1 /* 2 * Copyright 2010-2011, Ingo Weinhold, ingo_weinhold@gmx.de. 3 * Copyright 2002-2010, Axel Dörfler, axeld@pinc-software.de. 4 * Distributed under the terms of the MIT License. 5 * 6 * Copyright 2001-2002, Travis Geiselbrecht. All rights reserved. 7 * Distributed under the terms of the NewOS License. 8 */ 9 10 11 #include <string.h> 12 #include <stdlib.h> 13 14 #include <algorithm> 15 16 #include <KernelExport.h> 17 #include <OS.h> 18 19 #include <AutoDeleter.h> 20 21 #include <arch/cpu.h> 22 #include <arch/vm_translation_map.h> 23 #include <block_cache.h> 24 #include <boot/kernel_args.h> 25 #include <condition_variable.h> 26 #include <elf.h> 27 #include <heap.h> 28 #include <kernel.h> 29 #include <low_resource_manager.h> 30 #include <thread.h> 31 #include <tracing.h> 32 #include <util/AutoLock.h> 33 #include <vfs.h> 34 #include <vm/vm.h> 35 #include <vm/vm_priv.h> 36 #include <vm/vm_page.h> 37 #include <vm/VMAddressSpace.h> 38 #include <vm/VMArea.h> 39 #include <vm/VMCache.h> 40 41 #include "IORequest.h" 42 #include "PageCacheLocker.h" 43 #include "VMAnonymousCache.h" 44 #include "VMPageQueue.h" 45 46 47 //#define TRACE_VM_PAGE 48 #ifdef TRACE_VM_PAGE 49 # define TRACE(x) dprintf x 50 #else 51 # define TRACE(x) ; 52 #endif 53 54 //#define TRACE_VM_DAEMONS 55 #ifdef TRACE_VM_DAEMONS 56 #define TRACE_DAEMON(x...) dprintf(x) 57 #else 58 #define TRACE_DAEMON(x...) do {} while (false) 59 #endif 60 61 //#define TRACK_PAGE_USAGE_STATS 1 62 63 #define PAGE_ASSERT(page, condition) \ 64 ASSERT_PRINT((condition), "page: %p", (page)) 65 66 #define SCRUB_SIZE 16 67 // this many pages will be cleared at once in the page scrubber thread 68 69 #define MAX_PAGE_WRITER_IO_PRIORITY B_URGENT_DISPLAY_PRIORITY 70 // maximum I/O priority of the page writer 71 #define MAX_PAGE_WRITER_IO_PRIORITY_THRESHOLD 10000 72 // the maximum I/O priority shall be reached when this many pages need to 73 // be written 74 75 76 // The page reserve an allocation of the certain priority must not touch. 77 static const size_t kPageReserveForPriority[] = { 78 VM_PAGE_RESERVE_USER, // user 79 VM_PAGE_RESERVE_SYSTEM, // system 80 0 // VIP 81 }; 82 83 // Minimum number of free pages the page daemon will try to achieve. 84 static uint32 sFreePagesTarget; 85 static uint32 sFreeOrCachedPagesTarget; 86 static uint32 sInactivePagesTarget; 87 88 // Wait interval between page daemon runs. 89 static const bigtime_t kIdleScanWaitInterval = 1000000LL; // 1 sec 90 static const bigtime_t kBusyScanWaitInterval = 500000LL; // 0.5 sec 91 92 // Number of idle runs after which we want to have processed the full active 93 // queue. 94 static const uint32 kIdleRunsForFullQueue = 20; 95 96 // Maximum limit for the vm_page::usage_count. 97 static const int32 kPageUsageMax = 64; 98 // vm_page::usage_count buff an accessed page receives in a scan. 99 static const int32 kPageUsageAdvance = 3; 100 // vm_page::usage_count debuff an unaccessed page receives in a scan. 101 static const int32 kPageUsageDecline = 1; 102 103 int32 gMappedPagesCount; 104 105 static VMPageQueue sPageQueues[PAGE_STATE_COUNT]; 106 107 static VMPageQueue& sFreePageQueue = sPageQueues[PAGE_STATE_FREE]; 108 static VMPageQueue& sClearPageQueue = sPageQueues[PAGE_STATE_CLEAR]; 109 static VMPageQueue& sModifiedPageQueue = sPageQueues[PAGE_STATE_MODIFIED]; 110 static VMPageQueue& sInactivePageQueue = sPageQueues[PAGE_STATE_INACTIVE]; 111 static VMPageQueue& sActivePageQueue = sPageQueues[PAGE_STATE_ACTIVE]; 112 static VMPageQueue& sCachedPageQueue = sPageQueues[PAGE_STATE_CACHED]; 113 114 static vm_page *sPages; 115 static page_num_t sPhysicalPageOffset; 116 static page_num_t sNumPages; 117 static page_num_t sNonExistingPages; 118 // pages in the sPages array that aren't backed by physical memory 119 static uint64 sIgnoredPages; 120 // pages of physical memory ignored by the boot loader (and thus not 121 // available here) 122 static vint32 sUnreservedFreePages; 123 static vint32 sUnsatisfiedPageReservations; 124 static vint32 sModifiedTemporaryPages; 125 126 static ConditionVariable sFreePageCondition; 127 static mutex sPageDeficitLock = MUTEX_INITIALIZER("page deficit"); 128 129 // This lock must be used whenever the free or clear page queues are changed. 130 // If you need to work on both queues at the same time, you need to hold a write 131 // lock, otherwise, a read lock suffices (each queue still has a spinlock to 132 // guard against concurrent changes). 133 static rw_lock sFreePageQueuesLock 134 = RW_LOCK_INITIALIZER("free/clear page queues"); 135 136 #ifdef TRACK_PAGE_USAGE_STATS 137 static page_num_t sPageUsageArrays[512]; 138 static page_num_t* sPageUsage = sPageUsageArrays; 139 static page_num_t sPageUsagePageCount; 140 static page_num_t* sNextPageUsage = sPageUsageArrays + 256; 141 static page_num_t sNextPageUsagePageCount; 142 #endif 143 144 145 #if VM_PAGE_ALLOCATION_TRACKING_AVAILABLE 146 147 struct caller_info { 148 addr_t caller; 149 size_t count; 150 }; 151 152 static const int32 kCallerInfoTableSize = 1024; 153 static caller_info sCallerInfoTable[kCallerInfoTableSize]; 154 static int32 sCallerInfoCount = 0; 155 156 static caller_info* get_caller_info(addr_t caller); 157 158 159 RANGE_MARKER_FUNCTION_PROTOTYPES(vm_page) 160 161 static const addr_t kVMPageCodeAddressRange[] = { 162 RANGE_MARKER_FUNCTION_ADDRESS_RANGE(vm_page) 163 }; 164 165 #endif 166 167 168 RANGE_MARKER_FUNCTION_BEGIN(vm_page) 169 170 171 struct page_stats { 172 int32 totalFreePages; 173 int32 unsatisfiedReservations; 174 int32 cachedPages; 175 }; 176 177 178 struct PageReservationWaiter 179 : public DoublyLinkedListLinkImpl<PageReservationWaiter> { 180 Thread* thread; 181 uint32 dontTouch; // reserve not to touch 182 uint32 missing; // pages missing for the reservation 183 int32 threadPriority; 184 185 bool operator<(const PageReservationWaiter& other) const 186 { 187 // Implies an order by descending VM priority (ascending dontTouch) 188 // and (secondarily) descending thread priority. 189 if (dontTouch != other.dontTouch) 190 return dontTouch < other.dontTouch; 191 return threadPriority > other.threadPriority; 192 } 193 }; 194 195 typedef DoublyLinkedList<PageReservationWaiter> PageReservationWaiterList; 196 static PageReservationWaiterList sPageReservationWaiters; 197 198 199 struct DaemonCondition { 200 void Init(const char* name) 201 { 202 mutex_init(&fLock, "daemon condition"); 203 fCondition.Init(this, name); 204 fActivated = false; 205 } 206 207 bool Lock() 208 { 209 return mutex_lock(&fLock) == B_OK; 210 } 211 212 void Unlock() 213 { 214 mutex_unlock(&fLock); 215 } 216 217 bool Wait(bigtime_t timeout, bool clearActivated) 218 { 219 MutexLocker locker(fLock); 220 if (clearActivated) 221 fActivated = false; 222 else if (fActivated) 223 return true; 224 225 ConditionVariableEntry entry; 226 fCondition.Add(&entry); 227 228 locker.Unlock(); 229 230 return entry.Wait(B_RELATIVE_TIMEOUT, timeout) == B_OK; 231 } 232 233 void WakeUp() 234 { 235 if (fActivated) 236 return; 237 238 MutexLocker locker(fLock); 239 fActivated = true; 240 fCondition.NotifyOne(); 241 } 242 243 void ClearActivated() 244 { 245 MutexLocker locker(fLock); 246 fActivated = false; 247 } 248 249 private: 250 mutex fLock; 251 ConditionVariable fCondition; 252 bool fActivated; 253 }; 254 255 256 static DaemonCondition sPageWriterCondition; 257 static DaemonCondition sPageDaemonCondition; 258 259 260 #if PAGE_ALLOCATION_TRACING 261 262 namespace PageAllocationTracing { 263 264 class ReservePages : public AbstractTraceEntry { 265 public: 266 ReservePages(uint32 count) 267 : 268 fCount(count) 269 { 270 Initialized(); 271 } 272 273 virtual void AddDump(TraceOutput& out) 274 { 275 out.Print("page reserve: %lu", fCount); 276 } 277 278 private: 279 uint32 fCount; 280 }; 281 282 283 class UnreservePages : public AbstractTraceEntry { 284 public: 285 UnreservePages(uint32 count) 286 : 287 fCount(count) 288 { 289 Initialized(); 290 } 291 292 virtual void AddDump(TraceOutput& out) 293 { 294 out.Print("page unreserve: %lu", fCount); 295 } 296 297 private: 298 uint32 fCount; 299 }; 300 301 302 class AllocatePage 303 : public TRACE_ENTRY_SELECTOR(PAGE_ALLOCATION_TRACING_STACK_TRACE) { 304 public: 305 AllocatePage(page_num_t pageNumber) 306 : 307 TraceEntryBase(PAGE_ALLOCATION_TRACING_STACK_TRACE, 0, true), 308 fPageNumber(pageNumber) 309 { 310 Initialized(); 311 } 312 313 virtual void AddDump(TraceOutput& out) 314 { 315 out.Print("page alloc: %#" B_PRIxPHYSADDR, fPageNumber); 316 } 317 318 private: 319 page_num_t fPageNumber; 320 }; 321 322 323 class AllocatePageRun 324 : public TRACE_ENTRY_SELECTOR(PAGE_ALLOCATION_TRACING_STACK_TRACE) { 325 public: 326 AllocatePageRun(page_num_t startPage, uint32 length) 327 : 328 TraceEntryBase(PAGE_ALLOCATION_TRACING_STACK_TRACE, 0, true), 329 fStartPage(startPage), 330 fLength(length) 331 { 332 Initialized(); 333 } 334 335 virtual void AddDump(TraceOutput& out) 336 { 337 out.Print("page alloc run: start %#" B_PRIxPHYSADDR " length: %" 338 B_PRIu32, fStartPage, fLength); 339 } 340 341 private: 342 page_num_t fStartPage; 343 uint32 fLength; 344 }; 345 346 347 class FreePage 348 : public TRACE_ENTRY_SELECTOR(PAGE_ALLOCATION_TRACING_STACK_TRACE) { 349 public: 350 FreePage(page_num_t pageNumber) 351 : 352 TraceEntryBase(PAGE_ALLOCATION_TRACING_STACK_TRACE, 0, true), 353 fPageNumber(pageNumber) 354 { 355 Initialized(); 356 } 357 358 virtual void AddDump(TraceOutput& out) 359 { 360 out.Print("page free: %#" B_PRIxPHYSADDR, fPageNumber); 361 } 362 363 private: 364 page_num_t fPageNumber; 365 }; 366 367 368 class ScrubbingPages : public AbstractTraceEntry { 369 public: 370 ScrubbingPages(uint32 count) 371 : 372 fCount(count) 373 { 374 Initialized(); 375 } 376 377 virtual void AddDump(TraceOutput& out) 378 { 379 out.Print("page scrubbing: %lu", fCount); 380 } 381 382 private: 383 uint32 fCount; 384 }; 385 386 387 class ScrubbedPages : public AbstractTraceEntry { 388 public: 389 ScrubbedPages(uint32 count) 390 : 391 fCount(count) 392 { 393 Initialized(); 394 } 395 396 virtual void AddDump(TraceOutput& out) 397 { 398 out.Print("page scrubbed: %lu", fCount); 399 } 400 401 private: 402 uint32 fCount; 403 }; 404 405 406 class StolenPage : public AbstractTraceEntry { 407 public: 408 StolenPage() 409 { 410 Initialized(); 411 } 412 413 virtual void AddDump(TraceOutput& out) 414 { 415 out.Print("page stolen"); 416 } 417 }; 418 419 } // namespace PageAllocationTracing 420 421 # define TA(x) new(std::nothrow) PageAllocationTracing::x 422 423 #else 424 # define TA(x) 425 #endif // PAGE_ALLOCATION_TRACING 426 427 428 #if PAGE_DAEMON_TRACING 429 430 namespace PageDaemonTracing { 431 432 class ActivatePage : public AbstractTraceEntry { 433 public: 434 ActivatePage(vm_page* page) 435 : 436 fCache(page->cache), 437 fPage(page) 438 { 439 Initialized(); 440 } 441 442 virtual void AddDump(TraceOutput& out) 443 { 444 out.Print("page activated: %p, cache: %p", fPage, fCache); 445 } 446 447 private: 448 VMCache* fCache; 449 vm_page* fPage; 450 }; 451 452 453 class DeactivatePage : public AbstractTraceEntry { 454 public: 455 DeactivatePage(vm_page* page) 456 : 457 fCache(page->cache), 458 fPage(page) 459 { 460 Initialized(); 461 } 462 463 virtual void AddDump(TraceOutput& out) 464 { 465 out.Print("page deactivated: %p, cache: %p", fPage, fCache); 466 } 467 468 private: 469 VMCache* fCache; 470 vm_page* fPage; 471 }; 472 473 474 class FreedPageSwap : public AbstractTraceEntry { 475 public: 476 FreedPageSwap(vm_page* page) 477 : 478 fCache(page->cache), 479 fPage(page) 480 { 481 Initialized(); 482 } 483 484 virtual void AddDump(TraceOutput& out) 485 { 486 out.Print("page swap freed: %p, cache: %p", fPage, fCache); 487 } 488 489 private: 490 VMCache* fCache; 491 vm_page* fPage; 492 }; 493 494 } // namespace PageDaemonTracing 495 496 # define TD(x) new(std::nothrow) PageDaemonTracing::x 497 498 #else 499 # define TD(x) 500 #endif // PAGE_DAEMON_TRACING 501 502 503 #if PAGE_WRITER_TRACING 504 505 namespace PageWriterTracing { 506 507 class WritePage : public AbstractTraceEntry { 508 public: 509 WritePage(vm_page* page) 510 : 511 fCache(page->Cache()), 512 fPage(page) 513 { 514 Initialized(); 515 } 516 517 virtual void AddDump(TraceOutput& out) 518 { 519 out.Print("page write: %p, cache: %p", fPage, fCache); 520 } 521 522 private: 523 VMCache* fCache; 524 vm_page* fPage; 525 }; 526 527 } // namespace PageWriterTracing 528 529 # define TPW(x) new(std::nothrow) PageWriterTracing::x 530 531 #else 532 # define TPW(x) 533 #endif // PAGE_WRITER_TRACING 534 535 536 #if PAGE_STATE_TRACING 537 538 namespace PageStateTracing { 539 540 class SetPageState : public AbstractTraceEntry { 541 public: 542 SetPageState(vm_page* page, uint8 newState) 543 : 544 fPage(page), 545 fOldState(page->State()), 546 fNewState(newState), 547 fBusy(page->busy), 548 fWired(page->WiredCount() > 0), 549 fMapped(!page->mappings.IsEmpty()), 550 fAccessed(page->accessed), 551 fModified(page->modified) 552 { 553 #if PAGE_STATE_TRACING_STACK_TRACE 554 fStackTrace = capture_tracing_stack_trace( 555 PAGE_STATE_TRACING_STACK_TRACE, 0, true); 556 // Don't capture userland stack trace to avoid potential 557 // deadlocks. 558 #endif 559 Initialized(); 560 } 561 562 #if PAGE_STATE_TRACING_STACK_TRACE 563 virtual void DumpStackTrace(TraceOutput& out) 564 { 565 out.PrintStackTrace(fStackTrace); 566 } 567 #endif 568 569 virtual void AddDump(TraceOutput& out) 570 { 571 out.Print("page set state: %p (%c%c%c%c%c): %s -> %s", fPage, 572 fBusy ? 'b' : '-', 573 fWired ? 'w' : '-', 574 fMapped ? 'm' : '-', 575 fAccessed ? 'a' : '-', 576 fModified ? 