1 /* 2 * Copyright 2010-2011, Ingo Weinhold, ingo_weinhold@gmx.de. 3 * Copyright 2002-2010, Axel Dörfler, axeld@pinc-software.de. 4 * Distributed under the terms of the MIT License. 5 * 6 * Copyright 2001-2002, Travis Geiselbrecht. All rights reserved. 7 * Distributed under the terms of the NewOS License. 8 */ 9 10 11 #include <string.h> 12 #include <stdlib.h> 13 14 #include <algorithm> 15 16 #include <KernelExport.h> 17 #include <OS.h> 18 19 #include <AutoDeleter.h> 20 21 #include <arch/cpu.h> 22 #include <arch/vm_translation_map.h> 23 #include <block_cache.h> 24 #include <boot/kernel_args.h> 25 #include <condition_variable.h> 26 #include <elf.h> 27 #include <heap.h> 28 #include <kernel.h> 29 #include <low_resource_manager.h> 30 #include <thread.h> 31 #include <tracing.h> 32 #include <util/AutoLock.h> 33 #include <vfs.h> 34 #include <vm/vm.h> 35 #include <vm/vm_priv.h> 36 #include <vm/vm_page.h> 37 #include <vm/VMAddressSpace.h> 38 #include <vm/VMArea.h> 39 #include <vm/VMCache.h> 40 41 #include "IORequest.h" 42 #include "PageCacheLocker.h" 43 #include "VMAnonymousCache.h" 44 #include "VMPageQueue.h" 45 46 47 //#define TRACE_VM_PAGE 48 #ifdef TRACE_VM_PAGE 49 # define TRACE(x) dprintf x 50 #else 51 # define TRACE(x) ; 52 #endif 53 54 //#define TRACE_VM_DAEMONS 55 #ifdef TRACE_VM_DAEMONS 56 #define TRACE_DAEMON(x...) dprintf(x) 57 #else 58 #define TRACE_DAEMON(x...) do {} while (false) 59 #endif 60 61 //#define TRACK_PAGE_USAGE_STATS 1 62 63 #define PAGE_ASSERT(page, condition) \ 64 ASSERT_PRINT((condition), "page: %p", (page)) 65 66 #define SCRUB_SIZE 16 67 // this many pages will be cleared at once in the page scrubber thread 68 69 #define MAX_PAGE_WRITER_IO_PRIORITY B_URGENT_DISPLAY_PRIORITY 70 // maximum I/O priority of the page writer 71 #define MAX_PAGE_WRITER_IO_PRIORITY_THRESHOLD 10000 72 // the maximum I/O priority shall be reached when this many pages need to 73 // be written 74 75 76 // The page reserve an allocation of the certain priority must not touch. 77 static const size_t kPageReserveForPriority[] = { 78 VM_PAGE_RESERVE_USER, // user 79 VM_PAGE_RESERVE_SYSTEM, // system 80 0 // VIP 81 }; 82 83 // Minimum number of free pages the page daemon will try to achieve. 84 static uint32 sFreePagesTarget; 85 static uint32 sFreeOrCachedPagesTarget; 86 static uint32 sInactivePagesTarget; 87 88 // Wait interval between page daemon runs. 89 static const bigtime_t kIdleScanWaitInterval = 1000000LL; // 1 sec 90 static const bigtime_t kBusyScanWaitInterval = 500000LL; // 0.5 sec 91 92 // Number of idle runs after which we want to have processed the full active 93 // queue. 94 static const uint32 kIdleRunsForFullQueue = 20; 95 96 // Maximum limit for the vm_page::usage_count. 97 static const int32 kPageUsageMax = 64; 98 // vm_page::usage_count buff an accessed page receives in a scan. 99 static const int32 kPageUsageAdvance = 3; 100 // vm_page::usage_count debuff an unaccessed page receives in a scan. 101 static const int32 kPageUsageDecline = 1; 102 103 int32 gMappedPagesCount; 104 105 static VMPageQueue sPageQueues[PAGE_STATE_COUNT]; 106 107 static VMPageQueue& sFreePageQueue = sPageQueues[PAGE_STATE_FREE]; 108 static VMPageQueue& sClearPageQueue = sPageQueues[PAGE_STATE_CLEAR]; 109 static VMPageQueue& sModifiedPageQueue = sPageQueues[PAGE_STATE_MODIFIED]; 110 static VMPageQueue& sInactivePageQueue = sPageQueues[PAGE_STATE_INACTIVE]; 111 static VMPageQueue& sActivePageQueue = sPageQueues[PAGE_STATE_ACTIVE]; 112 static VMPageQueue& sCachedPageQueue = sPageQueues[PAGE_STATE_CACHED]; 113 114 static vm_page *sPages; 115 static page_num_t sPhysicalPageOffset; 116 static page_num_t sNumPages; 117 static page_num_t sNonExistingPages; 118 // pages in the sPages array that aren't backed by physical memory 119 static uint64 sIgnoredPages; 120 // pages of physical memory ignored by the boot loader (and thus not 121 // available here) 122 static vint32 sUnreservedFreePages; 123 static vint32 sUnsatisfiedPageReservations; 124 static vint32 sModifiedTemporaryPages; 125 126 static ConditionVariable sFreePageCondition; 127 static mutex sPageDeficitLock = MUTEX_INITIALIZER("page deficit"); 128 129 // This lock must be used whenever the free or clear page queues are changed. 130 // If you need to work on both queues at the same time, you need to hold a write 131 // lock, otherwise, a read lock suffices (each queue still has a spinlock to 132 // guard against concurrent changes). 133 static rw_lock sFreePageQueuesLock 134 = RW_LOCK_INITIALIZER("free/clear page queues"); 135 136 #ifdef TRACK_PAGE_USAGE_STATS 137 static page_num_t sPageUsageArrays[512]; 138 static page_num_t* sPageUsage = sPageUsageArrays; 139 static page_num_t sPageUsagePageCount; 140 static page_num_t* sNextPageUsage = sPageUsageArrays + 256; 141 static page_num_t sNextPageUsagePageCount; 142 #endif 143 144 145 #if VM_PAGE_ALLOCATION_TRACKING_AVAILABLE 146 147 struct caller_info { 148 addr_t caller; 149 size_t count; 150 }; 151 152 static const int32 kCallerInfoTableSize = 1024; 153 static caller_info sCallerInfoTable[kCallerInfoTableSize]; 154 static int32 sCallerInfoCount = 0; 155 156 static caller_info* get_caller_info(addr_t caller); 157 158 159 RANGE_MARKER_FUNCTION_PROTOTYPES(vm_page) 160 161 static const addr_t kVMPageCodeAddressRange[] = { 162 RANGE_MARKER_FUNCTION_ADDRESS_RANGE(vm_page) 163 }; 164 165 #endif 166 167 168 RANGE_MARKER_FUNCTION_BEGIN(vm_page) 169 170 171 struct page_stats { 172 int32 totalFreePages; 173 int32 unsatisfiedReservations; 174 int32 cachedPages; 175 }; 176 177 178 struct PageReservationWaiter 179 : public DoublyLinkedListLinkImpl<PageReservationWaiter> { 180 Thread* thread; 181 uint32 dontTouch; // reserve not to touch 182 uint32 missing; // pages missing for the reservation 183 int32 threadPriority; 184 185 bool operator<(const PageReservationWaiter& other) const 186 { 187 // Implies an order by descending VM priority (ascending dontTouch) 188 // and (secondarily) descending thread priority. 189 if (dontTouch != other.dontTouch) 190 return dontTouch < other.dontTouch; 191 return threadPriority > other.threadPriority; 192 } 193 }; 194 195 typedef DoublyLinkedList<PageReservationWaiter> PageReservationWaiterList; 196 static PageReservationWaiterList sPageReservationWaiters; 197 198 199 struct DaemonCondition { 200 void Init(const char* name) 201 { 202 mutex_init(&fLock, "daemon condition"); 203 fCondition.Init(this, name); 204 fActivated = false; 205 } 206 207 bool Lock() 208 { 209 return mutex_lock(&fLock) == B_OK; 210 } 211 212 void Unlock() 213 { 214 mutex_unlock(&fLock); 215 } 216 217 bool Wait(bigtime_t timeout, bool clearActivated) 218 { 219 MutexLocker locker(fLock); 220 if (clearActivated) 221 fActivated = false; 222 else if (fActivated) 223 return true; 224 225 ConditionVariableEntry entry; 226 fCondition.Add(&entry); 227 228 locker.Unlock(); 229 230 return entry.Wait(B_RELATIVE_TIMEOUT, timeout) == B_OK; 231 } 232 233 void WakeUp() 234 { 235 if (fActivated) 236 return; 237 238 MutexLocker locker(fLock); 239 fActivated = true; 240 fCondition.NotifyOne(); 241 } 242 243 void ClearActivated() 244 { 245 MutexLocker locker(fLock); 246 fActivated = false; 247 } 248 249 private: 250 mutex fLock; 251 ConditionVariable fCondition; 252 bool fActivated; 253 }; 254 255 256 static DaemonCondition sPageWriterCondition; 257 static DaemonCondition sPageDaemonCondition; 258 259 260 #if PAGE_ALLOCATION_TRACING 261 262 namespace PageAllocationTracing { 263 264 class ReservePages : public AbstractTraceEntry { 265 public: 266 ReservePages(uint32 count) 267 : 268 fCount(count) 269 { 270 Initialized(); 271 } 272 273 virtual void AddDump(TraceOutput& out) 274 { 275 out.Print("page reserve: %lu", fCount); 276 } 277 278 private: 279 uint32 fCount; 280 }; 281 282 283 class UnreservePages : public AbstractTraceEntry { 284 public: 285 UnreservePages(uint32 count) 286 : 287 fCount(count) 288 { 289 Initialized(); 290 } 291 292 virtual void AddDump(TraceOutput& out) 293 { 294 out.Print("page unreserve: %lu", fCount); 295 } 296 297 private: 298 uint32 fCount; 299 }; 300 301 302 class AllocatePage 303 : public TRACE_ENTRY_SELECTOR(PAGE_ALLOCATION_TRACING_STACK_TRACE) { 304 public: 305 AllocatePage(page_num_t pageNumber) 306 : 307 TraceEntryBase(PAGE_ALLOCATION_TRACING_STACK_TRACE, 0, true), 308 fPageNumber(pageNumber) 309 { 310 Initialized(); 311 } 312 313 virtual void AddDump(TraceOutput& out) 314 { 315 out.Print("page alloc: %#" B_PRIxPHYSADDR, fPageNumber); 316 } 317 318 private: 319 page_num_t fPageNumber; 320 }; 321 322 323 class AllocatePageRun 324 : public TRACE_ENTRY_SELECTOR(PAGE_ALLOCATION_TRACING_STACK_TRACE) { 325 public: 326 AllocatePageRun(page_num_t startPage, uint32 length) 327 : 328 TraceEntryBase(PAGE_ALLOCATION_TRACING_STACK_TRACE, 0, true), 329 fStartPage(startPage), 330 fLength(length) 331 { 332 Initialized(); 333 } 334 335 virtual void AddDump(TraceOutput& out) 336 { 337 out.Print("page alloc run: start %#" B_PRIxPHYSADDR " length: %" 338 B_PRIu32, fStartPage, fLength); 339 } 340 341 private: 342 page_num_t fStartPage; 343 uint32 fLength; 344 }; 345 346 347 class FreePage 348 : public TRACE_ENTRY_SELECTOR(PAGE_ALLOCATION_TRACING_STACK_TRACE) { 349 public: 350 FreePage(page_num_t pageNumber) 351 : 352 TraceEntryBase(PAGE_ALLOCATION_TRACING_STACK_TRACE, 0, true), 353 fPageNumber(pageNumber) 354 { 355 Initialized(); 356 } 357 358 virtual void AddDump(TraceOutput& out) 359 { 360 out.Print("page free: %#" B_PRIxPHYSADDR, fPageNumber); 361 } 362 363 private: 364 page_num_t fPageNumber; 365 }; 366 367 368 class ScrubbingPages : public AbstractTraceEntry { 369 public: 370 ScrubbingPages(uint32 count) 371 : 372 fCount(count) 373 { 374 Initialized(); 375 } 376 377 virtual void AddDump(TraceOutput& out) 378 { 379 out.Print("page scrubbing: %lu", fCount); 380 } 381 382 private: 383 uint32 fCount; 384 }; 385 386 387 class ScrubbedPages : public AbstractTraceEntry { 388 public: 389 ScrubbedPages(uint32 count) 390 : 391 fCount(count) 392 { 393 Initialized(); 394 } 395 396 virtual void AddDump(TraceOutput& out) 397 { 398 out.Print("page scrubbed: %lu", fCount); 399 } 400 401 private: 402 uint32 fCount; 403 }; 404 405 406 class StolenPage : public AbstractTraceEntry { 407 public: 408 StolenPage() 409 { 410 Initialized(); 411 } 412 413 virtual void AddDump(TraceOutput& out) 414 { 415 out.Print("page stolen"); 416 } 417 }; 418 419 } // namespace PageAllocationTracing 420 421 # define TA(x) new(std::nothrow) PageAllocationTracing::x 422 423 #else 424 # define TA(x) 425 #endif // PAGE_ALLOCATION_TRACING 426 427 428 #if PAGE_DAEMON_TRACING 429 430 namespace PageDaemonTracing { 431 432 class ActivatePage : public AbstractTraceEntry { 433 public: 434 ActivatePage(vm_page* page) 435 : 436 fCache(page->cache), 437 fPage(page) 438 { 439 Initialized(); 440 } 441 442 virtual void AddDump(TraceOutput& out) 443 { 444 out.Print("page activated: %p, cache: %p", fPage, fCache); 445 } 446 447 private: 448 VMCache* fCache; 449 vm_page* fPage; 450 }; 451 452 453 class DeactivatePage : public AbstractTraceEntry { 454 public: 455 DeactivatePage(vm_page* page) 456 : 457 fCache(page->cache), 458 fPage(page) 459 { 460 Initialized(); 461 } 462 463 virtual void AddDump(TraceOutput& out) 464 { 465 out.Print("page deactivated: %p, cache: %p", fPage, fCache); 466 } 467 468 private: 469 VMCache* fCache; 470 vm_page* fPage; 471 }; 472 473 474 class FreedPageSwap : public AbstractTraceEntry { 475 public: 476 FreedPageSwap(vm_page* page) 477 : 478 fCache(page->cache), 479 fPage(page) 480 { 481 Initialized(); 482 } 483 484 virtual void AddDump(TraceOutput& out) 485 { 486 out.Print("page swap freed: %p, cache: %p", fPage, fCache); 487 } 488 489 private: 490 VMCache* fCache; 491 vm_page* fPage; 492 }; 493 494 } // namespace PageDaemonTracing 495 496 # define TD(x) new(std::nothrow) PageDaemonTracing::x 497 498 #else 499 # define TD(x) 500 #endif // PAGE_DAEMON_TRACING 501 502 503 #if PAGE_WRITER_TRACING 504 505 namespace PageWriterTracing { 506 507 class WritePage : public AbstractTraceEntry { 508 public: 509 WritePage(vm_page* page) 510 : 511 fCache(page->Cache()), 512 fPage(page) 513 { 514 Initialized(); 515 } 516 517 virtual void AddDump(TraceOutput& out) 518 { 519 out.Print("page write: %p, cache: %p", fPage, fCache); 520 } 521 522 private: 523 VMCache* fCache; 524 vm_page* fPage; 525 }; 526 527 } // namespace PageWriterTracing 528 529 # define TPW(x) new(std::nothrow) PageWriterTracing::x 530 531 #else 532 # define TPW(x) 533 #endif // PAGE_WRITER_TRACING 534 535 536 #if PAGE_STATE_TRACING 537 538 namespace PageStateTracing { 539 540 class SetPageState : public AbstractTraceEntry { 541 public: 542 SetPageState(vm_page* page, uint8 newState) 543 : 544 fPage(page), 545 fOldState(page->State()), 546 fNewState(newState), 547 fBusy(page->busy), 548 fWired(page->WiredCount() > 0), 549 fMapped(!page->mappings.IsEmpty()), 550 fAccessed(page->accessed), 551 fModified(page->modified) 552 { 553 #if PAGE_STATE_TRACING_STACK_TRACE 554 fStackTrace = capture_tracing_stack_trace( 555 PAGE_STATE_TRACING_STACK_TRACE, 0, true); 556 // Don't capture userland stack trace to avoid potential 557 // deadlocks. 558 #endif 559 Initialized(); 560 } 561 562 #if PAGE_STATE_TRACING_STACK_TRACE 563 virtual void DumpStackTrace(TraceOutput& out) 564 { 565 out.PrintStackTrace(fStackTrace); 566 } 567 #endif 568 569 virtual void AddDump(TraceOutput& out) 570 { 571 out.Print("page set state: %p (%c%c%c%c%c): %s -> %s", fPage, 572 fBusy ? 'b' : '-', 573 fWired ? 'w' : '-', 574 fMapped ? 'm' : '-', 575 fAccessed ? 'a' : '-', 576 fModified ? 