3079 continue; 3080 } 3081 3082 PageReservationWaiter waiter; 3083 waiter.dontTouch = dontTouch; 3084 waiter.missing = count; 3085 waiter.thread = thread_get_current_thread(); 3086 waiter.threadPriority = waiter.thread->priority; 3087 3088 // insert ordered (i.e. after all waiters with higher or equal priority) 3089 PageReservationWaiter* otherWaiter = NULL; 3090 for (PageReservationWaiterList::Iterator it 3091 = sPageReservationWaiters.GetIterator(); 3092 (otherWaiter = it.Next()) != NULL;) { 3093 if (waiter < *otherWaiter) 3094 break; 3095 } 3096 3097 sPageReservationWaiters.InsertBefore(otherWaiter, &waiter); 3098 3099 thread_prepare_to_block(waiter.thread, 0, THREAD_BLOCK_TYPE_OTHER, 3100 "waiting for pages"); 3101 3102 if (notifyDaemon) 3103 sPageDaemonCondition.WakeUp(); 3104 3105 pageDeficitLocker.Unlock(); 3106 3107 low_resource(B_KERNEL_RESOURCE_PAGES, count, B_RELATIVE_TIMEOUT, 0); 3108 thread_block(); 3109 3110 pageDeficitLocker.Lock(); 3111 3112 return 0; 3113 } 3114 } 3115 3116 3117 // #pragma mark - private kernel API 3118 3119 3120 /*! Writes a range of modified pages of a cache to disk. 3121 You need to hold the VMCache lock when calling this function. 3122 Note that the cache lock is released in this function. 3123 \param cache The cache. 3124 \param firstPage Offset (in page size units) of the first page in the range. 3125 \param endPage End offset (in page size units) of the page range. The page 3126 at this offset is not included. 3127 */ 3128 status_t 3129 vm_page_write_modified_page_range(struct VMCache* cache, uint32 firstPage, 3130 uint32 endPage) 3131 { 3132 static const int32 kMaxPages = 256; 3133 int32 maxPages = cache->MaxPagesPerWrite(); 3134 if (maxPages < 0 || maxPages > kMaxPages) 3135 maxPages = kMaxPages; 3136 3137 const uint32 allocationFlags = HEAP_DONT_WAIT_FOR_MEMORY 3138 | HEAP_DONT_LOCK_KERNEL_SPACE; 3139 3140 PageWriteWrapper stackWrappersPool[2]; 3141 PageWriteWrapper* stackWrappers[1]; 3142 PageWriteWrapper* wrapperPool 3143 = new(malloc_flags(allocationFlags)) PageWriteWrapper[maxPages + 1]; 3144 PageWriteWrapper** wrappers 3145 = new(malloc_flags(allocationFlags)) PageWriteWrapper*[maxPages]; 3146 if (wrapperPool == NULL || wrappers == NULL) { 3147 // don't fail, just limit our capabilities 3148 delete[] wrapperPool; 3149 delete[] wrappers; 3150 wrapperPool = stackWrappersPool; 3151 wrappers = stackWrappers; 3152 maxPages = 1; 3153 } 3154 3155 int32 nextWrapper = 0; 3156 int32 usedWrappers = 0; 3157 3158 PageWriteTransfer transfer; 3159 bool transferEmpty = true; 3160 3161 VMCachePagesTree::Iterator it 3162 = cache->pages.GetIterator(firstPage, true, true); 3163 3164 while (true) { 3165 vm_page* page = it.Next(); 3166 if (page == NULL || page->cache_offset >= endPage) { 3167 if (transferEmpty) 3168 break; 3169 3170 page = NULL; 3171 } 3172 3173 if (page != NULL) { 3174 if (page->busy 3175 || (page->State() != PAGE_STATE_MODIFIED 3176 && !vm_test_map_modification(page))) { 3177 page = NULL; 3178 } 3179 } 3180 3181 PageWriteWrapper* wrapper = NULL; 3182 if (page != NULL) { 3183 wrapper = &wrapperPool[nextWrapper++]; 3184 if (nextWrapper > maxPages) 3185 nextWrapper = 0; 3186 3187 DEBUG_PAGE_ACCESS_START(page); 3188 3189 wrapper->SetTo(page); 3190 3191 if (transferEmpty || transfer.AddPage(page)) { 3192 if (transferEmpty) { 3193 transfer.SetTo(NULL, page, maxPages); 3194 transferEmpty = false; 3195 } 3196 3197 DEBUG_PAGE_ACCESS_END(page); 3198 3199 wrappers[usedWrappers++] = wrapper; 3200 continue; 3201 } 3202 3203 DEBUG_PAGE_ACCESS_END(page); 3204 } 3205 3206 if (transferEmpty) 3207 continue; 3208 3209 cache->Unlock(); 3210 status_t status = transfer.Schedule(0); 3211 cache->Lock(); 3212 3213 for (int32 i = 0; i < usedWrappers; i++) 3214 wrappers[i]->Done(status); 3215 3216 usedWrappers = 0; 3217 3218 if (page != NULL) { 3219 transfer.SetTo(NULL, page, maxPages); 3220 wrappers[usedWrappers++] = wrapper; 3221 } else 3222 transferEmpty = true; 3223 } 3224 3225 if (wrapperPool != stackWrappersPool) { 3226 delete[] wrapperPool; 3227 delete[] wrappers; 3228 } 3229 3230 return B_OK; 3231 } 3232 3233 3234 /*! You need to hold the VMCache lock when calling this function. 3235 Note that the cache lock is released in this function. 