xref: /haiku/src/system/kernel/vm/VMAnonymousCache.cpp (revision 1a76488fc88584bf66b9751d7fb9b6527ac20d87)
1 /*
2  * Copyright 2008, Zhao Shuai, upczhsh@163.com.
3  * Copyright 2008-2011, Ingo Weinhold, ingo_weinhold@gmx.de.
4  * Copyright 2002-2009, Axel Dörfler, axeld@pinc-software.de.
5  * Distributed under the terms of the MIT License.
6  *
7  * Copyright 2001-2002, Travis Geiselbrecht. All rights reserved.
8  * Distributed under the terms of the NewOS License.
9  *
10  * Copyright 2011-2012 Haiku, Inc. All rights reserved.
11  * Distributed under the terms of the MIT License.
12  *
13  * Authors:
14  *		Hamish Morrison, hamish@lavabit.com
15  *		Alexander von Gluck IV, kallisti5@unixzen.com
16  */
17 
18 
19 #include "VMAnonymousCache.h"
20 
21 #include <errno.h>
22 #include <fcntl.h>
23 #include <stdlib.h>
24 #include <string.h>
25 #include <unistd.h>
26 
27 #include <FindDirectory.h>
28 #include <KernelExport.h>
29 #include <NodeMonitor.h>
30 
31 #include <arch_config.h>
32 #include <boot_device.h>
33 #include <disk_device_manager/KDiskDevice.h>
34 #include <disk_device_manager/KDiskDeviceManager.h>
35 #include <disk_device_manager/KDiskSystem.h>
36 #include <disk_device_manager/KPartitionVisitor.h>
37 #include <driver_settings.h>
38 #include <fs/fd.h>
39 #include <fs/KPath.h>
40 #include <fs_info.h>
41 #include <fs_interface.h>
42 #include <heap.h>
43 #include <kernel_daemon.h>
44 #include <slab/Slab.h>
45 #include <syscalls.h>
46 #include <system_info.h>
47 #include <thread.h>
48 #include <tracing.h>
49 #include <util/AutoLock.h>
50 #include <util/Bitmap.h>
51 #include <util/DoublyLinkedList.h>
52 #include <util/OpenHashTable.h>
53 #include <util/RadixBitmap.h>
54 #include <vfs.h>
55 #include <vm/vm.h>
56 #include <vm/vm_page.h>
57 #include <vm/vm_priv.h>
58 #include <vm/VMAddressSpace.h>
59 
60 #include "IORequest.h"
61 #include "VMUtils.h"
62 
63 
64 #if	ENABLE_SWAP_SUPPORT
65 
66 //#define TRACE_VM_ANONYMOUS_CACHE
67 #ifdef TRACE_VM_ANONYMOUS_CACHE
68 #	define TRACE(x...) dprintf(x)
69 #else
70 #	define TRACE(x...) do { } while (false)
71 #endif
72 
73 
74 // number of free swap blocks the object cache shall minimally have
75 #define MIN_SWAP_BLOCK_RESERVE	4096
76 
77 // interval the has resizer is triggered (in 0.1s)
78 #define SWAP_HASH_RESIZE_INTERVAL	5
79 
80 #define INITIAL_SWAP_HASH_SIZE		1024
81 
82 #define SWAP_SLOT_NONE	RADIX_SLOT_NONE
83 
84 #define SWAP_BLOCK_PAGES 32
85 #define SWAP_BLOCK_SHIFT 5		/* 1 << SWAP_BLOCK_SHIFT == SWAP_BLOCK_PAGES */
86 #define SWAP_BLOCK_MASK  (SWAP_BLOCK_PAGES - 1)
87 
88 
89 static const char* const kDefaultSwapPath = "/var/swap";
90 
91 struct swap_file : DoublyLinkedListLinkImpl<swap_file> {
92 	int				fd;
93 	struct vnode*	vnode;
94 	void*			cookie;
95 	swap_addr_t		first_slot;
96 	swap_addr_t		last_slot;
97 	radix_bitmap*	bmp;
98 };
99 
100 struct swap_hash_key {
101 	VMAnonymousCache	*cache;
102 	off_t				page_index;  // page index in the cache
103 };
104 
105 // Each swap block contains swap address information for
106 // SWAP_BLOCK_PAGES continuous pages from the same cache
107 struct swap_block {
108 	swap_block*		hash_link;
109 	swap_hash_key	key;
110 	uint32			used;
111 	swap_addr_t		swap_slots[SWAP_BLOCK_PAGES];
112 };
113 
114 struct SwapHashTableDefinition {
115 	typedef swap_hash_key KeyType;
116 	typedef swap_block ValueType;
117 
118 	SwapHashTableDefinition() {}
119 
120 	size_t HashKey(const swap_hash_key& key) const
121 	{
122 		off_t blockIndex = key.page_index >> SWAP_BLOCK_SHIFT;
123 		VMAnonymousCache* cache = key.cache;
124 		return blockIndex ^ (size_t)(int*)cache;
125 	}
126 
127 	size_t Hash(const swap_block* value) const
128 	{
129 		return HashKey(value->key);
130 	}
131 
132 	bool Compare(const swap_hash_key& key, const swap_block* value) const
133 	{
134 		return (key.page_index & ~(off_t)SWAP_BLOCK_MASK)
135 				== (value->key.page_index & ~(off_t)SWAP_BLOCK_MASK)
136 			&& key.cache == value->key.cache;
137 	}
138 
139 	swap_block*& GetLink(swap_block* value) const
140 	{
141 		return value->hash_link;
142 	}
143 };
144 
145 typedef BOpenHashTable<SwapHashTableDefinition> SwapHashTable;
146 typedef DoublyLinkedList<swap_file> SwapFileList;
147 
148 static SwapHashTable sSwapHashTable;
149 static rw_lock sSwapHashLock;
150 
151 static SwapFileList sSwapFileList;
152 static mutex sSwapFileListLock;
153 static swap_file* sSwapFileAlloc = NULL; // allocate from here
154 static uint32 sSwapFileCount = 0;
155 
156 static off_t sAvailSwapSpace = 0;
157 static mutex sAvailSwapSpaceLock;
158 
159 static object_cache* sSwapBlockCache;
160 
161 
162 #if SWAP_TRACING
163 namespace SwapTracing {
164 
165 class SwapTraceEntry : public AbstractTraceEntry {
166 public:
167 	SwapTraceEntry(VMAnonymousCache* cache)
168 		:
169 		fCache(cache)
170 	{
171 	}
172 
173 protected:
174 	VMAnonymousCache*	fCache;
175 };
176 
177 
178 class ReadPage : public SwapTraceEntry {
179 public:
180 	ReadPage(VMAnonymousCache* cache, page_num_t pageIndex,
181 		swap_addr_t swapSlotIndex)
182 		:
183 		SwapTraceEntry(cache),
184 		fPageIndex(pageIndex),
185 		fSwapSlotIndex(swapSlotIndex)
186 	{
187 		Initialized();
188 	}
189 
190 	virtual void AddDump(TraceOutput& out)
191 	{
192 		out.Print("swap read:  cache %p, page index: %lu <- swap slot: %lu",
193 			fCache, fPageIndex, fSwapSlotIndex);
194 	}
195 
196 private:
197 	page_num_t		fPageIndex;
198 	swap_addr_t		fSwapSlotIndex;
199 };
200 
201 
202 class WritePage : public SwapTraceEntry {
203 public:
204 	WritePage(VMAnonymousCache* cache, page_num_t pageIndex,
205 		swap_addr_t swapSlotIndex)
206 		:
207 		SwapTraceEntry(cache),
208 		fPageIndex(pageIndex),
209 		fSwapSlotIndex(swapSlotIndex)