'm' : '-', 577 page_state_to_string(fOldState), 578 page_state_to_string(fNewState)); 579 } 580 581 private: 582 vm_page* fPage; 583 #if PAGE_STATE_TRACING_STACK_TRACE 584 tracing_stack_trace* fStackTrace; 585 #endif 586 uint8 fOldState; 587 uint8 fNewState; 588 bool fBusy : 1; 589 bool fWired : 1; 590 bool fMapped : 1; 591 bool fAccessed : 1; 592 bool fModified : 1; 593 }; 594 595 } // namespace PageStateTracing 596 597 # define TPS(x) new(std::nothrow) PageStateTracing::x 598 599 #else 600 # define TPS(x) 601 #endif // PAGE_STATE_TRACING 602 603 604 #if VM_PAGE_ALLOCATION_TRACKING_AVAILABLE 605 606 namespace BKernel { 607 608 class AllocationTrackingCallback { 609 public: 610 virtual ~AllocationTrackingCallback(); 611 612 virtual bool ProcessTrackingInfo( 613 AllocationTrackingInfo* info, 614 page_num_t pageNumber) = 0; 615 }; 616 617 } 618 619 using BKernel::AllocationTrackingCallback; 620 621 622 class AllocationCollectorCallback : public AllocationTrackingCallback { 623 public: 624 AllocationCollectorCallback(bool resetInfos) 625 : 626 fResetInfos(resetInfos) 627 { 628 } 629 630 virtual bool ProcessTrackingInfo(AllocationTrackingInfo* info, 631 page_num_t pageNumber) 632 { 633 if (!info->IsInitialized()) 634 return true; 635 636 addr_t caller = 0; 637 AbstractTraceEntryWithStackTrace* traceEntry = info->TraceEntry(); 638 639 if (traceEntry != NULL && info->IsTraceEntryValid()) { 640 caller = tracing_find_caller_in_stack_trace( 641 traceEntry->StackTrace(), kVMPageCodeAddressRange, 1); 642 } 643 644 caller_info* callerInfo = get_caller_info(caller); 645 if (callerInfo == NULL) { 646 kprintf("out of space for caller infos\n"); 647 return false; 648 } 649 650 callerInfo->count++; 651 652 if (fResetInfos) 653 info->Clear(); 654 655 return true; 656 } 657 658 private: 659 bool fResetInfos; 660 }; 661 662 663 class AllocationInfoPrinterCallback : public AllocationTrackingCallback { 664 public: 665 AllocationInfoPrinterCallback(bool printStackTrace, page_num_t pageFilter, 666 team_id teamFilter, thread_id threadFilter) 667 : 668 fPrintStackTrace(printStackTrace), 669 fPageFilter(pageFilter), 670 fTeamFilter(teamFilter), 671 fThreadFilter(threadFilter) 672 { 673 } 674 675 virtual bool ProcessTrackingInfo(AllocationTrackingInfo* info, 676 page_num_t pageNumber) 677 { 678 if (!info->IsInitialized()) 679 return true; 680 681 if (fPageFilter != 0 && pageNumber != fPageFilter) 682 return true; 683 684 AbstractTraceEntryWithStackTrace* traceEntry = info->TraceEntry(); 685 if (traceEntry != NULL && !info->IsTraceEntryValid()) 686 traceEntry = NULL; 687 688 if (traceEntry != NULL) { 689 if (fTeamFilter != -1 && traceEntry->TeamID() != fTeamFilter) 690 return true; 691 if (fThreadFilter != -1 && traceEntry->ThreadID() != fThreadFilter) 692 return true; 693 } else { 694 // we need the info if we have filters set 695 if (fTeamFilter != -1 || fThreadFilter != -1) 696 return true; 697 } 698 699 kprintf("page number %#" B_PRIxPHYSADDR, pageNumber); 700 701 if (traceEntry != NULL) { 702 kprintf(", team: %" B_PRId32 ", thread %" B_PRId32 703 ", time %" B_PRId64 "\n", traceEntry->TeamID(), 704 traceEntry->ThreadID(), traceEntry->Time()); 705 706 if (fPrintStackTrace) 707 tracing_print_stack_trace(traceEntry->StackTrace()); 708 } else 709 kprintf("\n"); 710 711 return true; 712 } 713 714 private: 715 bool fPrintStackTrace; 716 page_num_t fPageFilter; 717 team_id fTeamFilter; 718 thread_id fThreadFilter; 719 }; 720 721 722 class AllocationDetailPrinterCallback : public AllocationTrackingCallback { 723 public: 724 AllocationDetailPrinterCallback(addr_t caller) 725 : 726 fCaller(caller) 727 { 728 } 729 730 virtual bool ProcessTrackingInfo(AllocationTrackingInfo* info, 731 page_num_t pageNumber) 732 { 733 if (!info->IsInitialized()) 734 return true; 735 736 addr_t caller = 0; 737 AbstractTraceEntryWithStackTrace* traceEntry = info->TraceEntry(); 738 if (traceEntry != NULL && !info->IsTraceEntryValid()) 739 traceEntry = NULL; 740 741 if (traceEntry != NULL) { 742 caller = tracing_find_caller_in_stack_trace( 743 traceEntry->StackTrace(), kVMPageCodeAddressRange, 1); 744 } 745 746 if (caller != fCaller) 747 return true; 748 749 kprintf("page %#" B_PRIxPHYSADDR "\n", pageNumber); 750 if (traceEntry != NULL) 751 tracing_print_stack_trace(traceEntry->StackTrace()); 752 753 return true; 754 } 755 756 private: 757 addr_t fCaller; 758 }; 759 760 #endif // VM_PAGE_ALLOCATION_TRACKING_AVAILABLE 761 762 763 static int 764 find_page(int argc, char **argv) 765 { 766 struct vm_page *page; 767 addr_t address; 768 int32 index = 1; 769 int i; 770 771 struct { 772 const char* name; 773 VMPageQueue* queue; 774 } pageQueueInfos[] = { 775 { "free", &sFreePageQueue }, 776 { "clear", &sClearPageQueue }, 777 { "modified", &sModifiedPageQueue }, 778 { "active", &sActivePageQueue }, 779 { "inactive", &sInactivePageQueue }, 780 { "cached", &sCachedPageQueue }, 781 { NULL, NULL } 782 }; 783 784 if (argc < 2 785 || strlen(argv[index]) <= 2 786 || argv[index][0] != '0' 787 || argv[index][1] != 'x') { 788 kprintf("usage: find_page <address>\n"); 789 return 0; 790 } 791 792 address = strtoul(argv[index], NULL, 0); 793 page = (vm_page*)address; 794 795 for (i = 0; pageQueueInfos[i].name; i++) { 796 VMPageQueue::Iterator it = pageQueueInfos[i].queue->GetIterator(); 797 while (vm_page* p = it.Next()) { 798 if (p == page) { 799 kprintf("found page %p in queue %p (%s)\n", page, 800 pageQueueInfos[i].queue, pageQueueInfos[i].name); 801 return 0; 802 } 803 } 804 } 805 806 kprintf("page %p isn't in any queue\n", page); 807 808 return 0; 809 } 810 811 812 const char * 813 page_state_to_string(int state) 814 { 815 switch(state) { 816 case PAGE_STATE_ACTIVE: 817 return "active"; 818 case PAGE_STATE_INACTIVE: 819 return "inactive"; 820 case PAGE_STATE_MODIFIED: 821 return "modified"; 822 case PAGE_STATE_CACHED: 823 return "cached"; 824 case PAGE_STATE_FREE: 825 return "free"; 826 case PAGE_STATE_CLEAR: 827 return "clear"; 828 case PAGE_STATE_WIRED: 829 return "wired"; 830 case PAGE_STATE_UNUSED: 831 return "unused"; 832 default: 833 return "unknown"; 834 } 835 } 836 837 838 static int 839 dump_page(int argc, char **argv) 840 { 841 bool addressIsPointer = true; 842 bool physical = false; 843 bool searchMappings = false; 844 int32 index = 1; 845 846 while (index < argc) { 847 if (argv[index][0] != '-') 848 break; 849 850 if (!strcmp(argv[index], "-p")) { 851 addressIsPointer = false; 852 physical = true; 853 } else if (!strcmp(argv[index], "-v")) { 854 addressIsPointer = false; 855 } else if (!strcmp(argv[index], "-m")) { 856 searchMappings = true; 857 } else { 858 print_debugger_command_usage(argv[0]); 859 return 0; 860 } 861 862 index++; 863 } 864 865 if (index + 1 != argc) { 866 print_debugger_command_usage(argv[0]); 867 return 0; 868 } 869 870 uint64 value; 871 if (!evaluate_debug_expression(argv[index], &value, false)) 872 return 0; 873 874 uint64 pageAddress = value; 875 struct vm_page* page; 876 877 if (addressIsPointer) { 878 page = (struct vm_page *)(addr_t)pageAddress; 879 } else { 880 if (!physical) { 881 VMAddressSpace *addressSpace = VMAddressSpace::Kernel(); 882 883 if (debug_get_debugged_thread()->team->address_space != NULL) 884 addressSpace = debug_get_debugged_thread()->team->address_space; 885 886 uint32 flags = 0; 887 phys_addr_t physicalAddress; 888 if (addressSpace->TranslationMap()->QueryInterrupt(pageAddress, 889 &physicalAddress, &flags) != B_OK 890 || (flags & PAGE_PRESENT) == 0) { 891 kprintf("Virtual address not mapped to a physical page in this " 892 "address space.\n"); 893 return 0; 894 } 895 pageAddress = physicalAddress; 896 } 897 898 page = vm_lookup_page(pageAddress / B_PAGE_SIZE); 899 } 900 901 kprintf("PAGE: %p\n", page); 902 kprintf("queue_next,prev: %p, %p\n", page->queue_link.next, 903 page->queue_link.previous); 904 kprintf("physical_number: %#" B_PRIxPHYSADDR "\n", 905 page->physical_page_number); 906 kprintf("cache: %p\n", page->Cache()); 907 kprintf("cache_offset: %" B_PRIuPHYSADDR "\n", page->cache_offset); 908 kprintf("cache_next: %p\n", page->cache_next); 909 kprintf("state: %s\n", page_state_to_string(page->State())); 910 kprintf("wired_count: %d\n", page->WiredCount()); 911 kprintf("usage_count: %d\n", page->usage_count); 912 kprintf("busy: %d\n", page->busy); 913 kprintf("busy_writing: %d\n", page->busy_writing); 914 kprintf("accessed: %d\n", page->accessed); 915 kprintf("modified: %d\n", page->modified); 916 #if DEBUG_PAGE_QUEUE 917 kprintf("queue: %p\n", page->queue); 918 #endif 919 #if DEBUG_PAGE_ACCESS 920 kprintf("accessor: %" B_PRId32 "\n", page->accessing_thread); 921 #endif 922 kprintf("area mappings:\n"); 923 924 vm_page_mappings::Iterator iterator = page->mappings.GetIterator(); 925 vm_page_mapping *mapping; 926 while ((mapping = iterator.Next()) != NULL) { 927 kprintf(" %p (%" B_PRId32 ")\n", mapping->area, mapping->area->id); 928 mapping = mapping->page_link.next; 929 } 930 931 if (searchMappings) { 932 kprintf("all mappings:\n"); 933 VMAddressSpace* addressSpace = VMAddressSpace::DebugFirst(); 934 while (addressSpace != NULL) { 935 size_t pageCount = addressSpace->Size() / B_PAGE_SIZE; 936 for (addr_t address = addressSpace->Base(); pageCount != 0; 937 address += B_PAGE_SIZE, pageCount--) { 938 phys_addr_t physicalAddress; 939 uint32 flags = 0; 940 if (addressSpace->TranslationMap()->QueryInterrupt(address, 941 &physicalAddress, &flags) == B_OK 942 && (flags & PAGE_PRESENT) != 0 943 && physicalAddress / B_PAGE_SIZE 944 == page->physical_page_number) { 945 VMArea* area = addressSpace->LookupArea(address); 946 kprintf(" aspace %ld, area %ld: %#" B_PRIxADDR 947 " (%c%c%s%s)\n", addressSpace->ID(), 948 area != NULL ? area->id : -1, address, 949 (flags & B_KERNEL_READ_AREA) != 0 ? 'r' : '-', 950 (flags & B_KERNEL_WRITE_AREA) != 0 ? 'w' : '-', 951 (flags & PAGE_MODIFIED) != 0 ? " modified" : "", 952 (flags & PAGE_ACCESSED) != 0 ? " accessed" : ""); 953 } 954 } 955 addressSpace = VMAddressSpace::DebugNext(addressSpace); 956 } 957 } 958 959 set_debug_variable("_cache", (addr_t)page->Cache()); 960 #if DEBUG_PAGE_ACCESS 961 set_debug_variable("_accessor", page->accessing_thread); 962 #endif 963 964 return 0; 965 } 966 967 968 static int 969 dump_page_queue(int argc, char **argv) 970 { 971 struct VMPageQueue *queue; 972 973 if (argc < 2) { 974 kprintf("usage: page_queue <address/name> [list]\n"); 975 return 0; 976 } 977 978 if (strlen(argv[1]) >= 2 && argv[1][0] == '0' && argv[1][1] == 'x') 979 queue = (VMPageQueue*)strtoul(argv[1], NULL, 16); 980 if (!strcmp(argv[1], "free")) 981 queue = &sFreePageQueue; 982 else if (!strcmp(argv[1], "clear")) 983 queue = &sClearPageQueue; 984 else if (!strcmp(argv[1], "modified")) 985 queue = &sModifiedPageQueue; 986 else if (!strcmp(argv[1], "active")) 987 queue = &sActivePageQueue; 988 else if (!strcmp(argv[1], "inactive")) 989 queue = &sInactivePageQueue; 990 else if (!strcmp(argv[1], "cached")) 991 queue = &sCachedPageQueue; 992 else { 993 kprintf("page_queue: unknown queue \"%s\".\n", argv[1]); 994 return 0; 995 } 996 997 kprintf("queue = %p, queue->head = %p, queue->tail = %p, queue->count = %" 998 B_PRIuPHYSADDR "\n", queue, queue->Head(), queue->Tail(), 999 queue->Count()); 1000 1001 if (argc == 3) { 1002 struct vm_page *page = queue->Head(); 1003 const char *type = "none"; 1004 int i; 1005 1006 if (page->Cache() != NULL) { 1007 switch (page->Cache()->type) { 1008 case CACHE_TYPE_RAM: 1009 type = "RAM"; 1010 break; 1011 case CACHE_TYPE_DEVICE: 1012 type = "device"; 1013 break; 1014 case CACHE_TYPE_VNODE: 1015 type = "vnode"; 1016 break; 1017 case CACHE_TYPE_NULL: 1018 type = "null"; 1019 break; 1020 default: 1021 type = "???"; 1022 break; 1023 } 1024 } 1025 1026 kprintf("page cache type state wired usage\n"); 1027 for (i = 0; page; i++, page = queue->Next(page)) { 1028 kprintf("%p %p %-7s %8s %5d %5d\n", page, page->Cache(), 1029 type, page_state_to_string(page->State()), 1030 page->WiredCount(), page->usage_count); 1031 } 1032 } 1033 return 0; 1034 } 1035 1036 1037 static int 1038 dump_page_stats(int argc, char **argv) 1039 { 1040 page_num_t swappableModified = 0; 1041 page_num_t swappableModifiedInactive = 0; 1042 1043 size_t counter[8]; 1044 size_t busyCounter[8]; 1045 memset(counter, 0, sizeof(counter)); 1046 memset(busyCounter, 0, sizeof(busyCounter)); 1047 1048 struct page_run { 1049 page_num_t start; 1050 page_num_t end; 1051 1052 page_num_t Length() const { return end - start; } 1053 }; 1054 1055 page_run currentFreeRun = { 0, 0 }; 1056 page_run currentCachedRun = { 0, 0 }; 1057 page_run longestFreeRun = { 0, 0 }; 1058 page_run longestCachedRun = { 0, 0 }; 1059 1060 for (page_num_t i = 0; i < sNumPages; i++) { 1061 if (sPages[i].State() > 7) { 1062 panic("page %" B_PRIuPHYSADDR " at %p has invalid state!\n", i, 1063 &sPages[i]); 1064 } 1065 1066 uint32 pageState = sPages[i].State(); 1067 1068 counter[pageState]++; 1069 if (sPages[i].busy) 1070 busyCounter[pageState]++; 1071 1072 if (pageState == PAGE_STATE_MODIFIED 1073 && sPages[i].Cache() != NULL 1074 && sPages[i].Cache()->temporary && sPages[i].WiredCount() == 0) { 1075 swappableModified++; 1076 if (sPages[i].usage_count == 0) 1077 swappableModifiedInactive++; 1078 } 1079 1080 // track free and cached pages runs 1081 if (pageState == PAGE_STATE_FREE || pageState == PAGE_STATE_CLEAR) { 1082 currentFreeRun.end = i + 1; 1083 currentCachedRun.end = i + 1; 1084 } else { 1085 if (currentFreeRun.Length() > longestFreeRun.Length()) 1086 longestFreeRun = currentFreeRun; 1087 currentFreeRun.start = currentFreeRun.end = i + 1; 1088 1089 if (pageState == PAGE_STATE_CACHED) { 1090 currentCachedRun.end = i + 1; 1091 } else { 1092 if (currentCachedRun.Length() > longestCachedRun.Length()) 1093 longestCachedRun = currentCachedRun; 1094 currentCachedRun.start = currentCachedRun.end = i + 1; 1095 } 1096 } 1097 } 1098 1099 kprintf("page stats:\n"); 1100 kprintf("total: %" B_PRIuPHYSADDR "\n", sNumPages); 1101 1102 kprintf("active: %" B_PRIuSIZE " (busy: %" B_PRIuSIZE ")\n", 1103 counter[PAGE_STATE_ACTIVE], busyCounter[PAGE_STATE_ACTIVE]); 1104 kprintf("inactive: %" B_PRIuSIZE " (busy: %" B_PRIuSIZE ")\n", 1105 counter[PAGE_STATE_INACTIVE], busyCounter[PAGE_STATE_INACTIVE]); 1106 kprintf("cached: %" B_PRIuSIZE " (busy: %" B_PRIuSIZE ")\n", 1107 counter[PAGE_STATE_CACHED], busyCounter[PAGE_STATE_CACHED]); 1108 kprintf("unused: %" B_PRIuSIZE " (busy: %" B_PRIuSIZE ")\n", 1109 counter[PAGE_STATE_UNUSED], busyCounter[PAGE_STATE_UNUSED]); 1110 kprintf("wired: %" B_PRIuSIZE " (busy: %" B_PRIuSIZE ")\n", 1111 counter[PAGE_STATE_WIRED], busyCounter[PAGE_STATE_WIRED]); 1112 kprintf("modified: %" B_PRIuSIZE " (busy: %" B_PRIuSIZE ")\n", 1113 counter[PAGE_STATE_MODIFIED], busyCounter[PAGE_STATE_MODIFIED]); 1114 kprintf("free: %" B_PRIuSIZE "\n", counter[PAGE_STATE_FREE]); 1115 kprintf("clear: %" B_PRIuSIZE "\n", counter[PAGE_STATE_CLEAR]); 1116 1117 kprintf("unreserved free pages: %" B_PRId32 "\n", sUnreservedFreePages); 1118 kprintf("unsatisfied page reservations: %" B_PRId32 "\n", 1119 sUnsatisfiedPageReservations); 1120 kprintf("mapped pages: %lu\n", gMappedPagesCount); 1121 kprintf("longest free pages run: %" B_PRIuPHYSADDR " pages (at %" 1122 B_PRIuPHYSADDR ")\n", longestFreeRun.Length(), 1123 sPages[longestFreeRun.start].physical_page_number); 1124 kprintf("longest free/cached pages run: %" B_PRIuPHYSADDR " pages (at %" 1125 B_PRIuPHYSADDR ")\n", longestCachedRun.Length(), 1126 sPages[longestCachedRun.start].physical_page_number); 1127 1128 kprintf("waiting threads:\n"); 1129 for (PageReservationWaiterList::Iterator it 1130 = sPageReservationWaiters.GetIterator(); 1131 PageReservationWaiter* waiter = it.Next();) { 1132 kprintf(" %6" B_PRId32 ": missing: %6" B_PRIu32 1133 ", don't touch: %6" B_PRIu32 "\n", waiter->thread->id, 1134 waiter->missing, waiter->dontTouch); 1135 } 1136 1137 kprintf("\nfree queue: %p, count = %" B_PRIuPHYSADDR "\n", &sFreePageQueue, 1138 sFreePageQueue.Count()); 1139 kprintf("clear queue: %p, count = %" B_PRIuPHYSADDR "\n", &sClearPageQueue, 1140 