3236 */ 3237 status_t 3238 vm_page_write_modified_pages(VMCache *cache) 3239 { 3240 return vm_page_write_modified_page_range(cache, 0, 3241 (cache->virtual_end + B_PAGE_SIZE - 1) >> PAGE_SHIFT); 3242 } 3243 3244 3245 /*! Schedules the page writer to write back the specified \a page. 3246 Note, however, that it might not do this immediately, and it can well 3247 take several seconds until the page is actually written out. 3248 */ 3249 void 3250 vm_page_schedule_write_page(vm_page *page) 3251 { 3252 PAGE_ASSERT(page, page->State() == PAGE_STATE_MODIFIED); 3253 3254 vm_page_requeue(page, false); 3255 3256 sPageWriterCondition.WakeUp(); 3257 } 3258 3259 3260 /*! Cache must be locked. 3261 */ 3262 void 3263 vm_page_schedule_write_page_range(struct VMCache *cache, uint32 firstPage, 3264 uint32 endPage) 3265 { 3266 uint32 modified = 0; 3267 for (VMCachePagesTree::Iterator it 3268 = cache->pages.GetIterator(firstPage, true, true); 3269 vm_page *page = it.Next();) { 3270 if (page->cache_offset >= endPage) 3271 break; 3272 3273 if (!page->busy && page->State() == PAGE_STATE_MODIFIED) { 3274 DEBUG_PAGE_ACCESS_START(page); 3275 vm_page_requeue(page, false); 3276 modified++; 3277 DEBUG_PAGE_ACCESS_END(page); 3278 } 3279 } 3280 3281 if (modified > 0) 3282 sPageWriterCondition.WakeUp(); 3283 } 3284 3285 3286 void 3287 vm_page_init_num_pages(kernel_args *args) 3288 { 3289 // calculate the size of memory by looking at the physical_memory_range array 3290 sPhysicalPageOffset = args->physical_memory_range[0].start / B_PAGE_SIZE; 3291 page_num_t physicalPagesEnd = sPhysicalPageOffset 3292 + args->physical_memory_range[0].size / B_PAGE_SIZE; 3293 3294 sNonExistingPages = 0; 3295 sIgnoredPages = args->ignored_physical_memory / B_PAGE_SIZE; 3296 3297 for (uint32 i = 1; i < args->num_physical_memory_ranges; i++) { 3298 page_num_t start = args->physical_memory_range[i].start / B_PAGE_SIZE; 3299 if (start > physicalPagesEnd) 3300 sNonExistingPages += start - physicalPagesEnd; 3301 physicalPagesEnd = start 3302 + args->physical_memory_range[i].size / B_PAGE_SIZE; 3303 3304 #ifdef LIMIT_AVAILABLE_MEMORY 3305 page_num_t available 3306 = physicalPagesEnd - sPhysicalPageOffset - sNonExistingPages; 3307 if (available > LIMIT_AVAILABLE_MEMORY * (1024 * 1024 / B_PAGE_SIZE)) { 3308 physicalPagesEnd = sPhysicalPageOffset + sNonExistingPages 3309 + LIMIT_AVAILABLE_MEMORY * (1024 * 1024 / B_PAGE_SIZE); 3310 break; 3311 } 3312 #endif 3313 } 3314 3315 TRACE(("first phys page = %#" B_PRIxPHYSADDR ", end %#" B_PRIxPHYSADDR "\n", 3316 sPhysicalPageOffset, physicalPagesEnd)); 3317 3318 sNumPages = physicalPagesEnd - sPhysicalPageOffset; 3319 } 3320 3321 3322 status_t 3323 vm_page_init(kernel_args *args) 3324 { 3325 TRACE(("vm_page_init: entry\n")); 3326 3327 // init page queues 3328 sModifiedPageQueue.Init("modified pages queue"); 3329 sInactivePageQueue.Init("inactive pages queue"); 3330 sActivePageQueue.Init("active pages queue"); 3331 sCachedPageQueue.Init("cached pages queue"); 3332 sFreePageQueue.Init("free pages queue"); 3333 sClearPageQueue.Init("clear pages queue"); 3334 3335 new (&sPageReservationWaiters) PageReservationWaiterList; 3336 3337 // map in the new free page table 3338 sPages = (vm_page *)vm_allocate_early(args, sNumPages * sizeof(vm_page), 3339 ~0L, B_KERNEL_READ_AREA | B_KERNEL_WRITE_AREA, 0); 3340 3341 TRACE(("vm_init: putting free_page_table @ %p, # ents %" B_PRIuPHYSADDR 3342 " (size %#" B_PRIxPHYSADDR ")\n", sPages, sNumPages, 3343 (phys_addr_t)(sNumPages * sizeof(vm_page)))); 3344 3345 // initialize the free page table 3346 for (uint32 i = 0; i < sNumPages; i++) { 3347 sPages[i].Init(sPhysicalPageOffset + i); 3348 sFreePageQueue.Append(&sPages[i]); 3349 3350 #if VM_PAGE_ALLOCATION_TRACKING_AVAILABLE 3351 sPages[i].allocation_tracking_info.Clear(); 3352 #endif 3353 } 3354 3355 sUnreservedFreePages = sNumPages; 3356 3357 TRACE(("initialized table\n")); 3358 3359 // mark the ranges between usable physical memory unused 3360 phys_addr_t previousEnd = 0; 3361 for (uint32 i = 0; i < args->num_physical_memory_ranges; i++) { 3362 phys_addr_t base = args->physical_memory_range[i].start; 3363 phys_size_t size = args->physical_memory_range[i].size; 3364 if (base > previousEnd) { 3365 mark_page_range_in_use(previousEnd / B_PAGE_SIZE, 3366 (base - previousEnd) / B_PAGE_SIZE, false); 3367 } 3368 previousEnd = base + size; 3369 } 3370 3371 // mark the allocated physical page ranges wired 3372 for (uint32 i = 0; i < args->num_physical_allocated_ranges; i++) { 3373 mark_page_range_in_use( 3374 args->physical_allocated_range[i].start / B_PAGE_SIZE, 3375 args->physical_allocated_range[i].size / B_PAGE_SIZE, true); 3376 } 3377 3378 // prevent future allocations from the kernel args ranges 3379 args->num_physical_allocated_ranges = 0; 3380 3381 // The target of actually free pages. This must be at least the system 3382 // reserve, but should be a few more pages, so we don't have to extract 3383 // a cached page with each allocation. 