210 	{
211 		Initialized();
212 	}
213 
214 	virtual void AddDump(TraceOutput& out)
215 	{
216 		out.Print("swap write: cache %p, page index: %lu -> swap slot: %lu",
217 			fCache, fPageIndex, fSwapSlotIndex);
218 	}
219 
220 private:
221 	page_num_t		fPageIndex;
222 	swap_addr_t		fSwapSlotIndex;
223 };
224 
225 }	// namespace SwapTracing
226 
227 #	define T(x) new(std::nothrow) SwapTracing::x;
228 #else
229 #	define T(x) ;
230 #endif
231 
232 
233 static int
234 dump_swap_info(int argc, char** argv)
235 {
236 	swap_addr_t totalSwapPages = 0;
237 	swap_addr_t freeSwapPages = 0;
238 
239 	kprintf("swap files:\n");
240 
241 	for (SwapFileList::Iterator it = sSwapFileList.GetIterator();
242 		swap_file* file = it.Next();) {
243 		swap_addr_t total = file->last_slot - file->first_slot;
244 		kprintf("  vnode: %p, pages: total: %" B_PRIu32 ", free: %" B_PRIu32
245 			"\n", file->vnode, total, file->bmp->free_slots);
246 
247 		totalSwapPages += total;
248 		freeSwapPages += file->bmp->free_slots;
249 	}
250 
251 	kprintf("\n");
252 	kprintf("swap space in pages:\n");
253 	kprintf("total:     %9" B_PRIu32 "\n", totalSwapPages);
254 	kprintf("available: %9" B_PRIdOFF "\n", sAvailSwapSpace / B_PAGE_SIZE);
255 	kprintf("reserved:  %9" B_PRIdOFF "\n",
256 		totalSwapPages - sAvailSwapSpace / B_PAGE_SIZE);
257 	kprintf("used:      %9" B_PRIu32 "\n", totalSwapPages - freeSwapPages);
258 	kprintf("free:      %9" B_PRIu32 "\n", freeSwapPages);
259 
260 	return 0;
261 }
262 
263 
264 static swap_addr_t
265 swap_slot_alloc(uint32 count)
266 {
267 	mutex_lock(&sSwapFileListLock);
268 
269 	if (sSwapFileList.IsEmpty()) {
270 		mutex_unlock(&sSwapFileListLock);
271 		panic("swap_slot_alloc(): no swap file in the system\n");
272 		return SWAP_SLOT_NONE;
273 	}
274 
275 	// since radix bitmap could not handle more than 32 pages, we return
276 	// SWAP_SLOT_NONE, this forces Write() adjust allocation amount
277 	if (count > BITMAP_RADIX) {
278 		mutex_unlock(&sSwapFileListLock);
279 		return SWAP_SLOT_NONE;
280 	}
281 
282 	swap_addr_t j, addr = SWAP_SLOT_NONE;
283 	for (j = 0; j < sSwapFileCount; j++) {
284 		if (sSwapFileAlloc == NULL)
285 			sSwapFileAlloc = sSwapFileList.First();
286 
287 		addr = radix_bitmap_alloc(sSwapFileAlloc->bmp, count);
288 		if (addr != SWAP_SLOT_NONE) {
289 			addr += sSwapFileAlloc->first_slot;
290 			break;
291 		}
292 
293 		// this swap_file is full, find another
294 		sSwapFileAlloc = sSwapFileList.GetNext(sSwapFileAlloc);
295 	}
296 
297 	if (j == sSwapFileCount) {
298 		mutex_unlock(&sSwapFileListLock);
299 		panic("swap_slot_alloc: swap space exhausted!\n");
300 		return SWAP_SLOT_NONE;
301 	}
302 
303 	// if this swap file has used more than 90% percent of its space
304 	// switch to another
305 	if (sSwapFileAlloc->bmp->free_slots
306 		< (sSwapFileAlloc->last_slot - sSwapFileAlloc->first_slot) / 10) {
307 		sSwapFileAlloc = sSwapFileList.GetNext(sSwapFileAlloc);
308 	}
309 
310 	mutex_unlock(&sSwapFileListLock);
311 
312 	return addr;
313 }
314 
315 
316 static swap_file*
317 find_swap_file(swap_addr_t slotIndex)
318 {
319 	for (SwapFileList::Iterator it = sSwapFileList.GetIterator();
320 		swap_file* swapFile = it.Next();) {
321 		if (slotIndex >= swapFile->first_slot
322 			&& slotIndex < swapFile->last_slot) {
323 			return swapFile;
324 		}
325 	}
326 
327 	panic("find_swap_file(): can't find swap file for slot %" B_PRIu32 "\n",
328 		slotIndex);
329 	return NULL;
330 }
331 
332 
333 static void
334 swap_slot_dealloc(swap_addr_t slotIndex, uint32 count)
335 {
336 	if (slotIndex == SWAP_SLOT_NONE)
337 		return;
338 
339 	mutex_lock(&sSwapFileListLock);
340 	swap_file* swapFile = find_swap_file(slotIndex);
341 	slotIndex -= swapFile->first_slot;
342 	radix_bitmap_dealloc(swapFile->bmp, slotIndex, count);
343 	mutex_unlock(&sSwapFileListLock);
344 }
345 
346 
347 static off_t
348 swap_space_reserve(off_t amount)
349 {
350 	mutex_lock(&sAvailSwapSpaceLock);
351 	if (sAvailSwapSpace >= amount)
352 		sAvailSwapSpace -= amount;
353 	else {
354 		amount = sAvailSwapSpace;
355 		sAvailSwapSpace = 0;
356 	}
357 	mutex_unlock(&sAvailSwapSpaceLock);
358 
359 	return amount;
360 }
361 
362 
363 static void
364 swap_space_unreserve(off_t amount)
365 {
366 	mutex_lock(&sAvailSwapSpaceLock);
367 	sAvailSwapSpace += amount;
368 	mutex_unlock(&sAvailSwapSpaceLock);
369 }
370 
371 
372 static void
373 swap_hash_resizer(void*, int)
374 {
375 	WriteLocker locker(sSwapHashLock);
376 
377 	size_t size;
378 	void* allocation;
379 
380 	do {
381 		size = sSwapHashTable.ResizeNeeded();
382 		if (size == 0)
383 			return;
384 
385 		locker.Unlock();
386 
387 		allocation = malloc(size);
388 		if (allocation == NULL)
389 			return;
390 
391 		locker.Lock();
392 
393 	} while (!sSwapHashTable.Resize(allocation, size));
394 }
395 
396 
397 // #pragma mark -
398 
399 
400 class VMAnonymousCache::WriteCallback : public StackableAsyncIOCallback {
401 public:
402 	WriteCallback(VMAnonymousCache* cache, AsyncIOCallback* callback)
403 		:
404 		StackableAsyncIOCallback(callback),
405 		fCache(cache)
406 	{
407 	}
408 
409 	void SetTo(page_num_t pageIndex, swap_addr_t slotIndex, bool newSlot)
410 	{
411 		fPageIndex = pageIndex;
412 		fSlotIndex = slotIndex;
413 		fNewSlot = newSlot;
414 	}
415 
416 	virtual void IOFinished(status_t status, bool partialTransfer,
417 		generic_size_t bytesTransferred)
418 	{
419 		if (fNewSlot) {
420 			if (status == B_OK) {
421 				fCache->_SwapBlockBuild(fPageIndex, fSlotIndex, 1);
422 			} else {
423 				AutoLocker<VMCache> locker(fCache);
424 				fCache->fAllocatedSwapSize -= B_PAGE_SIZE;
425 				locker.Unlock();
426 
427 				swap_slot_dealloc(fSlotIndex, 1);
428 			}
429 		}
430 