sClearPageQueue.Count()); 1141 kprintf("modified queue: %p, count = %" B_PRIuPHYSADDR " (%" B_PRId32 1142 " temporary, %" B_PRIuPHYSADDR " swappable, " "inactive: %" 1143 B_PRIuPHYSADDR ")\n", &sModifiedPageQueue, sModifiedPageQueue.Count(), 1144 sModifiedTemporaryPages, swappableModified, swappableModifiedInactive); 1145 kprintf("active queue: %p, count = %" B_PRIuPHYSADDR "\n", 1146 &sActivePageQueue, sActivePageQueue.Count()); 1147 kprintf("inactive queue: %p, count = %" B_PRIuPHYSADDR "\n", 1148 &sInactivePageQueue, sInactivePageQueue.Count()); 1149 kprintf("cached queue: %p, count = %" B_PRIuPHYSADDR "\n", 1150 &sCachedPageQueue, sCachedPageQueue.Count()); 1151 return 0; 1152 } 1153 1154 1155 #if VM_PAGE_ALLOCATION_TRACKING_AVAILABLE 1156 1157 static caller_info* 1158 get_caller_info(addr_t caller) 1159 { 1160 // find the caller info 1161 for (int32 i = 0; i < sCallerInfoCount; i++) { 1162 if (caller == sCallerInfoTable[i].caller) 1163 return &sCallerInfoTable[i]; 1164 } 1165 1166 // not found, add a new entry, if there are free slots 1167 if (sCallerInfoCount >= kCallerInfoTableSize) 1168 return NULL; 1169 1170 caller_info* info = &sCallerInfoTable[sCallerInfoCount++]; 1171 info->caller = caller; 1172 info->count = 0; 1173 1174 return info; 1175 } 1176 1177 1178 static int 1179 caller_info_compare_count(const void* _a, const void* _b) 1180 { 1181 const caller_info* a = (const caller_info*)_a; 1182 const caller_info* b = (const caller_info*)_b; 1183 return (int)(b->count - a->count); 1184 } 1185 1186 1187 static int 1188 dump_page_allocations_per_caller(int argc, char** argv) 1189 { 1190 bool resetAllocationInfos = false; 1191 bool printDetails = false; 1192 addr_t caller = 0; 1193 1194 for (int32 i = 1; i < argc; i++) { 1195 if (strcmp(argv[i], "-d") == 0) { 1196 uint64 callerAddress; 1197 if (++i >= argc 1198 || !evaluate_debug_expression(argv[i], &callerAddress, true)) { 1199 print_debugger_command_usage(argv[0]); 1200 return 0; 1201 } 1202 1203 caller = callerAddress; 1204 printDetails = true; 1205 } else if (strcmp(argv[i], "-r") == 0) { 1206 resetAllocationInfos = true; 1207 } else { 1208 print_debugger_command_usage(argv[0]); 1209 return 0; 1210 } 1211 } 1212 1213 sCallerInfoCount = 0; 1214 1215 AllocationCollectorCallback collectorCallback(resetAllocationInfos); 1216 AllocationDetailPrinterCallback detailsCallback(caller); 1217 AllocationTrackingCallback& callback = printDetails 1218 ? (AllocationTrackingCallback&)detailsCallback 1219 : (AllocationTrackingCallback&)collectorCallback; 1220 1221 for (page_num_t i = 0; i < sNumPages; i++) 1222 callback.ProcessTrackingInfo(&sPages[i].allocation_tracking_info, i); 1223 1224 if (printDetails) 1225 return 0; 1226 1227 // sort the array 1228 qsort(sCallerInfoTable, sCallerInfoCount, sizeof(caller_info), 1229 &caller_info_compare_count); 1230 1231 kprintf("%" B_PRId32 " different callers\n\n", sCallerInfoCount); 1232 1233 size_t totalAllocationCount = 0; 1234 1235 kprintf(" count caller\n"); 1236 kprintf("----------------------------------\n"); 1237 for (int32 i = 0; i < sCallerInfoCount; i++) { 1238 caller_info& info = sCallerInfoTable[i]; 1239 kprintf("%10" B_PRIuSIZE " %p", info.count, (void*)info.caller); 1240 1241 const char* symbol; 1242 const char* imageName; 1243 bool exactMatch; 1244 addr_t baseAddress; 1245 1246 if (elf_debug_lookup_symbol_address(info.caller, &baseAddress, &symbol, 1247 &imageName, &exactMatch) == B_OK) { 1248 kprintf(" %s + %#" B_PRIxADDR " (%s)%s\n", symbol, 1249 info.caller - baseAddress, imageName, 1250 exactMatch ? "" : " (nearest)"); 1251 } else 1252 kprintf("\n"); 1253 1254 totalAllocationCount += info.count; 1255 } 1256 1257 kprintf("\ntotal page allocations: %" B_PRIuSIZE "\n", 1258 totalAllocationCount); 1259 1260 return 0; 1261 } 1262 1263 1264 static int 1265 dump_page_allocation_infos(int argc, char** argv) 1266 { 1267 page_num_t pageFilter = 0; 1268 team_id teamFilter = -1; 1269 thread_id threadFilter = -1; 1270 bool printStackTraces = false; 1271 1272 for (int32 i = 1; i < argc; i++) { 1273 if (strcmp(argv[i], "--stacktrace") == 0) 1274 printStackTraces = true; 1275 else if (strcmp(argv[i], "-p") == 0) { 1276 uint64 pageNumber; 1277 if (++i >= argc 1278 || !evaluate_debug_expression(argv[i], &pageNumber, true)) { 1279 print_debugger_command_usage(argv[0]); 1280 return 0; 1281 } 1282 1283 pageFilter = pageNumber; 1284 } else if (strcmp(argv[i], "--team") == 0) { 1285 uint64 team; 1286 if (++i >= argc 1287 || !evaluate_debug_expression(argv[i], &team, true)) { 1288 print_debugger_command_usage(argv[0]); 1289 return 0; 1290 } 1291 1292 teamFilter = team; 1293 } else if (strcmp(argv[i], "--thread") == 0) { 1294 uint64 thread; 1295 if (++i >= argc 1296 || !evaluate_debug_expression(argv[i], &thread, true)) { 1297 print_debugger_command_usage(argv[0]); 1298 return 0; 1299 } 1300 1301 threadFilter = thread; 1302 } else { 1303 print_debugger_command_usage(argv[0]); 1304 return 0; 1305 } 1306 } 1307 1308 AllocationInfoPrinterCallback callback(printStackTraces, pageFilter, 1309 teamFilter, threadFilter); 1310 1311 for (page_num_t i = 0; i < sNumPages; i++) 1312 callback.ProcessTrackingInfo(&sPages[i].allocation_tracking_info, i); 1313 1314 return 0; 1315 } 1316 1317 #endif // VM_PAGE_ALLOCATION_TRACKING_AVAILABLE 1318 1319 1320 #ifdef TRACK_PAGE_USAGE_STATS 1321 1322 static void 1323 track_page_usage(vm_page* page) 1324 { 1325 if (page->WiredCount() == 0) { 1326 sNextPageUsage[(int32)page->usage_count + 128]++; 1327 sNextPageUsagePageCount++; 1328 } 1329 } 1330 1331 1332 static void 1333 update_page_usage_stats() 1334 { 1335 std::swap(sPageUsage, sNextPageUsage); 1336 sPageUsagePageCount = sNextPageUsagePageCount; 1337 1338 memset(sNextPageUsage, 0, sizeof(page_num_t) * 256); 1339 sNextPageUsagePageCount = 0; 1340 1341 // compute average 1342 if (sPageUsagePageCount > 0) { 1343 int64 sum = 0; 1344 for (int32 i = 0; i < 256; i++) 1345 sum += (int64)sPageUsage[i] * (i - 128); 1346 1347 TRACE_DAEMON("average page usage: %f (%lu pages)\n", 1348 (float)sum / sPageUsagePageCount, sPageUsagePageCount); 1349 } 1350 } 1351 1352 1353 static int 1354 dump_page_usage_stats(int argc, char** argv) 1355 { 1356 kprintf("distribution of page usage counts (%lu pages):", 1357 sPageUsagePageCount); 1358 1359 int64 sum = 0; 1360 for (int32 i = 0; i < 256; i++) { 1361 if (i % 8 == 0) 1362 kprintf("\n%4ld:", i - 128); 1363 1364 int64 count = sPageUsage[i]; 1365 sum += count * (i - 128); 1366 1367 kprintf(" %9llu", count); 1368 } 1369 1370 kprintf("\n\n"); 1371 1372 kprintf("average usage count: %f\n", 1373 sPageUsagePageCount > 0 ? (float)sum / sPageUsagePageCount : 0); 1374 1375 return 0; 1376 } 1377 1378 #endif // TRACK_PAGE_USAGE_STATS 1379 1380 1381 // #pragma mark - vm_page 1382 1383 1384 inline void 1385 vm_page::InitState(uint8 newState) 1386 { 1387 state = newState; 1388 } 1389 1390 1391 inline void 1392 vm_page::SetState(uint8 newState) 1393 { 1394 TPS(SetPageState(this, newState)); 1395 1396 state = newState; 1397 } 1398 1399 1400 // #pragma mark - 1401 1402 1403 static void 1404 get_page_stats(page_stats& _pageStats) 1405 { 1406 _pageStats.totalFreePages = sUnreservedFreePages; 1407 _pageStats.cachedPages = sCachedPageQueue.Count(); 1408 _pageStats.unsatisfiedReservations = sUnsatisfiedPageReservations; 1409 // TODO: We don't get an actual snapshot here! 1410 } 1411 1412 1413 static bool 1414 do_active_paging(const page_stats& pageStats) 1415 { 1416 return pageStats.totalFreePages + pageStats.cachedPages 1417 < pageStats.unsatisfiedReservations 1418 + (int32)sFreeOrCachedPagesTarget; 1419 } 1420 1421 1422 /*! Reserves as many pages as possible from \c sUnreservedFreePages up to 1423 \a count. Doesn't touch the last \a dontTouch pages of 1424 \c sUnreservedFreePages, though. 1425 \return The number of actually reserved pages. 1426 */ 1427 static uint32 1428 reserve_some_pages(uint32 count, uint32 dontTouch) 1429 { 1430 while (true) { 1431 int32 freePages = sUnreservedFreePages; 1432 if (freePages <= (int32)dontTouch) 1433 return 0; 1434 1435 int32 toReserve = std::min(count, freePages - dontTouch); 1436 if (atomic_test_and_set(&sUnreservedFreePages, 1437 freePages - toReserve, freePages) 1438 == freePages) { 1439 return toReserve; 1440 } 1441 1442 // the count changed in the meantime -- retry 1443 } 1444 } 1445 1446 1447 static void 1448 wake_up_page_reservation_waiters() 1449 { 1450 MutexLocker pageDeficitLocker(sPageDeficitLock); 1451 1452 // TODO: If this is a low priority thread, we might want to disable 1453 // interrupts or otherwise ensure that we aren't unscheduled. Otherwise 1454 // high priority threads wait be kept waiting while a medium priority thread 1455 // prevents us from running. 1456 1457 while (PageReservationWaiter* waiter = sPageReservationWaiters.Head()) { 1458 int32 reserved = reserve_some_pages(waiter->missing, 1459 waiter->dontTouch); 1460 if (reserved == 0) 1461 return; 1462 1463 atomic_add(&sUnsatisfiedPageReservations, -reserved); 1464 waiter->missing -= reserved; 1465 1466 if (waiter->missing > 0) 1467 return; 1468 1469 sPageReservationWaiters.Remove(waiter); 1470 1471 InterruptsSpinLocker schedulerLocker(gSchedulerLock); 1472 thread_unblock_locked(waiter->thread, B_OK); 1473 } 1474 } 1475 1476 1477 static inline void 1478 unreserve_pages(uint32 count) 1479 { 1480 atomic_add(&sUnreservedFreePages, count); 1481 if (sUnsatisfiedPageReservations != 0) 1482 wake_up_page_reservation_waiters(); 1483 } 1484 1485 1486 static void 1487 free_page(vm_page* page, bool clear) 1488 { 1489 DEBUG_PAGE_ACCESS_CHECK(page); 1490 1491 PAGE_ASSERT(page, !page->IsMapped()); 1492 1493 VMPageQueue* fromQueue; 1494 1495 switch (page->State()) { 1496 case PAGE_STATE_ACTIVE: 1497 fromQueue = &sActivePageQueue; 1498 break; 1499 case PAGE_STATE_INACTIVE: 1500 fromQueue = &sInactivePageQueue; 1501 break; 1502 case PAGE_STATE_MODIFIED: 1503 fromQueue = &sModifiedPageQueue; 1504 break; 1505 case PAGE_STATE_CACHED: 1506 fromQueue = &sCachedPageQueue; 1507 break; 1508 case PAGE_STATE_FREE: 1509 case PAGE_STATE_CLEAR: 1510 panic("free_page(): page %p already free", page); 1511 return; 1512 case PAGE_STATE_WIRED: 1513 case PAGE_STATE_UNUSED: 1514 fromQueue = NULL; 1515 break; 1516 default: 1517 panic("free_page(): page %p in invalid state %d", 1518 page, page->State()); 1519 return; 1520 } 1521 1522 if (page->CacheRef() != NULL) 1523 panic("to be freed page %p has cache", page); 1524 if (page->IsMapped()) 1525 panic("to be freed page %p has mappings", page); 1526 1527 if (fromQueue != NULL) 1528 fromQueue->RemoveUnlocked(page); 1529 1530 TA(FreePage(page->physical_page_number)); 1531 1532 #if VM_PAGE_ALLOCATION_TRACKING_AVAILABLE 1533 page->allocation_tracking_info.Clear(); 1534 #endif 1535 1536 ReadLocker locker(sFreePageQueuesLock); 1537 1538 DEBUG_PAGE_ACCESS_END(page); 1539 1540 if (clear) { 1541 page->SetState(PAGE_STATE_CLEAR); 1542 sClearPageQueue.PrependUnlocked(page); 1543 } else { 1544 page->SetState(PAGE_STATE_FREE); 1545 sFreePageQueue.PrependUnlocked(page); 1546 } 1547 1548 locker.Unlock(); 1549 1550 unreserve_pages(1); 1551 } 1552 1553 1554 /*! The caller must make sure that no-one else tries to change the page's state 1555 while the function is called. If the page has a cache, this can be done by 1556 locking the cache. 1557 */ 1558 static void 1559 set_page_state(vm_page *page, int pageState) 1560 { 1561 DEBUG_PAGE_ACCESS_CHECK(page); 1562 1563 if (pageState == page->State()) 1564 return; 1565 1566 VMPageQueue* fromQueue; 1567 1568 switch (page->State()) { 1569 case PAGE_STATE_ACTIVE: 1570 fromQueue = &sActivePageQueue; 1571 break; 1572 case PAGE_STATE_INACTIVE: 1573 fromQueue = &sInactivePageQueue; 1574 break; 1575 case PAGE_STATE_MODIFIED: 1576 fromQueue = &sModifiedPageQueue; 1577 break; 1578 case PAGE_STATE_CACHED: 1579 fromQueue = &sCachedPageQueue; 1580 break; 1581 case PAGE_STATE_FREE: 1582 case PAGE_STATE_CLEAR: 1583 panic("set_page_state(): page %p is free/clear", page); 1584 return; 1585 case PAGE_STATE_WIRED: 1586 case PAGE_STATE_UNUSED: 1587 fromQueue = NULL; 1588 break; 1589 default: 1590 panic("set_page_state(): page %p in invalid state %d", 1591 page, page->State()); 1592 return; 1593 } 1594 1595 VMPageQueue* toQueue; 1596 1597 switch (pageState) { 1598 case PAGE_STATE_ACTIVE: 1599 toQueue = &sActivePageQueue; 1600 break; 1601 case PAGE_STATE_INACTIVE: 1602 toQueue = &sInactivePageQueue; 1603 break; 1604 case PAGE_STATE_MODIFIED: 1605 toQueue = &sModifiedPageQueue; 1606 break; 1607 case PAGE_STATE_CACHED: 1608 PAGE_ASSERT(page, !page->IsMapped()); 1609 PAGE_ASSERT(page, !page->modified); 1610 toQueue = &sCachedPageQueue; 1611 break; 1612 case PAGE_STATE_FREE: 1613 case PAGE_STATE_CLEAR: 1614 panic("set_page_state(): target state is free/clear"); 1615 return; 1616 case PAGE_STATE_WIRED: 1617 case PAGE_STATE_UNUSED: 1618 toQueue = NULL; 1619 break; 1620 default: 1621 panic("set_page_state(): invalid target state %d", pageState); 1622 return; 1623 } 1624 1625 VMCache* cache = page->Cache(); 1626 if (cache != NULL && cache->temporary) { 1627 if (pageState == PAGE_STATE_MODIFIED) 1628 atomic_add(&sModifiedTemporaryPages, 1); 1629 else if (page->State() == PAGE_STATE_MODIFIED) 1630 atomic_add(&sModifiedTemporaryPages, -1); 1631 } 1632 1633 // move the page 1634 if (toQueue == fromQueue) { 1635 // Note: Theoretically we are required to lock when changing the page 1636 // state, even if we don't change the queue. We actually don't have to 1637 // do this, though, since only for the active queue there are different 1638 // page states and active pages have a cache that must be locked at 1639 // this point. So we rely on the fact that everyone must lock the cache 1640 // before trying to change/interpret the page state. 1641 PAGE_ASSERT(page, cache != NULL); 1642 cache->AssertLocked(); 1643 page->SetState(pageState); 1644 } else { 1645 if (fromQueue != NULL) 1646 fromQueue->RemoveUnlocked(page); 1647 1648 page->SetState(pageState); 1649 1650 if (toQueue != NULL) 1651 toQueue->AppendUnlocked(page); 1652 } 1653 } 1654 1655 1656 /*! Moves a previously modified page into a now appropriate queue. 1657 The page queues must not be locked. 