3384 sFreePagesTarget = VM_PAGE_RESERVE_USER 3385 + std::max((page_num_t)32, (sNumPages - sNonExistingPages) / 1024); 3386 3387 // The target of free + cached and inactive pages. On low-memory machines 3388 // keep things tight. free + cached is the pool of immediately allocatable 3389 // pages. We want a few inactive pages, so when we're actually paging, we 3390 // have a reasonably large set of pages to work with. 3391 if (sUnreservedFreePages < 16 * 1024) { 3392 sFreeOrCachedPagesTarget = sFreePagesTarget + 128; 3393 sInactivePagesTarget = sFreePagesTarget / 3; 3394 } else { 3395 sFreeOrCachedPagesTarget = 2 * sFreePagesTarget; 3396 sInactivePagesTarget = sFreePagesTarget / 2; 3397 } 3398 3399 TRACE(("vm_page_init: exit\n")); 3400 3401 return B_OK; 3402 } 3403 3404 3405 status_t 3406 vm_page_init_post_area(kernel_args *args) 3407 { 3408 void *dummy; 3409 3410 dummy = sPages; 3411 create_area("page structures", &dummy, B_EXACT_ADDRESS, 3412 PAGE_ALIGN(sNumPages * sizeof(vm_page)), B_ALREADY_WIRED, 3413 B_KERNEL_READ_AREA | B_KERNEL_WRITE_AREA); 3414 3415 add_debugger_command("list_pages", &dump_page_list, 3416 "List physical pages"); 3417 add_debugger_command("page_stats", &dump_page_stats, 3418 "Dump statistics about page usage"); 3419 add_debugger_command_etc("page", &dump_page_long, 3420 "Dump page info", 3421 "[ \"-p\" | \"-v\" ] [ \"-m\" ] <address>\n" 3422 "Prints information for the physical page. If neither \"-p\" nor\n" 3423 "\"-v\" are given, the provided address is interpreted as address of\n" 3424 "the vm_page data structure for the page in question. If \"-p\" is\n" 3425 "given, the address is the physical address of the page. If \"-v\" is\n" 3426 "given, the address is interpreted as virtual address in the current\n" 3427 "thread's address space and for the page it is mapped to (if any)\n" 3428 "information are printed. If \"-m\" is specified, the command will\n" 3429 "search all known address spaces for mappings to that page and print\n" 3430 "them.\n", 0); 3431 add_debugger_command("page_queue", &dump_page_queue, "Dump page queue"); 3432 add_debugger_command("find_page", &find_page, 3433 "Find out which queue a page is actually in"); 3434 3435 #ifdef TRACK_PAGE_USAGE_STATS 3436 add_debugger_command_etc("page_usage", &dump_page_usage_stats, 3437 "Dumps statistics about page usage counts", 3438 "\n" 3439 "Dumps statistics about page usage counts.\n", 3440 B_KDEBUG_DONT_PARSE_ARGUMENTS); 3441 #endif 3442 3443 #if VM_PAGE_ALLOCATION_TRACKING_AVAILABLE 3444 add_debugger_command_etc("page_allocations_per_caller", 3445 &dump_page_allocations_per_caller, 3446 "Dump current page allocations summed up per caller", 3447 "[ -d <caller> ] [ -r ]\n" 3448 "The current allocations will by summed up by caller (their count)\n" 3449 "printed in decreasing order by count.\n" 3450 "If \"-d\" is given, each allocation for caller <caller> is printed\n" 3451 "including the respective stack trace.\n" 3452 "If \"-r\" is given, the allocation infos are reset after gathering\n" 3453 "the information, so the next command invocation will only show the\n" 3454 "allocations made after the reset.\n", 0); 3455 add_debugger_command_etc("page_allocation_infos", 3456 &dump_page_allocation_infos, 3457 "Dump current page allocations", 3458 "[ --stacktrace ] [ -p <page number> ] [ --team <team ID> ] " 3459 "[ --thread <thread ID> ]\n" 3460 "The current allocations filtered by optional values will be printed.\n" 3461 "The optional \"-p\" page number filters for a specific page,\n" 3462 "with \"--team\" and \"--thread\" allocations by specific teams\n" 3463 "and/or threads can be filtered (these only work if a corresponding\n" 3464 "tracing entry is still available).