431 		fNextCallback->IOFinished(status, partialTransfer, bytesTransferred);
432 
433 		delete this;
434 	}
435 
436 private:
437 	VMAnonymousCache*	fCache;
438 	page_num_t			fPageIndex;
439 	swap_addr_t			fSlotIndex;
440 	bool				fNewSlot;
441 };
442 
443 
444 // #pragma mark -
445 
446 
447 VMAnonymousCache::~VMAnonymousCache()
448 {
449 	delete fNoSwapPages;
450 	fNoSwapPages = NULL;
451 
452 	_FreeSwapPageRange(virtual_base, virtual_end, false);
453 	swap_space_unreserve(fCommittedSwapSize);
454 	if (committed_size > fCommittedSwapSize)
455 		vm_unreserve_memory(committed_size - fCommittedSwapSize);
456 }
457 
458 
459 status_t
460 VMAnonymousCache::Init(bool canOvercommit, int32 numPrecommittedPages,
461 	int32 numGuardPages, uint32 allocationFlags)
462 {
463 	TRACE("%p->VMAnonymousCache::Init(canOvercommit = %s, "
464 		"numPrecommittedPages = %" B_PRId32 ", numGuardPages = %" B_PRId32
465 		")\n", this, canOvercommit ? "yes" : "no", numPrecommittedPages,
466 		numGuardPages);
467 
468 	status_t error = VMCache::Init(CACHE_TYPE_RAM, allocationFlags);
469 	if (error != B_OK)
470 		return error;
471 
472 	fCanOvercommit = canOvercommit;
473 	fHasPrecommitted = false;
474 	fPrecommittedPages = min_c(numPrecommittedPages, 255);
475 	fNoSwapPages = NULL;
476 	fGuardedSize = numGuardPages * B_PAGE_SIZE;
477 	fCommittedSwapSize = 0;
478 	fAllocatedSwapSize = 0;
479 
480 	return B_OK;
481 }
482 
483 
484 status_t
485 VMAnonymousCache::SetCanSwapPages(off_t base, size_t size, bool canSwap)
486 {
487 	const page_num_t first = base >> PAGE_SHIFT;
488 	const size_t count = PAGE_ALIGN(size + ((first << PAGE_SHIFT) - base)) >> PAGE_SHIFT;
489 
490 	if (count == 0)
491 		return B_OK;
492 	if (canSwap && fNoSwapPages == NULL)
493 		return B_OK;
494 
495 	if (fNoSwapPages == NULL)
496 		fNoSwapPages = new(std::nothrow) Bitmap(0);
497 	if (fNoSwapPages == NULL)
498 		return B_NO_MEMORY;
499 
500 	const page_num_t pageCount = PAGE_ALIGN(virtual_end) >> PAGE_SHIFT;
501 
502 	if (fNoSwapPages->Resize(pageCount) != B_OK)
503 		return B_NO_MEMORY;
504 
505 	for (size_t i = 0; i < count; i++) {
506 		if (canSwap)
507 			fNoSwapPages->Clear(first + i);
508 		else
509 			fNoSwapPages->Set(first + i);
510 	}
511 
512 	if (fNoSwapPages->GetHighestSet() < 0) {
513 		delete fNoSwapPages;
514 		fNoSwapPages = NULL;
515 	}
516 	return B_OK;
517 }
518 
519 
520 void
521 VMAnonymousCache::_FreeSwapPageRange(off_t fromOffset, off_t toOffset,
522 	bool skipBusyPages)
523 {
524 	swap_block* swapBlock = NULL;
525 	off_t toIndex = toOffset >> PAGE_SHIFT;
526 	for (off_t pageIndex = fromOffset >> PAGE_SHIFT;
527 		pageIndex < toIndex && fAllocatedSwapSize > 0; pageIndex++) {
528 
529 		WriteLocker locker(sSwapHashLock);
530 
531 		// Get the swap slot index for the page.
532 		swap_addr_t blockIndex = pageIndex & SWAP_BLOCK_MASK;
533 		if (swapBlock == NULL || blockIndex == 0) {
534 			swap_hash_key key = { this, pageIndex };
535 			swapBlock = sSwapHashTable.Lookup(key);
536 
537 			if (swapBlock == NULL) {
538 				pageIndex = ROUNDUP(pageIndex + 1, SWAP_BLOCK_PAGES) - 1;
539 				continue;
540 			}
541 		}
542 
543 		swap_addr_t slotIndex = swapBlock->swap_slots[blockIndex];
544 		if (slotIndex == SWAP_SLOT_NONE)
545 			continue;
546 
547 		if (skipBusyPages) {
548 			vm_page* page = LookupPage(pageIndex * B_PAGE_SIZE);
549 			if (page != NULL && page->busy) {
550 				// TODO: We skip (i.e. leak) swap space of busy pages, since
551 				// there could be I/O going on (paging in/out). Waiting is
552 				// not an option as 1. unlocking the cache means that new
553 				// swap pages could be added in a range we've already
554 				// cleared (since the cache still has the old size) and 2.
555 				// we'd risk a deadlock in case we come from the file cache
556 				// and the FS holds the node's write-lock. We should mark
557 				// the page invalid and let the one responsible clean up.
558 				// There's just no such mechanism yet.
559 				continue;
560 			}
561 		}
562 
563 		swap_slot_dealloc(slotIndex, 1);
564 		fAllocatedSwapSize -= B_PAGE_SIZE;
565 
566 		swapBlock->swap_slots[blockIndex] = SWAP_SLOT_NONE;
567 		if (--swapBlock->used == 0) {
568 			// All swap pages have been freed -- we can discard the swap block.
569 			sSwapHashTable.RemoveUnchecked(swapBlock);
570 			object_cache_free(sSwapBlockCache, swapBlock,
571 				CACHE_DONT_WAIT_FOR_MEMORY | CACHE_DONT_LOCK_KERNEL_SPACE);
572 
573 			// There are no swap pages for possibly remaining pages, skip to the
574 			// next block.
575 			pageIndex = ROUNDUP(pageIndex + 1, SWAP_BLOCK_PAGES) - 1;
576 			swapBlock = NULL;
577 		}
578 	}
579 }
580 
581 
582 status_t
583 VMAnonymousCache::Resize(off_t newSize, int priority)
584 {
585 	if (fNoSwapPages != NULL) {
586 		if (fNoSwapPages->Resize(PAGE_ALIGN(newSize) >> PAGE_SHIFT) != B_OK)
587 			return B_NO_MEMORY;
588 	}
589 
590 	_FreeSwapPageRange(newSize + B_PAGE_SIZE - 1,
591 		virtual_end + B_PAGE_SIZE - 1);
592 	return VMCache::Resize(newSize, priority);
593 }
594 
595 
596 status_t
597 VMAnonymousCache::Rebase(off_t newBase, int priority)
598 {
599 	if (fNoSwapPages != NULL) {
600 		const ssize_t sizeDifference = (newBase >> PAGE_SHIFT) - (virtual_base >> PAGE_SHIFT);
601 		fNoSwapPages->Shift(sizeDifference);
602 	}
603 
604 	_FreeSwapPageRange(virtual_base, newBase);
605 	return VMCache::Rebase(newBase, priority);
606 }
607 
608 
609 status_t
610 VMAnonymousCache::Discard(off_t offset, off_t size)
611 {
612 	_FreeSwapPageRange(offset, offset + size);
613 	return VMCache::Discard(offset, size);
614 }
615 
616 
617 /*!	Moves the swap pages for the given range from the source cache into this
618 	cache. Both caches must be locked.