1658 */ 1659 static void 1660 move_page_to_appropriate_queue(vm_page *page) 1661 { 1662 DEBUG_PAGE_ACCESS_CHECK(page); 1663 1664 // Note, this logic must be in sync with what the page daemon does. 1665 int32 state; 1666 if (page->IsMapped()) 1667 state = PAGE_STATE_ACTIVE; 1668 else if (page->modified) 1669 state = PAGE_STATE_MODIFIED; 1670 else 1671 state = PAGE_STATE_CACHED; 1672 1673 // TODO: If free + cached pages are low, we might directly want to free the 1674 // page. 1675 set_page_state(page, state); 1676 } 1677 1678 1679 static void 1680 clear_page(struct vm_page *page) 1681 { 1682 vm_memset_physical(page->physical_page_number << PAGE_SHIFT, 0, 1683 B_PAGE_SIZE); 1684 } 1685 1686 1687 static status_t 1688 mark_page_range_in_use(page_num_t startPage, page_num_t length, bool wired) 1689 { 1690 TRACE(("mark_page_range_in_use: start %#" B_PRIxPHYSADDR ", len %#" 1691 B_PRIxPHYSADDR "\n", startPage, length)); 1692 1693 if (sPhysicalPageOffset > startPage) { 1694 dprintf("mark_page_range_in_use(%#" B_PRIxPHYSADDR ", %#" B_PRIxPHYSADDR 1695 "): start page is before free list\n", startPage, length); 1696 if (sPhysicalPageOffset - startPage >= length) 1697 return B_OK; 1698 length -= sPhysicalPageOffset - startPage; 1699 startPage = sPhysicalPageOffset; 1700 } 1701 1702 startPage -= sPhysicalPageOffset; 1703 1704 if (startPage + length > sNumPages) { 1705 dprintf("mark_page_range_in_use(%#" B_PRIxPHYSADDR ", %#" B_PRIxPHYSADDR 1706 "): range would extend past free list\n", startPage, length); 1707 if (startPage >= sNumPages) 1708 return B_OK; 1709 length = sNumPages - startPage; 1710 } 1711 1712 WriteLocker locker(sFreePageQueuesLock); 1713 1714 for (page_num_t i = 0; i < length; i++) { 1715 vm_page *page = &sPages[startPage + i]; 1716 switch (page->State()) { 1717 case PAGE_STATE_FREE: 1718 case PAGE_STATE_CLEAR: 1719 { 1720 // TODO: This violates the page reservation policy, since we remove pages from 1721 // the free/clear queues without having reserved them before. This should happen 1722 // in the early boot process only, though. 1723 DEBUG_PAGE_ACCESS_START(page); 1724 VMPageQueue& queue = page->State() == PAGE_STATE_FREE 1725 ? sFreePageQueue : sClearPageQueue; 1726 queue.Remove(page); 1727 page->SetState(wired ? PAGE_STATE_WIRED : PAGE_STATE_UNUSED); 1728 page->busy = false; 1729 atomic_add(&sUnreservedFreePages, -1); 1730 DEBUG_PAGE_ACCESS_END(page); 1731 break; 1732 } 1733 case PAGE_STATE_WIRED: 1734 case PAGE_STATE_UNUSED: 1735 break; 1736 case PAGE_STATE_ACTIVE: 1737 case PAGE_STATE_INACTIVE: 1738 case PAGE_STATE_MODIFIED: 1739 case PAGE_STATE_CACHED: 1740 default: 1741 // uh 1742 dprintf("mark_page_range_in_use: page %#" B_PRIxPHYSADDR 1743 " in non-free state %d!\n", startPage + i, page->State()); 1744 break; 1745 } 1746 } 1747 1748 return B_OK; 1749 } 1750 1751 1752 /*! 1753 This is a background thread that wakes up every now and then (every 100ms) 1754 and moves some pages from the free queue over to the clear queue. 1755 Given enough time, it will clear out all pages from the free queue - we 1756 could probably slow it down after having reached a certain threshold. 1757 */ 1758 static int32 1759 page_scrubber(void *unused) 1760 { 1761 (void)(unused); 1762 1763 TRACE(("page_scrubber starting...\n")); 1764 1765 for (;;) { 1766 snooze(100000); // 100ms 1767 1768 if (sFreePageQueue.Count() == 0 1769 || sUnreservedFreePages < (int32)sFreePagesTarget) { 1770 continue; 1771 } 1772 1773 // Since we temporarily remove pages from the free pages reserve, 1774 // we must make sure we don't cause a violation of the page 1775 // reservation warranty. The following is usually stricter than 1776 // necessary, because we don't have information on how many of the 1777 // reserved pages have already been allocated. 1778 int32 reserved = reserve_some_pages(SCRUB_SIZE, 1779 kPageReserveForPriority[VM_PRIORITY_USER]); 1780 if (reserved == 0) 1781 continue; 1782 1783 // get some pages from the free queue 1784 ReadLocker locker(sFreePageQueuesLock); 1785 1786 vm_page *page[SCRUB_SIZE]; 1787 int32 scrubCount = 0; 1788 for (int32 i = 0; i < reserved; i++) { 1789 page[i] = sFreePageQueue.RemoveHeadUnlocked(); 1790 if (page[i] == NULL) 1791 break; 1792 1793 DEBUG_PAGE_ACCESS_START(page[i]); 1794 1795 page[i]->SetState(PAGE_STATE_ACTIVE); 1796 page[i]->busy = true; 1797 scrubCount++; 1798 } 1799 1800 locker.Unlock(); 1801 1802 if (scrubCount == 0) { 1803 unreserve_pages(reserved); 1804 continue; 1805 } 1806 1807 TA(ScrubbingPages(scrubCount)); 1808 1809 // clear them 1810 for (int32 i = 0; i < scrubCount; i++) 1811 clear_page(page[i]); 1812 1813 locker.Lock(); 1814 1815 // and put them into the clear queue 1816 for (int32 i = 0; i < scrubCount; i++) { 1817 page[i]->SetState(PAGE_STATE_CLEAR); 1818 page[i]->busy = false; 1819 DEBUG_PAGE_ACCESS_END(page[i]); 1820 sClearPageQueue.PrependUnlocked(page[i]); 1821 } 1822 1823 locker.Unlock(); 1824 1825 unreserve_pages(reserved); 1826 1827 TA(ScrubbedPages(scrubCount)); 1828 } 1829 1830 return 0; 1831 } 1832 1833 1834 static void 1835 init_page_marker(vm_page &marker) 1836 { 1837 marker.SetCacheRef(NULL); 1838 marker.InitState(PAGE_STATE_UNUSED); 1839 marker.busy = true; 1840 #if DEBUG_PAGE_QUEUE 1841 marker.queue = NULL; 1842 #endif 1843 #if DEBUG_PAGE_ACCESS 1844 marker.accessing_thread = thread_get_current_thread_id(); 1845 #endif 1846 } 1847 1848 1849 static void 1850 remove_page_marker(struct vm_page &marker) 1851 { 1852 DEBUG_PAGE_ACCESS_CHECK(&marker); 1853 1854 if (marker.State() < PAGE_STATE_FIRST_UNQUEUED) 1855 sPageQueues[marker.State()].RemoveUnlocked(&marker); 1856 1857 marker.SetState(PAGE_STATE_UNUSED); 1858 } 1859 1860 1861 static vm_page* 1862 next_modified_page(page_num_t& maxPagesToSee) 1863 { 1864 InterruptsSpinLocker locker(sModifiedPageQueue.GetLock()); 1865 1866 while (maxPagesToSee > 0) { 1867 vm_page* page = sModifiedPageQueue.Head(); 1868 if (page == NULL) 1869 return NULL; 1870 1871 sModifiedPageQueue.Requeue(page, true); 1872 1873 maxPagesToSee--; 1874 1875 if (!page->busy) 1876 return page; 1877 } 1878 1879 return NULL; 1880 } 1881 1882 1883 // #pragma mark - 1884 1885 1886 class PageWriteTransfer; 1887 class PageWriteWrapper; 1888 1889 1890 class PageWriterRun { 1891 public: 1892 status_t Init(uint32 maxPages); 1893 1894 void PrepareNextRun(); 1895 void AddPage(vm_page* page); 1896 uint32 Go(); 1897 1898 void PageWritten(PageWriteTransfer* transfer, status_t status, 1899 bool partialTransfer, size_t bytesTransferred); 1900 1901 private: 1902 uint32 fMaxPages; 1903 uint32 fWrapperCount; 1904 uint32 fTransferCount; 1905 vint32 fPendingTransfers; 1906 PageWriteWrapper* fWrappers; 1907 PageWriteTransfer* fTransfers; 1908 ConditionVariable fAllFinishedCondition; 1909 }; 1910 1911 1912 class PageWriteTransfer : public AsyncIOCallback { 1913 public: 1914 void SetTo(PageWriterRun* run, vm_page* page, int32 maxPages); 1915 bool AddPage(vm_page* page); 1916 1917 status_t Schedule(uint32 flags); 1918 1919 void SetStatus(status_t status, size_t transferred); 1920 1921 status_t Status() const { return fStatus; } 1922 struct VMCache* Cache() const { return fCache; } 1923 uint32 PageCount() const { return fPageCount; } 1924 1925 virtual void IOFinished(status_t status, bool partialTransfer, 1926 generic_size_t bytesTransferred); 1927 private: 1928 PageWriterRun* fRun; 1929 struct VMCache* fCache; 1930 off_t fOffset; 1931 uint32 fPageCount; 1932 int32 fMaxPages; 1933 status_t fStatus; 1934 uint32 fVecCount; 1935 generic_io_vec fVecs[32]; // TODO: make dynamic/configurable 1936 }; 1937 1938 1939 class PageWriteWrapper { 1940 public: 1941 PageWriteWrapper(); 1942 ~PageWriteWrapper(); 1943 void SetTo(vm_page* page); 1944 bool Done(status_t result); 1945 1946 private: 1947 vm_page* fPage; 1948 struct VMCache* fCache; 1949 bool fIsActive; 1950 }; 1951 1952 1953 PageWriteWrapper::PageWriteWrapper() 1954 : 1955 fIsActive(false) 1956 { 1957 } 1958 1959 1960 PageWriteWrapper::~PageWriteWrapper() 1961 { 1962 if (fIsActive) 1963 panic("page write wrapper going out of scope but isn't completed"); 1964 } 1965 1966 1967 /*! The page's cache must be locked. 1968 */ 1969 void 1970 PageWriteWrapper::SetTo(vm_page* page) 1971 { 1972 DEBUG_PAGE_ACCESS_CHECK(page); 1973 1974 if (page->busy) 1975 panic("setting page write wrapper to busy page"); 1976 1977 if (fIsActive) 1978 panic("re-setting page write wrapper that isn't completed"); 1979 1980 fPage = page; 1981 fCache = page->Cache(); 1982 fIsActive = true; 1983 1984 fPage->busy = true; 1985 fPage->busy_writing = true; 1986 1987 // We have a modified page -- however, while we're writing it back, 1988 // the page might still be mapped. In order not to lose any changes to the 1989 // page, we mark it clean before actually writing it back; if 1990 // writing the page fails for some reason, we'll just keep it in the 1991 // modified page list, but that should happen only rarely. 1992 1993 // If the page is changed after we cleared the dirty flag, but before we 1994 // had the chance to write it back, then we'll write it again later -- that 1995 // will probably not happen that often, though. 1996 1997 vm_clear_map_flags(fPage, PAGE_MODIFIED); 1998 } 1999 2000 2001 /*! The page's cache must be locked. 2002 The page queues must not be locked. 2003 \return \c true if the page was written successfully respectively could be 2004 handled somehow, \c false otherwise. 2005 */ 2006 bool 2007 PageWriteWrapper::Done(status_t result) 2008 { 2009 if (!fIsActive) 2010 panic("completing page write wrapper that is not active"); 2011 2012 DEBUG_PAGE_ACCESS_START(fPage); 2013 2014 fPage->busy = false; 2015 // Set unbusy and notify later by hand, since we might free the page. 2016 2017 bool success = true; 2018 2019 if (result == B_OK) { 2020 // put it into the active/inactive queue 2021 move_page_to_appropriate_queue(fPage); 2022 fPage->busy_writing = false; 2023 DEBUG_PAGE_ACCESS_END(fPage); 2024 } else { 2025 // Writing the page failed. One reason would be that the cache has been 2026 // shrunk and the page does no longer belong to the file. Otherwise the 2027 // actual I/O failed, in which case we'll simply keep the page modified. 2028 2029 if (!fPage->busy_writing) { 2030 // The busy_writing flag was cleared. That means the cache has been 2031 // shrunk while we were trying to write the page and we have to free 2032 // it now. 2033 vm_remove_all_page_mappings(fPage); 2034 // TODO: Unmapping should already happen when resizing the cache! 2035 fCache->RemovePage(fPage); 2036 free_page(fPage, false); 2037 } else { 2038 // Writing the page failed -- mark the page modified and move it to 2039 // an appropriate queue other than the modified queue, so we don't 2040 // keep trying to write it over and over again. We keep 2041 // non-temporary pages in the modified queue, though, so they don't 2042 // get lost in the inactive queue. 2043 dprintf("PageWriteWrapper: Failed to write page %p: %s\n", fPage, 2044 strerror(result)); 2045 2046 fPage->modified = true; 2047 if (!fCache->temporary) 2048 set_page_state(fPage, PAGE_STATE_MODIFIED); 2049 else if (fPage->IsMapped()) 2050 set_page_state(fPage, PAGE_STATE_ACTIVE); 2051 else 2052 set_page_state(fPage, PAGE_STATE_INACTIVE); 2053 2054 fPage->busy_writing = false; 2055 DEBUG_PAGE_ACCESS_END(fPage); 2056 2057 success = false; 2058 } 2059 } 2060 2061 fCache->NotifyPageEvents(fPage, PAGE_EVENT_NOT_BUSY); 2062 fIsActive = false; 2063 2064 return success; 2065 } 2066 2067 2068 /*! The page's cache must be locked. 2069 */ 2070 void 2071 PageWriteTransfer::SetTo(PageWriterRun* run, vm_page* page, int32 maxPages) 2072 { 2073 fRun = run; 2074 fCache = page->Cache(); 2075 fOffset = page->cache_offset; 2076 fPageCount = 1; 2077 fMaxPages = maxPages; 2078 fStatus = B_OK; 2079 2080 fVecs[0].base = (phys_addr_t)page->physical_page_number << PAGE_SHIFT; 2081 fVecs[0].length = B_PAGE_SIZE; 2082 fVecCount = 1; 2083 } 2084 2085 2086 /*! The page's cache must be locked. 2087 */ 2088 bool 2089 PageWriteTransfer::AddPage(vm_page* page) 2090 { 2091 if (page->Cache() != fCache 2092 || (fMaxPages >= 0 && fPageCount >= (uint32)fMaxPages)) 2093 return false; 2094 2095 phys_addr_t nextBase = fVecs[fVecCount - 1].base 2096 + fVecs[fVecCount - 1].length; 2097 2098 if ((phys_addr_t)page->physical_page_number << PAGE_SHIFT == nextBase 2099 && (off_t)page->cache_offset == fOffset + fPageCount) { 2100 // append to last iovec 2101 fVecs[fVecCount - 1].length += B_PAGE_SIZE; 2102 fPageCount++; 2103 return true; 2104 } 2105 2106 nextBase = fVecs[0].base - B_PAGE_SIZE; 2107 if ((phys_addr_t)page->physical_page_number << PAGE_SHIFT == nextBase 2108 && (off_t)page->cache_offset == fOffset - 1) { 2109 // prepend to first iovec and adjust offset 2110 fVecs[0].base = nextBase; 2111 fVecs[0].length += B_PAGE_SIZE; 2112 fOffset = page->cache_offset; 2113 fPageCount++; 2114 return true; 2115 } 2116 2117 if (((off_t)page->cache_offset == fOffset + fPageCount 2118 || (off_t)page->cache_offset == fOffset - 1) 2119 && fVecCount < sizeof(fVecs) / sizeof(fVecs[0])) { 2120 // not physically contiguous or not in the right order 2121 uint32 vectorIndex; 2122 if ((off_t)page->cache_offset < fOffset) { 2123 // we are pre-pending another vector, move the other vecs 2124 for (uint32 i = fVecCount; i > 0; i--) 2125 fVecs[i] = fVecs[i - 1]; 2126 2127 fOffset = page->cache_offset; 2128 vectorIndex = 0; 2129 } else 2130 vectorIndex = fVecCount; 2131 2132 fVecs[vectorIndex].base 2133 = (phys_addr_t)page->physical_page_number << PAGE_SHIFT; 2134 fVecs[vectorIndex].length = B_PAGE_SIZE; 2135 2136 fVecCount++; 2137 fPageCount++; 2138 return true; 2139 } 2140 2141 return false; 2142 } 2143 2144 2145 status_t 2146 PageWriteTransfer::Schedule(uint32 flags) 2147 { 2148 off_t writeOffset = (off_t)fOffset << PAGE_SHIFT; 2149 generic_size_t writeLength = (phys_size_t)fPageCount << PAGE_SHIFT; 2150 2151 if (fRun != NULL) { 2152 return fCache->WriteAsync(writeOffset, fVecs, fVecCount, writeLength, 2153 flags | B_PHYSICAL_IO_REQUEST, this); 2154 } 2155 2156 status_t status = fCache->Write(writeOffset, fVecs, fVecCount, 2157 flags | B_PHYSICAL_IO_REQUEST, &writeLength); 2158 2159 SetStatus(status, writeLength); 2160 return fStatus; 2161 } 2162 2163 2164 void 2165 PageWriteTransfer::SetStatus(status_t status, size_t transferred) 2166 { 2167 // only succeed if all pages up to the last one have been written fully 2168 // and the last page has at least been written partially 2169 if (status == B_OK && transferred <= (fPageCount - 1) * B_PAGE_SIZE) 2170 status = B_ERROR; 2171 2172 fStatus = status; 2173 } 2174 2175 2176 void 2177 PageWriteTransfer::IOFinished(status_t status, bool partialTransfer, 2178 generic_size_t bytesTransferred) 2179 { 2180 SetStatus(status, bytesTransferred); 2181 fRun->PageWritten(this, fStatus, partialTransfer, bytesTransferred); 2182 } 2183 2184 2185 status_t 2186 PageWriterRun::Init(uint32 maxPages) 2187 { 2188 fMaxPages = maxPages; 2189 fWrapperCount = 0; 2190 fTransferCount = 0; 2191 fPendingTransfers = 0; 2192 2193 fWrappers = new(std::nothrow) PageWriteWrapper[maxPages]; 2194 fTransfers = new(std::nothrow) PageWriteTransfer[maxPages]; 2195 if (fWrappers == NULL || fTransfers == NULL) 2196 return B_NO_MEMORY; 2197 2198 return B_OK; 2199 } 2200 2201 2202 void 2203 PageWriterRun::PrepareNextRun() 2204 { 2205 fWrapperCount = 0; 2206 fTransferCount = 0; 2207 fPendingTransfers = 0; 2208 } 2209 2210 2211 /*! The page's cache must be locked. 