'm' : '-', 577 page_state_to_string(fOldState), 578 page_state_to_string(fNewState)); 579 } 580 581 private: 582 vm_page* fPage; 583 #if PAGE_STATE_TRACING_STACK_TRACE 584 tracing_stack_trace* fStackTrace; 585 #endif 586 uint8 fOldState; 587 uint8 fNewState; 588 bool fBusy : 1; 589 bool fWired : 1; 590 bool fMapped : 1; 591 bool fAccessed : 1; 592 bool fModified : 1; 593 }; 594 595 } // namespace PageStateTracing 596 597 # define TPS(x) new(std::nothrow) PageStateTracing::x 598 599 #else 600 # define TPS(x) 601 #endif // PAGE_STATE_TRACING 602 603 604 #if VM_PAGE_ALLOCATION_TRACKING_AVAILABLE 605 606 namespace BKernel { 607 608 class AllocationTrackingCallback { 609 public: 610 virtual ~AllocationTrackingCallback(); 611 612 virtual bool ProcessTrackingInfo( 613 AllocationTrackingInfo* info, 614 page_num_t pageNumber) = 0; 615 }; 616 617 } 618 619 using BKernel::AllocationTrackingCallback; 620 621 622 class AllocationCollectorCallback : public AllocationTrackingCallback { 623 public: 624 AllocationCollectorCallback(bool resetInfos) 625 : 626 fResetInfos(resetInfos) 627 { 628 } 629 630 virtual bool ProcessTrackingInfo(AllocationTrackingInfo* info, 631 page_num_t pageNumber) 632 { 633 if (!info->IsInitialized()) 634 return true; 635 636 addr_t caller = 0; 637 AbstractTraceEntryWithStackTrace* traceEntry = info->TraceEntry(); 638 639 if (traceEntry != NULL && info->IsTraceEntryValid()) { 640 caller = tracing_find_caller_in_stack_trace( 641 traceEntry->StackTrace(), kVMPageCodeAddressRange, 1); 642 } 643 644 caller_info* callerInfo = get_caller_info(caller); 645 if (callerInfo == NULL) { 646 kprintf("out of space for caller infos\n"); 647 return false; 648 } 649 650 callerInfo->count++; 651 652 if (fResetInfos) 653 info->Clear(); 654 655 return true; 656 } 657 658 private: 659 bool fResetInfos; 660 }; 661 662 663 class AllocationInfoPrinterCallback : public AllocationTrackingCallback { 664 public: 665 AllocationInfoPrinterCallback(bool printStackTrace, page_num_t pageFilter, 666 team_id teamFilter, thread_id threadFilter) 667 : 668 fPrintStackTrace(printStackTrace), 669 fPageFilter(pageFilter), 670 fTeamFilter(teamFilter), 671 fThreadFilter(threadFilter) 672 { 673 } 674 675 virtual bool ProcessTrackingInfo(AllocationTrackingInfo* info, 676 page_num_t pageNumber) 677 { 678 if (!info->IsInitialized()) 679 return true; 680 681 if (fPageFilter != 0 && pageNumber != fPageFilter) 682 return true; 683 684 AbstractTraceEntryWithStackTrace* traceEntry = info->TraceEntry(); 685 if (traceEntry != NULL && !info->IsTraceEntryValid()) 686 traceEntry = NULL; 687 688 if (traceEntry != NULL) { 689 if (fTeamFilter != -1 && traceEntry->TeamID() != fTeamFilter) 690 return true; 691 if (fThreadFilter != -1 && traceEntry->ThreadID() != fThreadFilter) 692 return true; 693 } else { 694 // we need the info if we have filters set 695 if (fTeamFilter != -1 || fThreadFilter != -1) 696 return true; 697 } 698 699 kprintf("page number %#" B_PRIxPHYSADDR, pageNumber); 700 701 if (traceEntry != NULL) { 702 kprintf(", team: %" B_PRId32 ", thread %" B_PRId32 703 ", time %" B_PRId64 "\n", traceEntry->TeamID(), 704 traceEntry->ThreadID(), traceEntry->Time()); 705 706 if (fPrintStackTrace) 707 tracing_print_stack_trace(traceEntry->StackTrace()); 708 } else 709 kprintf("\n"); 710 711 return true; 712 } 713 714 private: 715 bool fPrintStackTrace; 716 page_num_t fPageFilter; 717 team_id fTeamFilter; 718 thread_id fThreadFilter; 719 }; 720 721 722 class AllocationDetailPrinterCallback : public AllocationTrackingCallback { 723 public: 724 AllocationDetailPrinterCallback(addr_t caller) 725 : 726 fCaller(caller) 727 { 728 } 729 730 virtual bool ProcessTrackingInfo(AllocationTrackingInfo* info, 731 page_num_t pageNumber) 732 { 733 if (!info->IsInitialized()) 734 return true; 735 736 addr_t caller = 0; 737 AbstractTraceEntryWithStackTrace* traceEntry = info->TraceEntry(); 738 if (traceEntry != NULL && !info->IsTraceEntryValid()) 739 traceEntry = NULL; 740 741 if (traceEntry != NULL) { 742 caller = tracing_find_caller_in_stack_trace( 743 traceEntry->StackTrace(), kVMPageCodeAddressRange, 1); 744 } 745 746 if (caller != fCaller) 747 return true; 748 749 kprintf("page %#" B_PRIxPHYSADDR "\n", pageNumber); 750 if (traceEntry != NULL) 751 tracing_print_stack_trace(traceEntry->StackTrace()); 752 753 return true; 754 } 755 756 private: 757 addr_t fCaller; 758 }; 759 760 #endif // VM_PAGE_ALLOCATION_TRACKING_AVAILABLE 761 762 763 static int 764 find_page(int argc, char **argv) 765 { 766 struct vm_page *page; 767 addr_t address; 768 int32 index = 1; 769 int i; 770 771 struct { 772 const char* name; 773 VMPageQueue* queue; 774 } pageQueueInfos[] = { 775 { "free", &sFreePageQueue }, 776 { "clear", &sClearPageQueue }, 777 { "modified", &sModifiedPageQueue }, 778 { "active", &sActivePageQueue }, 779 { "inactive", &sInactivePageQueue }, 780 { "cached", &sCachedPageQueue }, 781 { NULL, NULL } 782 }; 783 784 if (argc < 2 785 || strlen(argv[index]) <= 2 786 || argv[index][0] != '0' 787 || argv[index][1] != 'x') { 788 kprintf("usage: find_page <address>\n"); 789 return 0; 790 } 791 792 address = strtoul(argv[index], NULL, 0); 793 page = (vm_page*)address; 794 795 for (i = 0; pageQueueInfos[i].name; i++) { 796 VMPageQueue::Iterator it = pageQueueInfos[i].queue->GetIterator(); 797 while (vm_page* p = it.Next()) { 798 if (p == page) { 799 kprintf("found page %p in queue %p (%s)\n", page, 800 pageQueueInfos[i].queue, pageQueueInfos[i].name); 801 return 0; 802 } 803 } 804 } 805 806 kprintf("page %p isn't in any queue\n", page); 807 808 return 0; 809 } 810 811 812 const char * 813 page_state_to_string(int state) 814 { 815 switch(state) { 816 case PAGE_STATE_ACTIVE: 817 return "active"; 818 case PAGE_STATE_INACTIVE: 819 return "inactive"; 820 case PAGE_STATE_MODIFIED: 821 return "modified"; 822 case PAGE_STATE_CACHED: 823 return "cached"; 824 case PAGE_STATE_FREE: 825 return "free"; 826 case PAGE_STATE_CLEAR: 827 return "clear"; 828 case PAGE_STATE_WIRED: 829 return "wired"; 830 case PAGE_STATE_UNUSED: 831 return "unused"; 832 default: 833 return "unknown"; 834 } 835 } 836 837 838 static int 839 dump_page(int argc, char **argv) 840 { 841 bool addressIsPointer = true; 842 bool physical = false; 843 bool searchMappings = false; 844 int32 index = 1; 845 846 while (index < argc) { 847 if (argv[index][0] != '-') 848 break; 849 850 if (!strcmp(argv[index], "-p")) { 851 addressIsPointer = false; 852 physical = true; 853 } else if (!strcmp(argv[index], "-v")) { 854 addressIsPointer = false; 855 } else if (!strcmp(argv[index], "-m")) { 856 searchMappings = true; 857 } else { 858 print_debugger_command_usage(argv[0]); 859 return 0; 860 } 861 862 index++; 863 } 864 865 if (index + 1 != argc) { 866 print_debugger_command_usage(argv[0]); 867 return 0; 868 } 869 870 uint64 value; 871 if (!evaluate_debug_expression(argv[index], &value, false)) 872 return 0; 873 874 uint64 pageAddress = value; 875 struct vm_page* page; 876 877 if (addressIsPointer) { 878 page = (struct vm_page *)(addr_t)pageAddress; 879 } else { 880 if (!physical) { 881 VMAddressSpace *addressSpace = VMAddressSpace::Kernel(); 882 883 if (debug_get_debugged_thread()->team->address_space != NULL) 884 addressSpace = debug_get_debugged_thread()->team->address_space; 885 886 uint32 flags = 0; 887 phys_addr_t physicalAddress; 888 if (addressSpace->TranslationMap()->QueryInterrupt(pageAddress, 889 &physicalAddress, &flags) != B_OK 890 || (flags & PAGE_PRESENT) == 0) { 891 kprintf("Virtual address not mapped to a physical page in this " 892 "address space.\n"); 893 return 0; 894 } 895 pageAddress = physicalAddress; 896 } 897 898 page = vm_lookup_page(pageAddress / B_PAGE_SIZE); 899 } 900 901 kprintf("PAGE: %p\n", page); 902 kprintf("queue_next,prev: %p, %p\n", page->queue_link.next, 903 page->queue_link.previous); 904 kprintf("physical_number: %#" B_PRIxPHYSADDR "\n", 905 page->physical_page_number); 906 kprintf("cache: %p\n", page->Cache()); 907 kprintf("cache_offset: %" B_PRIuPHYSADDR "\n", page->cache_offset); 908 kprintf("cache_next: %p\n", page->cache_next); 909 kprintf("state: %s\n", page_state_to_string(page->State())); 910 kprintf("wired_count: %d\n", page->WiredCount()); 911 kprintf("usage_count: %d\n", page->usage_count); 912 kprintf("busy: %d\n", page->busy); 913 kprintf("busy_writing: %d\n", page->busy_writing); 914 kprintf("accessed: %d\n", page->accessed); 915 kprintf("modified: %d\n", page->modified); 916 #if DEBUG_PAGE_QUEUE 917 kprintf("queue: %p\n", page->queue); 918 #endif 919 #if DEBUG_PAGE_ACCESS 920 kprintf("accessor: %" B_PRId32 "\n", page->accessing_thread); 921 #endif 922 kprintf("area mappings:\n"); 923 924 vm_page_mappings::Iterator iterator = page->mappings.GetIterator(); 925 vm_page_mapping *mapping; 926 while ((mapping = iterator.Next()) != NULL) { 927 kprintf(" %p (%" B_PRId32 ")\n", mapping->area, mapping->area->id); 928 mapping = mapping->page_link.next; 929 } 930 931 if (searchMappings) { 932 kprintf("all mappings:\n"); 933 VMAddressSpace* addressSpace = VMAddressSpace::DebugFirst(); 934 while (addressSpace != NULL) { 935 size_t pageCount = addressSpace->Size() / B_PAGE_SIZE; 936 for (addr_t address = addressSpace->Base(); pageCount != 0; 937 address += B_PAGE_SIZE, pageCount--) { 938 phys_addr_t physicalAddress; 939 uint32 flags = 0; 940 if (addressSpace->TranslationMap()->QueryInterrupt(address, 941 &physicalAddress, &flags) == B_OK 942 && (flags & PAGE_PRESENT) != 0 943 && physicalAddress / B_PAGE_SIZE 944 == page->physical_page_number) { 945 VMArea* area = addressSpace->LookupArea(address); 946 kprintf(" aspace %ld, area %ld: %#" B_PRIxADDR 947 " (%c%c%s%s)\n", addressSpace->ID(), 948 area != NULL ? area->id : -1, address, 949 (flags & B_KERNEL_READ_AREA) != 0 ? 'r' : '-', 950 (flags & B_KERNEL_WRITE_AREA) != 0 ? 'w' : '-', 951 (flags & PAGE_MODIFIED) != 0 ? " modified" : "", 952 (flags & PAGE_ACCESSED) != 0 ? " accessed" : ""); 953 } 954 } 955 addressSpace = VMAddressSpace::DebugNext(addressSpace); 956 } 957 } 958 959 set_debug_variable("_cache", (addr_t)page->Cache()); 960 #if DEBUG_PAGE_ACCESS 961 set_debug_variable("_accessor", page->accessing_thread); 962 #endif 963 964 return 0; 965 } 966 967 968 static int 969 dump_page_queue(int argc, char **argv) 970 { 971 struct VMPageQueue *queue; 972 973 if (argc < 2) { 974 kprintf("usage: page_queue <address/name> [list]\n"); 975 return 0; 976 } 977 978 if (strlen(argv[1]) >= 2 && argv[1][0] == '0' && argv[1][1] == 'x') 979 queue = (VMPageQueue*)strtoul(argv[1], NULL, 16); 980 if (!strcmp(argv[1], "free")) 981 queue = &sFreePageQueue; 982 else if (!strcmp(argv[1], "clear")) 983 queue = &sClearPageQueue; 984 else if (!strcmp(argv[1], "modified")) 985 queue = &sModifiedPageQueue; 986 else if (!strcmp(argv[1], "active")) 987 queue = &sActivePageQueue; 988 else if (!strcmp(argv[1], "inactive")) 989 queue = &sInactivePageQueue; 990 else if (!strcmp(argv[1], "cached")) 991 queue = &sCachedPageQueue; 992 else { 993 kprintf("page_queue: unknown queue \"%s\".\n", argv[1]); 994 return 0; 995 } 996 997 kprintf("queue = %p, queue->head = %p, queue->tail = %p, queue->count = %" 998 B_PRIuPHYSADDR "\n", queue, queue->Head(), queue->Tail(), 999 queue->Count()); 1000 1001 if (argc == 3) { 1002 struct vm_page *page = queue->Head(); 1003 const char *type = "none"; 1004 int i; 1005 1006 if (page->Cache() != NULL) { 1007 switch (page->Cache()->type) { 1008 case CACHE_TYPE_RAM: 1009 type = "RAM"; 1010 break; 1011 case CACHE_TYPE_DEVICE: 1012 type = "device"; 1013 break; 1014 case CACHE_TYPE_VNODE: 1015 type = "vnode"; 1016 break; 1017 case CACHE_TYPE_NULL: 1018 type = "null"; 1019 break; 1020 default: 1021 type = "???"; 1022 break; 1023 } 1024 } 1025 1026 kprintf("page cache type state wired usage\n"); 1027 for (i = 0; page; i++, page = queue->Next(page)) { 1028 kprintf("%p %p %-7s %8s %5d %5d\n", page, page->Cache(), 1029 type, page_state_to_string(page->State()), 1030 page->WiredCount(), page->usage_count); 1031 } 1032 } 1033 return 0; 1034 } 1035 1036 1037 static int 1038 dump_page_stats(int argc, char **argv) 1039 { 1040 page_num_t swappableModified = 0; 1041 page_num_t swappableModifiedInactive = 0; 1042 1043 size_t counter[8]; 1044 size_t busyCounter[8]; 1045 memset(counter, 0, sizeof(counter)); 1046 memset(busyCounter, 0, sizeof(busyCounter)); 1047 1048 struct page_run { 1049 page_num_t start; 1050 page_num_t end; 1051 1052 page_num_t Length() const { return end - start; } 1053 }; 1054 1055 page_run currentFreeRun = { 0, 0 }; 1056 page_run currentCachedRun = { 0, 0 }; 1057 page_run longestFreeRun = { 0, 0 }; 1058 page_run longestCachedRun = { 0, 0 }; 1059 1060 for (page_num_t i = 0; i < sNumPages; i++) { 1061 if (sPages[i].State() > 7) { 1062 panic("page %" B_PRIuPHYSADDR " at %p has invalid state!\n", i, 1063 &sPages[i]); 1064 } 1065 1066 uint32 pageState = sPages[i].State(); 1067 1068 counter[pageState]++; 1069 if (sPages[i].busy) 1070 busyCounter[pageState]++; 1071 1072 if (pageState == PAGE_STATE_MODIFIED 1073 && sPages[i].Cache() != NULL 1074 && sPages[i].Cache()->temporary && sPages[i].WiredCount() == 0) { 1075 swappableModified++; 1076 if (sPages[i].usage_count == 0) 1077 swappableModifiedInactive++; 1078 } 1079 1080 // track free and cached pages runs 1081 if (pageState == PAGE_STATE_FREE || pageState == PAGE_STATE_CLEAR) { 1082 currentFreeRun.end = i + 1; 1083 currentCachedRun.end = i + 1; 1084 } else { 1085 if (currentFreeRun.Length() > longestFreeRun.Length()) 1086 longestFreeRun = currentFreeRun; 1087 currentFreeRun.start = currentFreeRun.end = i + 1; 1088 1089 if (pageState == PAGE_STATE_CACHED) { 1090 currentCachedRun.end = i + 1; 1091 } else { 1092 if (currentCachedRun.Length() > longestCachedRun.Length()) 1093 longestCachedRun = currentCachedRun; 1094 currentCachedRun.start = currentCachedRun.end = i + 1; 1095 } 1096 } 1097 } 1098 1099 kprintf("page stats:\n"); 1100 kprintf("total: %" B_PRIuPHYSADDR "\n", sNumPages); 1101 1102 kprintf("active: %" B_PRIuSIZE " (busy: %" B_PRIuSIZE ")\n", 1103 counter[PAGE_STATE_ACTIVE], busyCounter[PAGE_STATE_ACTIVE]); 1104 kprintf("inactive: %" B_PRIuSIZE " (busy: %" B_PRIuSIZE ")\n", 1105 counter[PAGE_STATE_INACTIVE], busyCounter[PAGE_STATE_INACTIVE]); 1106 kprintf("cached: %" B_PRIuSIZE " (busy: %" B_PRIuSIZE ")\n", 1107 counter[PAGE_STATE_CACHED], busyCounter[PAGE_STATE_CACHED]); 1108 kprintf("unused: %" B_PRIuSIZE " (busy: %" B_PRIuSIZE ")\n", 1109 counter[PAGE_STATE_UNUSED], busyCounter[PAGE_STATE_UNUSED]); 1110 kprintf("wired: %" B_PRIuSIZE " (busy: %" B_PRIuSIZE ")\n", 1111 counter[PAGE_STATE_WIRED], busyCounter[PAGE_STATE_WIRED]); 1112 kprintf("modified: %" B_PRIuSIZE " (busy: %" B_PRIuSIZE ")\n", 1113 counter[PAGE_STATE_MODIFIED], busyCounter[PAGE_STATE_MODIFIED]); 1114 kprintf("free: %" B_PRIuSIZE "\n", counter[PAGE_STATE_FREE]); 1115 kprintf("clear: %" B_PRIuSIZE "\n", counter[PAGE_STATE_CLEAR]); 1116 1117 kprintf("unreserved free pages: %" B_PRId32 "\n", sUnreservedFreePages); 1118 kprintf("unsatisfied page reservations: %" B_PRId32 "\n", 1119 sUnsatisfiedPageReservations); 1120 kprintf("mapped pages: %lu\n", gMappedPagesCount); 1121 kprintf("longest free pages run: %" B_PRIuPHYSADDR " pages (at %" 1122 B_PRIuPHYSADDR ")\n", longestFreeRun.Length(), 1123 sPages[longestFreeRun.start].physical_page_number); 1124 kprintf("longest free/cached pages run: %" B_PRIuPHYSADDR " pages (at %" 1125 B_PRIuPHYSADDR ")\n", longestCachedRun.Length(), 1126 sPages[longestCachedRun.start].physical_page_number); 1127 1128 kprintf("waiting threads:\n"); 1129 for (PageReservationWaiterList::Iterator it 1130 = sPageReservationWaiters.GetIterator(); 1131 PageReservationWaiter* waiter = it.Next();) { 1132 kprintf(" %6" B_PRId32 ": missing: %6" B_PRIu32 1133 ", don't touch: %6" B_PRIu32 "\n", waiter->thread->id, 1134 waiter->missing, waiter->dontTouch); 1135 } 1136 1137 kprintf("\nfree queue: %p, count = %" B_PRIuPHYSADDR "\n", &sFreePageQueue, 1138 sFreePageQueue.Count()); 1139 kprintf("clear queue: %p, count = %" B_PRIuPHYSADDR "\n", &sClearPageQueue, 1140 sClearPageQueue.Count()); 1141 