619 */
620 status_t
621 VMAnonymousCache::Adopt(VMCache* _source, off_t offset, off_t size,
622 	off_t newOffset)
623 {
624 	VMAnonymousCache* source = dynamic_cast<VMAnonymousCache*>(_source);
625 	if (source == NULL) {
626 		panic("VMAnonymousCache::Adopt(): adopt from incompatible cache %p "
627 			"requested", _source);
628 		return B_ERROR;
629 	}
630 
631 	off_t pageIndex = newOffset >> PAGE_SHIFT;
632 	off_t sourcePageIndex = offset >> PAGE_SHIFT;
633 	off_t sourceEndPageIndex = (offset + size + B_PAGE_SIZE - 1) >> PAGE_SHIFT;
634 	swap_block* swapBlock = NULL;
635 
636 	WriteLocker locker(sSwapHashLock);
637 
638 	while (sourcePageIndex < sourceEndPageIndex
639 			&& source->fAllocatedSwapSize > 0) {
640 		swap_addr_t left
641 			= SWAP_BLOCK_PAGES - (sourcePageIndex & SWAP_BLOCK_MASK);
642 
643 		swap_hash_key sourceKey = { source, sourcePageIndex };
644 		swap_block* sourceSwapBlock = sSwapHashTable.Lookup(sourceKey);
645 		if (sourceSwapBlock == NULL || sourceSwapBlock->used == 0) {
646 			sourcePageIndex += left;
647 			pageIndex += left;
648 			swapBlock = NULL;
649 			continue;
650 		}
651 
652 		for (; left > 0 && sourceSwapBlock->used > 0;
653 				left--, sourcePageIndex++, pageIndex++) {
654 
655 			swap_addr_t blockIndex = pageIndex & SWAP_BLOCK_MASK;
656 			if (swapBlock == NULL || blockIndex == 0) {
657 				swap_hash_key key = { this, pageIndex };
658 				swapBlock = sSwapHashTable.Lookup(key);
659 
660 				if (swapBlock == NULL) {
661 					swapBlock = (swap_block*)object_cache_alloc(sSwapBlockCache,
662 						CACHE_DONT_WAIT_FOR_MEMORY
663 							| CACHE_DONT_LOCK_KERNEL_SPACE);
664 					if (swapBlock == NULL)
665 						return B_NO_MEMORY;
666 
667 					swapBlock->key.cache = this;
668 					swapBlock->key.page_index
669 						= pageIndex & ~(off_t)SWAP_BLOCK_MASK;
670 					swapBlock->used = 0;
671 					for (uint32 i = 0; i < SWAP_BLOCK_PAGES; i++)
672 						swapBlock->swap_slots[i] = SWAP_SLOT_NONE;
673 
674 					sSwapHashTable.InsertUnchecked(swapBlock);
675 				}
676 			}
677 
678 			swap_addr_t sourceBlockIndex = sourcePageIndex & SWAP_BLOCK_MASK;
679 			swap_addr_t slotIndex
680 				= sourceSwapBlock->swap_slots[sourceBlockIndex];
681 			if (slotIndex == SWAP_SLOT_NONE)
682 				continue;
683 
684 			ASSERT(swapBlock->swap_slots[blockIndex] == SWAP_SLOT_NONE);
685 
686 			swapBlock->swap_slots[blockIndex] = slotIndex;
687 			swapBlock->used++;
688 			fAllocatedSwapSize += B_PAGE_SIZE;
689 
690 			sourceSwapBlock->swap_slots[sourceBlockIndex] = SWAP_SLOT_NONE;
691 			sourceSwapBlock->used--;
692 			source->fAllocatedSwapSize -= B_PAGE_SIZE;
693 
694 			TRACE("adopted slot %#" B_PRIx32 " from %p at page %" B_PRIdOFF
695 				" to %p at page %" B_PRIdOFF "\n", slotIndex, source,
696 				sourcePageIndex, this, pageIndex);
697 		}
698 
699 		if (left > 0) {
700 			sourcePageIndex += left;
701 			pageIndex += left;
702 			swapBlock = NULL;
703 		}
704 
705 		if (sourceSwapBlock->used == 0) {
706 			// All swap pages have been adopted, we can discard the swap block.
707 			sSwapHashTable.RemoveUnchecked(sourceSwapBlock);
708 			object_cache_free(sSwapBlockCache, sourceSwapBlock,
709 				CACHE_DONT_WAIT_FOR_MEMORY | CACHE_DONT_LOCK_KERNEL_SPACE);
710 		}
711 	}
712 
713 	locker.Unlock();
714 
715 	return VMCache::Adopt(source, offset, size, newOffset);
716 }
717 
718 
719 status_t
720 VMAnonymousCache::Commit(off_t size, int priority)
721 {
722 	TRACE("%p->VMAnonymousCache::Commit(%" B_PRIdOFF ")\n", this, size);
723 
724 	// If we can overcommit, we don't commit here, but in Fault(). We always
725 	// unreserve memory, if we're asked to shrink our commitment, though.
726 	if (fCanOvercommit && size > committed_size) {
727 		if (fHasPrecommitted)
728 			return B_OK;
729 
730 		// pre-commit some pages to make a later failure less probable
731 		fHasPrecommitted = true;
732 		uint32 precommitted = fPrecommittedPages * B_PAGE_SIZE;
733 		if (size > precommitted)
734 			size = precommitted;
735 	}
736 
737 	return _Commit(size, priority);
738 }
739 
740 
741 bool
742 VMAnonymousCache::HasPage(off_t offset)
743 {
744 	if (_SwapBlockGetAddress(offset >> PAGE_SHIFT) != SWAP_SLOT_NONE)
745 		return true;
746 
747 	return false;
748 }
749 
750 
751 bool
752 VMAnonymousCache::DebugHasPage(off_t offset)
753 {
754 	off_t pageIndex = offset >> PAGE_SHIFT;
755 	swap_hash_key key = { this, pageIndex };
756 	swap_block* swap = sSwapHashTable.Lookup(key);
757 	if (swap == NULL)
758 		return false;
759 
760 	return swap->swap_slots[pageIndex & SWAP_BLOCK_MASK] != SWAP_SLOT_NONE;
761 }
762 
763 
764 status_t
765 VMAnonymousCache::Read(off_t offset, const generic_io_vec* vecs, size_t count,
766 	uint32 flags, generic_size_t* _numBytes)
767 {
768 	off_t pageIndex = offset >> PAGE_SHIFT;
769 
770 	for (uint32 i = 0, j = 0; i < count; i = j) {
771 		swap_addr_t startSlotIndex = _SwapBlockGetAddress(pageIndex + i);
772 		for (j = i + 1; j < count; j++) {
773 			swap_addr_t slotIndex = _SwapBlockGetAddress(pageIndex + j);
774 			if (slotIndex != startSlotIndex + j - i)
775 				break;
776 		}
777 
778 		T(ReadPage(this, pageIndex, startSlotIndex));
779 			// TODO: Assumes that only one page is read.
780 
781 		swap_file* swapFile = find_swap_file(startSlotIndex);
782 
783 		off_t pos = (off_t)(startSlotIndex - swapFile->first_slot)
784 			* B_PAGE_SIZE;
785 
786 		status_t status = vfs_read_pages(swapFile->vnode, swapFile->cookie, pos,
787 			vecs + i, j - i, flags, _numBytes);
788 		if (status != B_OK)
789 			return status;
790 	}
791 
792 	return B_OK;
793 }
794 
795 
796 status_t
797 VMAnonymousCache::Write(off_t offset, const generic_io_vec* vecs, size_t count,
798 	uint32 flags, generic_size_t* _numBytes)
799 {
800 	off_t pageIndex = offset >> PAGE_SHIFT;
801 
802 	AutoLocker<VMCache> locker(this);
803 
804 	page_num_t totalPages = 0;
805 	for (uint32 i = 0; i < count; i++) {
806 		page_num_t pageCount = (vecs[i].length + B_PAGE_SIZE - 1) >> PAGE_SHIFT;
807 		swap_addr_t slotIndex = _SwapBlockGetAddress(pageIndex + totalPages);
808 		if (slotIndex != SWAP_SLOT_NONE) {
809 			swap_slot_dealloc(slotIndex, pageCount);
810 			_SwapBlockFree(pageIndex + totalPages, pageCount);
811 			fAllocatedSwapSize -= pageCount * B_PAGE_SIZE;
812 		}
813 
814 		totalPages += pageCount;
815 	}
816 
817 	off_t totalSize = totalPages * B_PAGE_SIZE;
818 	if (fAllocatedSwapSize + totalSize > fCommittedSwapSize)
819 		return B_ERROR;
820 
821 	fAllocatedSwapSize += totalSize;
822 	locker.Unlock();
823 
824 	page_num_t pagesLeft = totalPages;
825 	totalPages = 0;
826 
827 	for (uint32 i = 0; i < count; i++) {
828 		page_num_t pageCount = (vecs[i].length + B_PAGE_SIZE - 1) >> PAGE_SHIFT;
829 
830 		generic_addr_t vectorBase = vecs[i].base;
831 		generic_size_t vectorLength = vecs[i].length;
832 		page_num_t n = pageCount;
833 
834 		for (page_num_t j = 0; j < pageCount; j += n) {
835 			swap_addr_t slotIndex;
836 			// try to allocate n slots, if fail, try to allocate n/2
837 			while ((slotIndex = swap_slot_alloc(n)) == SWAP_SLOT_NONE && n >= 2)
838 				n >>= 1;
839 
840 			if (slotIndex == SWAP_SLOT_NONE)
841 				panic("VMAnonymousCache::Write(): can't allocate swap space\n");
842 
843 			T(WritePage(this, pageIndex, slotIndex));
844 				// TODO: Assumes that only one page is written.