\n" 3465 "If \"--stacktrace\" is given, then stack traces of the allocation\n" 3466 "callers are printed, where available\n", 0); 3467 #endif 3468 3469 return B_OK; 3470 } 3471 3472 3473 status_t 3474 vm_page_init_post_thread(kernel_args *args) 3475 { 3476 new (&sFreePageCondition) ConditionVariable; 3477 3478 // create a kernel thread to clear out pages 3479 3480 thread_id thread = spawn_kernel_thread(&page_scrubber, "page scrubber", 3481 B_LOWEST_ACTIVE_PRIORITY, NULL); 3482 resume_thread(thread); 3483 3484 // start page writer 3485 3486 sPageWriterCondition.Init("page writer"); 3487 3488 thread = spawn_kernel_thread(&page_writer, "page writer", 3489 B_NORMAL_PRIORITY + 1, NULL); 3490 resume_thread(thread); 3491 3492 // start page daemon 3493 3494 sPageDaemonCondition.Init("page daemon"); 3495 3496 thread = spawn_kernel_thread(&page_daemon, "page daemon", 3497 B_NORMAL_PRIORITY, NULL); 3498 resume_thread(thread); 3499 3500 return B_OK; 3501 } 3502 3503 3504 status_t 3505 vm_mark_page_inuse(page_num_t page) 3506 { 3507 return vm_mark_page_range_inuse(page, 1); 3508 } 3509 3510 3511 status_t 3512 vm_mark_page_range_inuse(page_num_t startPage, page_num_t length) 3513 { 3514 return mark_page_range_in_use(startPage, length, false); 3515 } 3516 3517 3518 /*! Unreserve pages previously reserved with vm_page_reserve_pages(). 3519 */ 3520 void 3521 vm_page_unreserve_pages(vm_page_reservation* reservation) 3522 { 3523 uint32 count = reservation->count; 3524 reservation->count = 0; 3525 3526 if (count == 0) 3527 return; 3528 3529 TA(UnreservePages(count)); 3530 3531 unreserve_pages(count); 3532 } 3533 3534 3535 /*! With this call, you can reserve a number of free pages in the system. 3536 They will only be handed out to someone who has actually reserved them. 3537 This call returns as soon as the number of requested pages has been 3538 reached. 3539 The caller must not hold any cache lock or the function might deadlock. 3540 */ 3541 void 3542 vm_page_reserve_pages(vm_page_reservation* reservation, uint32 count, 3543 int priority) 3544 { 3545 reservation->count = count; 3546 3547 if (count == 0) 3548 return; 3549 3550 TA(ReservePages(count)); 3551 3552 reserve_pages(count, priority, false); 3553 } 3554 3555 3556 bool 3557 vm_page_try_reserve_pages(vm_page_reservation* reservation, uint32 count, 3558 int priority) 3559 { 3560 if (count == 0) { 3561 reservation->count = count; 3562 return true; 3563 } 3564 3565 uint32 remaining = reserve_pages(count, priority, true); 3566 if (remaining == 0) { 3567 TA(ReservePages(count)); 3568 reservation->count = count; 3569 return true; 3570 } 3571 3572 unreserve_pages(count - remaining); 3573 3574 return false; 3575 } 3576 3577 3578 vm_page * 3579 vm_page_allocate_page(vm_page_reservation* reservation, uint32 flags) 3580 { 3581 uint32 pageState = flags & VM_PAGE_ALLOC_STATE; 3582 ASSERT(pageState != PAGE_STATE_FREE); 3583 ASSERT(pageState != PAGE_STATE_CLEAR); 3584 3585 ASSERT(reservation->count > 0); 3586 reservation->count--; 3587 3588 VMPageQueue* queue; 3589 VMPageQueue* otherQueue; 3590 3591 if ((flags & VM_PAGE_ALLOC_CLEAR) != 0) { 3592 queue = &sClearPageQueue; 3593 otherQueue = &sFreePageQueue; 3594 } else { 3595 queue = &sFreePageQueue; 3596 otherQueue = &sClearPageQueue; 3597 } 3598 3599 ReadLocker locker(sFreePageQueuesLock); 3600 3601 vm_page* page = queue->RemoveHeadUnlocked(); 3602 if (page == NULL) { 3603 // if the primary queue was empty, grab the page from the 3604 // secondary queue 3605 page = otherQueue->RemoveHeadUnlocked(); 3606 3607 if (page == NULL) { 3608 // Unlikely, but possible: the page we have reserved has moved 3609 // between the queues after we checked the first queue. Grab the 3610 // write locker to make sure this doesn't happen again. 3611 locker.Unlock(); 3612 WriteLocker writeLocker(sFreePageQueuesLock); 3613 3614 page = queue->RemoveHead(); 3615 if (page == NULL) 3616 otherQueue->RemoveHead(); 3617 3618 if (page == NULL) { 3619 panic("Had reserved page, but there is none!"); 3620 return NULL; 3621 } 3622 3623 // downgrade to read lock 3624 locker.Lock(); 3625 } 3626 } 3627 3628 if (page->CacheRef() != NULL) 3629 panic("supposed to be free page %p has cache\n", page); 3630 3631 DEBUG_PAGE_ACCESS_START(page); 3632 3633 int oldPageState = page->State(); 3634 page->SetState(pageState); 3635 page->busy = (flags & VM_PAGE_ALLOC_BUSY) != 0; 3636 page->usage_count = 0; 3637 page->accessed = false; 3638 page->modified = false; 3639 3640 locker.Unlock(); 3641 3642 if (pageState < PAGE_STATE_FIRST_UNQUEUED) 3643 sPageQueues[pageState].AppendUnlocked(page); 3644 3645 // clear the page, if we had to take it from the free queue and a clear 3646 // page was requested 3647 if ((flags & VM_PAGE_ALLOC_CLEAR) != 0 && oldPageState != PAGE_STATE_CLEAR) 3648 clear_page(page); 3649 3650 #if VM_PAGE_ALLOCATION_TRACKING_AVAILABLE 3651 page->allocation_tracking_info.Init( 3652 TA(AllocatePage(page->physical_page_number))); 3653 #else 3654 TA(AllocatePage(page->physical_page_number)); 3655 #endif 3656 3657 return page; 3658 } 3659 3660 3661 static void 3662 allocate_page_run_cleanup(VMPageQueue::PageList& freePages, 3663 VMPageQueue::PageList& clearPages) 3664 { 3665 // Page lists are sorted, so remove tails before prepending to the respective queue. 