kprintf("modified queue: %p, count = %" B_PRIuPHYSADDR " (%" B_PRId32 1142 " temporary, %" B_PRIuPHYSADDR " swappable, " "inactive: %" 1143 B_PRIuPHYSADDR ")\n", &sModifiedPageQueue, sModifiedPageQueue.Count(), 1144 sModifiedTemporaryPages, swappableModified, swappableModifiedInactive); 1145 kprintf("active queue: %p, count = %" B_PRIuPHYSADDR "\n", 1146 &sActivePageQueue, sActivePageQueue.Count()); 1147 kprintf("inactive queue: %p, count = %" B_PRIuPHYSADDR "\n", 1148 &sInactivePageQueue, sInactivePageQueue.Count()); 1149 kprintf("cached queue: %p, count = %" B_PRIuPHYSADDR "\n", 1150 &sCachedPageQueue, sCachedPageQueue.Count()); 1151 return 0; 1152 } 1153 1154 1155 #if VM_PAGE_ALLOCATION_TRACKING_AVAILABLE 1156 1157 static caller_info* 1158 get_caller_info(addr_t caller) 1159 { 1160 // find the caller info 1161 for (int32 i = 0; i < sCallerInfoCount; i++) { 1162 if (caller == sCallerInfoTable[i].caller) 1163 return &sCallerInfoTable[i]; 1164 } 1165 1166 // not found, add a new entry, if there are free slots 1167 if (sCallerInfoCount >= kCallerInfoTableSize) 1168 return NULL; 1169 1170 caller_info* info = &sCallerInfoTable[sCallerInfoCount++]; 1171 info->caller = caller; 1172 info->count = 0; 1173 1174 return info; 1175 } 1176 1177 1178 static int 1179 caller_info_compare_count(const void* _a, const void* _b) 1180 { 1181 const caller_info* a = (const caller_info*)_a; 1182 const caller_info* b = (const caller_info*)_b; 1183 return (int)(b->count - a->count); 1184 } 1185 1186 1187 static int 1188 dump_page_allocations_per_caller(int argc, char** argv) 1189 { 1190 bool resetAllocationInfos = false; 1191 bool printDetails = false; 1192 addr_t caller = 0; 1193 1194 for (int32 i = 1; i < argc; i++) { 1195 if (strcmp(argv[i], "-d") == 0) { 1196 uint64 callerAddress; 1197 if (++i >= argc 1198 || !evaluate_debug_expression(argv[i], &callerAddress, true)) { 1199 print_debugger_command_usage(argv[0]); 1200 return 0; 1201 } 1202 1203 caller = callerAddress; 1204 printDetails = true; 1205 } else if (strcmp(argv[i], "-r") == 0) { 1206 resetAllocationInfos = true; 1207 } else { 1208 print_debugger_command_usage(argv[0]); 1209 return 0; 1210 } 1211 } 1212 1213 sCallerInfoCount = 0; 1214 1215 AllocationCollectorCallback collectorCallback(resetAllocationInfos); 1216 AllocationDetailPrinterCallback detailsCallback(caller); 1217 AllocationTrackingCallback& callback = printDetails 1218 ? (AllocationTrackingCallback&)detailsCallback 1219 : (AllocationTrackingCallback&)collectorCallback; 1220 1221 for (page_num_t i = 0; i < sNumPages; i++) 1222 callback.ProcessTrackingInfo(&sPages[i].allocation_tracking_info, i); 1223 1224 if (printDetails) 1225 return 0; 1226 1227 // sort the array 1228 qsort(sCallerInfoTable, sCallerInfoCount, sizeof(caller_info), 1229 &caller_info_compare_count); 1230 1231 kprintf("%" B_PRId32 " different callers\n\n", sCallerInfoCount); 1232 1233 size_t totalAllocationCount = 0; 1234 1235 kprintf(" count caller\n"); 1236 kprintf("----------------------------------\n"); 1237 for (int32 i = 0; i < sCallerInfoCount; i++) { 1238 caller_info& info = sCallerInfoTable[i]; 1239 kprintf("%10" B_PRIuSIZE " %p", info.count, (void*)info.caller); 1240 1241 const char* symbol; 1242 const char* imageName; 1243 bool exactMatch; 1244 addr_t baseAddress; 1245 1246 if (elf_debug_lookup_symbol_address(info.caller, &baseAddress, &symbol, 1247 &imageName, &exactMatch) == B_OK) { 1248 kprintf(" %s + %#" B_PRIxADDR " (%s)%s\n", symbol, 1249 info.caller - baseAddress, imageName, 1250 exactMatch ? "" : " (nearest)"); 1251 } else 1252 kprintf("\n"); 1253 1254 totalAllocationCount += info.count; 1255 } 1256 1257 kprintf("\ntotal page allocations: %" B_PRIuSIZE "\n", 1258 totalAllocationCount); 1259 1260 return 0; 1261 } 1262 1263 1264 static int 1265 dump_page_allocation_infos(int argc, char** argv) 1266 { 1267 page_num_t pageFilter = 0; 1268 team_id teamFilter = -1; 1269 thread_id threadFilter = -1; 1270 bool printStackTraces = false; 1271 1272 for (int32 i = 1; i < argc; i++) { 1273 if (strcmp(argv[i], "--stacktrace") == 0) 1274 printStackTraces = true; 1275 else if (strcmp(argv[i], "-p") == 0) { 1276 uint64 pageNumber; 1277 if (++i >= argc 1278 || !evaluate_debug_expression(argv[i], &pageNumber, true)) { 1279 print_debugger_command_usage(argv[0]); 1280 return 0; 1281 } 1282 1283 pageFilter = pageNumber; 1284 } else if (strcmp(argv[i], "--team") == 0) { 1285 uint64 team; 1286 if (++i >= argc 1287 || !evaluate_debug_expression(argv[i], &team, true)) { 1288 print_debugger_command_usage(argv[0]); 1289 return 0; 1290 } 1291 1292 teamFilter = team; 1293 } else if (strcmp(argv[i], "--thread") == 0) { 1294 uint64 thread; 1295 if (++i >= argc 1296 || !evaluate_debug_expression(argv[i], &thread, true)) { 1297 print_debugger_command_usage(argv[0]); 1298 return 0; 1299 } 1300 1301 threadFilter = thread; 1302 } else { 1303 print_debugger_command_usage(argv[0]); 1304 return 0; 1305 } 1306 } 1307 1308 AllocationInfoPrinterCallback callback(printStackTraces, pageFilter, 1309 teamFilter, threadFilter); 1310 1311 for (page_num_t i = 0; i < sNumPages; i++) 1312 callback.ProcessTrackingInfo(&sPages[i].allocation_tracking_info, i); 1313 1314 return 0; 1315 } 1316 1317 #endif // VM_PAGE_ALLOCATION_TRACKING_AVAILABLE 1318 1319 1320 #ifdef TRACK_PAGE_USAGE_STATS 1321 1322 static void 1323 track_page_usage(vm_page* page) 1324 { 1325 if (page->WiredCount() == 0) { 1326 sNextPageUsage[(int32)page->usage_count + 128]++; 1327 sNextPageUsagePageCount++; 1328 } 1329 } 1330 1331 1332 static void 1333 update_page_usage_stats() 1334 { 1335 std::swap(sPageUsage, sNextPageUsage); 1336 sPageUsagePageCount = sNextPageUsagePageCount; 1337 1338 memset(sNextPageUsage, 0, sizeof(page_num_t) * 256); 1339 sNextPageUsagePageCount = 0; 1340 1341 // compute average 1342 if (sPageUsagePageCount > 0) { 1343 int64 sum = 0; 1344 for (int32 i = 0; i < 256; i++) 1345 sum += (int64)sPageUsage[i] * (i - 128); 1346 1347 TRACE_DAEMON("average page usage: %f (%lu pages)\n", 1348 (float)sum / sPageUsagePageCount, sPageUsagePageCount); 1349 } 1350 } 1351 1352 1353 static int 1354 dump_page_usage_stats(int argc, char** argv) 1355 { 1356 kprintf("distribution of page usage counts (%lu pages):", 1357 sPageUsagePageCount); 1358 1359 int64 sum = 0; 1360 for (int32 i = 0; i < 256; i++) { 1361 if (i % 8 == 0) 1362 kprintf("\n%4ld:", i - 128); 1363 1364 int64 count = sPageUsage[i]; 1365 sum += count * (i - 128); 1366 1367 kprintf(" %9llu", count); 1368 } 1369 1370 kprintf("\n\n"); 1371 1372 kprintf("average usage count: %f\n", 1373 sPageUsagePageCount > 0 ? (float)sum / sPageUsagePageCount : 0); 1374 1375 return 0; 1376 } 1377 1378 #endif // TRACK_PAGE_USAGE_STATS 1379 1380 1381 // #pragma mark - vm_page 1382 1383 1384 inline void 1385 vm_page::InitState(uint8 newState) 1386 { 1387 state = newState; 1388 } 1389 1390 1391 inline void 1392 vm_page::SetState(uint8 newState) 1393 { 1394 TPS(SetPageState(this, newState)); 1395 1396 state = newState; 1397 } 1398 1399 1400 // #pragma mark - 1401 1402 1403 static void 1404 get_page_stats(page_stats& _pageStats) 1405 { 1406 _pageStats.totalFreePages = sUnreservedFreePages; 1407 _pageStats.cachedPages = sCachedPageQueue.Count(); 1408 _pageStats.unsatisfiedReservations = sUnsatisfiedPageReservations; 1409 // TODO: We don't get an actual snapshot here! 1410 } 1411 1412 1413 static bool 1414 do_active_paging(const page_stats& pageStats) 1415 { 1416 return pageStats.totalFreePages + pageStats.cachedPages 1417 < pageStats.unsatisfiedReservations 1418 + (int32)sFreeOrCachedPagesTarget; 1419 } 1420 1421 1422 /*! Reserves as many pages as possible from \c sUnreservedFreePages up to 1423 \a count. Doesn't touch the last \a dontTouch pages of 1424 \c sUnreservedFreePages, though. 1425 \return The number of actually reserved pages. 1426 */ 1427 static uint32 1428 reserve_some_pages(uint32 count, uint32 dontTouch) 1429 { 1430 while (true) { 1431 int32 freePages = sUnreservedFreePages; 1432 if (freePages <= (int32)dontTouch) 1433 return 0; 1434 1435 int32 toReserve = std::min(count, freePages - dontTouch); 1436 if (atomic_test_and_set(&sUnreservedFreePages, 1437 freePages - toReserve, freePages) 1438 == freePages) { 1439 return toReserve; 1440 } 1441 1442 // the count changed in the meantime -- retry 1443 } 1444 } 1445 1446 1447 static void 1448 wake_up_page_reservation_waiters() 1449 { 1450 MutexLocker pageDeficitLocker(sPageDeficitLock); 1451 1452 // TODO: If this is a low priority thread, we might want to disable 1453 // interrupts or otherwise ensure that we aren't unscheduled. Otherwise 1454 // high priority threads wait be kept waiting while a medium priority thread 1455 // prevents us from running. 1456 1457 while (PageReservationWaiter* waiter = sPageReservationWaiters.Head()) { 1458 int32 reserved = reserve_some_pages(waiter->missing, 1459 waiter->dontTouch); 1460 if (reserved == 0) 1461 return; 1462 1463 atomic_add(&sUnsatisfiedPageReservations, -reserved); 1464 waiter->missing -= reserved; 1465 1466 if (waiter->missing > 0) 1467 return; 1468 1469 sPageReservationWaiters.Remove(waiter); 1470 1471 InterruptsSpinLocker schedulerLocker(gSchedulerLock); 1472 thread_unblock_locked(waiter->thread, B_OK); 1473 } 1474 } 1475 1476 1477 static inline void 1478 unreserve_pages(uint32 count) 1479 { 1480 atomic_add(&sUnreservedFreePages, count); 1481 if (sUnsatisfiedPageReservations != 0) 1482 wake_up_page_reservation_waiters(); 1483 } 1484 1485 1486 static void 1487 free_page(vm_page* page, bool clear) 1488 { 1489 DEBUG_PAGE_ACCESS_CHECK(page); 1490 1491 PAGE_ASSERT(page, !page->IsMapped()); 1492 1493 VMPageQueue* fromQueue; 1494 1495 switch (page->State()) { 1496 case PAGE_STATE_ACTIVE: 1497 fromQueue = &sActivePageQueue; 1498 break; 1499 case PAGE_STATE_INACTIVE: 1500 fromQueue = &sInactivePageQueue; 1501 break; 1502 case PAGE_STATE_MODIFIED: 1503 fromQueue = &sModifiedPageQueue; 1504 break; 1505 case PAGE_STATE_CACHED: 1506 fromQueue = &sCachedPageQueue; 1507 break; 1508 case PAGE_STATE_FREE: 1509 case PAGE_STATE_CLEAR: 1510 panic("free_page(): page %p already free", page); 1511 return; 1512 case PAGE_STATE_WIRED: 1513 case PAGE_STATE_UNUSED: 1514 fromQueue = NULL; 1515 break; 1516 default: 1517 panic("free_page(): page %p in invalid state %d", 1518 page, page->State()); 1519 return; 1520 } 1521 1522 if (page->CacheRef() != NULL) 1523 panic("to be freed page %p has cache", page); 1524 if (page->IsMapped()) 1525 panic("to be freed page %p has mappings", page); 1526 1527 if (fromQueue != NULL) 1528 fromQueue->RemoveUnlocked(page); 1529 1530 TA(FreePage(page->physical_page_number)); 1531 1532 #if VM_PAGE_ALLOCATION_TRACKING_AVAILABLE 1533 page->allocation_tracking_info.Clear(); 1534 #endif 1535 1536 ReadLocker locker(sFreePageQueuesLock); 1537 1538 DEBUG_PAGE_ACCESS_END(page); 1539 1540 if (clear) { 1541 page->SetState(PAGE_STATE_CLEAR); 1542 sClearPageQueue.PrependUnlocked(page); 1543 } else { 1544 page->SetState(PAGE_STATE_FREE); 1545 sFreePageQueue.PrependUnlocked(page); 1546 } 1547 1548 locker.Unlock(); 1549 1550 unreserve_pages(1); 1551 } 1552 1553 1554 /*! The caller must make sure that no-one else tries to change the page's state 1555 while the function is called. If the page has a cache, this can be done by 1556 locking the cache. 1557 */ 1558 static void 1559 set_page_state(vm_page *page, int pageState) 1560 { 1561 DEBUG_PAGE_ACCESS_CHECK(page); 1562 1563 if (pageState == page->State()) 1564 return; 1565 1566 VMPageQueue* fromQueue; 1567 1568 switch (page->State()) { 1569 case PAGE_STATE_ACTIVE: 1570 fromQueue = &sActivePageQueue; 1571 break; 1572 case PAGE_STATE_INACTIVE: 1573 fromQueue = &sInactivePageQueue; 1574 break; 1575 case PAGE_STATE_MODIFIED: 1576 fromQueue = &sModifiedPageQueue; 1577 break; 1578 case PAGE_STATE_CACHED: 1579 fromQueue = &sCachedPageQueue; 1580 break; 1581 case PAGE_STATE_FREE: 1582 case PAGE_STATE_CLEAR: 1583 panic("set_page_state(): page %p is free/clear", page); 1584 return; 1585 case PAGE_STATE_WIRED: 1586 case PAGE_STATE_UNUSED: 1587 fromQueue = NULL; 1588 break; 1589 default: 1590 panic("set_page_state(): page %p in invalid state %d", 1591 page, page->State()); 1592 return; 1593 } 1594 1595 VMPageQueue* toQueue; 1596 1597 switch (pageState) { 1598 case PAGE_STATE_ACTIVE: 1599 toQueue = &sActivePageQueue; 1600 break; 1601 case PAGE_STATE_INACTIVE: 1602 toQueue = &sInactivePageQueue; 1603 break; 1604 case PAGE_STATE_MODIFIED: 1605 toQueue = &sModifiedPageQueue; 1606 break; 1607 case PAGE_STATE_CACHED: 1608 PAGE_ASSERT(page, !page->IsMapped()); 1609 PAGE_ASSERT(page, !page->modified); 1610 toQueue = &sCachedPageQueue; 1611 break; 1612 case PAGE_STATE_FREE: 1613 case PAGE_STATE_CLEAR: 1614 panic("set_page_state(): target state is free/clear"); 1615 return; 1616 case PAGE_STATE_WIRED: 1617 case PAGE_STATE_UNUSED: 1618 toQueue = NULL; 1619 break; 1620 default: 1621 panic("set_page_state(): invalid target state %d", pageState); 1622 return; 1623 } 1624 1625 VMCache* cache = page->Cache(); 1626 if (cache != NULL && cache->temporary) { 1627 if (pageState == PAGE_STATE_MODIFIED) 1628 atomic_add(&sModifiedTemporaryPages, 1); 1629 else if (page->State() == PAGE_STATE_MODIFIED) 1630 atomic_add(&sModifiedTemporaryPages, -1); 1631 } 1632 1633 // move the page 1634 if (toQueue == fromQueue) { 1635 // Note: Theoretically we are required to lock when changing the page 1636 // state, even if we don't change the queue. We actually don't have to 1637 // do this, though, since only for the active queue there are different 1638 // page states and active pages have a cache that must be locked at 1639 // this point. So we rely on the fact that everyone must lock the cache 1640 // before trying to change/interpret the page state. 1641 PAGE_ASSERT(page, cache != NULL); 1642 cache->AssertLocked(); 1643 page->SetState(pageState); 1644 } else { 1645 if (fromQueue != NULL) 1646 fromQueue->RemoveUnlocked(page); 1647 1648 page->SetState(pageState); 1649 1650 if (toQueue != NULL) 1651 toQueue->AppendUnlocked(page); 1652 } 1653 } 1654 1655 1656 /*! Moves a previously modified page into a now appropriate queue. 1657 The page queues must not be locked. 