845 
846 			swap_file* swapFile = find_swap_file(slotIndex);
847 
848 			off_t pos = (off_t)(slotIndex - swapFile->first_slot) * B_PAGE_SIZE;
849 
850 			generic_size_t length = (phys_addr_t)n * B_PAGE_SIZE;
851 			generic_io_vec vector[1];
852 			vector->base = vectorBase;
853 			vector->length = length;
854 
855 			status_t status = vfs_write_pages(swapFile->vnode, swapFile->cookie,
856 				pos, vector, 1, flags, &length);
857 			if (status != B_OK) {
858 				locker.Lock();
859 				fAllocatedSwapSize -= (off_t)pagesLeft * B_PAGE_SIZE;
860 				locker.Unlock();
861 
862 				swap_slot_dealloc(slotIndex, n);
863 				return status;
864 			}
865 
866 			_SwapBlockBuild(pageIndex + totalPages, slotIndex, n);
867 			pagesLeft -= n;
868 
869 			if (n != pageCount) {
870 				vectorBase = vectorBase + n * B_PAGE_SIZE;
871 				vectorLength -= n * B_PAGE_SIZE;
872 			}
873 		}
874 
875 		totalPages += pageCount;
876 	}
877 
878 	ASSERT(pagesLeft == 0);
879 	return B_OK;
880 }
881 
882 
883 status_t
884 VMAnonymousCache::WriteAsync(off_t offset, const generic_io_vec* vecs,
885 	size_t count, generic_size_t numBytes, uint32 flags,
886 	AsyncIOCallback* _callback)
887 {
888 	// TODO: Currently this method is only used for single pages. Either make
889 	// more flexible use of it or change the interface!
890 	// This implementation relies on the current usage!
891 	ASSERT(count == 1);
892 	ASSERT(numBytes <= B_PAGE_SIZE);
893 
894 	page_num_t pageIndex = offset >> PAGE_SHIFT;
895 	swap_addr_t slotIndex = _SwapBlockGetAddress(pageIndex);
896 	bool newSlot = slotIndex == SWAP_SLOT_NONE;
897 
898 	// If the page doesn't have any swap space yet, allocate it.
899 	if (newSlot) {
900 		AutoLocker<VMCache> locker(this);
901 		if (fAllocatedSwapSize + B_PAGE_SIZE > fCommittedSwapSize) {
902 			_callback->IOFinished(B_ERROR, true, 0);
903 			return B_ERROR;
904 		}
905 
906 		fAllocatedSwapSize += B_PAGE_SIZE;
907 
908 		slotIndex = swap_slot_alloc(1);
909 	}
910 
911 	// create our callback
912 	WriteCallback* callback = (flags & B_VIP_IO_REQUEST) != 0
913 		? new(malloc_flags(HEAP_PRIORITY_VIP)) WriteCallback(this, _callback)
914 		: new(std::nothrow) WriteCallback(this, _callback);
915 	if (callback == NULL) {
916 		if (newSlot) {
917 			AutoLocker<VMCache> locker(this);
918 			fAllocatedSwapSize -= B_PAGE_SIZE;
919 			locker.Unlock();
920 
921 			swap_slot_dealloc(slotIndex, 1);
922 		}
923 		_callback->IOFinished(B_NO_MEMORY, true, 0);
924 		return B_NO_MEMORY;
925 	}
926 	// TODO: If the page already had swap space assigned, we don't need an own
927 	// callback.
928 
929 	callback->SetTo(pageIndex, slotIndex, newSlot);
930 
931 	T(WritePage(this, pageIndex, slotIndex));
932 
933 	// write the page asynchrounously
934 	swap_file* swapFile = find_swap_file(slotIndex);
935 	off_t pos = (off_t)(slotIndex - swapFile->first_slot) * B_PAGE_SIZE;
936 
937 	return vfs_asynchronous_write_pages(swapFile->vnode, swapFile->cookie, pos,
938 		vecs, 1, numBytes, flags, callback);
939 }
940 
941 
942 bool
943 VMAnonymousCache::CanWritePage(off_t offset)
944 {
945 	const off_t pageIndex = offset >> PAGE_SHIFT;
946 	if (fNoSwapPages != NULL && fNoSwapPages->Get(pageIndex))
947 		return false;
948 
949 	// We can write the page, if we have not used all of our committed swap
950 	// space or the page already has a swap slot assigned.
951 	return fAllocatedSwapSize < fCommittedSwapSize
952 		|| _SwapBlockGetAddress(pageIndex) != SWAP_SLOT_NONE;
953 }
954 
955 
956 int32
957 VMAnonymousCache::MaxPagesPerAsyncWrite() const
958 {
959 	return 1;
960 }
961 
962 
963 status_t
964 VMAnonymousCache::Fault(struct VMAddressSpace* aspace, off_t offset)
965 {
966 	if (fGuardedSize > 0) {
967 		uint32 guardOffset;
968 
969 #ifdef STACK_GROWS_DOWNWARDS
970 		guardOffset = 0;
971 #elif defined(STACK_GROWS_UPWARDS)
972 		guardOffset = virtual_size - fGuardedSize;
973 #else
974 #	error Stack direction has not been defined in arch_config.h
975 #endif
976 		// report stack fault, guard page hit!
977 		if (offset >= guardOffset && offset < guardOffset + fGuardedSize) {
978 			TRACE(("stack overflow!\n"));
979 			return B_BAD_ADDRESS;
980 		}
981 	}
982 
983 	if (fCanOvercommit && LookupPage(offset) == NULL && !HasPage(offset)) {
984 		if (fPrecommittedPages == 0) {
985 			// never commit more than needed
986 			if (committed_size / B_PAGE_SIZE > page_count)
987 				return B_BAD_HANDLER;
988 
989 			// try to commit additional swap space/memory
990 			if (swap_space_reserve(B_PAGE_SIZE) == B_PAGE_SIZE) {
991 				fCommittedSwapSize += B_PAGE_SIZE;
992 			} else {
993 				int priority = aspace == VMAddressSpace::Kernel()
994 					? VM_PRIORITY_SYSTEM : VM_PRIORITY_USER;
995 				if (vm_try_reserve_memory(B_PAGE_SIZE, priority, 0) != B_OK) {
996 					dprintf("%p->VMAnonymousCache::Fault(): Failed to reserve "
997 						"%d bytes of RAM.\n", this, (int)B_PAGE_SIZE);
998 					return B_NO_MEMORY;
999 				}
1000 			}
1001 
1002 			committed_size += B_PAGE_SIZE;
1003 		} else
1004 			fPrecommittedPages--;
1005 	}
1006 
1007 	// This will cause vm_soft_fault() to handle the fault
1008 	return B_BAD_HANDLER;
1009 }
1010 
1011 
1012 void
1013 VMAnonymousCache::Merge(VMCache* _source)
1014 {
1015 	VMAnonymousCache* source = dynamic_cast<VMAnonymousCache*>(_source);
1016 	if (source == NULL) {
1017 		panic("VMAnonymousCache::Merge(): merge with incompatible cache "
1018 			"%p requested", _source);
1019 		return;
1020 	}
1021 
1022 	// take over the source' committed size
1023 	fCommittedSwapSize += source->fCommittedSwapSize;
1024 	source->fCommittedSwapSize = 0;
1025 	committed_size += source->committed_size;
1026 	source->committed_size = 0;
1027 
1028 	off_t actualSize = virtual_end - virtual_base;
1029 	if (committed_size > actualSize)
1030 		_Commit(actualSize, VM_PRIORITY_USER);
1031 
1032 	// Move all not shadowed swap pages from the source to the consumer cache.