3666 3667 while (vm_page* page = freePages.RemoveTail()) { 3668 page->busy = false; 3669 page->SetState(PAGE_STATE_FREE); 3670 DEBUG_PAGE_ACCESS_END(page); 3671 sFreePageQueue.PrependUnlocked(page); 3672 } 3673 3674 while (vm_page* page = clearPages.RemoveTail()) { 3675 page->busy = false; 3676 page->SetState(PAGE_STATE_CLEAR); 3677 DEBUG_PAGE_ACCESS_END(page); 3678 sClearPageQueue.PrependUnlocked(page); 3679 } 3680 3681 sFreePageCondition.NotifyAll(); 3682 } 3683 3684 3685 /*! Tries to allocate the a contiguous run of \a length pages starting at 3686 index \a start. 3687 3688 The caller must have write-locked the free/clear page queues. The function 3689 will unlock regardless of whether it succeeds or fails. 3690 3691 If the function fails, it cleans up after itself, i.e. it will free all 3692 pages it managed to allocate. 3693 3694 \param start The start index (into \c sPages) of the run. 3695 \param length The number of pages to allocate. 3696 \param flags Page allocation flags. Encodes the state the function shall 3697 set the allocated pages to, whether the pages shall be marked busy 3698 (VM_PAGE_ALLOC_BUSY), and whether the pages shall be cleared 3699 (VM_PAGE_ALLOC_CLEAR). 3700 \param freeClearQueueLocker Locked WriteLocker for the free/clear page 3701 queues in locked state. Will be unlocked by the function. 3702 \return The index of the first page that could not be allocated. \a length 3703 is returned when the function was successful. 3704 */ 3705 static page_num_t 3706 allocate_page_run(page_num_t start, page_num_t length, uint32 flags, 3707 WriteLocker& freeClearQueueLocker) 3708 { 3709 uint32 pageState = flags & VM_PAGE_ALLOC_STATE; 3710 ASSERT(pageState != PAGE_STATE_FREE); 3711 ASSERT(pageState != PAGE_STATE_CLEAR); 3712 ASSERT(start + length <= sNumPages); 3713 3714 // Pull the free/clear pages out of their respective queues. Cached pages 3715 // are allocated later. 3716 page_num_t cachedPages = 0; 3717 VMPageQueue::PageList freePages; 3718 VMPageQueue::PageList clearPages; 3719 page_num_t i = 0; 3720 for (; i < length; i++) { 3721 bool pageAllocated = true; 3722 bool noPage = false; 3723 vm_page& page = sPages[start + i]; 3724 switch (page.State()) { 3725 case PAGE_STATE_CLEAR: 3726 DEBUG_PAGE_ACCESS_START(&page); 3727 sClearPageQueue.Remove(&page); 3728 clearPages.Add(&page); 3729 break; 3730 case PAGE_STATE_FREE: 3731 DEBUG_PAGE_ACCESS_START(&page); 3732 sFreePageQueue.Remove(&page); 3733 freePages.Add(&page); 3734 break; 3735 case PAGE_STATE_CACHED: 3736 // We allocate cached pages later. 3737 cachedPages++; 3738 pageAllocated = false; 3739 break; 3740 3741 default: 3742 // Probably a page was cached when our caller checked. Now it's 3743 // gone and we have to abort. 3744 noPage = true; 3745 break; 3746 } 3747 3748 if (noPage) 3749 break; 3750 3751 if (pageAllocated) { 3752 page.SetState(flags & VM_PAGE_ALLOC_STATE); 3753 page.busy = (flags & VM_PAGE_ALLOC_BUSY) != 0; 3754 page.usage_count = 0; 3755 page.accessed = false; 3756 page.modified = false; 3757 } 3758 } 3759 3760 if (i < length) { 3761 // failed to allocate a page -- free all that we've got 3762 allocate_page_run_cleanup(freePages, clearPages); 3763 return i; 3764 } 3765 3766 freeClearQueueLocker.Unlock(); 3767 3768 if (cachedPages > 0) { 3769 // allocate the pages that weren't free but cached 3770 page_num_t freedCachedPages = 0; 3771 page_num_t nextIndex = start; 3772 vm_page* freePage = freePages.Head(); 3773 vm_page* clearPage = clearPages.Head(); 3774 while (cachedPages > 0) { 3775 // skip, if we've already got the page 3776 if (freePage != NULL && size_t(freePage - sPages) == nextIndex) { 3777 freePage = freePages.GetNext(freePage); 3778 nextIndex++; 3779 continue; 3780 } 3781 if (clearPage != NULL && size_t(clearPage - sPages) == nextIndex) { 3782 clearPage = clearPages.GetNext(clearPage); 3783 nextIndex++; 3784 continue; 3785 } 3786 3787 // free the page, if it is still cached 3788 vm_page& page = sPages[nextIndex]; 3789 if (!free_cached_page(&page, false)) { 3790 // TODO: if the page turns out to have been freed already, 3791 // there would be no need to fail 3792 break; 3793 } 3794 3795 page.SetState(flags & VM_PAGE_ALLOC_STATE); 3796 page.busy = (flags & VM_PAGE_ALLOC_BUSY) != 0; 3797 page.usage_count = 0; 3798 page.accessed = false; 3799 page.modified = false; 3800 3801 freePages.InsertBefore(freePage, &page); 3802 freedCachedPages++; 3803 cachedPages--; 3804 nextIndex++; 3805 } 3806 3807 // If we have freed cached pages, we need to balance things. 