1658 */ 1659 static void 1660 move_page_to_appropriate_queue(vm_page *page) 1661 { 1662 DEBUG_PAGE_ACCESS_CHECK(page); 1663 1664 // Note, this logic must be in sync with what the page daemon does. 1665 int32 state; 1666 if (page->IsMapped()) 1667 state = PAGE_STATE_ACTIVE; 1668 else if (page->modified) 1669 state = PAGE_STATE_MODIFIED; 1670 else 1671 state = PAGE_STATE_CACHED; 1672 1673 // TODO: If free + cached pages are low, we might directly want to free the 1674 // page. 1675 set_page_state(page, state); 1676 } 1677 1678 1679 static void 1680 clear_page(struct vm_page *page) 1681 { 1682 vm_memset_physical(page->physical_page_number << PAGE_SHIFT, 0, 1683 B_PAGE_SIZE); 1684 } 1685 1686 1687 static status_t 1688 mark_page_range_in_use(page_num_t startPage, page_num_t length, bool wired) 1689 { 1690 TRACE(("mark_page_range_in_use: start %#" B_PRIxPHYSADDR ", len %#" 1691 B_PRIxPHYSADDR "\n", startPage, length)); 1692 1693 if (sPhysicalPageOffset > startPage) { 1694 dprintf("mark_page_range_in_use(%#" B_PRIxPHYSADDR ", %#" B_PRIxPHYSADDR 1695 "): start page is before free list\n", startPage, length); 1696 if (sPhysicalPageOffset - startPage >= length) 1697 return B_OK; 1698 length -= sPhysicalPageOffset - startPage; 1699 startPage = sPhysicalPageOffset; 1700 } 1701 1702 startPage -= sPhysicalPageOffset; 1703 1704 if (startPage + length > sNumPages) { 1705 dprintf("mark_page_range_in_use(%#" B_PRIxPHYSADDR ", %#" B_PRIxPHYSADDR 1706 "): range would extend past free list\n", startPage, length); 1707 if (startPage >= sNumPages) 1708 return B_OK; 1709 length = sNumPages - startPage; 1710 } 1711 1712 WriteLocker locker(sFreePageQueuesLock); 1713 1714 for (page_num_t i = 0; i < length; i++) { 1715 vm_page *page = &sPages[startPage + i]; 1716 switch (page->State()) { 1717 case PAGE_STATE_FREE: 1718 case PAGE_STATE_CLEAR: 1719 { 1720 // TODO: This violates the page reservation policy, since we remove pages from 1721 // the free/clear queues without having reserved them before. This should happen 1722 // in the early boot process only, though. 1723 DEBUG_PAGE_ACCESS_START(page); 1724 VMPageQueue& queue = page->State() == PAGE_STATE_FREE 1725 ? sFreePageQueue : sClearPageQueue; 1726 queue.Remove(page); 1727 page->SetState(wired ? PAGE_STATE_WIRED : PAGE_STATE_UNUSED); 1728 page->busy = false; 1729 atomic_add(&sUnreservedFreePages, -1); 1730 DEBUG_PAGE_ACCESS_END(page); 1731 break; 1732 } 1733 case PAGE_STATE_WIRED: 1734 case PAGE_STATE_UNUSED: 1735 break; 1736 case PAGE_STATE_ACTIVE: 1737 case PAGE_STATE_INACTIVE: 1738 case PAGE_STATE_MODIFIED: 1739 case PAGE_STATE_CACHED: 1740 default: 1741 // uh 1742 dprintf("mark_page_range_in_use: page %#" B_PRIxPHYSADDR 1743 " in non-free state %d!\n", startPage + i, page->State()); 1744 break; 1745 } 1746 } 1747 1748 return B_OK; 1749 } 1750 1751 1752 /*! 1753 This is a background thread that wakes up every now and then (every 100ms) 1754 and moves some pages from the free queue over to the clear queue. 1755 Given enough time, it will clear out all pages from the free queue - we 1756 could probably slow it down after having reached a certain threshold. 1757 */ 1758 static int32 1759 page_scrubber(void *unused) 1760 { 1761 (void)(unused); 1762 1763 TRACE(("page_scrubber starting...\n")); 1764 1765 for (;;) { 1766 snooze(100000); // 100ms 1767 1768 if (sFreePageQueue.Count() == 0 1769 || sUnreservedFreePages < (int32)sFreePagesTarget) { 1770 continue; 1771 } 1772 1773 // Since we temporarily remove pages from the free pages reserve, 1774 // we must make sure we don't cause a violation of the page 1775 // reservation warranty. The following is usually stricter than 1776 // necessary, because we don't have information on how many of the 1777 // reserved pages have already been allocated. 1778 int32 reserved = reserve_some_pages(SCRUB_SIZE, 1779 kPageReserveForPriority[VM_PRIORITY_USER]); 1780 if (reserved == 0) 1781 continue; 1782 1783 // get some pages from the free queue 1784 ReadLocker locker(sFreePageQueuesLock); 1785 1786 vm_page *page[SCRUB_SIZE]; 1787 int32 scrubCount = 0; 1788 for (int32 i = 0; i < reserved; i++) { 1789 page[i] = sFreePageQueue.RemoveHeadUnlocked(); 1790 if (page[i] == NULL) 1791 break; 1792 1793 DEBUG_PAGE_ACCESS_START(page[i]); 1794 1795 page[i]->SetState(PAGE_STATE_ACTIVE); 1796 page[i]->busy = true; 1797 scrubCount++; 1798 } 1799 1800 locker.Unlock(); 1801 1802 if (scrubCount == 0) { 1803 unreserve_pages(reserved); 1804 continue; 1805 } 1806 1807 TA(ScrubbingPages(scrubCount)); 1808 1809 // clear them 1810 for (int32 i = 0; i < scrubCount; i++) 1811 clear_page(page[i]); 1812 1813 locker.Lock(); 1814 1815 // and put them into the clear queue 1816 for (int32 i = 0; i < scrubCount; i++) { 1817 page[i]->SetState(PAGE_STATE_CLEAR); 1818 page[i]->busy = false; 1819 DEBUG_PAGE_ACCESS_END(page[i]); 1820 sClearPageQueue.PrependUnlocked(page[i]); 1821 } 1822 1823 locker.Unlock(); 1824 1825 unreserve_pages(reserved); 1826 1827 TA(ScrubbedPages(scrubCount)); 1828 } 1829 1830 return 0; 1831 } 1832 1833 1834 static void 1835 init_page_marker(vm_page &marker) 1836 { 1837 marker.SetCacheRef(NULL); 1838 marker.InitState(PAGE_STATE_UNUSED); 1839 marker.busy = true; 1840 #if DEBUG_PAGE_QUEUE 1841 marker.queue = NULL; 1842 #endif 1843 #if DEBUG_PAGE_ACCESS 1844 marker.accessing_thread = thread_get_current_thread_id(); 1845 #endif 1846 } 1847 1848 1849 static void 1850 remove_page_marker(struct vm_page &marker) 1851 { 1852 DEBUG_PAGE_ACCESS_CHECK(&marker); 1853 1854 if (marker.State() < PAGE_STATE_FIRST_UNQUEUED) 1855 sPageQueues[marker.State()].RemoveUnlocked(&marker); 1856 1857 marker.SetState(PAGE_STATE_UNUSED); 1858 } 1859 1860 1861 static vm_page* 1862 next_modified_page(page_num_t& maxPagesToSee) 1863 { 1864 InterruptsSpinLocker locker(sModifiedPageQueue.GetLock()); 1865 1866 while (maxPagesToSee > 0) { 1867 vm_page* page = sModifiedPageQueue.Head(); 1868 if (page == NULL) 1869 return NULL; 1870 1871 sModifiedPageQueue.Requeue(page, true); 1872 1873 maxPagesToSee--; 1874 1875 if (!page->busy) 1876 return page; 1877 } 1878 1879 return NULL; 1880 } 1881 1882 1883 // #pragma mark - 1884 1885 1886 class PageWriteTransfer; 1887 class PageWriteWrapper; 1888 1889 1890 class PageWriterRun { 1891 public: 1892 status_t Init(uint32 maxPages); 1893 1894 void PrepareNextRun(); 1895 void AddPage(vm_page* page); 1896 uint32 Go(); 1897 1898 void PageWritten(PageWriteTransfer* transfer, status_t status, 1899 bool partialTransfer, size_t bytesTransferred); 1900 1901 private: 1902 uint32 fMaxPages; 1903 uint32 fWrapperCount; 1904 uint32 fTransferCount; 1905 vint32 fPendingTransfers; 1906 PageWriteWrapper* fWrappers; 1907 PageWriteTransfer* fTransfers; 1908 ConditionVariable fAllFinishedCondition; 1909 }; 1910 1911 1912 class PageWriteTransfer : public AsyncIOCallback { 1913 public: 1914 void SetTo(PageWriterRun* run, vm_page* page, int32 maxPages); 1915 bool AddPage(vm_page* page); 1916 1917 status_t Schedule(uint32 flags); 1918 1919 void SetStatus(status_t status, size_t transferred); 1920 1921 status_t Status() const { return fStatus; } 1922 struct VMCache* Cache() const { return fCache; } 1923 uint32 PageCount() const { return fPageCount; } 1924 1925 virtual void IOFinished(status_t status, bool partialTransfer, 1926 generic_size_t bytesTransferred); 1927 private: 1928 PageWriterRun* fRun; 1929 struct VMCache* fCache; 1930 off_t fOffset; 1931 uint32 fPageCount; 1932 int32 fMaxPages; 1933 status_t fStatus; 1934 uint32 fVecCount; 1935 generic_io_vec fVecs[32]; // TODO: make dynamic/configurable 1936 }; 1937 1938 1939 class PageWriteWrapper { 1940 public: 1941 PageWriteWrapper(); 1942 ~PageWriteWrapper(); 1943 void SetTo(vm_page* page); 1944 bool Done(status_t result); 1945 1946 private: 1947 vm_page* fPage; 1948 struct VMCache* fCache; 1949 bool fIsActive; 1950 }; 1951 1952 1953 PageWriteWrapper::PageWriteWrapper() 1954 : 1955 fIsActive(false) 1956 { 1957 } 1958 1959 1960 PageWriteWrapper::~PageWriteWrapper() 1961 { 1962 if (fIsActive) 1963 panic("page write wrapper going out of scope but isn't completed"); 1964 } 1965 1966 1967 /*! The page's cache must be locked. 1968 */ 1969 void 1970 PageWriteWrapper::SetTo(vm_page* page) 1971 { 1972 DEBUG_PAGE_ACCESS_CHECK(page); 1973 1974 if (page->busy) 1975 panic("setting page write wrapper to busy page"); 1976 1977 if (fIsActive) 1978 panic("re-setting page write wrapper that isn't completed"); 1979 1980 fPage = page; 1981 fCache = page->Cache(); 1982 fIsActive = true; 1983 1984 fPage->busy = true; 1985 fPage->busy_writing = true; 1986 1987 // We have a modified page -- however, while we're writing it back, 1988 // the page might still be mapped. In order not to lose any changes to the 1989 // page, we mark it clean before actually writing it back; if 1990 // writing the page fails for some reason, we'll just keep it in the 1991 // modified page list, but that should happen only rarely. 1992 1993 // If the page is changed after we cleared the dirty flag, but before we 1994 // had the chance to write it back, then we'll write it again later -- that 1995 // will probably not happen that often, though. 1996 1997 vm_clear_map_flags(fPage, PAGE_MODIFIED); 1998 } 1999 2000 2001 /*! The page's cache must be locked. 2002 The page queues must not be locked. 2003 \return \c true if the page was written successfully respectively could be 2004 handled somehow, \c false otherwise. 2005 */ 2006 bool 2007 PageWriteWrapper::Done(status_t result) 2008 { 2009 if (!fIsActive) 2010 panic("completing page write wrapper that is not active"); 2011 2012 DEBUG_PAGE_ACCESS_START(fPage); 2013 2014 fPage->busy = false; 2015 // Set unbusy and notify later by hand, since we might free the page. 2016 2017 bool success = true; 2018 2019 if (result == B_OK) { 2020 // put it into the active/inactive queue 2021 move_page_to_appropriate_queue(fPage); 2022 fPage->busy_writing = false; 2023 DEBUG_PAGE_ACCESS_END(fPage); 2024 } else { 2025 // Writing the page failed. One reason would be that the cache has been 2026 // shrunk and the page does no longer belong to the file. Otherwise the 2027 // actual I/O failed, in which case we'll simply keep the page modified. 2028 2029 if (!fPage->busy_writing) { 2030 // The busy_writing flag was cleared. That means the cache has been 2031 // shrunk while we were trying to write the page and we have to free 2032 // it now. 2033 vm_remove_all_page_mappings(fPage); 2034 // TODO: Unmapping should already happen when resizing the cache! 2035 fCache->RemovePage(fPage); 2036 free_page(fPage, false); 2037 } else { 2038 // Writing the page failed -- mark the page modified and move it to 2039 // an appropriate queue other than the modified queue, so we don't 2040 // keep trying to write it over and over again. We keep 2041 // non-temporary pages in the modified queue, though, so they don't 2042 // get lost in the inactive queue. 2043 dprintf("PageWriteWrapper: Failed to write page %p: %s\n", fPage, 2044 strerror(result)); 2045 2046 fPage->modified = true; 2047 if (!fCache->temporary) 2048 set_page_state(fPage, PAGE_STATE_MODIFIED); 2049 else if (fPage->IsMapped()) 2050 set_page_state(fPage, PAGE_STATE_ACTIVE); 2051 else 2052 set_page_state(fPage, PAGE_STATE_INACTIVE); 2053 2054 fPage->busy_writing = false; 2055 DEBUG_PAGE_ACCESS_END(fPage); 2056 2057 success = false; 2058 } 2059 } 2060 2061 fCache->NotifyPageEvents(fPage, PAGE_EVENT_NOT_BUSY); 2062 fIsActive = false; 2063 2064 return success; 2065 } 2066 2067 2068 /*! The page's cache must be locked. 2069 */ 2070 void 2071 PageWriteTransfer::SetTo(PageWriterRun* run, vm_page* page, int32 maxPages) 2072 { 2073 fRun = run; 2074 fCache = page->Cache(); 2075 fOffset = page->cache_offset; 2076 fPageCount = 1; 2077 fMaxPages = maxPages; 2078 fStatus = B_OK; 2079 2080 fVecs[0].base = (phys_addr_t)page->physical_page_number << PAGE_SHIFT; 2081 fVecs[0].length = B_PAGE_SIZE; 2082 fVecCount = 1; 2083 } 2084 2085 2086 /*! The page's cache must be locked. 2087 */ 2088 bool 2089 PageWriteTransfer::AddPage(vm_page* page) 2090 { 2091 if (page->Cache() != fCache 2092 || (fMaxPages >= 0 && fPageCount >= (uint32)fMaxPages)) 2093 return false; 2094 2095 phys_addr_t nextBase = fVecs[fVecCount - 1].base 2096 + fVecs[fVecCount - 1].length; 2097 2098 if ((phys_addr_t)page->physical_page_number << PAGE_SHIFT == nextBase 2099 && (off_t)page->cache_offset == fOffset + fPageCount) { 2100 // append to last iovec 2101 fVecs[fVecCount - 1].length += B_PAGE_SIZE; 2102 fPageCount++; 2103 return true; 2104 } 2105 2106 nextBase = fVecs[0].base - B_PAGE_SIZE; 2107 if ((phys_addr_t)page->physical_page_number << PAGE_SHIFT == nextBase 2108 && (off_t)page->cache_offset == fOffset - 1) { 2109 // prepend to first iovec and adjust offset 2110 fVecs[0].base = nextBase; 2111 fVecs[0].length += B_PAGE_SIZE; 2112 fOffset = page->cache_offset; 2113 fPageCount++; 2114 return true; 2115 } 2116 2117 if (((off_t)page->cache_offset == fOffset + fPageCount 2118 || (off_t)page->cache_offset == fOffset - 1) 2119 && fVecCount < sizeof(fVecs) / sizeof(fVecs[0])) { 2120 // not physically contiguous or not in the right order 2121 uint32 vectorIndex; 2122 if ((off_t)page->cache_offset < fOffset) { 2123 // we are pre-pending another vector, move the other vecs 2124 for (uint32 i = fVecCount; i > 0; i--) 2125 fVecs[i] = fVecs[i - 1]; 2126 2127 fOffset = page->cache_offset; 2128 vectorIndex = 0; 2129 } else 2130 vectorIndex = fVecCount; 2131 2132 fVecs[vectorIndex].base 2133 = (phys_addr_t)page->physical_page_number << PAGE_SHIFT; 2134 fVecs[vectorIndex].length = B_PAGE_SIZE; 2135 2136 fVecCount++; 2137 fPageCount++; 2138 return true; 2139 } 2140 2141 return false; 2142 } 2143 2144 2145 status_t 2146 PageWriteTransfer::Schedule(uint32 flags) 2147 { 2148 off_t writeOffset = (off_t)fOffset << PAGE_SHIFT; 2149 generic_size_t writeLength = (phys_size_t)fPageCount << PAGE_SHIFT; 2150 2151 if (fRun != NULL) { 2152 return fCache->WriteAsync(writeOffset, fVecs, fVecCount, writeLength, 2153 flags | B_PHYSICAL_IO_REQUEST, this); 2154 } 2155 2156 status_t status = fCache->Write(writeOffset, fVecs, fVecCount, 2157 flags | B_PHYSICAL_IO_REQUEST, &writeLength); 2158 2159 SetStatus(status, writeLength); 2160 return fStatus; 2161 } 2162 2163 2164 void 2165 PageWriteTransfer::SetStatus(status_t status, size_t transferred) 2166 { 2167 // only succeed if all pages up to the last one have been written fully 2168 // and the last page has at least been written partially 2169 if (status == B_OK && transferred <= (fPageCount - 1) * B_PAGE_SIZE) 2170 status = B_ERROR; 2171 2172 fStatus = status; 2173 } 2174 2175 2176 void 2177 PageWriteTransfer::IOFinished(status_t status, bool partialTransfer, 2178 generic_size_t bytesTransferred) 2179 { 2180 SetStatus(status, bytesTransferred); 2181 fRun->PageWritten(this, fStatus, partialTransfer, bytesTransferred); 2182 } 2183 2184 2185 status_t 2186 PageWriterRun::Init(uint32 maxPages) 2187 { 2188 fMaxPages = maxPages; 2189 fWrapperCount = 0; 2190 fTransferCount = 0; 2191 fPendingTransfers = 0; 2192 2193 fWrappers = new(std::nothrow) PageWriteWrapper[maxPages]; 2194 fTransfers = new(std::nothrow) PageWriteTransfer[maxPages]; 2195 if (fWrappers == NULL || fTransfers == NULL) 2196 return B_NO_MEMORY; 2197 2198 return B_OK; 2199 } 2200 2201 2202 void 2203 PageWriterRun::PrepareNextRun() 2204 { 2205 fWrapperCount = 0; 2206 fTransferCount = 0; 2207 fPendingTransfers = 0; 2208 } 2209 2210 2211 /*! The page's cache must be locked. 