2212 */ 2213 void 2214 PageWriterRun::AddPage(vm_page* page) 2215 { 2216 fWrappers[fWrapperCount++].SetTo(page); 2217 2218 if (fTransferCount == 0 || !fTransfers[fTransferCount - 1].AddPage(page)) { 2219 fTransfers[fTransferCount++].SetTo(this, page, 2220 page->Cache()->MaxPagesPerAsyncWrite()); 2221 } 2222 } 2223 2224 2225 /*! Writes all pages previously added. 2226 \return The number of pages that could not be written or otherwise handled. 2227 */ 2228 uint32 2229 PageWriterRun::Go() 2230 { 2231 fPendingTransfers = fTransferCount; 2232 2233 fAllFinishedCondition.Init(this, "page writer wait for I/O"); 2234 ConditionVariableEntry waitEntry; 2235 fAllFinishedCondition.Add(&waitEntry); 2236 2237 // schedule writes 2238 for (uint32 i = 0; i < fTransferCount; i++) 2239 fTransfers[i].Schedule(B_VIP_IO_REQUEST); 2240 2241 // wait until all pages have been written 2242 waitEntry.Wait(); 2243 2244 // mark pages depending on whether they could be written or not 2245 2246 uint32 failedPages = 0; 2247 uint32 wrapperIndex = 0; 2248 for (uint32 i = 0; i < fTransferCount; i++) { 2249 PageWriteTransfer& transfer = fTransfers[i]; 2250 transfer.Cache()->Lock(); 2251 2252 for (uint32 j = 0; j < transfer.PageCount(); j++) { 2253 if (!fWrappers[wrapperIndex++].Done(transfer.Status())) 2254 failedPages++; 2255 } 2256 2257 transfer.Cache()->Unlock(); 2258 } 2259 2260 ASSERT(wrapperIndex == fWrapperCount); 2261 2262 for (uint32 i = 0; i < fTransferCount; i++) { 2263 PageWriteTransfer& transfer = fTransfers[i]; 2264 struct VMCache* cache = transfer.Cache(); 2265 2266 // We've acquired a references for each page 2267 for (uint32 j = 0; j < transfer.PageCount(); j++) { 2268 // We release the cache references after all pages were made 2269 // unbusy again - otherwise releasing a vnode could deadlock. 2270 cache->ReleaseStoreRef(); 2271 cache->ReleaseRef(); 2272 } 2273 } 2274 2275 return failedPages; 2276 } 2277 2278 2279 void 2280 PageWriterRun::PageWritten(PageWriteTransfer* transfer, status_t status, 2281 bool partialTransfer, size_t bytesTransferred) 2282 { 2283 if (atomic_add(&fPendingTransfers, -1) == 1) 2284 fAllFinishedCondition.NotifyAll(); 2285 } 2286 2287 2288 /*! The page writer continuously takes some pages from the modified 2289 queue, writes them back, and moves them back to the active queue. 2290 It runs in its own thread, and is only there to keep the number 2291 of modified pages low, so that more pages can be reused with 2292 fewer costs. 2293 */ 2294 status_t 2295 page_writer(void* /*unused*/) 2296 { 2297 const uint32 kNumPages = 256; 2298 uint32 writtenPages = 0; 2299 #ifdef TRACE_VM_PAGE 2300 bigtime_t lastWrittenTime = 0; 2301 #endif 2302 bigtime_t pageCollectionTime = 0; 2303 bigtime_t pageWritingTime = 0; 2304 2305 PageWriterRun run; 2306 if (run.Init(kNumPages) != B_OK) { 2307 panic("page writer: Failed to init PageWriterRun!"); 2308 return B_ERROR; 2309 } 2310 2311 page_num_t pagesSinceLastSuccessfulWrite = 0; 2312 2313 while (true) { 2314 // TODO: Maybe wait shorter when memory is low! 2315 if (sModifiedPageQueue.Count() < kNumPages) { 2316 sPageWriterCondition.Wait(3000000, true); 2317 // all 3 seconds when no one triggers us 2318 } 2319 2320 page_num_t modifiedPages = sModifiedPageQueue.Count(); 2321 if (modifiedPages == 0) 2322 continue; 2323 2324 if (modifiedPages <= pagesSinceLastSuccessfulWrite) { 2325 // We ran through the whole queue without being able to write a 2326 // single page. Take a break. 2327 snooze(500000); 2328 pagesSinceLastSuccessfulWrite = 0; 2329 } 2330 2331 #if ENABLE_SWAP_SUPPORT 2332 page_stats pageStats; 2333 get_page_stats(pageStats); 2334 bool activePaging = do_active_paging(pageStats); 2335 #endif 2336 2337 // depending on how urgent it becomes to get pages to disk, we adjust 2338 // our I/O priority 2339 uint32 lowPagesState = low_resource_state(B_KERNEL_RESOURCE_PAGES); 2340 int32 ioPriority = B_IDLE_PRIORITY; 2341 if (lowPagesState >= B_LOW_RESOURCE_CRITICAL 2342 || modifiedPages > MAX_PAGE_WRITER_IO_PRIORITY_THRESHOLD) { 2343 ioPriority = MAX_PAGE_WRITER_IO_PRIORITY; 2344 } else { 2345 ioPriority = (uint64)MAX_PAGE_WRITER_IO_PRIORITY * modifiedPages 2346 / MAX_PAGE_WRITER_IO_PRIORITY_THRESHOLD; 2347 } 2348 2349 thread_set_io_priority(ioPriority); 2350 2351 uint32 numPages = 0; 2352 run.PrepareNextRun(); 2353 2354 // TODO: make this laptop friendly, too (ie. only start doing 2355 // something if someone else did something or there is really 2356 // enough to do). 2357 2358 // collect pages to be written 2359 pageCollectionTime -= system_time(); 2360 2361 page_num_t maxPagesToSee = modifiedPages; 2362 2363 while (numPages < kNumPages && maxPagesToSee > 0) { 2364 vm_page *page = next_modified_page(maxPagesToSee); 2365 if (page == NULL) 2366 break; 2367 2368 PageCacheLocker cacheLocker(page, false); 2369 if (!cacheLocker.IsLocked()) 2370 continue; 2371 2372 VMCache *cache = page->Cache(); 2373 2374 // If the page is busy or its state has changed while we were 2375 // locking the cache, just ignore it. 2376 if (page->busy || page->State() != PAGE_STATE_MODIFIED) 2377 continue; 2378 2379 DEBUG_PAGE_ACCESS_START(page); 2380 2381 // Don't write back wired (locked) pages. 2382 if (page->WiredCount() > 0) { 2383 set_page_state(page, PAGE_STATE_ACTIVE); 2384 DEBUG_PAGE_ACCESS_END(page); 2385 continue; 2386 } 2387 2388 // Write back temporary pages only when we're actively paging. 2389 if (cache->temporary 2390 #if ENABLE_SWAP_SUPPORT 2391 && (!activePaging 2392 || !cache->CanWritePage( 2393 (off_t)page->cache_offset << PAGE_SHIFT)) 2394 #endif 2395 ) { 2396 // We can't/don't want to do anything with this page, so move it 2397 // to one of the other queues. 2398 if (page->mappings.IsEmpty()) 2399 set_page_state(page, PAGE_STATE_INACTIVE); 2400 else 2401 set_page_state(page, PAGE_STATE_ACTIVE); 2402 2403 DEBUG_PAGE_ACCESS_END(page); 2404 continue; 2405 } 2406 2407 // We need our own reference to the store, as it might currently be 2408 // destroyed. 2409 if (cache->AcquireUnreferencedStoreRef() != B_OK) { 2410 DEBUG_PAGE_ACCESS_END(page); 2411 cacheLocker.Unlock(); 2412 thread_yield(true); 2413 continue; 2414 } 2415 2416 run.AddPage(page); 2417 // TODO: We're possibly adding pages of different caches and 2418 // thus maybe of different underlying file systems here. This 2419 // is a potential problem for loop file systems/devices, since 2420 // we could mark a page busy that would need to be accessed 2421 // when writing back another page, thus causing a deadlock. 2422 2423 DEBUG_PAGE_ACCESS_END(page); 2424 2425 //dprintf("write page %p, cache %p (%ld)\n", page, page->cache, page->cache->ref_count); 2426 TPW(WritePage(page)); 2427 2428 cache->AcquireRefLocked(); 2429 numPages++; 2430 } 2431 2432 pageCollectionTime += system_time(); 2433 2434 if (numPages == 0) 2435 continue; 2436 2437 // write pages to disk and do all the cleanup 2438 pageWritingTime -= system_time(); 2439 uint32 failedPages = run.Go(); 2440 pageWritingTime += system_time(); 2441 2442 // debug output only... 2443 writtenPages += numPages; 2444 if (writtenPages >= 1024) { 2445 #ifdef TRACE_VM_PAGE 2446 bigtime_t now = system_time(); 2447 TRACE(("page writer: wrote 1024 pages (total: %llu ms, " 2448 "collect: %llu ms, write: %llu ms)\n", 2449 (now - lastWrittenTime) / 1000, 2450 pageCollectionTime / 1000, pageWritingTime / 1000)); 2451 lastWrittenTime = now; 2452 #endif 2453 writtenPages -= 1024; 2454 pageCollectionTime = 0; 2455 pageWritingTime = 0; 2456 } 2457 2458 if (failedPages == numPages) 2459 pagesSinceLastSuccessfulWrite += modifiedPages - maxPagesToSee; 2460 else 2461 pagesSinceLastSuccessfulWrite = 0; 2462 } 2463 2464 return B_OK; 2465 } 2466 2467 2468 // #pragma mark - 2469 2470 2471 // TODO: This should be done in the page daemon! 2472 #if 0 2473 #if ENABLE_SWAP_SUPPORT 2474 static bool 2475 free_page_swap_space(int32 index) 2476 { 2477 vm_page *page = vm_page_at_index(index); 2478 PageCacheLocker locker(page); 2479 if (!locker.IsLocked()) 2480 return false; 2481 2482 DEBUG_PAGE_ACCESS_START(page); 2483 2484 VMCache* cache = page->Cache(); 2485 if (cache->temporary && page->WiredCount() == 0 2486 && cache->HasPage(page->cache_offset << PAGE_SHIFT) 2487 && page->usage_count > 0) { 2488 // TODO: how to judge a page is highly active? 2489 if (swap_free_page_swap_space(page)) { 2490 // We need to mark the page modified, since otherwise it could be 2491 // stolen and we'd lose its data. 2492 vm_page_set_state(page, PAGE_STATE_MODIFIED); 2493 TD(FreedPageSwap(page)); 2494 DEBUG_PAGE_ACCESS_END(page); 2495 return true; 2496 } 2497 } 2498 DEBUG_PAGE_ACCESS_END(page); 2499 return false; 2500 } 2501 #endif 2502 #endif // 0 2503 2504 2505 static vm_page * 2506 find_cached_page_candidate(struct vm_page &marker) 2507 { 2508 DEBUG_PAGE_ACCESS_CHECK(&marker); 2509 2510 InterruptsSpinLocker locker(sCachedPageQueue.GetLock()); 2511 vm_page *page; 2512 2513 if (marker.State() == PAGE_STATE_UNUSED) { 2514 // Get the first free pages of the (in)active queue 2515 page = sCachedPageQueue.Head(); 2516 } else { 2517 // Get the next page of the current queue 2518 if (marker.State() != PAGE_STATE_CACHED) { 2519 panic("invalid marker %p state", &marker); 2520 return NULL; 2521 } 2522 2523 page = sCachedPageQueue.Next(&marker); 2524 sCachedPageQueue.Remove(&marker); 2525 marker.SetState(PAGE_STATE_UNUSED); 2526 } 2527 2528 while (page != NULL) { 2529 if (!page->busy) { 2530 // we found a candidate, insert marker 2531 marker.SetState(PAGE_STATE_CACHED); 2532 sCachedPageQueue.InsertAfter(page, &marker); 2533 return page; 2534 } 2535 2536 page = sCachedPageQueue.Next(page); 2537 } 2538 2539 return NULL; 2540 } 2541 2542 2543 static bool 2544 free_cached_page(vm_page *page, bool dontWait) 2545 { 2546 // try to lock the page's cache 2547 if (vm_cache_acquire_locked_page_cache(page, dontWait) == NULL) 2548 return false; 2549 VMCache* cache = page->Cache(); 2550 2551 AutoLocker<VMCache> cacheLocker(cache, true); 2552 MethodDeleter<VMCache> _2(cache, &VMCache::ReleaseRefLocked); 2553 2554 // check again if that page is still a candidate 2555 if (page->busy || page->State() != PAGE_STATE_CACHED) 2556 return false; 2557 2558 DEBUG_PAGE_ACCESS_START(page); 2559 2560 PAGE_ASSERT(page, !page->IsMapped()); 2561 PAGE_ASSERT(page, !page->modified); 2562 2563 // we can now steal this page 2564 2565 cache->RemovePage(page); 2566 // Now the page doesn't have cache anymore, so no one else (e.g. 2567 // vm_page_allocate_page_run() can pick it up), since they would be 2568 // required to lock the cache first, which would fail. 2569 2570 sCachedPageQueue.RemoveUnlocked(page); 2571 return true; 2572 } 2573 2574 2575 static uint32 2576 free_cached_pages(uint32 pagesToFree, bool dontWait) 2577 { 2578 vm_page marker; 2579 init_page_marker(marker); 2580 2581 uint32 pagesFreed = 0; 2582 2583 while (pagesFreed < pagesToFree) { 2584 vm_page *page = find_cached_page_candidate(marker); 2585 if (page == NULL) 2586 break; 2587 2588 if (free_cached_page(page, dontWait)) { 2589 ReadLocker locker(sFreePageQueuesLock); 2590 page->SetState(PAGE_STATE_FREE); 2591 DEBUG_PAGE_ACCESS_END(page); 2592 sFreePageQueue.PrependUnlocked(page); 2593 locker.Unlock(); 2594 2595 TA(StolenPage()); 2596 2597 pagesFreed++; 2598 } 2599 } 2600 2601 remove_page_marker(marker); 2602 2603 return pagesFreed; 2604 } 2605 2606 2607 static void 2608 idle_scan_active_pages(page_stats& pageStats) 2609 { 2610 VMPageQueue& queue = sActivePageQueue; 2611 2612 // We want to scan the whole queue in roughly kIdleRunsForFullQueue runs. 2613 uint32 maxToScan = queue.Count() / kIdleRunsForFullQueue + 1; 2614 2615 while (maxToScan > 0) { 2616 maxToScan--; 2617 2618 // Get the next page. Note that we don't bother to lock here. We go with 2619 // the assumption that on all architectures reading/writing pointers is 2620 // atomic. Beyond that it doesn't really matter. We have to unlock the 2621 // queue anyway to lock the page's cache, and we'll recheck afterwards. 2622 vm_page* page = queue.Head(); 2623 if (page == NULL) 2624 break; 2625 2626 // lock the page's cache 2627 VMCache* cache = vm_cache_acquire_locked_page_cache(page, true); 2628 if (cache == NULL) 2629 continue; 2630 2631 if (page->State() != PAGE_STATE_ACTIVE) { 2632 // page is no longer in the cache or in this queue 2633 cache->ReleaseRefAndUnlock(); 2634 continue; 2635 } 2636 2637 if (page->busy) { 2638 // page is busy -- requeue at the end 2639 vm_page_requeue(page, true); 2640 cache->ReleaseRefAndUnlock(); 2641 continue; 2642 } 2643 2644 DEBUG_PAGE_ACCESS_START(page); 2645 2646 // Get the page active/modified flags and update the page's usage count. 2647 // We completely unmap inactive temporary pages. This saves us to 2648 // iterate through the inactive list as well, since we'll be notified 2649 // via page fault whenever such an inactive page is used again. 2650 // We don't remove the mappings of non-temporary pages, since we 2651 // wouldn't notice when those would become unused and could thus be 2652 // moved to the cached list. 2653 int32 usageCount; 2654 if (page->WiredCount() > 0 || page->usage_count > 0 2655 || !cache->temporary) { 2656 usageCount = vm_clear_page_mapping_accessed_flags(page); 2657 } else 2658 usageCount = vm_remove_all_page_mappings_if_unaccessed(page); 2659 2660 if (usageCount > 0) { 2661 usageCount += page->usage_count + kPageUsageAdvance; 2662 if (usageCount > kPageUsageMax) 2663 usageCount = kPageUsageMax; 2664 // TODO: This would probably also be the place to reclaim swap space. 2665 } else { 2666 usageCount += page->usage_count - (int32)kPageUsageDecline; 2667 if (usageCount < 0) { 2668 usageCount = 0; 2669 set_page_state(page, PAGE_STATE_INACTIVE); 2670 } 2671 } 2672 2673 page->usage_count = usageCount; 2674 2675 DEBUG_PAGE_ACCESS_END(page); 2676 2677 cache->ReleaseRefAndUnlock(); 2678 } 2679 } 2680 2681 2682 static void 2683 full_scan_inactive_pages(page_stats& pageStats, int32 despairLevel) 2684 { 2685 int32 pagesToFree = pageStats.unsatisfiedReservations 2686 + sFreeOrCachedPagesTarget 2687 - (pageStats.totalFreePages + pageStats.cachedPages); 2688 if (pagesToFree <= 0) 2689 return; 2690 2691 bigtime_t time = system_time(); 2692 uint32 pagesScanned = 0; 2693 uint32 pagesToCached = 0; 2694 uint32 pagesToModified = 0; 2695 uint32 pagesToActive = 0; 2696 2697 // Determine how many pages at maximum to send to the modified queue. Since 2698 // it is relatively expensive to page out pages, we do that on a grander 2699 // scale only when things get desperate. 2700 uint32 maxToFlush = despairLevel <= 1 ? 