3808 if (freedCachedPages > 0) 3809 unreserve_pages(freedCachedPages); 3810 3811 if (nextIndex - start < length) { 3812 // failed to allocate all cached pages -- free all that we've got 3813 freeClearQueueLocker.Lock(); 3814 allocate_page_run_cleanup(freePages, clearPages); 3815 freeClearQueueLocker.Unlock(); 3816 3817 return nextIndex - start; 3818 } 3819 } 3820 3821 // clear pages, if requested 3822 if ((flags & VM_PAGE_ALLOC_CLEAR) != 0) { 3823 for (VMPageQueue::PageList::Iterator it = freePages.GetIterator(); 3824 vm_page* page = it.Next();) { 3825 clear_page(page); 3826 } 3827 } 3828 3829 // add pages to target queue 3830 if (pageState < PAGE_STATE_FIRST_UNQUEUED) { 3831 freePages.MoveFrom(&clearPages); 3832 sPageQueues[pageState].AppendUnlocked(freePages, length); 3833 } 3834 3835 // Note: We don't unreserve the pages since we pulled them out of the 3836 // free/clear queues without adjusting sUnreservedFreePages. 3837 3838 #if VM_PAGE_ALLOCATION_TRACKING_AVAILABLE 3839 AbstractTraceEntryWithStackTrace* traceEntry 3840 = TA(AllocatePageRun(start, length)); 3841 3842 for (page_num_t i = start; i < start + length; i++) 3843 sPages[i].allocation_tracking_info.Init(traceEntry); 3844 #else 3845 TA(AllocatePageRun(start, length)); 3846 #endif 3847 3848 return length; 3849 } 3850 3851 3852 /*! Allocate a physically contiguous range of pages. 3853 3854 \param flags Page allocation flags. Encodes the state the function shall 3855 set the allocated pages to, whether the pages shall be marked busy 3856 (VM_PAGE_ALLOC_BUSY), and whether the pages shall be cleared 3857 (VM_PAGE_ALLOC_CLEAR). 3858 \param length The number of contiguous pages to allocate. 3859 \param restrictions Restrictions to the physical addresses of the page run 3860 to allocate, including \c low_address, the first acceptable physical 3861 address where the page run may start, \c high_address, the last 3862 acceptable physical address where the page run may end (i.e. it must 3863 hold \code runStartAddress + length <= high_address \endcode), 3864 \c alignment, the alignment of the page run start address, and 3865 \c boundary, multiples of which the page run must not cross. 3866 Values set to \c 0 are ignored. 3867 \param priority The page reservation priority (as passed to 3868 vm_page_reserve_pages()). 3869 \return The first page of the allocated page run on success; \c NULL 3870 when the allocation failed. 3871 */ 3872 vm_page* 3873 vm_page_allocate_page_run(uint32 flags, page_num_t length, 3874 const physical_address_restrictions* restrictions, int priority) 3875 { 3876 // compute start and end page index 3877 page_num_t requestedStart 3878 = std::max(restrictions->low_address / B_PAGE_SIZE, sPhysicalPageOffset) 3879 - sPhysicalPageOffset; 3880 page_num_t start = requestedStart; 3881 page_num_t end; 3882 if (restrictions->high_address > 0) { 3883 end = std::max(restrictions->high_address / B_PAGE_SIZE, 3884 sPhysicalPageOffset) 3885 - sPhysicalPageOffset; 3886 end = std::min(end, sNumPages); 3887 } else 3888 end = sNumPages; 3889 3890 // compute alignment mask 3891 page_num_t alignmentMask 3892 = std::max(restrictions->alignment / B_PAGE_SIZE, (phys_addr_t)1) - 1; 3893 ASSERT(((alignmentMask + 1) & alignmentMask) == 0); 3894 // alignment must be a power of 2 3895 3896 // compute the boundary mask 3897 uint32 boundaryMask = 0; 3898 if (restrictions->boundary != 0) { 3899 page_num_t boundary = restrictions->boundary / B_PAGE_SIZE; 3900 // boundary must be a power of two and not less than alignment and 3901 // length 3902 ASSERT(((boundary - 1) & boundary) == 0); 3903 ASSERT(boundary >= alignmentMask + 1); 3904 ASSERT(boundary >= length); 3905 3906 boundaryMask = -boundary; 3907 } 3908 3909 vm_page_reservation reservation; 3910 vm_page_reserve_pages(&reservation, length, priority); 3911 3912 WriteLocker freeClearQueueLocker(sFreePageQueuesLock); 3913 3914 // First we try to get a run with free pages only. If that fails, we also 3915 // consider cached pages. If there are only few free pages and many cached 3916 // ones, the odds are that we won't find enough contiguous ones, so we skip 3917 // the first iteration in this case. 3918 int32 freePages = sUnreservedFreePages; 3919 int useCached = freePages > 0 && (page_num_t)freePages > 2 * length ? 