2212 */ 2213 void 2214 PageWriterRun::AddPage(vm_page* page) 2215 { 2216 fWrappers[fWrapperCount++].SetTo(page); 2217 2218 if (fTransferCount == 0 || !fTransfers[fTransferCount - 1].AddPage(page)) { 2219 fTransfers[fTransferCount++].SetTo(this, page, 2220 page->Cache()->MaxPagesPerAsyncWrite()); 2221 } 2222 } 2223 2224 2225 /*! Writes all pages previously added. 2226 \return The number of pages that could not be written or otherwise handled. 2227 */ 2228 uint32 2229 PageWriterRun::Go() 2230 { 2231 fPendingTransfers = fTransferCount; 2232 2233 fAllFinishedCondition.Init(this, "page writer wait for I/O"); 2234 ConditionVariableEntry waitEntry; 2235 fAllFinishedCondition.Add(&waitEntry); 2236 2237 // schedule writes 2238 for (uint32 i = 0; i < fTransferCount; i++) 2239 fTransfers[i].Schedule(B_VIP_IO_REQUEST); 2240 2241 // wait until all pages have been written 2242 waitEntry.Wait(); 2243 2244 // mark pages depending on whether they could be written or not 2245 2246 uint32 failedPages = 0; 2247 uint32 wrapperIndex = 0; 2248 for (uint32 i = 0; i < fTransferCount; i++) { 2249 PageWriteTransfer& transfer = fTransfers[i]; 2250 transfer.Cache()->Lock(); 2251 2252 for (uint32 j = 0; j < transfer.PageCount(); j++) { 2253 if (!fWrappers[wrapperIndex++].Done(transfer.Status())) 2254 failedPages++; 2255 } 2256 2257 transfer.Cache()->Unlock(); 2258 } 2259 2260 ASSERT(wrapperIndex == fWrapperCount); 2261 2262 for (uint32 i = 0; i < fTransferCount; i++) { 2263 PageWriteTransfer& transfer = fTransfers[i]; 2264 struct VMCache* cache = transfer.Cache(); 2265 2266 // We've acquired a references for each page 2267 for (uint32 j = 0; j < transfer.PageCount(); j++) { 2268 // We release the cache references after all pages were made 2269 // unbusy again - otherwise releasing a vnode could deadlock. 2270 cache->ReleaseStoreRef(); 2271 cache->ReleaseRef(); 2272 } 2273 } 2274 2275 return failedPages; 2276 } 2277 2278 2279 void 2280 PageWriterRun::PageWritten(PageWriteTransfer* transfer, status_t status, 2281 bool partialTransfer, size_t bytesTransferred) 2282 { 2283 if (atomic_add(&fPendingTransfers, -1) == 1) 2284 fAllFinishedCondition.NotifyAll(); 2285 } 2286 2287 2288 /*! The page writer continuously takes some pages from the modified 2289 queue, writes them back, and moves them back to the active queue. 2290 It runs in its own thread, and is only there to keep the number 2291 of modified pages low, so that more pages can be reused with 2292 fewer costs. 2293 */ 2294 status_t 2295 page_writer(void* /*unused*/) 2296 { 2297 const uint32 kNumPages = 256; 2298 #ifdef TRACE_VM_PAGE 2299 uint32 writtenPages = 0; 2300 bigtime_t lastWrittenTime = 0; 2301 bigtime_t pageCollectionTime = 0; 2302 bigtime_t pageWritingTime = 0; 2303 #endif 2304 2305 PageWriterRun run; 2306 if (run.Init(kNumPages) != B_OK) { 2307 panic("page writer: Failed to init PageWriterRun!"); 2308 return B_ERROR; 2309 } 2310 2311 page_num_t pagesSinceLastSuccessfulWrite = 0; 2312 2313 while (true) { 2314 // TODO: Maybe wait shorter when memory is low! 2315 if (sModifiedPageQueue.Count() < kNumPages) { 2316 sPageWriterCondition.Wait(3000000, true); 2317 // all 3 seconds when no one triggers us 2318 } 2319 2320 page_num_t modifiedPages = sModifiedPageQueue.Count(); 2321 if (modifiedPages == 0) 2322 continue; 2323 2324 if (modifiedPages <= pagesSinceLastSuccessfulWrite) { 2325 // We ran through the whole queue without being able to write a 2326 // single page. Take a break. 2327 snooze(500000); 2328 pagesSinceLastSuccessfulWrite = 0; 2329 } 2330 2331 #if ENABLE_SWAP_SUPPORT 2332 page_stats pageStats; 2333 get_page_stats(pageStats); 2334 bool activePaging = do_active_paging(pageStats); 2335 #endif 2336 2337 // depending on how urgent it becomes to get pages to disk, we adjust 2338 // our I/O priority 2339 uint32 lowPagesState = low_resource_state(B_KERNEL_RESOURCE_PAGES); 2340 int32 ioPriority = B_IDLE_PRIORITY; 2341 if (lowPagesState >= B_LOW_RESOURCE_CRITICAL 2342 || modifiedPages > MAX_PAGE_WRITER_IO_PRIORITY_THRESHOLD) { 2343 ioPriority = MAX_PAGE_WRITER_IO_PRIORITY; 2344 } else { 2345 ioPriority = (uint64)MAX_PAGE_WRITER_IO_PRIORITY * modifiedPages 2346 / MAX_PAGE_WRITER_IO_PRIORITY_THRESHOLD; 2347 } 2348 2349 thread_set_io_priority(ioPriority); 2350 2351 uint32 numPages = 0; 2352 run.PrepareNextRun(); 2353 2354 // TODO: make this laptop friendly, too (ie. only start doing 2355 // something if someone else did something or there is really 2356 // enough to do). 2357 2358 // collect pages to be written 2359 #ifdef TRACE_VM_PAGE 2360 pageCollectionTime -= system_time(); 2361 #endif 2362 2363 page_num_t maxPagesToSee = modifiedPages; 2364 2365 while (numPages < kNumPages && maxPagesToSee > 0) { 2366 vm_page *page = next_modified_page(maxPagesToSee); 2367 if (page == NULL) 2368 break; 2369 2370 PageCacheLocker cacheLocker(page, false); 2371 if (!cacheLocker.IsLocked()) 2372 continue; 2373 2374 VMCache *cache = page->Cache(); 2375 2376 // If the page is busy or its state has changed while we were 2377 // locking the cache, just ignore it. 2378 if (page->busy || page->State() != PAGE_STATE_MODIFIED) 2379 continue; 2380 2381 DEBUG_PAGE_ACCESS_START(page); 2382 2383 // Don't write back wired (locked) pages. 2384 if (page->WiredCount() > 0) { 2385 set_page_state(page, PAGE_STATE_ACTIVE); 2386 DEBUG_PAGE_ACCESS_END(page); 2387 continue; 2388 } 2389 2390 // Write back temporary pages only when we're actively paging. 2391 if (cache->temporary 2392 #if ENABLE_SWAP_SUPPORT 2393 && (!activePaging 2394 || !cache->CanWritePage( 2395 (off_t)page->cache_offset << PAGE_SHIFT)) 2396 #endif 2397 ) { 2398 // We can't/don't want to do anything with this page, so move it 2399 // to one of the other queues. 2400 if (page->mappings.IsEmpty()) 2401 set_page_state(page, PAGE_STATE_INACTIVE); 2402 else 2403 set_page_state(page, PAGE_STATE_ACTIVE); 2404 2405 DEBUG_PAGE_ACCESS_END(page); 2406 continue; 2407 } 2408 2409 // We need our own reference to the store, as it might currently be 2410 // destroyed. 2411 if (cache->AcquireUnreferencedStoreRef() != B_OK) { 2412 DEBUG_PAGE_ACCESS_END(page); 2413 cacheLocker.Unlock(); 2414 thread_yield(true); 2415 continue; 2416 } 2417 2418 run.AddPage(page); 2419 // TODO: We're possibly adding pages of different caches and 2420 // thus maybe of different underlying file systems here. This 2421 // is a potential problem for loop file systems/devices, since 2422 // we could mark a page busy that would need to be accessed 2423 // when writing back another page, thus causing a deadlock. 2424 2425 DEBUG_PAGE_ACCESS_END(page); 2426 2427 //dprintf("write page %p, cache %p (%ld)\n", page, page->cache, page->cache->ref_count); 2428 TPW(WritePage(page)); 2429 2430 cache->AcquireRefLocked(); 2431 numPages++; 2432 } 2433 2434 #ifdef TRACE_VM_PAGE 2435 pageCollectionTime += system_time(); 2436 #endif 2437 if (numPages == 0) 2438 continue; 2439 2440 // write pages to disk and do all the cleanup 2441 #ifdef TRACE_VM_PAGE 2442 pageWritingTime -= system_time(); 2443 #endif 2444 uint32 failedPages = run.Go(); 2445 #ifdef TRACE_VM_PAGE 2446 pageWritingTime += system_time(); 2447 2448 // debug output only... 2449 writtenPages += numPages; 2450 if (writtenPages >= 1024) { 2451 bigtime_t now = system_time(); 2452 TRACE(("page writer: wrote 1024 pages (total: %llu ms, " 2453 "collect: %llu ms, write: %llu ms)\n", 2454 (now - lastWrittenTime) / 1000, 2455 pageCollectionTime / 1000, pageWritingTime / 1000)); 2456 lastWrittenTime = now; 2457 2458 writtenPages -= 1024; 2459 pageCollectionTime = 0; 2460 pageWritingTime = 0; 2461 } 2462 #endif 2463 2464 if (failedPages == numPages) 2465 pagesSinceLastSuccessfulWrite += modifiedPages - maxPagesToSee; 2466 else 2467 pagesSinceLastSuccessfulWrite = 0; 2468 } 2469 2470 return B_OK; 2471 } 2472 2473 2474 // #pragma mark - 2475 2476 2477 // TODO: This should be done in the page daemon! 2478 #if 0 2479 #if ENABLE_SWAP_SUPPORT 2480 static bool 2481 free_page_swap_space(int32 index) 2482 { 2483 vm_page *page = vm_page_at_index(index); 2484 PageCacheLocker locker(page); 2485 if (!locker.IsLocked()) 2486 return false; 2487 2488 DEBUG_PAGE_ACCESS_START(page); 2489 2490 VMCache* cache = page->Cache(); 2491 if (cache->temporary && page->WiredCount() == 0 2492 && cache->HasPage(page->cache_offset << PAGE_SHIFT) 2493 && page->usage_count > 0) { 2494 // TODO: how to judge a page is highly active? 2495 if (swap_free_page_swap_space(page)) { 2496 // We need to mark the page modified, since otherwise it could be 2497 // stolen and we'd lose its data. 2498 vm_page_set_state(page, PAGE_STATE_MODIFIED); 2499 TD(FreedPageSwap(page)); 2500 DEBUG_PAGE_ACCESS_END(page); 2501 return true; 2502 } 2503 } 2504 DEBUG_PAGE_ACCESS_END(page); 2505 return false; 2506 } 2507 #endif 2508 #endif // 0 2509 2510 2511 static vm_page * 2512 find_cached_page_candidate(struct vm_page &marker) 2513 { 2514 DEBUG_PAGE_ACCESS_CHECK(&marker); 2515 2516 InterruptsSpinLocker locker(sCachedPageQueue.GetLock()); 2517 vm_page *page; 2518 2519 if (marker.State() == PAGE_STATE_UNUSED) { 2520 // Get the first free pages of the (in)active queue 2521 page = sCachedPageQueue.Head(); 2522 } else { 2523 // Get the next page of the current queue 2524 if (marker.State() != PAGE_STATE_CACHED) { 2525 panic("invalid marker %p state", &marker); 2526 return NULL; 2527 } 2528 2529 page = sCachedPageQueue.Next(&marker); 2530 sCachedPageQueue.Remove(&marker); 2531 marker.SetState(PAGE_STATE_UNUSED); 2532 } 2533 2534 while (page != NULL) { 2535 if (!page->busy) { 2536 // we found a candidate, insert marker 2537 marker.SetState(PAGE_STATE_CACHED); 2538 sCachedPageQueue.InsertAfter(page, &marker); 2539 return page; 2540 } 2541 2542 page = sCachedPageQueue.Next(page); 2543 } 2544 2545 return NULL; 2546 } 2547 2548 2549 static bool 2550 free_cached_page(vm_page *page, bool dontWait) 2551 { 2552 // try to lock the page's cache 2553 if (vm_cache_acquire_locked_page_cache(page, dontWait) == NULL) 2554 return false; 2555 VMCache* cache = page->Cache(); 2556 2557 AutoLocker<VMCache> cacheLocker(cache, true); 2558 MethodDeleter<VMCache> _2(cache, &VMCache::ReleaseRefLocked); 2559 2560 // check again if that page is still a candidate 2561 if (page->busy || page->State() != PAGE_STATE_CACHED) 2562 return false; 2563 2564 DEBUG_PAGE_ACCESS_START(page); 2565 2566 PAGE_ASSERT(page, !page->IsMapped()); 2567 PAGE_ASSERT(page, !page->modified); 2568 2569 // we can now steal this page 2570 2571 cache->RemovePage(page); 2572 // Now the page doesn't have cache anymore, so no one else (e.g. 2573 // vm_page_allocate_page_run() can pick it up), since they would be 2574 // required to lock the cache first, which would fail. 2575 2576 sCachedPageQueue.RemoveUnlocked(page); 2577 return true; 2578 } 2579 2580 2581 static uint32 2582 free_cached_pages(uint32 pagesToFree, bool dontWait) 2583 { 2584 vm_page marker; 2585 init_page_marker(marker); 2586 2587 uint32 pagesFreed = 0; 2588 2589 while (pagesFreed < pagesToFree) { 2590 vm_page *page = find_cached_page_candidate(marker); 2591 if (page == NULL) 2592 break; 2593 2594 if (free_cached_page(page, dontWait)) { 2595 ReadLocker locker(sFreePageQueuesLock); 2596 page->SetState(PAGE_STATE_FREE); 2597 DEBUG_PAGE_ACCESS_END(page); 2598 sFreePageQueue.PrependUnlocked(page); 2599 locker.Unlock(); 2600 2601 TA(StolenPage()); 2602 2603 pagesFreed++; 2604 } 2605 } 2606 2607 remove_page_marker(marker); 2608 2609 return pagesFreed; 2610 } 2611 2612 2613 static void 2614 idle_scan_active_pages(page_stats& pageStats) 2615 { 2616 VMPageQueue& queue = sActivePageQueue; 2617 2618 // We want to scan the whole queue in roughly kIdleRunsForFullQueue runs. 2619 uint32 maxToScan = queue.Count() / kIdleRunsForFullQueue + 1; 2620 2621 while (maxToScan > 0) { 2622 maxToScan--; 2623 2624 // Get the next page. Note that we don't bother to lock here. We go with 2625 // the assumption that on all architectures reading/writing pointers is 2626 // atomic. Beyond that it doesn't really matter. We have to unlock the 2627 // queue anyway to lock the page's cache, and we'll recheck afterwards. 2628 vm_page* page = queue.Head(); 2629 if (page == NULL) 2630 break; 2631 2632 // lock the page's cache 2633 VMCache* cache = vm_cache_acquire_locked_page_cache(page, true); 2634 if (cache == NULL) 2635 continue; 2636 2637 if (page->State() != PAGE_STATE_ACTIVE) { 2638 // page is no longer in the cache or in this queue 2639 cache->ReleaseRefAndUnlock(); 2640 continue; 2641 } 2642 2643 if (page->busy) { 2644 // page is busy -- requeue at the end 2645 vm_page_requeue(page, true); 2646 cache->ReleaseRefAndUnlock(); 2647 continue; 2648 } 2649 2650 DEBUG_PAGE_ACCESS_START(page); 2651 2652 // Get the page active/modified flags and update the page's usage count. 2653 // We completely unmap inactive temporary pages. This saves us to 2654 // iterate through the inactive list as well, since we'll be notified 2655 // via page fault whenever such an inactive page is used again. 2656 // We don't remove the mappings of non-temporary pages, since we 2657 // wouldn't notice when those would become unused and could thus be 2658 // moved to the cached list. 2659 int32 usageCount; 2660 if (page->WiredCount() > 0 || page->usage_count > 0 2661 || !cache->temporary) { 2662 usageCount = vm_clear_page_mapping_accessed_flags(page); 2663 } else 2664 usageCount = vm_remove_all_page_mappings_if_unaccessed(page); 2665 2666 if (usageCount > 0) { 2667 usageCount += page->usage_count + kPageUsageAdvance; 2668 if (usageCount > kPageUsageMax) 2669 usageCount = kPageUsageMax; 2670 // TODO: This would probably also be the place to reclaim swap space. 2671 } else { 2672 usageCount += page->usage_count - (int32)kPageUsageDecline; 2673 if (usageCount < 0) { 2674 usageCount = 0; 2675 set_page_state(page, PAGE_STATE_INACTIVE); 2676 } 2677 } 2678 2679 page->usage_count = usageCount; 2680 2681 DEBUG_PAGE_ACCESS_END(page); 2682 2683 cache->ReleaseRefAndUnlock(); 2684 } 2685 } 2686 2687 2688 static void 2689 full_scan_inactive_pages(page_stats& pageStats, int32 despairLevel) 2690 { 2691 int32 pagesToFree = pageStats.unsatisfiedReservations 2692 + sFreeOrCachedPagesTarget 2693 - (pageStats.totalFreePages + pageStats.cachedPages); 2694 if (pagesToFree <= 0) 2695 return; 2696 2697 bigtime_t time = system_time(); 2698 uint32 pagesScanned = 0; 2699 uint32 pagesToCached = 0; 2700 uint32 pagesToModified = 0; 2701 uint32 pagesToActive = 0; 2702 2703 // Determine how many pages at maximum to send to the modified queue. Since 2704 // it is relatively expensive to page out pages, we do that on a grander 2705 // scale only when things get desperate. 2706 uint32 maxToFlush = despairLevel <= 1 ? 