1033 	// Also remove all source pages that are shadowed by consumer swap pages.
1034 	_MergeSwapPages(source);
1035 
1036 	// Move all not shadowed pages from the source to the consumer cache.
1037 	if (source->page_count < page_count)
1038 		_MergePagesSmallerSource(source);
1039 	else
1040 		_MergePagesSmallerConsumer(source);
1041 }
1042 
1043 
1044 void
1045 VMAnonymousCache::DeleteObject()
1046 {
1047 	object_cache_delete(gAnonymousCacheObjectCache, this);
1048 }
1049 
1050 
1051 void
1052 VMAnonymousCache::_SwapBlockBuild(off_t startPageIndex,
1053 	swap_addr_t startSlotIndex, uint32 count)
1054 {
1055 	WriteLocker locker(sSwapHashLock);
1056 
1057 	uint32 left = count;
1058 	for (uint32 i = 0, j = 0; i < count; i += j) {
1059 		off_t pageIndex = startPageIndex + i;
1060 		swap_addr_t slotIndex = startSlotIndex + i;
1061 
1062 		swap_hash_key key = { this, pageIndex };
1063 
1064 		swap_block* swap = sSwapHashTable.Lookup(key);
1065 		while (swap == NULL) {
1066 			swap = (swap_block*)object_cache_alloc(sSwapBlockCache,
1067 				CACHE_DONT_WAIT_FOR_MEMORY | CACHE_DONT_LOCK_KERNEL_SPACE);
1068 			if (swap == NULL) {
1069 				// Wait a short time until memory is available again.
1070 				locker.Unlock();
1071 				snooze(10000);
1072 				locker.Lock();
1073 				swap = sSwapHashTable.Lookup(key);
1074 				continue;
1075 			}
1076 
1077 			swap->key.cache = this;
1078 			swap->key.page_index = pageIndex & ~(off_t)SWAP_BLOCK_MASK;
1079 			swap->used = 0;
1080 			for (uint32 i = 0; i < SWAP_BLOCK_PAGES; i++)
1081 				swap->swap_slots[i] = SWAP_SLOT_NONE;
1082 
1083 			sSwapHashTable.InsertUnchecked(swap);
1084 		}
1085 
1086 		swap_addr_t blockIndex = pageIndex & SWAP_BLOCK_MASK;
1087 		for (j = 0; blockIndex < SWAP_BLOCK_PAGES && left > 0; j++) {
1088 			swap->swap_slots[blockIndex++] = slotIndex + j;
1089 			left--;
1090 		}
1091 
1092 		swap->used += j;
1093 	}
1094 }
1095 
1096 
1097 void
1098 VMAnonymousCache::_SwapBlockFree(off_t startPageIndex, uint32 count)
1099 {
1100 	WriteLocker locker(sSwapHashLock);
1101 
1102 	uint32 left = count;
1103 	for (uint32 i = 0, j = 0; i < count; i += j) {
1104 		off_t pageIndex = startPageIndex + i;
1105 		swap_hash_key key = { this, pageIndex };
1106 		swap_block* swap = sSwapHashTable.Lookup(key);
1107 
1108 		ASSERT(swap != NULL);
1109 
1110 		swap_addr_t blockIndex = pageIndex & SWAP_BLOCK_MASK;
1111 		for (j = 0; blockIndex < SWAP_BLOCK_PAGES && left > 0; j++) {
1112 			swap->swap_slots[blockIndex++] = SWAP_SLOT_NONE;
1113 			left--;
1114 		}
1115 
1116 		swap->used -= j;
1117 		if (swap->used == 0) {
1118 			sSwapHashTable.RemoveUnchecked(swap);
1119 			object_cache_free(sSwapBlockCache, swap,
1120 				CACHE_DONT_WAIT_FOR_MEMORY | CACHE_DONT_LOCK_KERNEL_SPACE);
1121 		}
1122 	}
1123 }
1124 
1125 
1126 swap_addr_t
1127 VMAnonymousCache::_SwapBlockGetAddress(off_t pageIndex)
1128 {
1129 	ReadLocker locker(sSwapHashLock);
1130 
1131 	swap_hash_key key = { this, pageIndex };
1132 	swap_block* swap = sSwapHashTable.Lookup(key);
1133 	swap_addr_t slotIndex = SWAP_SLOT_NONE;
1134 
1135 	if (swap != NULL) {
1136 		swap_addr_t blockIndex = pageIndex & SWAP_BLOCK_MASK;
1137 		slotIndex = swap->swap_slots[blockIndex];
1138 	}
1139 
1140 	return slotIndex;
1141 }
1142 
1143 
1144 status_t
1145 VMAnonymousCache::_Commit(off_t size, int priority)
1146 {
1147 	TRACE("%p->VMAnonymousCache::_Commit(%" B_PRIdOFF "), already committed: "
1148 		"%" B_PRIdOFF " (%" B_PRIdOFF " swap)\n", this, size, committed_size,
1149 		fCommittedSwapSize);
1150 
1151 	// Basic strategy: reserve swap space first, only when running out of swap
1152 	// space, reserve real memory.
1153 
1154 	off_t committedMemory = committed_size - fCommittedSwapSize;
1155 
1156 	// Regardless of whether we're asked to grow or shrink the commitment,
1157 	// we always try to reserve as much as possible of the final commitment
1158 	// in the swap space.
1159 	if (size > fCommittedSwapSize) {
1160 		fCommittedSwapSize += swap_space_reserve(size - fCommittedSwapSize);
1161 		committed_size = fCommittedSwapSize + committedMemory;
1162 		if (size > fCommittedSwapSize) {
1163 			TRACE("%p->VMAnonymousCache::_Commit(%" B_PRIdOFF "), reserved "
1164 				"only %" B_PRIdOFF " swap\n", this, size, fCommittedSwapSize);
1165 		}
1166 	}
1167 
1168 	if (committed_size == size)
1169 		return B_OK;
1170 
1171 	if (committed_size > size) {
1172 		// The commitment shrinks -- unreserve real memory first.
1173 		off_t toUnreserve = committed_size - size;
1174 		if (committedMemory > 0) {
1175 			off_t unreserved = min_c(toUnreserve, committedMemory);
1176 			vm_unreserve_memory(unreserved);
1177 			committedMemory -= unreserved;
1178 			committed_size -= unreserved;
1179 			toUnreserve -= unreserved;
1180 		}
1181 
1182 		// Unreserve swap space.
1183 		if (toUnreserve > 0) {
1184 			swap_space_unreserve(toUnreserve);
1185 			fCommittedSwapSize -= toUnreserve;
1186 			committed_size -= toUnreserve;
1187 		}
1188 
1189 		return B_OK;
1190 	}
1191 
1192 	// The commitment grows -- we have already tried to reserve swap space at
1193 	// the start of the method, so we try to reserve real memory, now.
1194 
1195 	off_t toReserve = size - committed_size;
1196 	if (vm_try_reserve_memory(toReserve, priority, 1000000) != B_OK) {
1197 		dprintf("%p->VMAnonymousCache::_Commit(%" B_PRIdOFF "): Failed to "
1198 			"reserve %" B_PRIdOFF " bytes of RAM\n", this, size, toReserve);
1199 		return B_NO_MEMORY;
1200 	}
1201 
1202 	committed_size = size;
1203 	return B_OK;
1204 }
1205 
1206 
1207 void
1208 VMAnonymousCache::_MergePagesSmallerSource(VMAnonymousCache* source)
1209 {
1210 	// The source cache has less pages than the consumer (this cache), so we
1211 	// iterate through the source's pages and move the ones that are not
1212 	// shadowed up to the consumer.