32 : 10000; 2701 2702 vm_page marker; 2703 init_page_marker(marker); 2704 2705 VMPageQueue& queue = sInactivePageQueue; 2706 InterruptsSpinLocker queueLocker(queue.GetLock()); 2707 uint32 maxToScan = queue.Count(); 2708 2709 vm_page* nextPage = queue.Head(); 2710 2711 while (pagesToFree > 0 && maxToScan > 0) { 2712 maxToScan--; 2713 2714 // get the next page 2715 vm_page* page = nextPage; 2716 if (page == NULL) 2717 break; 2718 nextPage = queue.Next(page); 2719 2720 if (page->busy) 2721 continue; 2722 2723 // mark the position 2724 queue.InsertAfter(page, &marker); 2725 queueLocker.Unlock(); 2726 2727 // lock the page's cache 2728 VMCache* cache = vm_cache_acquire_locked_page_cache(page, true); 2729 if (cache == NULL || page->busy 2730 || page->State() != PAGE_STATE_INACTIVE) { 2731 if (cache != NULL) 2732 cache->ReleaseRefAndUnlock(); 2733 queueLocker.Lock(); 2734 nextPage = queue.Next(&marker); 2735 queue.Remove(&marker); 2736 continue; 2737 } 2738 2739 pagesScanned++; 2740 2741 DEBUG_PAGE_ACCESS_START(page); 2742 2743 // Get the accessed count, clear the accessed/modified flags and 2744 // unmap the page, if it hasn't been accessed. 2745 int32 usageCount; 2746 if (page->WiredCount() > 0) 2747 usageCount = vm_clear_page_mapping_accessed_flags(page); 2748 else 2749 usageCount = vm_remove_all_page_mappings_if_unaccessed(page); 2750 2751 // update usage count 2752 if (usageCount > 0) { 2753 usageCount += page->usage_count + kPageUsageAdvance; 2754 if (usageCount > kPageUsageMax) 2755 usageCount = kPageUsageMax; 2756 } else { 2757 usageCount += page->usage_count - (int32)kPageUsageDecline; 2758 if (usageCount < 0) 2759 usageCount = 0; 2760 } 2761 2762 page->usage_count = usageCount; 2763 2764 // Move to fitting queue or requeue: 2765 // * Active mapped pages go to the active queue. 2766 // * Inactive mapped (i.e. wired) pages are requeued. 2767 // * The remaining pages are cachable. Thus, if unmodified they go to 2768 // the cached queue, otherwise to the modified queue (up to a limit). 2769 // Note that until in the idle scanning we don't exempt pages of 2770 // temporary caches. Apparently we really need memory, so we better 2771 // page out memory as well. 2772 bool isMapped = page->IsMapped(); 2773 if (usageCount > 0) { 2774 if (isMapped) { 2775 set_page_state(page, PAGE_STATE_ACTIVE); 2776 pagesToActive++; 2777 } else 2778 vm_page_requeue(page, true); 2779 } else if (isMapped) { 2780 vm_page_requeue(page, true); 2781 } else if (!page->modified) { 2782 set_page_state(page, PAGE_STATE_CACHED); 2783 pagesToFree--; 2784 pagesToCached++; 2785 } else if (maxToFlush > 0) { 2786 set_page_state(page, PAGE_STATE_MODIFIED); 2787 maxToFlush--; 2788 pagesToModified++; 2789 } else 2790 vm_page_requeue(page, true); 2791 2792 DEBUG_PAGE_ACCESS_END(page); 2793 2794 cache->ReleaseRefAndUnlock(); 2795 2796 // remove the marker 2797 queueLocker.Lock(); 2798 nextPage = queue.Next(&marker); 2799 queue.Remove(&marker); 2800 } 2801 2802 queueLocker.Unlock(); 2803 2804 time = system_time() - time; 2805 TRACE_DAEMON(" -> inactive scan (%7lld us): scanned: %7lu, " 2806 "moved: %lu -> cached, %lu -> modified, %lu -> active\n", time, 2807 pagesScanned, pagesToCached, pagesToModified, pagesToActive); 2808 2809 // wake up the page writer, if we tossed it some pages 2810 if (pagesToModified > 0) 2811 sPageWriterCondition.WakeUp(); 2812 } 2813 2814 2815 static void 2816 full_scan_active_pages(page_stats& pageStats, int32 despairLevel) 2817 { 2818 vm_page marker; 2819 init_page_marker(marker); 2820 2821 VMPageQueue& queue = sActivePageQueue; 2822 InterruptsSpinLocker queueLocker(queue.GetLock()); 2823 uint32 maxToScan = queue.Count(); 2824 2825 int32 pagesToDeactivate = pageStats.unsatisfiedReservations 2826 + sFreeOrCachedPagesTarget 2827 - (pageStats.totalFreePages + pageStats.cachedPages) 2828 + std::max((int32)sInactivePagesTarget - (int32)maxToScan, (int32)0); 2829 if (pagesToDeactivate <= 0) 2830 return; 2831 2832 bigtime_t time = system_time(); 2833 uint32 pagesAccessed = 0; 2834 uint32 pagesToInactive = 0; 2835 uint32 pagesScanned = 0; 2836 2837 vm_page* nextPage = queue.Head(); 2838 2839 while (pagesToDeactivate > 0 && maxToScan > 0) { 2840 maxToScan--; 2841 2842 // get the next page 2843 vm_page* page = nextPage; 2844 if (page == NULL) 2845 break; 2846 nextPage = queue.Next(page); 2847 2848 if (page->busy) 2849 continue; 2850 2851 // mark the position 2852 queue.InsertAfter(page, &marker); 2853 queueLocker.Unlock(); 2854 2855 // lock the page's cache 2856 VMCache* cache = vm_cache_acquire_locked_page_cache(page, true); 2857 if (cache == NULL || page->busy || page->State() != PAGE_STATE_ACTIVE) { 2858 if (cache != NULL) 2859 cache->ReleaseRefAndUnlock(); 2860 queueLocker.Lock(); 2861 nextPage = queue.Next(&marker); 2862 queue.Remove(&marker); 2863 continue; 2864 } 2865 2866 pagesScanned++; 2867 2868 DEBUG_PAGE_ACCESS_START(page); 2869 2870 // Get the page active/modified flags and update the page's usage count. 2871 int32 usageCount = vm_clear_page_mapping_accessed_flags(page); 2872 2873 if (usageCount > 0) { 2874 usageCount += page->usage_count + kPageUsageAdvance; 2875 if (usageCount > kPageUsageMax) 2876 usageCount = kPageUsageMax; 2877 pagesAccessed++; 2878 // TODO: This would probably also be the place to reclaim swap space. 2879 } else { 2880 usageCount += page->usage_count - (int32)kPageUsageDecline; 2881 if (usageCount <= 0) { 2882 usageCount = 0; 2883 set_page_state(page, PAGE_STATE_INACTIVE); 2884 pagesToInactive++; 2885 } 2886 } 2887 2888 page->usage_count = usageCount; 2889 2890 DEBUG_PAGE_ACCESS_END(page); 2891 2892 cache->ReleaseRefAndUnlock(); 2893 2894 // remove the marker 2895 queueLocker.Lock(); 2896 nextPage = queue.Next(&marker); 2897 queue.Remove(&marker); 2898 } 2899 2900 time = system_time() - time; 2901 TRACE_DAEMON(" -> active scan (%7lld us): scanned: %7lu, " 2902 "moved: %lu -> inactive, encountered %lu accessed ones\n", time, 2903 pagesScanned, pagesToInactive, pagesAccessed); 2904 } 2905 2906 2907 static void 2908 page_daemon_idle_scan(page_stats& pageStats) 2909 { 2910 TRACE_DAEMON("page daemon: idle run\n"); 2911 2912 if (pageStats.totalFreePages < (int32)sFreePagesTarget) { 2913 // We want more actually free pages, so free some from the cached 2914 // ones. 2915 uint32 freed = free_cached_pages( 2916 sFreePagesTarget - pageStats.totalFreePages, false); 2917 if (freed > 0) 2918 unreserve_pages(freed); 2919 get_page_stats(pageStats); 2920 } 2921 2922 // Walk the active list and move pages to the inactive queue. 2923 get_page_stats(pageStats); 2924 idle_scan_active_pages(pageStats); 2925 } 2926 2927 2928 static void 2929 page_daemon_full_scan(page_stats& pageStats, int32 despairLevel) 2930 { 2931 TRACE_DAEMON("page daemon: full run: free: %lu, cached: %lu, " 2932 "to free: %lu\n", pageStats.totalFreePages, pageStats.cachedPages, 2933 pageStats.unsatisfiedReservations + sFreeOrCachedPagesTarget 2934 - (pageStats.totalFreePages + pageStats.cachedPages)); 2935 2936 // Walk the inactive list and transfer pages to the cached and modified 2937 // queues. 2938 full_scan_inactive_pages(pageStats, despairLevel); 2939 2940 // Free cached pages. Also wake up reservation waiters. 2941 get_page_stats(pageStats); 2942 int32 pagesToFree = pageStats.unsatisfiedReservations + sFreePagesTarget 2943 - (pageStats.totalFreePages); 2944 if (pagesToFree > 0) { 2945 uint32 freed = free_cached_pages(pagesToFree, true); 2946 if (freed > 0) 2947 unreserve_pages(freed); 2948 } 2949 2950 // Walk the active list and move pages to the inactive queue. 2951 get_page_stats(pageStats); 2952 full_scan_active_pages(pageStats, despairLevel); 2953 } 2954 2955 2956 static status_t 2957 page_daemon(void* /*unused*/) 2958 { 2959 int32 despairLevel = 0; 2960 2961 while (true) { 2962 sPageDaemonCondition.ClearActivated(); 2963 2964 // evaluate the free pages situation 2965 page_stats pageStats; 2966 get_page_stats(pageStats); 2967 2968 if (!do_active_paging(pageStats)) { 2969 // Things look good -- just maintain statistics and keep the pool 2970 // of actually free pages full enough. 2971 despairLevel = 0; 2972 page_daemon_idle_scan(pageStats); 2973 sPageDaemonCondition.Wait(kIdleScanWaitInterval, false); 2974 } else { 2975 // Not enough free pages. We need to do some real work. 2976 despairLevel = std::max(despairLevel + 1, (int32)3); 2977 page_daemon_full_scan(pageStats, despairLevel); 2978 2979 // Don't wait after the first full scan, but rather immediately 2980 // check whether we were successful in freeing enough pages and 2981 // re-run with increased despair level. The first scan is 2982 // conservative with respect to moving inactive modified pages to 2983 // the modified list to avoid thrashing. The second scan, however, 2984 // will not hold back. 2985 if (despairLevel > 1) 2986 snooze(kBusyScanWaitInterval); 2987 } 2988 } 2989 2990 return B_OK; 2991 } 2992 2993 2994 /*! Returns how many pages could *not* be reserved. 2995 */ 2996 static uint32 2997 reserve_pages(uint32 count, int priority, bool dontWait) 2998 { 2999 int32 dontTouch = kPageReserveForPriority[priority]; 3000 3001 while (true) { 3002 count -= reserve_some_pages(count, dontTouch); 3003 if (count == 0) 3004 return 0; 3005 3006 if (sUnsatisfiedPageReservations == 0) { 3007 count -= free_cached_pages(count, dontWait); 3008 if (count == 0) 3009 return count; 3010 } 3011 3012 if (dontWait) 3013 return count; 3014 3015 // we need to wait for pages to become available 3016 3017 MutexLocker pageDeficitLocker(sPageDeficitLock); 3018 3019 bool notifyDaemon = sUnsatisfiedPageReservations == 0; 3020 sUnsatisfiedPageReservations += count; 3021 3022 if (sUnreservedFreePages > dontTouch) { 3023 // the situation changed 3024 sUnsatisfiedPageReservations -= count; 3025 continue; 3026 } 3027 3028 PageReservationWaiter waiter; 3029 waiter.dontTouch = dontTouch; 3030 waiter.missing = count; 3031 waiter.thread = thread_get_current_thread(); 3032 waiter.threadPriority = waiter.thread->priority; 3033 3034 // insert ordered (i.e. after all waiters with higher or equal priority) 3035 PageReservationWaiter* otherWaiter = NULL; 3036 for (PageReservationWaiterList::Iterator it 3037 = sPageReservationWaiters.GetIterator(); 3038 (otherWaiter = it.Next()) != NULL;) { 3039 if (waiter < *otherWaiter) 3040 break; 3041 } 3042 3043 sPageReservationWaiters.InsertBefore(otherWaiter, &waiter); 3044 3045 thread_prepare_to_block(waiter.thread, 0, THREAD_BLOCK_TYPE_OTHER, 3046 "waiting for pages"); 3047 3048 if (notifyDaemon) 3049 sPageDaemonCondition.WakeUp(); 3050 3051 pageDeficitLocker.Unlock(); 3052 3053 low_resource(B_KERNEL_RESOURCE_PAGES, count, B_RELATIVE_TIMEOUT, 0); 3054 thread_block(); 3055 3056 pageDeficitLocker.Lock(); 3057 3058 return 0; 3059 } 3060 } 3061 3062 3063 // #pragma mark - private kernel API 3064 3065 3066 /*! Writes a range of modified pages of a cache to disk. 3067 You need to hold the VMCache lock when calling this function. 3068 Note that the cache lock is released in this function. 3069 \param cache The cache. 3070 \param firstPage Offset (in page size units) of the first page in the range. 3071 \param endPage End offset (in page size units) of the page range. The page 3072 at this offset is not included. 3073 */ 3074 status_t 3075 vm_page_write_modified_page_range(struct VMCache* cache, uint32 firstPage, 3076 uint32 endPage) 3077 { 3078 static const int32 kMaxPages = 256; 3079 int32 maxPages = cache->MaxPagesPerWrite(); 3080 if (maxPages < 0 || maxPages > kMaxPages) 3081 maxPages = kMaxPages; 3082 3083 const uint32 allocationFlags = HEAP_DONT_WAIT_FOR_MEMORY 3084 | HEAP_DONT_LOCK_KERNEL_SPACE; 3085 3086 PageWriteWrapper stackWrappers[2]; 3087 PageWriteWrapper* wrapperPool 3088 = new(malloc_flags(allocationFlags)) PageWriteWrapper[maxPages + 1]; 3089 if (wrapperPool == NULL) { 3090 // don't fail, just limit our capabilities 3091 wrapperPool = stackWrappers; 3092 maxPages = 1; 3093 } 3094 3095 int32 nextWrapper = 0; 3096 3097 PageWriteWrapper* wrappers[maxPages]; 3098 int32 usedWrappers = 0; 3099 3100 PageWriteTransfer transfer; 3101 bool transferEmpty = true; 3102 3103 VMCachePagesTree::Iterator it 3104 = cache->pages.GetIterator(firstPage, true, true); 3105 3106 while (true) { 3107 vm_page* page = it.Next(); 3108 if (page == NULL || page->cache_offset >= endPage) { 3109 if (transferEmpty) 3110 break; 3111 3112 page = NULL; 3113 } 3114 3115 if (page != NULL) { 3116 if (page->busy 3117 || (page->State() != PAGE_STATE_MODIFIED 3118 && !vm_test_map_modification(page))) { 3119 page = NULL; 3120 } 3121 } 3122 3123 PageWriteWrapper* wrapper = NULL; 3124 if (page != NULL) { 3125 wrapper = &wrapperPool[nextWrapper++]; 3126 if (nextWrapper > maxPages) 3127 nextWrapper = 0; 3128 3129 DEBUG_PAGE_ACCESS_START(page); 3130 3131 wrapper->SetTo(page); 3132 3133 if (transferEmpty || transfer.AddPage(page)) { 3134 if (transferEmpty) { 3135 transfer.SetTo(NULL, page, maxPages); 3136 transferEmpty = false; 3137 } 3138 3139 DEBUG_PAGE_ACCESS_END(page); 3140 3141 wrappers[usedWrappers++] = wrapper; 3142 continue; 3143 } 3144 3145 DEBUG_PAGE_ACCESS_END(page); 3146 } 3147 3148 if (transferEmpty) 3149 continue; 3150 3151 cache->Unlock(); 3152 status_t status = transfer.Schedule(0); 3153 cache->Lock(); 3154 3155 for (int32 i = 0; i < usedWrappers; i++) 3156 wrappers[i]->Done(status); 3157 3158 usedWrappers = 0; 3159 3160 if (page != NULL) { 3161 transfer.SetTo(NULL, page, maxPages); 3162 wrappers[usedWrappers++] = wrapper; 3163 } else 3164 transferEmpty = true; 3165 } 3166 3167 if (wrapperPool != stackWrappers) 3168 delete[] wrapperPool; 3169 3170 return B_OK; 3171 } 3172 3173 3174 /*! You need to hold the VMCache lock when calling this function. 3175 Note that the cache lock is released in this function. 3176 */ 3177 status_t 3178 vm_page_write_modified_pages(VMCache *cache) 3179 { 3180 return vm_page_write_modified_page_range(cache, 0, 3181 (cache->virtual_end + B_PAGE_SIZE - 1) >> PAGE_SHIFT); 3182 } 3183 3184 3185 /*! Schedules the page writer to write back the specified \a page. 3186 Note, however, that it might not do this immediately, and it can well 3187 take several seconds until the page is actually written out. 3188 */ 3189 void 3190 vm_page_schedule_write_page(vm_page *page) 3191 { 3192 PAGE_ASSERT(page, page->State() == PAGE_STATE_MODIFIED); 3193 3194 vm_page_requeue(page, false); 3195 3196 sPageWriterCondition.WakeUp(); 3197 } 3198 3199 3200 /*! Cache must be locked. 