0 : 1; 3920 3921 for (;;) { 3922 if (alignmentMask != 0 || boundaryMask != 0) { 3923 page_num_t offsetStart = start + sPhysicalPageOffset; 3924 3925 // enforce alignment 3926 if ((offsetStart & alignmentMask) != 0) 3927 offsetStart = (offsetStart + alignmentMask) & ~alignmentMask; 3928 3929 // enforce boundary 3930 if (boundaryMask != 0 && ((offsetStart ^ (offsetStart 3931 + length - 1)) & boundaryMask) != 0) { 3932 offsetStart = (offsetStart + length - 1) & boundaryMask; 3933 } 3934 3935 start = offsetStart - sPhysicalPageOffset; 3936 } 3937 3938 if (start + length > end) { 3939 if (useCached == 0) { 3940 // The first iteration with free pages only was unsuccessful. 3941 // Try again also considering cached pages. 3942 useCached = 1; 3943 start = requestedStart; 3944 continue; 3945 } 3946 3947 dprintf("vm_page_allocate_page_run(): Failed to allocate run of " 3948 "length %" B_PRIuPHYSADDR " (%" B_PRIuPHYSADDR " %" 3949 B_PRIuPHYSADDR ") in second iteration (align: %" B_PRIuPHYSADDR 3950 " boundary: %" B_PRIuPHYSADDR ")!\n", length, requestedStart, 3951 end, restrictions->alignment, restrictions->boundary); 3952 3953 freeClearQueueLocker.Unlock(); 3954 vm_page_unreserve_pages(&reservation); 3955 return NULL; 3956 } 3957 3958 bool foundRun = true; 3959 page_num_t i; 3960 for (i = 0; i < length; i++) { 3961 uint32 pageState = sPages[start + i].State(); 3962 if (pageState != PAGE_STATE_FREE 3963 && pageState != PAGE_STATE_CLEAR 3964 && (pageState != PAGE_STATE_CACHED || useCached == 0)) { 3965 foundRun = false; 3966 break; 3967 } 3968 } 3969 3970 if (foundRun) { 3971 i = allocate_page_run(start, length, flags, freeClearQueueLocker); 3972 if (i == length) 3973 return &sPages[start]; 3974 3975 // apparently a cached page couldn't be allocated -- skip it and 3976 // continue 3977 freeClearQueueLocker.Lock(); 3978 } 3979 3980 start += i + 1; 3981 } 3982 } 3983 3984 3985 vm_page * 3986 vm_page_at_index(int32 index) 3987 { 3988 return &sPages[index]; 3989 } 3990 3991 3992 vm_page * 3993 vm_lookup_page(page_num_t pageNumber) 3994 { 3995 if (pageNumber < sPhysicalPageOffset) 3996 return NULL; 3997 3998 pageNumber -= sPhysicalPageOffset; 3999 if (pageNumber >= sNumPages) 4000 return NULL; 4001 4002 return &sPages[pageNumber]; 4003 } 4004 4005 4006 bool 4007 vm_page_is_dummy(struct vm_page *page) 4008 { 4009 return page < sPages || page >= sPages + sNumPages; 4010 } 4011 4012 4013 /*! Free the page that belonged to a certain cache. 4014 You can use vm_page_set_state() manually if you prefer, but only 4015 if the page does not equal PAGE_STATE_MODIFIED. 4016 4017 \param cache The cache the page was previously owned by or NULL. The page 4018 must have been removed from its cache before calling this method in 4019 either case. 4020 \param page The page to free. 4021 \param reservation If not NULL, the page count of the reservation will be 4022 incremented, thus allowing to allocate another page for the freed one at 4023 a later time. 4024 */ 4025 void 4026 vm_page_free_etc(VMCache* cache, vm_page* page, 4027 vm_page_reservation* reservation) 4028 { 4029 PAGE_ASSERT(page, page->State() != PAGE_STATE_FREE 4030 && page->State() != PAGE_STATE_CLEAR); 4031 4032 if (page->State() == PAGE_STATE_MODIFIED && cache->temporary) 4033 atomic_add(&sModifiedTemporaryPages, -1); 4034 4035 free_page(page, false); 4036 if (reservation == NULL) 4037 unreserve_pages(1); 4038 } 4039 4040 4041 void 4042 vm_page_set_state(vm_page *page, int pageState) 4043 { 4044 PAGE_ASSERT(page, page->State() != PAGE_STATE_FREE 4045 && page->State() != PAGE_STATE_CLEAR); 4046 4047 if (pageState == PAGE_STATE_FREE || pageState == PAGE_STATE_CLEAR) { 4048 free_page(page, pageState == PAGE_STATE_CLEAR); 4049 unreserve_pages(1); 4050 } else 4051 set_page_state(page, pageState); 4052 } 4053 4054 4055 /*! Moves a page to either the tail of the head of its current queue, 4056 depending on \a tail. 4057 The page must have a cache and the cache must be locked! 4058 */ 4059 void 4060 vm_page_requeue(struct vm_page *page, bool tail) 4061 { 4062 PAGE_ASSERT(page, page->Cache() != NULL); 4063 page->Cache()->AssertLocked(); 4064 // DEBUG_PAGE_ACCESS_CHECK(page); 4065 // TODO: This assertion cannot be satisfied by idle_scan_active_pages() 4066 // when it requeues busy pages. The reason is that vm_soft_fault() 4067 // (respectively fault_get_page()) and the file cache keep newly 4068 // allocated pages accessed while they are reading them from disk. It 4069 // would probably be better to change that code and reenable this 4070 // check. 