1213 
1214 	for (VMCachePagesTree::Iterator it = source->pages.GetIterator();
1215 			vm_page* page = it.Next();) {
1216 		// Note: Removing the current node while iterating through a
1217 		// IteratableSplayTree is safe.
1218 		vm_page* consumerPage = LookupPage(
1219 			(off_t)page->cache_offset << PAGE_SHIFT);
1220 		if (consumerPage == NULL) {
1221 			// the page is not yet in the consumer cache - move it upwards
1222 			ASSERT_PRINT(!page->busy, "page: %p", page);
1223 			MovePage(page);
1224 		}
1225 	}
1226 }
1227 
1228 
1229 void
1230 VMAnonymousCache::_MergePagesSmallerConsumer(VMAnonymousCache* source)
1231 {
1232 	// The consumer (this cache) has less pages than the source, so we move the
1233 	// consumer's pages to the source (freeing shadowed ones) and finally just
1234 	// all pages of the source back to the consumer.
1235 
1236 	for (VMCachePagesTree::Iterator it = pages.GetIterator();
1237 		vm_page* page = it.Next();) {
1238 		// If a source page is in the way, remove and free it.
1239 		vm_page* sourcePage = source->LookupPage(
1240 			(off_t)page->cache_offset << PAGE_SHIFT);
1241 		if (sourcePage != NULL) {
1242 			DEBUG_PAGE_ACCESS_START(sourcePage);
1243 			ASSERT_PRINT(!sourcePage->busy, "page: %p", sourcePage);
1244 			ASSERT_PRINT(sourcePage->WiredCount() == 0
1245 					&& sourcePage->mappings.IsEmpty(),
1246 				"sourcePage: %p, page: %p", sourcePage, page);
1247 			source->RemovePage(sourcePage);
1248 			vm_page_free(source, sourcePage);
1249 		}
1250 
1251 		// Note: Removing the current node while iterating through a
1252 		// IteratableSplayTree is safe.
1253 		source->MovePage(page);
1254 	}
1255 
1256 	MoveAllPages(source);
1257 }
1258 
1259 
1260 void
1261 VMAnonymousCache::_MergeSwapPages(VMAnonymousCache* source)
1262 {
1263 	// If neither source nor consumer have swap pages, we don't have to do
1264 	// anything.
1265 	if (source->fAllocatedSwapSize == 0 && fAllocatedSwapSize == 0)
1266 		return;
1267 
1268 	for (off_t offset = source->virtual_base
1269 		& ~(off_t)(B_PAGE_SIZE * SWAP_BLOCK_PAGES - 1);
1270 		offset < source->virtual_end;
1271 		offset += B_PAGE_SIZE * SWAP_BLOCK_PAGES) {
1272 
1273 		WriteLocker locker(sSwapHashLock);
1274 
1275 		off_t swapBlockPageIndex = offset >> PAGE_SHIFT;
1276 		swap_hash_key key = { source, swapBlockPageIndex };
1277 		swap_block* sourceSwapBlock = sSwapHashTable.Lookup(key);
1278 
1279 		// remove the source swap block -- we will either take over the swap
1280 		// space (and the block) or free it
1281 		if (sourceSwapBlock != NULL)
1282 			sSwapHashTable.RemoveUnchecked(sourceSwapBlock);
1283 
1284 		key.cache = this;
1285 		swap_block* swapBlock = sSwapHashTable.Lookup(key);
1286 
1287 		locker.Unlock();
1288 
1289 		// remove all source pages that are shadowed by consumer swap pages
1290 		if (swapBlock != NULL) {
1291 			for (uint32 i = 0; i < SWAP_BLOCK_PAGES; i++) {
1292 				if (swapBlock->swap_slots[i] != SWAP_SLOT_NONE) {
1293 					vm_page* page = source->LookupPage(
1294 						(off_t)(swapBlockPageIndex + i) << PAGE_SHIFT);
1295 					if (page != NULL) {
1296 						DEBUG_PAGE_ACCESS_START(page);
1297 						ASSERT_PRINT(!page->busy, "page: %p", page);
1298 						source->RemovePage(page);
1299 						vm_page_free(source, page);
1300 					}
1301 				}
1302 			}
1303 		}
1304 
1305 		if (sourceSwapBlock == NULL)
1306 			continue;
1307 
1308 		for (uint32 i = 0; i < SWAP_BLOCK_PAGES; i++) {
1309 			off_t pageIndex = swapBlockPageIndex + i;
1310 			swap_addr_t sourceSlotIndex = sourceSwapBlock->swap_slots[i];
1311 
1312 			if (sourceSlotIndex == SWAP_SLOT_NONE)
1313 				continue;
1314 
1315 			if ((swapBlock != NULL
1316 					&& swapBlock->swap_slots[i] != SWAP_SLOT_NONE)
1317 				|| LookupPage((off_t)pageIndex << PAGE_SHIFT) != NULL) {
1318 				// The consumer already has a page or a swapped out page
1319 				// at this index. So we can free the source swap space.
1320 				swap_slot_dealloc(sourceSlotIndex, 1);
1321 				sourceSwapBlock->swap_slots[i] = SWAP_SLOT_NONE;
1322 				sourceSwapBlock->used--;
1323 			}
1324 
1325 			// We've either freed the source swap page or are going to move it
1326 			// to the consumer. At any rate, the source cache doesn't own it
1327 			// anymore.
1328 			source->fAllocatedSwapSize -= B_PAGE_SIZE;
1329 		}
1330 
1331 		// All source swap pages that have not been freed yet are taken over by
1332 		// the consumer.
1333 		fAllocatedSwapSize += B_PAGE_SIZE * (off_t)sourceSwapBlock->used;
1334 
1335 		if (sourceSwapBlock->used == 0) {
1336 			// All swap pages have been freed -- we can discard the source swap
1337 			// block.
1338 			object_cache_free(sSwapBlockCache, sourceSwapBlock,
1339 				CACHE_DONT_WAIT_FOR_MEMORY | CACHE_DONT_LOCK_KERNEL_SPACE);
1340 		} else if (swapBlock == NULL) {
1341 			// We need to take over some of the source's swap pages and there's
1342 			// no swap block in the consumer cache. Just take over the source
1343 			// swap block.
1344 			sourceSwapBlock->key.cache = this;
1345 			locker.Lock();
1346 			sSwapHashTable.InsertUnchecked(sourceSwapBlock);
1347 			locker.Unlock();
1348 		} else {
1349 			// We need to take over some of the source's swap pages and there's
1350 			// already a swap block in the consumer cache. Copy the respective
1351 			// swap addresses and discard the source swap block.