3201 */ 3202 void 3203 vm_page_schedule_write_page_range(struct VMCache *cache, uint32 firstPage, 3204 uint32 endPage) 3205 { 3206 uint32 modified = 0; 3207 for (VMCachePagesTree::Iterator it 3208 = cache->pages.GetIterator(firstPage, true, true); 3209 vm_page *page = it.Next();) { 3210 if (page->cache_offset >= endPage) 3211 break; 3212 3213 if (!page->busy && page->State() == PAGE_STATE_MODIFIED) { 3214 DEBUG_PAGE_ACCESS_START(page); 3215 vm_page_requeue(page, false); 3216 modified++; 3217 DEBUG_PAGE_ACCESS_END(page); 3218 } 3219 } 3220 3221 if (modified > 0) 3222 sPageWriterCondition.WakeUp(); 3223 } 3224 3225 3226 void 3227 vm_page_init_num_pages(kernel_args *args) 3228 { 3229 // calculate the size of memory by looking at the physical_memory_range array 3230 sPhysicalPageOffset = args->physical_memory_range[0].start / B_PAGE_SIZE; 3231 page_num_t physicalPagesEnd = sPhysicalPageOffset 3232 + args->physical_memory_range[0].size / B_PAGE_SIZE; 3233 3234 sNonExistingPages = 0; 3235 sIgnoredPages = args->ignored_physical_memory / B_PAGE_SIZE; 3236 3237 for (uint32 i = 1; i < args->num_physical_memory_ranges; i++) { 3238 page_num_t start = args->physical_memory_range[i].start / B_PAGE_SIZE; 3239 if (start > physicalPagesEnd) 3240 sNonExistingPages += start - physicalPagesEnd; 3241 physicalPagesEnd = start 3242 + args->physical_memory_range[i].size / B_PAGE_SIZE; 3243 3244 #ifdef LIMIT_AVAILABLE_MEMORY 3245 page_num_t available 3246 = physicalPagesEnd - sPhysicalPageOffset - sNonExistingPages; 3247 if (available > LIMIT_AVAILABLE_MEMORY * (1024 * 1024 / B_PAGE_SIZE)) { 3248 physicalPagesEnd = sPhysicalPageOffset + sNonExistingPages 3249 + LIMIT_AVAILABLE_MEMORY * (1024 * 1024 / B_PAGE_SIZE); 3250 break; 3251 } 3252 #endif 3253 } 3254 3255 TRACE(("first phys page = %#" B_PRIxPHYSADDR ", end %#" B_PRIxPHYSADDR "\n", 3256 sPhysicalPageOffset, physicalPagesEnd)); 3257 3258 sNumPages = physicalPagesEnd - sPhysicalPageOffset; 3259 } 3260 3261 3262 status_t 3263 vm_page_init(kernel_args *args) 3264 { 3265 TRACE(("vm_page_init: entry\n")); 3266 3267 // init page queues 3268 sModifiedPageQueue.Init("modified pages queue"); 3269 sInactivePageQueue.Init("inactive pages queue"); 3270 sActivePageQueue.Init("active pages queue"); 3271 sCachedPageQueue.Init("cached pages queue"); 3272 sFreePageQueue.Init("free pages queue"); 3273 sClearPageQueue.Init("clear pages queue"); 3274 3275 new (&sPageReservationWaiters) PageReservationWaiterList; 3276 3277 // map in the new free page table 3278 sPages = (vm_page *)vm_allocate_early(args, sNumPages * sizeof(vm_page), 3279 ~0L, B_KERNEL_READ_AREA | B_KERNEL_WRITE_AREA, 0); 3280 3281 TRACE(("vm_init: putting free_page_table @ %p, # ents %" B_PRIuPHYSADDR 3282 " (size %#" B_PRIxPHYSADDR ")\n", sPages, sNumPages, 3283 (phys_addr_t)(sNumPages * sizeof(vm_page)))); 3284 3285 // initialize the free page table 3286 for (uint32 i = 0; i < sNumPages; i++) { 3287 sPages[i].Init(sPhysicalPageOffset + i); 3288 sFreePageQueue.Append(&sPages[i]); 3289 3290 #if VM_PAGE_ALLOCATION_TRACKING_AVAILABLE 3291 sPages[i].allocation_tracking_info.Clear(); 3292 #endif 3293 } 3294 3295 sUnreservedFreePages = sNumPages; 3296 3297 TRACE(("initialized table\n")); 3298 3299 // mark the ranges between usable physical memory unused 3300 phys_addr_t previousEnd = 0; 3301 for (uint32 i = 0; i < args->num_physical_memory_ranges; i++) { 3302 phys_addr_t base = args->physical_memory_range[i].start; 3303 phys_size_t size = args->physical_memory_range[i].size; 3304 if (base > previousEnd) { 3305 mark_page_range_in_use(previousEnd / B_PAGE_SIZE, 3306 (base - previousEnd) / B_PAGE_SIZE, false); 3307 } 3308 previousEnd = base + size; 3309 } 3310 3311 // mark the allocated physical page ranges wired 3312 for (uint32 i = 0; i < args->num_physical_allocated_ranges; i++) { 3313 mark_page_range_in_use( 3314 args->physical_allocated_range[i].start / B_PAGE_SIZE, 3315 args->physical_allocated_range[i].size / B_PAGE_SIZE, true); 3316 } 3317 3318 // The target of actually free pages. This must be at least the system 3319 // reserve, but should be a few more pages, so we don't have to extract 3320 // a cached page with each allocation. 3321 sFreePagesTarget = VM_PAGE_RESERVE_USER 3322 + std::max((page_num_t)32, (sNumPages - sNonExistingPages) / 1024); 3323 3324 // The target of free + cached and inactive pages. On low-memory machines 3325 // keep things tight. free + cached is the pool of immediately allocatable 3326 // pages. We want a few inactive pages, so when we're actually paging, we 3327 // have a reasonably large set of pages to work with. 3328 if (sUnreservedFreePages < 16 * 1024) { 3329 sFreeOrCachedPagesTarget = sFreePagesTarget + 128; 3330 sInactivePagesTarget = sFreePagesTarget / 3; 3331 } else { 3332 sFreeOrCachedPagesTarget = 2 * sFreePagesTarget; 3333 sInactivePagesTarget = sFreePagesTarget / 2; 3334 } 3335 3336 TRACE(("vm_page_init: exit\n")); 3337 3338 return B_OK; 3339 } 3340 3341 3342 status_t 3343 vm_page_init_post_area(kernel_args *args) 3344 { 3345 void *dummy; 3346 3347 dummy = sPages; 3348 create_area("page structures", &dummy, B_EXACT_ADDRESS, 3349 PAGE_ALIGN(sNumPages * sizeof(vm_page)), B_ALREADY_WIRED, 3350 B_KERNEL_READ_AREA | B_KERNEL_WRITE_AREA); 3351 3352 add_debugger_command("page_stats", &dump_page_stats, 3353 "Dump statistics about page usage"); 3354 add_debugger_command_etc("page", &dump_page, 3355 "Dump page info", 3356 "[ \"-p\" | \"-v\" ] [ \"-m\" ] <address>\n" 3357 "Prints information for the physical page. If neither \"-p\" nor\n" 3358 "\"-v\" are given, the provided address is interpreted as address of\n" 3359 "the vm_page data structure for the page in question. If \"-p\" is\n" 3360 "given, the address is the physical address of the page. If \"-v\" is\n" 3361 "given, the address is interpreted as virtual address in the current\n" 3362 "thread's address space and for the page it is mapped to (if any)\n" 3363 "information are printed. If \"-m\" is specified, the command will\n" 3364 "search all known address spaces for mappings to that page and print\n" 3365 "them.\n", 0); 3366 add_debugger_command("page_queue", &dump_page_queue, "Dump page queue"); 3367 add_debugger_command("find_page", &find_page, 3368 "Find out which queue a page is actually in"); 3369 3370 #ifdef TRACK_PAGE_USAGE_STATS 3371 add_debugger_command_etc("page_usage", &dump_page_usage_stats, 3372 "Dumps statistics about page usage counts", 3373 "\n" 3374 "Dumps statistics about page usage counts.\n", 3375 B_KDEBUG_DONT_PARSE_ARGUMENTS); 3376 #endif 3377 3378 #if VM_PAGE_ALLOCATION_TRACKING_AVAILABLE 3379 add_debugger_command_etc("page_allocations_per_caller", 3380 &dump_page_allocations_per_caller, 3381 "Dump current page allocations summed up per caller", 3382 "[ -d <caller> ] [ -r ]\n" 3383 "The current allocations will by summed up by caller (their count)\n" 3384 "printed in decreasing order by count.\n" 3385 "If \"-d\" is given, each allocation for caller <caller> is printed\n" 3386 "including the respective stack trace.\n" 3387 "If \"-r\" is given, the allocation infos are reset after gathering\n" 3388 "the information, so the next command invocation will only show the\n" 3389 "allocations made after the reset.\n", 0); 3390 add_debugger_command_etc("page_allocation_infos", 3391 &dump_page_allocation_infos, 3392 "Dump current page allocations", 3393 "[ --stacktrace ] [ -p <page number> ] [ --team <team ID> ] " 3394 "[ --thread <thread ID> ]\n" 3395 "The current allocations filtered by optional values will be printed.\n" 3396 "The optional \"-p\" page number filters for a specific page,\n" 3397 "with \"--team\" and \"--thread\" allocations by specific teams\n" 3398 "and/or threads can be filtered (these only work if a corresponding\n" 3399 "tracing entry is still available).\n" 3400 "If \"--stacktrace\" is given, then stack traces of the allocation\n" 3401 "callers are printed, where available\n", 0); 3402 #endif 3403 3404 return B_OK; 3405 } 3406 3407 3408 status_t 3409 vm_page_init_post_thread(kernel_args *args) 3410 { 3411 new (&sFreePageCondition) ConditionVariable; 3412 sFreePageCondition.Publish(&sFreePageQueue, "free page"); 3413 3414 // create a kernel thread to clear out pages 3415 3416 thread_id thread = spawn_kernel_thread(&page_scrubber, "page scrubber", 3417 B_LOWEST_ACTIVE_PRIORITY, NULL); 3418 resume_thread(thread); 3419 3420 // start page writer 3421 3422 sPageWriterCondition.Init("page writer"); 3423 3424 thread = spawn_kernel_thread(&page_writer, "page writer", 3425 B_NORMAL_PRIORITY + 1, NULL); 3426 resume_thread(thread); 3427 3428 // start page daemon 3429 3430 sPageDaemonCondition.Init("page daemon"); 3431 3432 thread = spawn_kernel_thread(&page_daemon, "page daemon", 3433 B_NORMAL_PRIORITY, NULL); 3434 resume_thread(thread); 3435 3436 return B_OK; 3437 } 3438 3439 3440 status_t 3441 vm_mark_page_inuse(page_num_t page) 3442 { 3443 return vm_mark_page_range_inuse(page, 1); 3444 } 3445 3446 3447 status_t 3448 vm_mark_page_range_inuse(page_num_t startPage, page_num_t length) 3449 { 3450 return mark_page_range_in_use(startPage, length, false); 3451 } 3452 3453 3454 /*! Unreserve pages previously reserved with vm_page_reserve_pages(). 3455 */ 3456 void 3457 vm_page_unreserve_pages(vm_page_reservation* reservation) 3458 { 3459 uint32 count = reservation->count; 3460 reservation->count = 0; 3461 3462 if (count == 0) 3463 return; 3464 3465 TA(UnreservePages(count)); 3466 3467 unreserve_pages(count); 3468 } 3469 3470 3471 /*! With this call, you can reserve a number of free pages in the system. 3472 They will only be handed out to someone who has actually reserved them. 3473 This call returns as soon as the number of requested pages has been 3474 reached. 3475 The caller must not hold any cache lock or the function might deadlock. 3476 */ 3477 void 3478 vm_page_reserve_pages(vm_page_reservation* reservation, uint32 count, 3479 int priority) 3480 { 3481 reservation->count = count; 3482 3483 if (count == 0) 3484 return; 3485 3486 TA(ReservePages(count)); 3487 3488 reserve_pages(count, priority, false); 3489 } 3490 3491 3492 bool 3493 vm_page_try_reserve_pages(vm_page_reservation* reservation, uint32 count, 3494 int priority) 3495 { 3496 if (count == 0) { 3497 reservation->count = count; 3498 return true; 3499 } 3500 3501 uint32 remaining = reserve_pages(count, priority, true); 3502 if (remaining == 0) { 3503 TA(ReservePages(count)); 3504 reservation->count = count; 3505 return true; 3506 } 3507 3508 unreserve_pages(count - remaining); 3509 3510 return false; 3511 } 3512 3513 3514 vm_page * 3515 vm_page_allocate_page(vm_page_reservation* reservation, uint32 flags) 3516 { 3517 uint32 pageState = flags & VM_PAGE_ALLOC_STATE; 3518 ASSERT(pageState != PAGE_STATE_FREE); 3519 ASSERT(pageState != PAGE_STATE_CLEAR); 3520 3521 ASSERT(reservation->count > 0); 3522 reservation->count--; 3523 3524 VMPageQueue* queue; 3525 VMPageQueue* otherQueue; 3526 3527 if ((flags & VM_PAGE_ALLOC_CLEAR) != 0) { 3528 queue = &sClearPageQueue; 3529 otherQueue = &sFreePageQueue; 3530 } else { 3531 queue = &sFreePageQueue; 3532 otherQueue = &sClearPageQueue; 3533 } 3534 3535 ReadLocker locker(sFreePageQueuesLock); 3536 3537 vm_page* page = queue->RemoveHeadUnlocked(); 3538 if (page == NULL) { 3539 // if the primary queue was empty, grab the page from the 3540 // secondary queue 3541 page = otherQueue->RemoveHeadUnlocked(); 3542 3543 if (page == NULL) { 3544 // Unlikely, but possible: the page we have reserved has moved 3545 // between the queues after we checked the first queue. Grab the 3546 // write locker to make sure this doesn't happen again. 3547 locker.Unlock(); 3548 WriteLocker writeLocker(sFreePageQueuesLock); 3549 3550 page = queue->RemoveHead(); 3551 if (page == NULL) 3552 otherQueue->RemoveHead(); 3553 3554 if (page == NULL) { 3555 panic("Had reserved page, but there is none!"); 3556 return NULL; 3557 } 3558 3559 // downgrade to read lock 3560 locker.Lock(); 3561 } 3562 } 3563 3564 if (page->CacheRef() != NULL) 3565 panic("supposed to be free page %p has cache\n", page); 3566 3567 DEBUG_PAGE_ACCESS_START(page); 3568 3569 int oldPageState = page->State(); 3570 page->SetState(pageState); 3571 page->busy = (flags & VM_PAGE_ALLOC_BUSY) != 0; 3572 page->usage_count = 0; 3573 page->accessed = false; 3574 page->modified = false; 3575 3576 locker.Unlock(); 3577 3578 if (pageState < PAGE_STATE_FIRST_UNQUEUED) 3579 sPageQueues[pageState].AppendUnlocked(page); 3580 3581 // clear the page, if we had to take it from the free queue and a clear 3582 // page was requested 3583 if ((flags & VM_PAGE_ALLOC_CLEAR) != 0 && oldPageState != PAGE_STATE_CLEAR) 3584 clear_page(page); 3585 3586 #if VM_PAGE_ALLOCATION_TRACKING_AVAILABLE 3587 page->allocation_tracking_info.Init( 3588 TA(AllocatePage(page->physical_page_number))); 3589 #else 3590 TA(AllocatePage(page->physical_page_number)); 3591 #endif 3592 3593 return page; 3594 } 3595 3596 3597 static void 3598 allocate_page_run_cleanup(VMPageQueue::PageList& freePages, 3599 VMPageQueue::PageList& clearPages) 3600 { 3601 while (vm_page* page = freePages.RemoveHead()) { 3602 page->busy = false; 3603 page->SetState(PAGE_STATE_FREE); 3604 DEBUG_PAGE_ACCESS_END(page); 3605 sFreePageQueue.PrependUnlocked(page); 3606 } 3607 3608 while (vm_page* page = clearPages.RemoveHead()) { 3609 page->busy = false; 3610 page->SetState(PAGE_STATE_CLEAR); 3611 DEBUG_PAGE_ACCESS_END(page); 3612 sClearPageQueue.PrependUnlocked(page); 3613 } 3614 } 3615 3616 3617 /*! Tries to allocate the a contiguous run of \a length pages starting at 3618 index \a start. 3619 3620 The caller must have write-locked the free/clear page queues. The function 3621 will unlock regardless of whether it succeeds or fails. 3622 3623 If the function fails, it cleans up after itself, i.e. it will free all 3624 pages it managed to allocate. 3625 3626 \param start The start index (into \c sPages) of the run. 3627 \param length The number of pages to allocate. 3628 \param flags Page allocation flags. Encodes the state the function shall 3629 set the allocated pages to, whether the pages shall be marked busy 3630 (VM_PAGE_ALLOC_BUSY), and whether the pages shall be cleared 3631 (VM_PAGE_ALLOC_CLEAR). 3632 \param freeClearQueueLocker Locked WriteLocker for the free/clear page 3633 queues in locked state. Will be unlocked by the function. 3634 \return The index of the first page that could not be allocated. \a length 3635 is returned when the function was successful. 3636 */ 3637 static page_num_t 3638 allocate_page_run(page_num_t start, page_num_t length, uint32 flags, 3639 WriteLocker& freeClearQueueLocker) 3640 { 3641 uint32 pageState = flags & VM_PAGE_ALLOC_STATE; 3642 ASSERT(pageState != PAGE_STATE_FREE); 3643 ASSERT(pageState != PAGE_STATE_CLEAR); 3644 ASSERT(start + length <= sNumPages); 3645 3646 // Pull the free/clear pages out of their respective queues. Cached pages 3647 // are allocated later. 3648 page_num_t cachedPages = 0; 3649 VMPageQueue::PageList freePages; 3650 VMPageQueue::PageList clearPages; 3651 page_num_t i = 0; 3652 for (; i < length; i++) { 3653 bool pageAllocated = true; 3654 bool noPage = false; 3655 vm_page& page = sPages[start + i]; 3656 switch (page.State()) { 3657 case PAGE_STATE_CLEAR: 3658 DEBUG_PAGE_ACCESS_START(&page); 3659 sClearPageQueue.Remove(&page); 3660 clearPages.Add(&page); 3661 break; 3662 case PAGE_STATE_FREE: 3663 DEBUG_PAGE_ACCESS_START(&page); 3664 sFreePageQueue.Remove(&page); 3665 freePages.Add(&page); 3666 break; 3667 case PAGE_STATE_CACHED: 3668 // We allocate cached pages later. 