32 : 10000; 2707 2708 vm_page marker; 2709 init_page_marker(marker); 2710 2711 VMPageQueue& queue = sInactivePageQueue; 2712 InterruptsSpinLocker queueLocker(queue.GetLock()); 2713 uint32 maxToScan = queue.Count(); 2714 2715 vm_page* nextPage = queue.Head(); 2716 2717 while (pagesToFree > 0 && maxToScan > 0) { 2718 maxToScan--; 2719 2720 // get the next page 2721 vm_page* page = nextPage; 2722 if (page == NULL) 2723 break; 2724 nextPage = queue.Next(page); 2725 2726 if (page->busy) 2727 continue; 2728 2729 // mark the position 2730 queue.InsertAfter(page, &marker); 2731 queueLocker.Unlock(); 2732 2733 // lock the page's cache 2734 VMCache* cache = vm_cache_acquire_locked_page_cache(page, true); 2735 if (cache == NULL || page->busy 2736 || page->State() != PAGE_STATE_INACTIVE) { 2737 if (cache != NULL) 2738 cache->ReleaseRefAndUnlock(); 2739 queueLocker.Lock(); 2740 nextPage = queue.Next(&marker); 2741 queue.Remove(&marker); 2742 continue; 2743 } 2744 2745 pagesScanned++; 2746 2747 DEBUG_PAGE_ACCESS_START(page); 2748 2749 // Get the accessed count, clear the accessed/modified flags and 2750 // unmap the page, if it hasn't been accessed. 2751 int32 usageCount; 2752 if (page->WiredCount() > 0) 2753 usageCount = vm_clear_page_mapping_accessed_flags(page); 2754 else 2755 usageCount = vm_remove_all_page_mappings_if_unaccessed(page); 2756 2757 // update usage count 2758 if (usageCount > 0) { 2759 usageCount += page->usage_count + kPageUsageAdvance; 2760 if (usageCount > kPageUsageMax) 2761 usageCount = kPageUsageMax; 2762 } else { 2763 usageCount += page->usage_count - (int32)kPageUsageDecline; 2764 if (usageCount < 0) 2765 usageCount = 0; 2766 } 2767 2768 page->usage_count = usageCount; 2769 2770 // Move to fitting queue or requeue: 2771 // * Active mapped pages go to the active queue. 2772 // * Inactive mapped (i.e. wired) pages are requeued. 2773 // * The remaining pages are cachable. Thus, if unmodified they go to 2774 // the cached queue, otherwise to the modified queue (up to a limit). 2775 // Note that until in the idle scanning we don't exempt pages of 2776 // temporary caches. Apparently we really need memory, so we better 2777 // page out memory as well. 2778 bool isMapped = page->IsMapped(); 2779 if (usageCount > 0) { 2780 if (isMapped) { 2781 set_page_state(page, PAGE_STATE_ACTIVE); 2782 pagesToActive++; 2783 } else 2784 vm_page_requeue(page, true); 2785 } else if (isMapped) { 2786 vm_page_requeue(page, true); 2787 } else if (!page->modified) { 2788 set_page_state(page, PAGE_STATE_CACHED); 2789 pagesToFree--; 2790 pagesToCached++; 2791 } else if (maxToFlush > 0) { 2792 set_page_state(page, PAGE_STATE_MODIFIED); 2793 maxToFlush--; 2794 pagesToModified++; 2795 } else 2796 vm_page_requeue(page, true); 2797 2798 DEBUG_PAGE_ACCESS_END(page); 2799 2800 cache->ReleaseRefAndUnlock(); 2801 2802 // remove the marker 2803 queueLocker.Lock(); 2804 nextPage = queue.Next(&marker); 2805 queue.Remove(&marker); 2806 } 2807 2808 queueLocker.Unlock(); 2809 2810 time = system_time() - time; 2811 TRACE_DAEMON(" -> inactive scan (%7lld us): scanned: %7lu, " 2812 "moved: %lu -> cached, %lu -> modified, %lu -> active\n", time, 2813 pagesScanned, pagesToCached, pagesToModified, pagesToActive); 2814 2815 // wake up the page writer, if we tossed it some pages 2816 if (pagesToModified > 0) 2817 sPageWriterCondition.WakeUp(); 2818 } 2819 2820 2821 static void 2822 full_scan_active_pages(page_stats& pageStats, int32 despairLevel) 2823 { 2824 vm_page marker; 2825 init_page_marker(marker); 2826 2827 VMPageQueue& queue = sActivePageQueue; 2828 InterruptsSpinLocker queueLocker(queue.GetLock()); 2829 uint32 maxToScan = queue.Count(); 2830 2831 int32 pagesToDeactivate = pageStats.unsatisfiedReservations 2832 + sFreeOrCachedPagesTarget 2833 - (pageStats.totalFreePages + pageStats.cachedPages) 2834 + std::max((int32)sInactivePagesTarget - (int32)maxToScan, (int32)0); 2835 if (pagesToDeactivate <= 0) 2836 return; 2837 2838 bigtime_t time = system_time(); 2839 uint32 pagesAccessed = 0; 2840 uint32 pagesToInactive = 0; 2841 uint32 pagesScanned = 0; 2842 2843 vm_page* nextPage = queue.Head(); 2844 2845 while (pagesToDeactivate > 0 && maxToScan > 0) { 2846 maxToScan--; 2847 2848 // get the next page 2849 vm_page* page = nextPage; 2850 if (page == NULL) 2851 break; 2852 nextPage = queue.Next(page); 2853 2854 if (page->busy) 2855 continue; 2856 2857 // mark the position 2858 queue.InsertAfter(page, &marker); 2859 queueLocker.Unlock(); 2860 2861 // lock the page's cache 2862 VMCache* cache = vm_cache_acquire_locked_page_cache(page, true); 2863 if (cache == NULL || page->busy || page->State() != PAGE_STATE_ACTIVE) { 2864 if (cache != NULL) 2865 cache->ReleaseRefAndUnlock(); 2866 queueLocker.Lock(); 2867 nextPage = queue.Next(&marker); 2868 queue.Remove(&marker); 2869 continue; 2870 } 2871 2872 pagesScanned++; 2873 2874 DEBUG_PAGE_ACCESS_START(page); 2875 2876 // Get the page active/modified flags and update the page's usage count. 2877 int32 usageCount = vm_clear_page_mapping_accessed_flags(page); 2878 2879 if (usageCount > 0) { 2880 usageCount += page->usage_count + kPageUsageAdvance; 2881 if (usageCount > kPageUsageMax) 2882 usageCount = kPageUsageMax; 2883 pagesAccessed++; 2884 // TODO: This would probably also be the place to reclaim swap space. 2885 } else { 2886 usageCount += page->usage_count - (int32)kPageUsageDecline; 2887 if (usageCount <= 0) { 2888 usageCount = 0; 2889 set_page_state(page, PAGE_STATE_INACTIVE); 2890 pagesToInactive++; 2891 } 2892 } 2893 2894 page->usage_count = usageCount; 2895 2896 DEBUG_PAGE_ACCESS_END(page); 2897 2898 cache->ReleaseRefAndUnlock(); 2899 2900 // remove the marker 2901 queueLocker.Lock(); 2902 nextPage = queue.Next(&marker); 2903 queue.Remove(&marker); 2904 } 2905 2906 time = system_time() - time; 2907 TRACE_DAEMON(" -> active scan (%7lld us): scanned: %7lu, " 2908 "moved: %lu -> inactive, encountered %lu accessed ones\n", time, 2909 pagesScanned, pagesToInactive, pagesAccessed); 2910 } 2911 2912 2913 static void 2914 page_daemon_idle_scan(page_stats& pageStats) 2915 { 2916 TRACE_DAEMON("page daemon: idle run\n"); 2917 2918 if (pageStats.totalFreePages < (int32)sFreePagesTarget) { 2919 // We want more actually free pages, so free some from the cached 2920 // ones. 2921 uint32 freed = free_cached_pages( 2922 sFreePagesTarget - pageStats.totalFreePages, false); 2923 if (freed > 0) 2924 unreserve_pages(freed); 2925 get_page_stats(pageStats); 2926 } 2927 2928 // Walk the active list and move pages to the inactive queue. 2929 get_page_stats(pageStats); 2930 idle_scan_active_pages(pageStats); 2931 } 2932 2933 2934 static void 2935 page_daemon_full_scan(page_stats& pageStats, int32 despairLevel) 2936 { 2937 TRACE_DAEMON("page daemon: full run: free: %lu, cached: %lu, " 2938 "to free: %lu\n", pageStats.totalFreePages, pageStats.cachedPages, 2939 pageStats.unsatisfiedReservations + sFreeOrCachedPagesTarget 2940 - (pageStats.totalFreePages + pageStats.cachedPages)); 2941 2942 // Walk the inactive list and transfer pages to the cached and modified 2943 // queues. 2944 full_scan_inactive_pages(pageStats, despairLevel); 2945 2946 // Free cached pages. Also wake up reservation waiters. 2947 get_page_stats(pageStats); 2948 int32 pagesToFree = pageStats.unsatisfiedReservations + sFreePagesTarget 2949 - (pageStats.totalFreePages); 2950 if (pagesToFree > 0) { 2951 uint32 freed = free_cached_pages(pagesToFree, true); 2952 if (freed > 0) 2953 unreserve_pages(freed); 2954 } 2955 2956 // Walk the active list and move pages to the inactive queue. 2957 get_page_stats(pageStats); 2958 full_scan_active_pages(pageStats, despairLevel); 2959 } 2960 2961 2962 static status_t 2963 page_daemon(void* /*unused*/) 2964 { 2965 int32 despairLevel = 0; 2966 2967 while (true) { 2968 sPageDaemonCondition.ClearActivated(); 2969 2970 // evaluate the free pages situation 2971 page_stats pageStats; 2972 get_page_stats(pageStats); 2973 2974 if (!do_active_paging(pageStats)) { 2975 // Things look good -- just maintain statistics and keep the pool 2976 // of actually free pages full enough. 2977 despairLevel = 0; 2978 page_daemon_idle_scan(pageStats); 2979 sPageDaemonCondition.Wait(kIdleScanWaitInterval, false); 2980 } else { 2981 // Not enough free pages. We need to do some real work. 2982 despairLevel = std::max(despairLevel + 1, (int32)3); 2983 page_daemon_full_scan(pageStats, despairLevel); 2984 2985 // Don't wait after the first full scan, but rather immediately 2986 // check whether we were successful in freeing enough pages and 2987 // re-run with increased despair level. The first scan is 2988 // conservative with respect to moving inactive modified pages to 2989 // the modified list to avoid thrashing. The second scan, however, 2990 // will not hold back. 2991 if (despairLevel > 1) 2992 snooze(kBusyScanWaitInterval); 2993 } 2994 } 2995 2996 return B_OK; 2997 } 2998 2999 3000 /*! Returns how many pages could *not* be reserved. 3001 */ 3002 static uint32 3003 reserve_pages(uint32 count, int priority, bool dontWait) 3004 { 3005 int32 dontTouch = kPageReserveForPriority[priority]; 3006 3007 while (true) { 3008 count -= reserve_some_pages(count, dontTouch); 3009 if (count == 0) 3010 return 0; 3011 3012 if (sUnsatisfiedPageReservations == 0) { 3013 count -= free_cached_pages(count, dontWait); 3014 if (count == 0) 3015 return count; 3016 } 3017 3018 if (dontWait) 3019 return count; 3020 3021 // we need to wait for pages to become available 3022 3023 MutexLocker pageDeficitLocker(sPageDeficitLock); 3024 3025 bool notifyDaemon = sUnsatisfiedPageReservations == 0; 3026 sUnsatisfiedPageReservations += count; 3027 3028 if (sUnreservedFreePages > dontTouch) { 3029 // the situation changed 3030 sUnsatisfiedPageReservations -= count; 3031 continue; 3032 } 3033 3034 PageReservationWaiter waiter; 3035 waiter.dontTouch = dontTouch; 3036 waiter.missing = count; 3037 waiter.thread = thread_get_current_thread(); 3038 waiter.threadPriority = waiter.thread->priority; 3039 3040 // insert ordered (i.e. after all waiters with higher or equal priority) 3041 PageReservationWaiter* otherWaiter = NULL; 3042 for (PageReservationWaiterList::Iterator it 3043 = sPageReservationWaiters.GetIterator(); 3044 (otherWaiter = it.Next()) != NULL;) { 3045 if (waiter < *otherWaiter) 3046 break; 3047 } 3048 3049 sPageReservationWaiters.InsertBefore(otherWaiter, &waiter); 3050 3051 thread_prepare_to_block(waiter.thread, 0, THREAD_BLOCK_TYPE_OTHER, 3052 "waiting for pages"); 3053 3054 if (notifyDaemon) 3055 sPageDaemonCondition.WakeUp(); 3056 3057 pageDeficitLocker.Unlock(); 3058 3059 low_resource(B_KERNEL_RESOURCE_PAGES, count, B_RELATIVE_TIMEOUT, 0); 3060 thread_block(); 3061 3062 pageDeficitLocker.Lock(); 3063 3064 return 0; 3065 } 3066 } 3067 3068 3069 // #pragma mark - private kernel API 3070 3071 3072 /*! Writes a range of modified pages of a cache to disk. 3073 You need to hold the VMCache lock when calling this function. 3074 Note that the cache lock is released in this function. 3075 \param cache The cache. 3076 \param firstPage Offset (in page size units) of the first page in the range. 3077 \param endPage End offset (in page size units) of the page range. The page 3078 at this offset is not included. 3079 */ 3080 status_t 3081 vm_page_write_modified_page_range(struct VMCache* cache, uint32 firstPage, 3082 uint32 endPage) 3083 { 3084 static const int32 kMaxPages = 256; 3085 int32 maxPages = cache->MaxPagesPerWrite(); 3086 if (maxPages < 0 || maxPages > kMaxPages) 3087 maxPages = kMaxPages; 3088 3089 const uint32 allocationFlags = HEAP_DONT_WAIT_FOR_MEMORY 3090 | HEAP_DONT_LOCK_KERNEL_SPACE; 3091 3092 PageWriteWrapper stackWrappers[2]; 3093 PageWriteWrapper* wrapperPool 3094 = new(malloc_flags(allocationFlags)) PageWriteWrapper[maxPages + 1]; 3095 if (wrapperPool == NULL) { 3096 // don't fail, just limit our capabilities 3097 wrapperPool = stackWrappers; 3098 maxPages = 1; 3099 } 3100 3101 int32 nextWrapper = 0; 3102 3103 PageWriteWrapper* wrappers[maxPages]; 3104 int32 usedWrappers = 0; 3105 3106 PageWriteTransfer transfer; 3107 bool transferEmpty = true; 3108 3109 VMCachePagesTree::Iterator it 3110 = cache->pages.GetIterator(firstPage, true, true); 3111 3112 while (true) { 3113 vm_page* page = it.Next(); 3114 if (page == NULL || page->cache_offset >= endPage) { 3115 if (transferEmpty) 3116 break; 3117 3118 page = NULL; 3119 } 3120 3121 if (page != NULL) { 3122 if (page->busy 3123 || (page->State() != PAGE_STATE_MODIFIED 3124 && !vm_test_map_modification(page))) { 3125 page = NULL; 3126 } 3127 } 3128 3129 PageWriteWrapper* wrapper = NULL; 3130 if (page != NULL) { 3131 wrapper = &wrapperPool[nextWrapper++]; 3132 if (nextWrapper > maxPages) 3133 nextWrapper = 0; 3134 3135 DEBUG_PAGE_ACCESS_START(page); 3136 3137 wrapper->SetTo(page); 3138 3139 if (transferEmpty || transfer.AddPage(page)) { 3140 if (transferEmpty) { 3141 transfer.SetTo(NULL, page, maxPages); 3142 transferEmpty = false; 3143 } 3144 3145 DEBUG_PAGE_ACCESS_END(page); 3146 3147 wrappers[usedWrappers++] = wrapper; 3148 continue; 3149 } 3150 3151 DEBUG_PAGE_ACCESS_END(page); 3152 } 3153 3154 if (transferEmpty) 3155 continue; 3156 3157 cache->Unlock(); 3158 status_t status = transfer.Schedule(0); 3159 cache->Lock(); 3160 3161 for (int32 i = 0; i < usedWrappers; i++) 3162 wrappers[i]->Done(status); 3163 3164 usedWrappers = 0; 3165 3166 if (page != NULL) { 3167 transfer.SetTo(NULL, page, maxPages); 3168 wrappers[usedWrappers++] = wrapper; 3169 } else 3170 transferEmpty = true; 3171 } 3172 3173 if (wrapperPool != stackWrappers) 3174 delete[] wrapperPool; 3175 3176 return B_OK; 3177 } 3178 3179 3180 /*! You need to hold the VMCache lock when calling this function. 3181 Note that the cache lock is released in this function. 3182 */ 3183 status_t 3184 vm_page_write_modified_pages(VMCache *cache) 3185 { 3186 return vm_page_write_modified_page_range(cache, 0, 3187 (cache->virtual_end + B_PAGE_SIZE - 1) >> PAGE_SHIFT); 3188 } 3189 3190 3191 /*! Schedules the page writer to write back the specified \a page. 3192 Note, however, that it might not do this immediately, and it can well 3193 take several seconds until the page is actually written out. 3194 */ 3195 void 3196 vm_page_schedule_write_page(vm_page *page) 3197 { 3198 PAGE_ASSERT(page, page->State() == PAGE_STATE_MODIFIED); 3199 3200 vm_page_requeue(page, false); 3201 3202 sPageWriterCondition.WakeUp(); 3203 } 3204 3205 3206 /*! Cache must be locked. 