4071 4072 VMPageQueue *queue = NULL; 4073 4074 switch (page->State()) { 4075 case PAGE_STATE_ACTIVE: 4076 queue = &sActivePageQueue; 4077 break; 4078 case PAGE_STATE_INACTIVE: 4079 queue = &sInactivePageQueue; 4080 break; 4081 case PAGE_STATE_MODIFIED: 4082 queue = &sModifiedPageQueue; 4083 break; 4084 case PAGE_STATE_CACHED: 4085 queue = &sCachedPageQueue; 4086 break; 4087 case PAGE_STATE_FREE: 4088 case PAGE_STATE_CLEAR: 4089 panic("vm_page_requeue() called for free/clear page %p", page); 4090 return; 4091 case PAGE_STATE_WIRED: 4092 case PAGE_STATE_UNUSED: 4093 return; 4094 default: 4095 panic("vm_page_touch: vm_page %p in invalid state %d\n", 4096 page, page->State()); 4097 break; 4098 } 4099 4100 queue->RequeueUnlocked(page, tail); 4101 } 4102 4103 4104 page_num_t 4105 vm_page_num_pages(void) 4106 { 4107 return sNumPages - sNonExistingPages; 4108 } 4109 4110 4111 /*! There is a subtle distinction between the page counts returned by 4112 this function and vm_page_num_free_pages(): 4113 The latter returns the number of pages that are completely uncommitted, 4114 whereas this one returns the number of pages that are available for 4115 use by being reclaimed as well (IOW it factors in things like cache pages 4116 as available). 4117 */ 4118 page_num_t 4119 vm_page_num_available_pages(void) 4120 { 4121 return vm_available_memory() / B_PAGE_SIZE; 4122 } 4123 4124 4125 page_num_t 4126 vm_page_num_free_pages(void) 4127 { 4128 int32 count = sUnreservedFreePages + sCachedPageQueue.Count(); 4129 return count > 0 ? count : 0; 4130 } 4131 4132 4133 page_num_t 4134 vm_page_num_unused_pages(void) 4135 { 4136 int32 count = sUnreservedFreePages; 4137 return count > 0 ? count : 0; 4138 } 4139 4140 4141 void 4142 vm_page_get_stats(system_info *info) 4143 { 4144 // Note: there's no locking protecting any of the queues or counters here, 4145 // so we run the risk of getting bogus values when evaluating them 4146 // throughout this function. As these stats are for informational purposes 4147 // only, it is not really worth introducing such locking. Therefore we just 4148 // ensure that we don't under- or overflow any of the values. 4149 4150 // The pages used for the block cache buffers. Those should not be counted 4151 // as used but as cached pages. 4152 // TODO: We should subtract the blocks that are in use ATM, since those 4153 // can't really be freed in a low memory situation. 4154 page_num_t blockCachePages = block_cache_used_memory() / B_PAGE_SIZE; 4155 info->block_cache_pages = blockCachePages; 4156 4157 // Non-temporary modified pages are special as they represent pages that 4158 // can be written back, so they could be freed if necessary, for us 4159 // basically making them into cached pages with a higher overhead. The 4160 // modified queue count is therefore split into temporary and non-temporary 4161 // counts that are then added to the corresponding number. 4162 page_num_t modifiedNonTemporaryPages 4163 = (sModifiedPageQueue.Count() - sModifiedTemporaryPages); 4164 4165 info->max_pages = vm_page_num_pages(); 4166 info->cached_pages = sCachedPageQueue.Count() + modifiedNonTemporaryPages 4167 + blockCachePages; 4168 4169 // max_pages is composed of: 4170 // active + inactive + unused + wired + modified + cached + free + clear 4171 // So taking out the cached (including modified non-temporary), free and 4172 // clear ones leaves us with all used pages. 4173 uint32 subtractPages = info->cached_pages + sFreePageQueue.Count() 4174 + sClearPageQueue.Count(); 4175 info->used_pages = subtractPages > info->max_pages 4176 ? 0 : info->max_pages - subtractPages; 4177 4178 if (info->used_pages + info->cached_pages > info->max_pages) { 4179 // Something was shuffled around while we were summing up the counts. 4180 // Make the values sane, preferring the worse case of more used pages. 4181 info->cached_pages = info->max_pages - info->used_pages; 4182 } 4183 4184 info->page_faults = vm_num_page_faults(); 4185 info->ignored_pages = sIgnoredPages; 4186 4187 // TODO: We don't consider pages used for page directories/tables yet. 4188 } 4189 4190 4191 /*! Returns the greatest address within the last page of accessible physical 4192 memory. 4193 The value is inclusive, i.e. in case of a 32 bit phys_addr_t 0xffffffff 4194 means the that the last page ends at exactly 4 GB. 4195 */ 4196 phys_addr_t 4197 vm_page_max_address() 4198 { 4199 return ((phys_addr_t)sPhysicalPageOffset + sNumPages) * B_PAGE_SIZE - 1; 4200 } 4201 4202 4203 RANGE_MARKER_FUNCTION_END(vm_page) 4204