3669 cachedPages++; 3670 pageAllocated = false; 3671 break; 3672 3673 default: 3674 // Probably a page was cached when our caller checked. Now it's 3675 // gone and we have to abort. 3676 noPage = true; 3677 break; 3678 } 3679 3680 if (noPage) 3681 break; 3682 3683 if (pageAllocated) { 3684 page.SetState(flags & VM_PAGE_ALLOC_STATE); 3685 page.busy = (flags & VM_PAGE_ALLOC_BUSY) != 0; 3686 page.usage_count = 0; 3687 page.accessed = false; 3688 page.modified = false; 3689 } 3690 } 3691 3692 if (i < length) { 3693 // failed to allocate a page -- free all that we've got 3694 allocate_page_run_cleanup(freePages, clearPages); 3695 return i; 3696 } 3697 3698 freeClearQueueLocker.Unlock(); 3699 3700 if (cachedPages > 0) { 3701 // allocate the pages that weren't free but cached 3702 page_num_t freedCachedPages = 0; 3703 page_num_t nextIndex = start; 3704 vm_page* freePage = freePages.Head(); 3705 vm_page* clearPage = clearPages.Head(); 3706 while (cachedPages > 0) { 3707 // skip, if we've already got the page 3708 if (freePage != NULL && size_t(freePage - sPages) == nextIndex) { 3709 freePage = freePages.GetNext(freePage); 3710 nextIndex++; 3711 continue; 3712 } 3713 if (clearPage != NULL && size_t(clearPage - sPages) == nextIndex) { 3714 clearPage = clearPages.GetNext(clearPage); 3715 nextIndex++; 3716 continue; 3717 } 3718 3719 // free the page, if it is still cached 3720 vm_page& page = sPages[nextIndex]; 3721 if (!free_cached_page(&page, false)) { 3722 // TODO: if the page turns out to have been freed already, 3723 // there would be no need to fail 3724 break; 3725 } 3726 3727 page.SetState(flags & VM_PAGE_ALLOC_STATE); 3728 page.busy = (flags & VM_PAGE_ALLOC_BUSY) != 0; 3729 page.usage_count = 0; 3730 page.accessed = false; 3731 page.modified = false; 3732 3733 freePages.InsertBefore(freePage, &page); 3734 freedCachedPages++; 3735 cachedPages--; 3736 nextIndex++; 3737 } 3738 3739 // If we have freed cached pages, we need to balance things. 3740 if (freedCachedPages > 0) 3741 unreserve_pages(freedCachedPages); 3742 3743 if (nextIndex - start < length) { 3744 // failed to allocate all cached pages -- free all that we've got 3745 freeClearQueueLocker.Lock(); 3746 allocate_page_run_cleanup(freePages, clearPages); 3747 freeClearQueueLocker.Unlock(); 3748 3749 return nextIndex - start; 3750 } 3751 } 3752 3753 // clear pages, if requested 3754 if ((flags & VM_PAGE_ALLOC_CLEAR) != 0) { 3755 for (VMPageQueue::PageList::Iterator it = freePages.GetIterator(); 3756 vm_page* page = it.Next();) { 3757 clear_page(page); 3758 } 3759 } 3760 3761 // add pages to target queue 3762 if (pageState < PAGE_STATE_FIRST_UNQUEUED) { 3763 freePages.MoveFrom(&clearPages); 3764 sPageQueues[pageState].AppendUnlocked(freePages, length); 3765 } 3766 3767 // Note: We don't unreserve the pages since we pulled them out of the 3768 // free/clear queues without adjusting sUnreservedFreePages. 3769 3770 #if VM_PAGE_ALLOCATION_TRACKING_AVAILABLE 3771 AbstractTraceEntryWithStackTrace* traceEntry 3772 = TA(AllocatePageRun(start, length)); 3773 3774 for (page_num_t i = start; i < start + length; i++) 3775 sPages[i].allocation_tracking_info.Init(traceEntry); 3776 #else 3777 TA(AllocatePageRun(start, length)); 3778 #endif 3779 3780 return length; 3781 } 3782 3783 3784 /*! Allocate a physically contiguous range of pages. 3785 3786 \param flags Page allocation flags. Encodes the state the function shall 3787 set the allocated pages to, whether the pages shall be marked busy 3788 (VM_PAGE_ALLOC_BUSY), and whether the pages shall be cleared 3789 (VM_PAGE_ALLOC_CLEAR). 3790 \param length The number of contiguous pages to allocate. 3791 \param restrictions Restrictions to the physical addresses of the page run 3792 to allocate, including \c low_address, the first acceptable physical 3793 address where the page run may start, \c high_address, the last 3794 acceptable physical address where the page run may end (i.e. it must 3795 hold \code runStartAddress + length <= high_address \endcode), 3796 \c alignment, the alignment of the page run start address, and 3797 \c boundary, multiples of which the page run must not cross. 3798 Values set to \c 0 are ignored. 3799 \param priority The page reservation priority (as passed to 3800 vm_page_reserve_pages()). 3801 \return The first page of the allocated page run on success; \c NULL 3802 when the allocation failed. 3803 */ 3804 vm_page* 3805 vm_page_allocate_page_run(uint32 flags, page_num_t length, 3806 const physical_address_restrictions* restrictions, int priority) 3807 { 3808 // compute start and end page index 3809 page_num_t requestedStart 3810 = std::max(restrictions->low_address / B_PAGE_SIZE, sPhysicalPageOffset) 3811 - sPhysicalPageOffset; 3812 page_num_t start = requestedStart; 3813 page_num_t end; 3814 if (restrictions->high_address > 0) { 3815 end = std::max(restrictions->high_address / B_PAGE_SIZE, 3816 sPhysicalPageOffset) 3817 - sPhysicalPageOffset; 3818 end = std::min(end, sNumPages); 3819 } else 3820 end = sNumPages; 3821 3822 // compute alignment mask 3823 page_num_t alignmentMask 3824 = std::max(restrictions->alignment / B_PAGE_SIZE, (phys_addr_t)1) - 1; 3825 ASSERT(((alignmentMask + 1) & alignmentMask) == 0); 3826 // alignment must be a power of 2 3827 3828 // compute the boundary shift 3829 uint32 boundaryShift = 0; 3830 if (restrictions->boundary != 0) { 3831 page_num_t boundary = restrictions->boundary / B_PAGE_SIZE; 3832 // boundary must be a power of two and not less than alignment and 3833 // length 3834 ASSERT(((boundary - 1) & boundary) == 0); 3835 ASSERT(boundary >= alignmentMask + 1); 3836 ASSERT(boundary >= length); 3837 3838 while ((boundary >>= 1) > 0) 3839 boundaryShift++; 3840 } 3841 3842 vm_page_reservation reservation; 3843 vm_page_reserve_pages(&reservation, length, priority); 3844 3845 WriteLocker freeClearQueueLocker(sFreePageQueuesLock); 3846 3847 // First we try to get a run with free pages only. If that fails, we also 3848 // consider cached pages. If there are only few free pages and many cached 3849 // ones, the odds are that we won't find enough contiguous ones, so we skip 3850 // the first iteration in this case. 3851 int32 freePages = sUnreservedFreePages; 3852 int useCached = freePages > 0 && (page_num_t)freePages > 2 * length ? 0 : 1; 3853 3854 for (;;) { 3855 if (alignmentMask != 0 || boundaryShift != 0) { 3856 page_num_t offsetStart = start + sPhysicalPageOffset; 3857 3858 // enforce alignment 3859 if ((offsetStart & alignmentMask) != 0) { 3860 offsetStart = ((offsetStart + alignmentMask) & ~alignmentMask) 3861 - sPhysicalPageOffset; 3862 } 3863 3864 // enforce boundary 3865 if (offsetStart << boundaryShift 3866 != (offsetStart + length - 1) << boundaryShift) { 3867 offsetStart = (offsetStart + length - 1) << boundaryShift 3868 >> boundaryShift; 3869 } 3870 3871 start = offsetStart - sPhysicalPageOffset; 3872 } 3873 3874 if (start + length > end) { 3875 if (useCached == 0) { 3876 // The first iteration with free pages only was unsuccessful. 3877 // Try again also considering cached pages. 3878 useCached = 1; 3879 start = requestedStart; 3880 continue; 3881 } 3882 3883 dprintf("vm_page_allocate_page_run(): Failed to allocate run of " 3884 "length %" B_PRIuPHYSADDR " in second iteration!", length); 3885 3886 freeClearQueueLocker.Unlock(); 3887 vm_page_unreserve_pages(&reservation); 3888 return NULL; 3889 } 3890 3891 bool foundRun = true; 3892 page_num_t i; 3893 for (i = 0; i < length; i++) { 3894 uint32 pageState = sPages[start + i].State(); 3895 if (pageState != PAGE_STATE_FREE 3896 && pageState != PAGE_STATE_CLEAR 3897 && (pageState != PAGE_STATE_CACHED || useCached == 0)) { 3898 foundRun = false; 3899 break; 3900 } 3901 } 3902 3903 if (foundRun) { 3904 i = allocate_page_run(start, length, flags, freeClearQueueLocker); 3905 if (i == length) 3906 return &sPages[start]; 3907 3908 // apparently a cached page couldn't be allocated -- skip it and 3909 // continue 3910 freeClearQueueLocker.Lock(); 3911 } 3912 3913 start += i + 1; 3914 } 3915 } 3916 3917 3918 vm_page * 3919 vm_page_at_index(int32 index) 3920 { 3921 return &sPages[index]; 3922 } 3923 3924 3925 vm_page * 3926 vm_lookup_page(page_num_t pageNumber) 3927 { 3928 if (pageNumber < sPhysicalPageOffset) 3929 return NULL; 3930 3931 pageNumber -= sPhysicalPageOffset; 3932 if (pageNumber >= sNumPages) 3933 return NULL; 3934 3935 return &sPages[pageNumber]; 3936 } 3937 3938 3939 bool 3940 vm_page_is_dummy(struct vm_page *page) 3941 { 3942 return page < sPages || page >= sPages + sNumPages; 3943 } 3944 3945 3946 /*! Free the page that belonged to a certain cache. 3947 You can use vm_page_set_state() manually if you prefer, but only 3948 if the page does not equal PAGE_STATE_MODIFIED. 3949 */ 3950 void 3951 vm_page_free(VMCache *cache, vm_page *page) 3952 { 3953 PAGE_ASSERT(page, page->State() != PAGE_STATE_FREE 3954 && page->State() != PAGE_STATE_CLEAR); 3955 3956 if (page->State() == PAGE_STATE_MODIFIED && cache->temporary) 3957 atomic_add(&sModifiedTemporaryPages, -1); 3958 3959 free_page(page, false); 3960 } 3961 3962 3963 void 3964 vm_page_set_state(vm_page *page, int pageState) 3965 { 3966 PAGE_ASSERT(page, page->State() != PAGE_STATE_FREE 3967 && page->State() != PAGE_STATE_CLEAR); 3968 3969 if (pageState == PAGE_STATE_FREE || pageState == PAGE_STATE_CLEAR) 3970 free_page(page, pageState == PAGE_STATE_CLEAR); 3971 else 3972 set_page_state(page, pageState); 3973 } 3974 3975 3976 /*! Moves a page to either the tail of the head of its current queue, 3977 depending on \a tail. 3978 The page must have a cache and the cache must be locked! 3979 */ 3980 void 3981 vm_page_requeue(struct vm_page *page, bool tail) 3982 { 3983 PAGE_ASSERT(page, page->Cache() != NULL); 3984 page->Cache()->AssertLocked(); 3985 // DEBUG_PAGE_ACCESS_CHECK(page); 3986 // TODO: This assertion cannot be satisfied by idle_scan_active_pages() 3987 // when it requeues busy pages. The reason is that vm_soft_fault() 3988 // (respectively fault_get_page()) and the file cache keep newly 3989 // allocated pages accessed while they are reading them from disk. It 3990 // would probably be better to change that code and reenable this 3991 // check. 3992 3993 VMPageQueue *queue = NULL; 3994 3995 switch (page->State()) { 3996 case PAGE_STATE_ACTIVE: 3997 queue = &sActivePageQueue; 3998 break; 3999 case PAGE_STATE_INACTIVE: 4000 queue = &sInactivePageQueue; 4001 break; 4002 case PAGE_STATE_MODIFIED: 4003 queue = &sModifiedPageQueue; 4004 break; 4005 case PAGE_STATE_CACHED: 4006 queue = &sCachedPageQueue; 4007 break; 4008 case PAGE_STATE_FREE: 4009 case PAGE_STATE_CLEAR: 4010 panic("vm_page_requeue() called for free/clear page %p", page); 4011 return; 4012 case PAGE_STATE_WIRED: 4013 case PAGE_STATE_UNUSED: 4014 return; 4015 default: 4016 panic("vm_page_touch: vm_page %p in invalid state %d\n", 4017 page, page->State()); 4018 break; 4019 } 4020 4021 queue->RequeueUnlocked(page, tail); 4022 } 4023 4024 4025 page_num_t 4026 vm_page_num_pages(void) 4027 { 4028 return sNumPages - sNonExistingPages; 4029 } 4030 4031 4032 /*! There is a subtle distinction between the page counts returned by 4033 this function and vm_page_num_free_pages(): 4034 The latter returns the number of pages that are completely uncommitted, 4035 whereas this one returns the number of pages that are available for 4036 use by being reclaimed as well (IOW it factors in things like cache pages 4037 as available). 4038 */ 4039 page_num_t 4040 vm_page_num_available_pages(void) 4041 { 4042 return vm_available_memory() / B_PAGE_SIZE; 4043 } 4044 4045 4046 page_num_t 4047 vm_page_num_free_pages(void) 4048 { 4049 int32 count = sUnreservedFreePages + sCachedPageQueue.Count(); 4050 return count > 0 ? count : 0; 4051 } 4052 4053 4054 page_num_t 4055 vm_page_num_unused_pages(void) 4056 { 4057 int32 count = sUnreservedFreePages; 4058 return count > 0 ? count : 0; 4059 } 4060 4061 4062 void 4063 vm_page_get_stats(system_info *info) 4064 { 4065 // Note: there's no locking protecting any of the queues or counters here, 4066 // so we run the risk of getting bogus values when evaluating them 4067 // throughout this function. As these stats are for informational purposes 4068 // only, it is not really worth introducing such locking. Therefore we just 4069 // ensure that we don't under- or overflow any of the values. 4070 4071 // The pages used for the block cache buffers. Those should not be counted 4072 // as used but as cached pages. 4073 // TODO: We should subtract the blocks that are in use ATM, since those 4074 // can't really be freed in a low memory situation. 4075 page_num_t blockCachePages = block_cache_used_memory() / B_PAGE_SIZE; 4076 4077 // Non-temporary modified pages are special as they represent pages that 4078 // can be written back, so they could be freed if necessary, for us 4079 // basically making them into cached pages with a higher overhead. The 4080 // modified queue count is therefore split into temporary and non-temporary 4081 // counts that are then added to the corresponding number. 4082 page_num_t modifiedNonTemporaryPages 4083 = (sModifiedPageQueue.Count() - sModifiedTemporaryPages); 4084 4085 info->max_pages = vm_page_num_pages(); 4086 info->cached_pages = sCachedPageQueue.Count() + modifiedNonTemporaryPages 4087 + blockCachePages; 4088 4089 // max_pages is composed of: 4090 // active + inactive + unused + wired + modified + cached + free + clear 4091 // So taking out the cached (including modified non-temporary), free and 4092 // clear ones leaves us with all used pages. 4093 int32 subtractPages = info->cached_pages + sFreePageQueue.Count() 4094 + sClearPageQueue.Count(); 4095 info->used_pages = subtractPages > info->max_pages 4096 ? 0 : info->max_pages - subtractPages; 4097 4098 if (info->used_pages + info->cached_pages > info->max_pages) { 4099 // Something was shuffled around while we were summing up the counts. 4100 // Make the values sane, preferring the worse case of more used pages. 4101 info->cached_pages = info->max_pages - info->used_pages; 4102 } 4103 4104 info->page_faults = vm_num_page_faults(); 4105 info->ignored_pages = sIgnoredPages; 4106 4107 // TODO: We don't consider pages used for page directories/tables yet. 4108 } 4109 4110 4111 /*! Returns the greatest address within the last page of accessible physical 4112 memory. 4113 The value is inclusive, i.e. in case of a 32 bit phys_addr_t 0xffffffff 4114 means the that the last page ends at exactly 4 GB. 4115 */ 4116 phys_addr_t 4117 vm_page_max_address() 4118 { 4119 return ((phys_addr_t)sPhysicalPageOffset + sNumPages) * B_PAGE_SIZE - 1; 4120 } 4121 4122 4123 RANGE_MARKER_FUNCTION_END(vm_page) 4124