3207 */ 3208 void 3209 vm_page_schedule_write_page_range(struct VMCache *cache, uint32 firstPage, 3210 uint32 endPage) 3211 { 3212 uint32 modified = 0; 3213 for (VMCachePagesTree::Iterator it 3214 = cache->pages.GetIterator(firstPage, true, true); 3215 vm_page *page = it.Next();) { 3216 if (page->cache_offset >= endPage) 3217 break; 3218 3219 if (!page->busy && page->State() == PAGE_STATE_MODIFIED) { 3220 DEBUG_PAGE_ACCESS_START(page); 3221 vm_page_requeue(page, false); 3222 modified++; 3223 DEBUG_PAGE_ACCESS_END(page); 3224 } 3225 } 3226 3227 if (modified > 0) 3228 sPageWriterCondition.WakeUp(); 3229 } 3230 3231 3232 void 3233 vm_page_init_num_pages(kernel_args *args) 3234 { 3235 // calculate the size of memory by looking at the physical_memory_range array 3236 sPhysicalPageOffset = args->physical_memory_range[0].start / B_PAGE_SIZE; 3237 page_num_t physicalPagesEnd = sPhysicalPageOffset 3238 + args->physical_memory_range[0].size / B_PAGE_SIZE; 3239 3240 sNonExistingPages = 0; 3241 sIgnoredPages = args->ignored_physical_memory / B_PAGE_SIZE; 3242 3243 for (uint32 i = 1; i < args->num_physical_memory_ranges; i++) { 3244 page_num_t start = args->physical_memory_range[i].start / B_PAGE_SIZE; 3245 if (start > physicalPagesEnd) 3246 sNonExistingPages += start - physicalPagesEnd; 3247 physicalPagesEnd = start 3248 + args->physical_memory_range[i].size / B_PAGE_SIZE; 3249 3250 #ifdef LIMIT_AVAILABLE_MEMORY 3251 page_num_t available 3252 = physicalPagesEnd - sPhysicalPageOffset - sNonExistingPages; 3253 if (available > LIMIT_AVAILABLE_MEMORY * (1024 * 1024 / B_PAGE_SIZE)) { 3254 physicalPagesEnd = sPhysicalPageOffset + sNonExistingPages 3255 + LIMIT_AVAILABLE_MEMORY * (1024 * 1024 / B_PAGE_SIZE); 3256 break; 3257 } 3258 #endif 3259 } 3260 3261 TRACE(("first phys page = %#" B_PRIxPHYSADDR ", end %#" B_PRIxPHYSADDR "\n", 3262 sPhysicalPageOffset, physicalPagesEnd)); 3263 3264 sNumPages = physicalPagesEnd - sPhysicalPageOffset; 3265 } 3266 3267 3268 status_t 3269 vm_page_init(kernel_args *args) 3270 { 3271 TRACE(("vm_page_init: entry\n")); 3272 3273 // init page queues 3274 sModifiedPageQueue.Init("modified pages queue"); 3275 sInactivePageQueue.Init("inactive pages queue"); 3276 sActivePageQueue.Init("active pages queue"); 3277 sCachedPageQueue.Init("cached pages queue"); 3278 sFreePageQueue.Init("free pages queue"); 3279 sClearPageQueue.Init("clear pages queue"); 3280 3281 new (&sPageReservationWaiters) PageReservationWaiterList; 3282 3283 // map in the new free page table 3284 sPages = (vm_page *)vm_allocate_early(args, sNumPages * sizeof(vm_page), 3285 ~0L, B_KERNEL_READ_AREA | B_KERNEL_WRITE_AREA, 0); 3286 3287 TRACE(("vm_init: putting free_page_table @ %p, # ents %" B_PRIuPHYSADDR 3288 " (size %#" B_PRIxPHYSADDR ")\n", sPages, sNumPages, 3289 (phys_addr_t)(sNumPages * sizeof(vm_page)))); 3290 3291 // initialize the free page table 3292 for (uint32 i = 0; i < sNumPages; i++) { 3293 sPages[i].Init(sPhysicalPageOffset + i); 3294 sFreePageQueue.Append(&sPages[i]); 3295 3296 #if VM_PAGE_ALLOCATION_TRACKING_AVAILABLE 3297 sPages[i].allocation_tracking_info.Clear(); 3298 #endif 3299 } 3300 3301 sUnreservedFreePages = sNumPages; 3302 3303 TRACE(("initialized table\n")); 3304 3305 // mark the ranges between usable physical memory unused 3306 phys_addr_t previousEnd = 0; 3307 for (uint32 i = 0; i < args->num_physical_memory_ranges; i++) { 3308 phys_addr_t base = args->physical_memory_range[i].start; 3309 phys_size_t size = args->physical_memory_range[i].size; 3310 if (base > previousEnd) { 3311 mark_page_range_in_use(previousEnd / B_PAGE_SIZE, 3312 (base - previousEnd) / B_PAGE_SIZE, false); 3313 } 3314 previousEnd = base + size; 3315 } 3316 3317 // mark the allocated physical page ranges wired 3318 for (uint32 i = 0; i < args->num_physical_allocated_ranges; i++) { 3319 mark_page_range_in_use( 3320 args->physical_allocated_range[i].start / B_PAGE_SIZE, 3321 args->physical_allocated_range[i].size / B_PAGE_SIZE, true); 3322 } 3323 3324 // The target of actually free pages. This must be at least the system 3325 // reserve, but should be a few more pages, so we don't have to extract 3326 // a cached page with each allocation. 3327 sFreePagesTarget = VM_PAGE_RESERVE_USER 3328 + std::max((page_num_t)32, (sNumPages - sNonExistingPages) / 1024); 3329 3330 // The target of free + cached and inactive pages. On low-memory machines 3331 // keep things tight. free + cached is the pool of immediately allocatable 3332 // pages. We want a few inactive pages, so when we're actually paging, we 3333 // have a reasonably large set of pages to work with. 3334 if (sUnreservedFreePages < 16 * 1024) { 3335 sFreeOrCachedPagesTarget = sFreePagesTarget + 128; 3336 sInactivePagesTarget = sFreePagesTarget / 3; 3337 } else { 3338 sFreeOrCachedPagesTarget = 2 * sFreePagesTarget; 3339 sInactivePagesTarget = sFreePagesTarget / 2; 3340 } 3341 3342 TRACE(("vm_page_init: exit\n")); 3343 3344 return B_OK; 3345 } 3346 3347 3348 status_t 3349 vm_page_init_post_area(kernel_args *args) 3350 { 3351 void *dummy; 3352 3353 dummy = sPages; 3354 create_area("page structures", &dummy, B_EXACT_ADDRESS, 3355 PAGE_ALIGN(sNumPages * sizeof(vm_page)), B_ALREADY_WIRED, 3356 B_KERNEL_READ_AREA | B_KERNEL_WRITE_AREA); 3357 3358 add_debugger_command("page_stats", &dump_page_stats, 3359 "Dump statistics about page usage"); 3360 add_debugger_command_etc("page", &dump_page, 3361 "Dump page info", 3362 "[ \"-p\" | \"-v\" ] [ \"-m\" ] <address>\n" 3363 "Prints information for the physical page. If neither \"-p\" nor\n" 3364 "\"-v\" are given, the provided address is interpreted as address of\n" 3365 "the vm_page data structure for the page in question. If \"-p\" is\n" 3366 "given, the address is the physical address of the page. If \"-v\" is\n" 3367 "given, the address is interpreted as virtual address in the current\n" 3368 "thread's address space and for the page it is mapped to (if any)\n" 3369 "information are printed. If \"-m\" is specified, the command will\n" 3370 "search all known address spaces for mappings to that page and print\n" 3371 "them.\n", 0); 3372 add_debugger_command("page_queue", &dump_page_queue, "Dump page queue"); 3373 add_debugger_command("find_page", &find_page, 3374 "Find out which queue a page is actually in"); 3375 3376 #ifdef TRACK_PAGE_USAGE_STATS 3377 add_debugger_command_etc("page_usage", &dump_page_usage_stats, 3378 "Dumps statistics about page usage counts", 3379 "\n" 3380 "Dumps statistics about page usage counts.\n", 3381 B_KDEBUG_DONT_PARSE_ARGUMENTS); 3382 #endif 3383 3384 #if VM_PAGE_ALLOCATION_TRACKING_AVAILABLE 3385 add_debugger_command_etc("page_allocations_per_caller", 3386 &dump_page_allocations_per_caller, 3387 "Dump current page allocations summed up per caller", 3388 "[ -d <caller> ] [ -r ]\n" 3389 "The current allocations will by summed up by caller (their count)\n" 3390 "printed in decreasing order by count.\n" 3391 "If \"-d\" is given, each allocation for caller <caller> is printed\n" 3392 "including the respective stack trace.\n" 3393 "If \"-r\" is given, the allocation infos are reset after gathering\n" 3394 "the information, so the next command invocation will only show the\n" 3395 "allocations made after the reset.\n", 0); 3396 add_debugger_command_etc("page_allocation_infos", 3397 &dump_page_allocation_infos, 3398 "Dump current page allocations", 3399 "[ --stacktrace ] [ -p <page number> ] [ --team <team ID> ] " 3400 "[ --thread <thread ID> ]\n" 3401 "The current allocations filtered by optional values will be printed.\n" 3402 "The optional \"-p\" page number filters for a specific page,\n" 3403 "with \"--team\" and \"--thread\" allocations by specific teams\n" 3404 "and/or threads can be filtered (these only work if a corresponding\n" 3405 "tracing entry is still available).\n" 3406 "If \"--stacktrace\" is given, then stack traces of the allocation\n" 3407 "callers are printed, where available\n", 0); 3408 #endif 3409 3410 return B_OK; 3411 } 3412 3413 3414 status_t 3415 vm_page_init_post_thread(kernel_args *args) 3416 { 3417 new (&sFreePageCondition) ConditionVariable; 3418 sFreePageCondition.Publish(&sFreePageQueue, "free page"); 3419 3420 // create a kernel thread to clear out pages 3421 3422 thread_id thread = spawn_kernel_thread(&page_scrubber, "page scrubber", 3423 B_LOWEST_ACTIVE_PRIORITY, NULL); 3424 resume_thread(thread); 3425 3426 // start page writer 3427 3428 sPageWriterCondition.Init("page writer"); 3429 3430 thread = spawn_kernel_thread(&page_writer, "page writer", 3431 B_NORMAL_PRIORITY + 1, NULL); 3432 resume_thread(thread); 3433 3434 // start page daemon 3435 3436 sPageDaemonCondition.Init("page daemon"); 3437 3438 thread = spawn_kernel_thread(&page_daemon, "page daemon", 3439 B_NORMAL_PRIORITY, NULL); 3440 resume_thread(thread); 3441 3442 return B_OK; 3443 } 3444 3445 3446 status_t 3447 vm_mark_page_inuse(page_num_t page) 3448 { 3449 return vm_mark_page_range_inuse(page, 1); 3450 } 3451 3452 3453 status_t 3454 vm_mark_page_range_inuse(page_num_t startPage, page_num_t length) 3455 { 3456 return mark_page_range_in_use(startPage, length, false); 3457 } 3458 3459 3460 /*! Unreserve pages previously reserved with vm_page_reserve_pages(). 3461 */ 3462 void 3463 vm_page_unreserve_pages(vm_page_reservation* reservation) 3464 { 3465 uint32 count = reservation->count; 3466 reservation->count = 0; 3467 3468 if (count == 0) 3469 return; 3470 3471 TA(UnreservePages(count)); 3472 3473 unreserve_pages(count); 3474 } 3475 3476 3477 /*! With this call, you can reserve a number of free pages in the system. 3478 They will only be handed out to someone who has actually reserved them. 3479 This call returns as soon as the number of requested pages has been 3480 reached. 3481 The caller must not hold any cache lock or the function might deadlock. 3482 */ 3483 void 3484 vm_page_reserve_pages(vm_page_reservation* reservation, uint32 count, 3485 int priority) 3486 { 3487 reservation->count = count; 3488 3489 if (count == 0) 3490 return; 3491 3492 TA(ReservePages(count)); 3493 3494 reserve_pages(count, priority, false); 3495 } 3496 3497 3498 bool 3499 vm_page_try_reserve_pages(vm_page_reservation* reservation, uint32 count, 3500 int priority) 3501 { 3502 if (count == 0) { 3503 reservation->count = count; 3504 return true; 3505 } 3506 3507 uint32 remaining = reserve_pages(count, priority, true); 3508 if (remaining == 0) { 3509 TA(ReservePages(count)); 3510 reservation->count = count; 3511 return true; 3512 } 3513 3514 unreserve_pages(count - remaining); 3515 3516 return false; 3517 } 3518 3519 3520 vm_page * 3521 vm_page_allocate_page(vm_page_reservation* reservation, uint32 flags) 3522 { 3523 uint32 pageState = flags & VM_PAGE_ALLOC_STATE; 3524 ASSERT(pageState != PAGE_STATE_FREE); 3525 ASSERT(pageState != PAGE_STATE_CLEAR); 3526 3527 ASSERT(reservation->count > 0); 3528 reservation->count--; 3529 3530 VMPageQueue* queue; 3531 VMPageQueue* otherQueue; 3532 3533 if ((flags & VM_PAGE_ALLOC_CLEAR) != 0) { 3534 queue = &sClearPageQueue; 3535 otherQueue = &sFreePageQueue; 3536 } else { 3537 queue = &sFreePageQueue; 3538 otherQueue = &sClearPageQueue; 3539 } 3540 3541 ReadLocker locker(sFreePageQueuesLock); 3542 3543 vm_page* page = queue->RemoveHeadUnlocked(); 3544 if (page == NULL) { 3545 // if the primary queue was empty, grab the page from the 3546 // secondary queue 3547 page = otherQueue->RemoveHeadUnlocked(); 3548 3549 if (page == NULL) { 3550 // Unlikely, but possible: the page we have reserved has moved 3551 // between the queues after we checked the first queue. Grab the 3552 // write locker to make sure this doesn't happen again. 3553 locker.Unlock(); 3554 WriteLocker writeLocker(sFreePageQueuesLock); 3555 3556 page = queue->RemoveHead(); 3557 if (page == NULL) 3558 otherQueue->RemoveHead(); 3559 3560 if (page == NULL) { 3561 panic("Had reserved page, but there is none!"); 3562 return NULL; 3563 } 3564 3565 // downgrade to read lock 3566 locker.Lock(); 3567 } 3568 } 3569 3570 if (page->CacheRef() != NULL) 3571 panic("supposed to be free page %p has cache\n", page); 3572 3573 DEBUG_PAGE_ACCESS_START(page); 3574 3575 int oldPageState = page->State(); 3576 page->SetState(pageState); 3577 page->busy = (flags & VM_PAGE_ALLOC_BUSY) != 0; 3578 page->usage_count = 0; 3579 page->accessed = false; 3580 page->modified = false; 3581 3582 locker.Unlock(); 3583 3584 if (pageState < PAGE_STATE_FIRST_UNQUEUED) 3585 sPageQueues[pageState].AppendUnlocked(page); 3586 3587 // clear the page, if we had to take it from the free queue and a clear 3588 // page was requested 3589 if ((flags & VM_PAGE_ALLOC_CLEAR) != 0 && oldPageState != PAGE_STATE_CLEAR) 3590 clear_page(page); 3591 3592 #if VM_PAGE_ALLOCATION_TRACKING_AVAILABLE 3593 page->allocation_tracking_info.Init( 3594 TA(AllocatePage(page->physical_page_number))); 3595 #else 3596 TA(AllocatePage(page->physical_page_number)); 3597 #endif 3598 3599 return page; 3600 } 3601 3602 3603 static void 3604 allocate_page_run_cleanup(VMPageQueue::PageList& freePages, 3605 VMPageQueue::PageList& clearPages) 3606 { 3607 while (vm_page* page = freePages.RemoveHead()) { 3608 page->busy = false; 3609 page->SetState(PAGE_STATE_FREE); 3610 DEBUG_PAGE_ACCESS_END(page); 3611 sFreePageQueue.PrependUnlocked(page); 3612 } 3613 3614 while (vm_page* page = clearPages.RemoveHead()) { 3615 page->busy = false; 3616 page->SetState(PAGE_STATE_CLEAR); 3617 DEBUG_PAGE_ACCESS_END(page); 3618 sClearPageQueue.PrependUnlocked(page); 3619 } 3620 } 3621 3622 3623 /*! Tries to allocate the a contiguous run of \a length pages starting at 3624 index \a start. 3625 3626 The caller must have write-locked the free/clear page queues. The function 3627 will unlock regardless of whether it succeeds or fails. 3628 3629 If the function fails, it cleans up after itself, i.e. it will free all 3630 pages it managed to allocate. 3631 3632 \param start The start index (into \c sPages) of the run. 3633 \param length The number of pages to allocate. 3634 \param flags Page allocation flags. Encodes the state the function shall 3635 set the allocated pages to, whether the pages shall be marked busy 3636 (VM_PAGE_ALLOC_BUSY), and whether the pages shall be cleared 3637 (VM_PAGE_ALLOC_CLEAR). 3638 \param freeClearQueueLocker Locked WriteLocker for the free/clear page 3639 queues in locked state. Will be unlocked by the function. 3640 \return The index of the first page that could not be allocated. \a length 3641 is returned when the function was successful. 3642 */ 3643 static page_num_t 3644 allocate_page_run(page_num_t start, page_num_t length, uint32 flags, 3645 WriteLocker& freeClearQueueLocker) 3646 { 3647 uint32 pageState = flags & VM_PAGE_ALLOC_STATE; 3648 ASSERT(pageState != PAGE_STATE_FREE); 3649 ASSERT(pageState != PAGE_STATE_CLEAR); 3650 ASSERT(start + length <= sNumPages); 3651 3652 // Pull the free/clear pages out of their respective queues. Cached pages 3653 // are allocated later. 3654 page_num_t cachedPages = 0; 3655 VMPageQueue::PageList freePages; 3656 VMPageQueue::PageList clearPages; 3657 page_num_t i = 0; 3658 for (; i < length; i++) { 3659 bool pageAllocated = true; 3660 bool noPage = false; 3661 vm_page& page = sPages[start + i]; 3662 switch (page.State()) { 3663 case PAGE_STATE_CLEAR: 3664 DEBUG_PAGE_ACCESS_START(&page); 3665 sClearPageQueue.Remove(&page); 3666 clearPages.Add(&page); 3667 break; 3668 case PAGE_STATE_FREE: 3669 DEBUG_PAGE_ACCESS_START(&page); 3670 sFreePageQueue.Remove(&page); 3671 freePages.Add(&page); 3672 break; 3673 case PAGE_STATE_CACHED: 3674 // We allocate cached pages later. 3675 cachedPages++; 3676 pageAllocated = false; 3677 break; 3678 3679 default: 3680 // Probably a page was cached when our caller checked. Now it's 3681 // gone and we have to abort. 3682 noPage = true; 3683 break; 3684 } 3685 3686 if (noPage) 3687 break; 3688 3689 if (pageAllocated) { 3690 page.SetState(flags & VM_PAGE_ALLOC_STATE); 3691 page.busy = (flags & VM_PAGE_ALLOC_BUSY) != 0; 3692 page.usage_count = 0; 3693 page.accessed = false; 3694 page.modified = false; 3695 } 3696 } 3697 3698 if (i < length) { 3699 // failed to allocate a page -- free all that we've got 3700 allocate_page_run_cleanup(freePages, clearPages); 3701 return i; 3702 } 3703 3704 freeClearQueueLocker.Unlock(); 3705 3706 if (cachedPages > 0) { 3707 // allocate the pages that weren't free but cached 3708 page_num_t freedCachedPages = 0; 3709 page_num_t nextIndex = start; 3710 vm_page* freePage = freePages.Head(); 3711 vm_page* clearPage = clearPages.Head(); 3712 while (cachedPages > 0) { 3713 // skip, if we've already got the page 3714 if (freePage != NULL && size_t(freePage - sPages) == nextIndex) { 3715 freePage = freePages.GetNext(freePage); 3716 nextIndex++; 3717 continue; 3718 } 3719 if (clearPage != NULL && size_t(clearPage - sPages) == nextIndex) { 3720 clearPage = clearPages.GetNext(clearPage); 3721 nextIndex++; 3722 continue; 3723 } 3724 3725 // free the page, if it is still cached 3726 vm_page& page = sPages[nextIndex]; 3727 if (!free_cached_page(&page, false)) { 3728 // TODO: if the page turns out to have been freed already, 3729 // there would be no need to fail 3730 break; 3731 } 3732 3733 page.SetState(flags & VM_PAGE_ALLOC_STATE); 3734 page.busy = (flags & VM_PAGE_ALLOC_BUSY) != 0; 3735 page.usage_count = 0; 3736 page.accessed = false; 3737 page.modified = false; 3738 3739 freePages.InsertBefore(freePage, &page); 3740 freedCachedPages++; 3741 cachedPages--; 3742 nextIndex++; 3743 } 3744 3745 // If we have freed cached pages, we need to balance things. 3746 if (freedCachedPages > 0) 3747 unreserve_pages(freedCachedPages); 3748 3749 if (nextIndex - start < length) { 3750 // failed to allocate all cached pages -- free all that we've got 3751 freeClearQueueLocker.Lock(); 3752 allocate_page_run_cleanup(freePages, clearPages); 3753 freeClearQueueLocker.Unlock(); 3754 3755 return nextIndex - start; 3756 } 3757 } 3758 3759 // clear pages, if requested 3760 if ((flags & VM_PAGE_ALLOC_CLEAR) != 0) { 3761 for (VMPageQueue::PageList::Iterator it = freePages.GetIterator(); 3762 vm_page* page = it.Next();) { 3763 clear_page(page); 3764 } 3765 } 3766 3767 // add pages to target queue 3768 if (pageState < PAGE_STATE_FIRST_UNQUEUED) { 3769 freePages.MoveFrom(&clearPages); 3770 sPageQueues[pageState].AppendUnlocked(freePages, length); 3771 } 3772 3773 // Note: We don't unreserve the pages since we pulled them out of the 3774 // free/clear queues without adjusting sUnreservedFreePages. 3775 3776 #if VM_PAGE_ALLOCATION_TRACKING_AVAILABLE 3777 AbstractTraceEntryWithStackTrace* traceEntry 3778 = TA(AllocatePageRun(start, length)); 3779 3780 for (page_num_t i = start; i < start + length; i++) 3781 sPages[i].allocation_tracking_info.Init(traceEntry); 3782 #else 3783 TA(AllocatePageRun(start, length)); 3784 #endif 3785 3786 return length; 3787 } 3788 3789 3790 /*! Allocate a physically contiguous range of pages. 3791 3792 \param flags Page allocation flags. Encodes the state the function shall 3793 set the allocated pages to, whether the pages shall be marked busy 3794 (VM_PAGE_ALLOC_BUSY), and whether the pages shall be cleared 3795 (VM_PAGE_ALLOC_CLEAR). 3796 \param length The number of contiguous pages to allocate. 3797 \param restrictions Restrictions to the physical addresses of the page run 3798 to allocate, including \c low_address, the first acceptable physical 3799 address where the page run may start, \c high_address, the last 3800 acceptable physical address where the page run may end (i.e. it must 3801 hold \code runStartAddress + length <= high_address \endcode), 3802 \c alignment, the alignment of the page run start address, and 3803 \c boundary, multiples of which the page run must not cross. 3804 Values set to \c 0 are ignored. 3805 \param priority The page reservation priority (as passed to 3806 vm_page_reserve_pages()). 3807 \return The first page of the allocated page run on success; \c NULL 3808 when the allocation failed. 3809 */ 3810 vm_page* 3811 vm_page_allocate_page_run(uint32 flags, page_num_t length, 3812 const physical_address_restrictions* restrictions, int priority) 3813 { 3814 // compute start and end page index 3815 page_num_t requestedStart 3816 = std::max(restrictions->low_address / B_PAGE_SIZE, sPhysicalPageOffset) 3817 - sPhysicalPageOffset; 3818 page_num_t start = requestedStart; 3819 page_num_t end; 3820 if (restrictions->high_address > 0) { 3821 end = std::max(restrictions->high_address / B_PAGE_SIZE, 3822 sPhysicalPageOffset) 3823 - sPhysicalPageOffset; 3824 end = std::min(end, sNumPages); 3825 } else 3826 end = sNumPages; 3827 3828 // compute alignment mask 3829 page_num_t alignmentMask 3830 = std::max(restrictions->alignment / B_PAGE_SIZE, (phys_addr_t)1) - 1; 3831 ASSERT(((alignmentMask + 1) & alignmentMask) == 0); 3832 // alignment must be a power of 2 3833 3834 // compute the boundary shift 3835 uint32 boundaryShift = 0; 3836 if (restrictions->boundary != 0) { 3837 page_num_t boundary = restrictions->boundary / B_PAGE_SIZE; 3838 // boundary must be a power of two and not less than alignment and 3839 // length 3840 ASSERT(((boundary - 1) & boundary) == 0); 3841 ASSERT(boundary >= alignmentMask + 1); 3842 ASSERT(boundary >= length); 3843 3844 while ((boundary >>= 1) > 0) 3845 boundaryShift++; 3846 } 3847 3848 vm_page_reservation reservation; 3849 vm_page_reserve_pages(&reservation, length, priority); 3850 3851 WriteLocker freeClearQueueLocker(sFreePageQueuesLock); 3852 3853 // First we try to get a run with free pages only. If that fails, we also 3854 // consider cached pages. If there are only few free pages and many cached 3855 // ones, the odds are that we won't find enough contiguous ones, so we skip 3856 // the first iteration in this case. 3857 int32 freePages = sUnreservedFreePages; 3858 int useCached = freePages > 0 && (page_num_t)freePages > 2 * length ? 0 : 1; 3859 3860 for (;;) { 3861 if (alignmentMask != 0 || boundaryShift != 0) { 3862 page_num_t offsetStart = start + sPhysicalPageOffset; 3863 3864 // enforce alignment 3865 if ((offsetStart & alignmentMask) != 0) { 3866 offsetStart = ((offsetStart + alignmentMask) & ~alignmentMask) 3867 - sPhysicalPageOffset; 3868 } 3869 3870 // enforce boundary 3871 if (offsetStart << boundaryShift 3872 != (offsetStart + length - 1) << boundaryShift) { 3873 offsetStart = (offsetStart + length - 1) << boundaryShift 3874 >> boundaryShift; 3875 } 3876 3877 start = offsetStart - sPhysicalPageOffset; 3878 } 3879 3880 if (start + length > end) { 3881 if (useCached == 0) { 3882 // The first iteration with free pages only was unsuccessful. 3883 // Try again also considering cached pages. 3884 useCached = 1; 3885 start = requestedStart; 3886 continue; 3887 } 3888 3889 dprintf("vm_page_allocate_page_run(): Failed to allocate run of " 3890 "length %" B_PRIuPHYSADDR " in second iteration!", length); 3891 3892 freeClearQueueLocker.Unlock(); 3893 vm_page_unreserve_pages(&reservation); 3894 return NULL; 3895 } 3896 3897 bool foundRun = true; 3898 page_num_t i; 3899 for (i = 0; i < length; i++) { 3900 uint32 pageState = sPages[start + i].State(); 3901 if (pageState != PAGE_STATE_FREE 3902 && pageState != PAGE_STATE_CLEAR 3903 && (pageState != PAGE_STATE_CACHED || useCached == 0)) { 3904 foundRun = false; 3905 break; 3906 } 3907 } 3908 3909 if (foundRun) { 3910 i = allocate_page_run(start, length, flags, freeClearQueueLocker); 3911 if (i == length) 3912 return &sPages[start]; 3913 3914 // apparently a cached page couldn't be allocated -- skip it and 3915 // continue 3916 freeClearQueueLocker.Lock(); 3917 } 3918 3919 start += i + 1; 3920 } 3921 } 3922 3923 3924 vm_page * 3925 vm_page_at_index(int32 index) 3926 { 3927 return &sPages[index]; 3928 } 3929 3930 3931 vm_page * 3932 vm_lookup_page(page_num_t pageNumber) 3933 { 3934 if (pageNumber < sPhysicalPageOffset) 3935 return NULL; 3936 3937 pageNumber -= sPhysicalPageOffset; 3938 if (pageNumber >= sNumPages) 3939 return NULL; 3940 3941 return &sPages[pageNumber]; 3942 } 3943 3944 3945 bool 3946 vm_page_is_dummy(struct vm_page *page) 3947 { 3948 return page < sPages || page >= sPages + sNumPages; 3949 } 3950 3951 3952 /*! Free the page that belonged to a certain cache. 3953 You can use vm_page_set_state() manually if you prefer, but only 3954 if the page does not equal PAGE_STATE_MODIFIED. 3955 */ 3956 void 3957 vm_page_free(VMCache *cache, vm_page *page) 3958 { 3959 PAGE_ASSERT(page, page->State() != PAGE_STATE_FREE 3960 && page->State() != PAGE_STATE_CLEAR); 3961 3962 if (page->State() == PAGE_STATE_MODIFIED && cache->temporary) 3963 atomic_add(&sModifiedTemporaryPages, -1); 3964 3965 free_page(page, false); 3966 } 3967 3968 3969 void 3970 vm_page_set_state(vm_page *page, int pageState) 3971 { 3972 PAGE_ASSERT(page, page->State() != PAGE_STATE_FREE 3973 && page->State() != PAGE_STATE_CLEAR); 3974 3975 if (pageState == PAGE_STATE_FREE || pageState == PAGE_STATE_CLEAR) 3976 free_page(page, pageState == PAGE_STATE_CLEAR); 3977 else 3978 set_page_state(page, pageState); 3979 } 3980 3981 3982 /*! Moves a page to either the tail of the head of its current queue, 3983 depending on \a tail. 3984 The page must have a cache and the cache must be locked! 3985 */ 3986 void 3987 vm_page_requeue(struct vm_page *page, bool tail) 3988 { 3989 PAGE_ASSERT(page, page->Cache() != NULL); 3990 page->Cache()->AssertLocked(); 3991 // DEBUG_PAGE_ACCESS_CHECK(page); 3992 // TODO: This assertion cannot be satisfied by idle_scan_active_pages() 3993 // when it requeues busy pages. The reason is that vm_soft_fault() 3994 // (respectively fault_get_page()) and the file cache keep newly 3995 // allocated pages accessed while they are reading them from disk. It 3996 // would probably be better to change that code and reenable this 3997 // check. 3998 3999 VMPageQueue *queue = NULL; 4000 4001 switch (page->State()) { 4002 case PAGE_STATE_ACTIVE: 4003 queue = &sActivePageQueue; 4004 break; 4005 case PAGE_STATE_INACTIVE: 4006 queue = &sInactivePageQueue; 4007 break; 4008 case PAGE_STATE_MODIFIED: 4009 queue = &sModifiedPageQueue; 4010 break; 4011 case PAGE_STATE_CACHED: 4012 queue = &sCachedPageQueue; 4013 break; 4014 case PAGE_STATE_FREE: 4015 case PAGE_STATE_CLEAR: 4016 panic("vm_page_requeue() called for free/clear page %p", page); 4017 return; 4018 case PAGE_STATE_WIRED: 4019 case PAGE_STATE_UNUSED: 4020 return; 4021 default: 4022 panic("vm_page_touch: vm_page %p in invalid state %d\n", 4023 page, page->State()); 4024 break; 4025 } 4026 4027 queue->RequeueUnlocked(page, tail); 4028 } 4029 4030 4031 page_num_t 4032 vm_page_num_pages(void) 4033 { 4034 return sNumPages - sNonExistingPages; 4035 } 4036 4037 4038 /*! There is a subtle distinction between the page counts returned by 4039 this function and vm_page_num_free_pages(): 4040 The latter returns the number of pages that are completely uncommitted, 4041 whereas this one returns the number of pages that are available for 4042 use by being reclaimed as well (IOW it factors in things like cache pages 4043 as available). 4044 */ 4045 page_num_t 4046 vm_page_num_available_pages(void) 4047 { 4048 return vm_available_memory() / B_PAGE_SIZE; 4049 } 4050 4051 4052 page_num_t 4053 vm_page_num_free_pages(void) 4054 { 4055 int32 count = sUnreservedFreePages + sCachedPageQueue.Count(); 4056 return count > 0 ? count : 0; 4057 } 4058 4059 4060 page_num_t 4061 vm_page_num_unused_pages(void) 4062 { 4063 int32 count = sUnreservedFreePages; 4064 return count > 0 ? count : 0; 4065 } 4066 4067 4068 void 4069 vm_page_get_stats(system_info *info) 4070 { 4071 // Note: there's no locking protecting any of the queues or counters here, 4072 // so we run the risk of getting bogus values when evaluating them 4073 // throughout this function. As these stats are for informational purposes 4074 // only, it is not really worth introducing such locking. Therefore we just 4075 // ensure that we don't under- or overflow any of the values. 4076 4077 // The pages used for the block cache buffers. Those should not be counted 4078 // as used but as cached pages. 4079 // TODO: We should subtract the blocks that are in use ATM, since those 4080 // can't really be freed in a low memory situation. 4081 page_num_t blockCachePages = block_cache_used_memory() / B_PAGE_SIZE; 4082 4083 // Non-temporary modified pages are special as they represent pages that 4084 // can be written back, so they could be freed if necessary, for us 4085 // basically making them into cached pages with a higher overhead. The 4086 // modified queue count is therefore split into temporary and non-temporary 4087 // counts that are then added to the corresponding number. 4088 page_num_t modifiedNonTemporaryPages 4089 = (sModifiedPageQueue.Count() - sModifiedTemporaryPages); 4090 4091 info->max_pages = vm_page_num_pages(); 4092 info->cached_pages = sCachedPageQueue.Count() + modifiedNonTemporaryPages 4093 + blockCachePages; 4094 4095 // max_pages is composed of: 4096 // active + inactive + unused + wired + modified + cached + free + clear 4097 // So taking out the cached (including modified non-temporary), free and 4098 // clear ones leaves us with all used pages. 4099 int32 subtractPages = info->cached_pages + sFreePageQueue.Count() 4100 + sClearPageQueue.Count(); 4101 info->used_pages = subtractPages > info->max_pages 4102 ? 0 : info->max_pages - subtractPages; 4103 4104 if (info->used_pages + info->cached_pages > info->max_pages) { 4105 // Something was shuffled around while we were summing up the counts. 4106 // Make the values sane, preferring the worse case of more used pages. 4107 info->cached_pages = info->max_pages - info->used_pages; 4108 } 4109 4110 info->page_faults = vm_num_page_faults(); 4111 info->ignored_pages = sIgnoredPages; 4112 4113 // TODO: We don't consider pages used for page directories/tables yet. 4114 } 4115 4116 4117 /*! Returns the greatest address within the last page of accessible physical 4118 memory. 4119 The value is inclusive, i.e. in case of a 32 bit phys_addr_t 0xffffffff 4120 means the that the last page ends at exactly 4 GB. 4121 */ 4122 phys_addr_t 4123 vm_page_max_address() 4124 { 4125 return ((phys_addr_t)sPhysicalPageOffset + sNumPages) * B_PAGE_SIZE - 1; 4126 } 4127 4128 4129 RANGE_MARKER_FUNCTION_END(vm_page) 4130