1352 			for (uint32 i = 0; i < SWAP_BLOCK_PAGES; i++) {
1353 				if (sourceSwapBlock->swap_slots[i] != SWAP_SLOT_NONE)
1354 					swapBlock->swap_slots[i] = sourceSwapBlock->swap_slots[i];
1355 			}
1356 
1357 			object_cache_free(sSwapBlockCache, sourceSwapBlock,
1358 				CACHE_DONT_WAIT_FOR_MEMORY | CACHE_DONT_LOCK_KERNEL_SPACE);
1359 		}
1360 	}
1361 }
1362 
1363 
1364 // #pragma mark -
1365 
1366 
1367 // TODO: This can be removed if we get BFS uuid's
1368 struct VolumeInfo {
1369 	char name[B_FILE_NAME_LENGTH];
1370 	char device[B_FILE_NAME_LENGTH];
1371 	char filesystem[B_OS_NAME_LENGTH];
1372 	off_t capacity;
1373 };
1374 
1375 
1376 class PartitionScorer : public KPartitionVisitor {
1377 public:
1378 	PartitionScorer(VolumeInfo& volumeInfo)
1379 		:
1380 		fBestPartition(NULL),
1381 		fBestScore(-1),
1382 		fVolumeInfo(volumeInfo)
1383 	{
1384 	}
1385 
1386 	virtual bool VisitPre(KPartition* partition)
1387 	{
1388 		if (!partition->ContainsFileSystem())
1389 			return false;
1390 
1391 		KPath path;
1392 		partition->GetPath(&path);
1393 
1394 		int score = 0;
1395 		if (strcmp(fVolumeInfo.name, partition->ContentName()) == 0)
1396 			score += 4;
1397 		if (strcmp(fVolumeInfo.device, path.Path()) == 0)
1398 			score += 3;
1399 		if (fVolumeInfo.capacity == partition->Size())
1400 			score += 2;
1401 		if (strcmp(fVolumeInfo.filesystem,
1402 			partition->DiskSystem()->ShortName()) == 0) {
1403 			score += 1;
1404 		}
1405 		if (score >= 4 && score > fBestScore) {
1406 			fBestPartition = partition;
1407 			fBestScore = score;
1408 		}
1409 
1410 		return false;
1411 	}
1412 
1413 	KPartition* fBestPartition;
1414 
1415 private:
1416 	int32		fBestScore;
1417 	VolumeInfo&	fVolumeInfo;
1418 };
1419 
1420 
1421 status_t
1422 swap_file_add(const char* path)
1423 {
1424 	// open the file
1425 	int fd = open(path, O_RDWR | O_NOCACHE, S_IRUSR | S_IWUSR);
1426 	if (fd < 0)
1427 		return errno;
1428 
1429 	// fstat() it and check whether we can use it
1430 	struct stat st;
1431 	if (fstat(fd, &st) < 0) {
1432 		close(fd);
1433 		return errno;
1434 	}
1435 
1436 	if (!(S_ISREG(st.st_mode) || S_ISCHR(st.st_mode) || S_ISBLK(st.st_mode))) {
1437 		close(fd);
1438 		return B_BAD_VALUE;
1439 	}
1440 
1441 	if (st.st_size < B_PAGE_SIZE) {
1442 		close(fd);
1443 		return B_BAD_VALUE;
1444 	}
1445 
1446 	// get file descriptor, vnode, and cookie
1447 	file_descriptor* descriptor = get_fd(get_current_io_context(true), fd);
1448 	put_fd(descriptor);
1449 
1450 	vnode* node = fd_vnode(descriptor);
1451 	if (node == NULL) {
1452 		close(fd);
1453 		return B_BAD_VALUE;
1454 	}
1455 
1456 	// do the allocations and prepare the swap_file structure
1457 	swap_file* swap = new(std::nothrow) swap_file;
1458 	if (swap == NULL) {
1459 		close(fd);
1460 		return B_NO_MEMORY;
1461 	}
1462 
1463 	swap->fd = fd;
1464 	swap->vnode = node;
1465 	swap->cookie = descriptor->cookie;
1466 
1467 	uint32 pageCount = st.st_size >> PAGE_SHIFT;
1468 	swap->bmp = radix_bitmap_create(pageCount);
1469 	if (swap->bmp == NULL) {
1470 		delete swap;
1471 		close(fd);
1472 		return B_NO_MEMORY;
1473 	}
1474 
1475 	// set slot index and add this file to swap file list
1476 	mutex_lock(&sSwapFileListLock);
1477 	// TODO: Also check whether the swap file is already registered!
1478 	if (sSwapFileList.IsEmpty()) {
1479 		swap->first_slot = 0;
1480 		swap->last_slot = pageCount;
1481 	} else {
1482 		// leave one page gap between two swap files
1483 		swap->first_slot = sSwapFileList.Last()->last_slot + 1;
1484 		swap->last_slot = swap->first_slot + pageCount;
1485 	}
1486 	sSwapFileList.Add(swap);
1487 	sSwapFileCount++;
1488 	mutex_unlock(&sSwapFileListLock);
1489 
1490 	mutex_lock(&sAvailSwapSpaceLock);
1491 	sAvailSwapSpace += (off_t)pageCount * B_PAGE_SIZE;
1492 	mutex_unlock(&sAvailSwapSpaceLock);
1493 
1494 	return B_OK;
1495 }
1496 
1497 
1498 status_t
1499 swap_file_delete(const char* path)
1500 {
1501 	vnode* node = NULL;
1502 	status_t status = vfs_get_vnode_from_path(path, true, &node);
1503 	if (status != B_OK)
1504 		return status;
1505 
1506 	MutexLocker locker(sSwapFileListLock);
1507 
1508 	swap_file* swapFile = NULL;
1509 	for (SwapFileList::Iterator it = sSwapFileList.GetIterator();
1510 			(swapFile = it.Next()) != NULL;) {
1511 		if (swapFile->vnode == node)
1512 			break;
1513 	}
1514 
1515 	vfs_put_vnode(node);
1516 
1517 	if (swapFile == NULL)
1518 		return B_ERROR;
1519 
1520 	// if this file is currently used, we can't delete
1521 	// TODO: mark this swap file deleting, and remove it after releasing
1522 	// all the swap space
1523 	if (swapFile->bmp->free_slots < swapFile->last_slot - swapFile->first_slot)
1524 		return B_ERROR;
1525 
1526 	sSwapFileList.Remove(swapFile);
1527 	sSwapFileCount--;
1528 	locker.Unlock();
1529 
1530 	mutex_lock(&sAvailSwapSpaceLock);
1531 	sAvailSwapSpace -= (off_t)(swapFile->last_slot - swapFile->first_slot)
1532 		* B_PAGE_SIZE;
1533 	mutex_unlock(&sAvailSwapSpaceLock);
1534 
1535 	close(swapFile->fd);
1536 	radix_bitmap_destroy(swapFile->bmp);
1537 	delete swapFile;
1538 
1539 	return B_OK;
1540 }
1541 
1542 
1543 void
1544 swap_init(void)
1545 {
1546 	// create swap block cache
1547 	sSwapBlockCache = create_object_cache("swapblock", sizeof(swap_block),
1548 		sizeof(void*), NULL, NULL, NULL);
1549 	if (sSwapBlockCache == NULL)
1550 		panic("swap_init(): can't create object cache for swap blocks\n");
1551 
1552 	status_t error = object_cache_set_minimum_reserve(sSwapBlockCache,
1553 		MIN_SWAP_BLOCK_RESERVE);
1554 	if (error != B_OK) {
1555 		panic("swap_init(): object_cache_set_minimum_reserve() failed: %s",
1556 			strerror(error));
1557 	}
1558 
1559 	// init swap hash table
1560 	sSwapHashTable.Init(INITIAL_SWAP_HASH_SIZE);
1561 	rw_lock_init(&sSwapHashLock, "swaphash");
1562 
1563 	error = register_resource_resizer(swap_hash_resizer, NULL,
1564 		SWAP_HASH_RESIZE_INTERVAL);
1565 	if (error != B_OK) {
1566 		panic("swap_init(): Failed to register swap hash resizer: %s",
1567 			strerror(error));
1568 	}
1569 
1570 	// init swap file list
1571 	mutex_init(&sSwapFileListLock, "swaplist");
1572 	sSwapFileAlloc = NULL;
1573 	sSwapFileCount = 0;
1574 
1575 	// init available swap space
1576 	mutex_init(&sAvailSwapSpaceLock, "avail swap space");
1577 	sAvailSwapSpace = 0;
1578 
1579 	add_debugger_command_etc("swap", &dump_swap_info,
1580 		"Print infos about the swap usage",
1581 		"\n"
1582 		"Print infos about the swap usage.\n", 0);
1583 }
1584 
1585 
1586 void
1587 swap_init_post_modules()
1588 {
1589 	// Never try to create a swap file on a read-only device - when booting
1590 	// from CD, the write overlay is used.
1591 	if (gReadOnlyBootDevice)
1592 		return;
1593 
1594 	bool swapEnabled = true;
1595 	bool swapAutomatic = true;
1596 	off_t swapSize = 0;
1597 
1598 	dev_t swapDeviceID = -1;
1599 	VolumeInfo selectedVolume = {};
1600 
1601 	void* settings = load_driver_settings("virtual_memory");
1602 
1603 	if (settings != NULL) {
1604 		// We pass a lot of information on the swap device, this is mostly to
1605 		// ensure that we are dealing with the same device that was configured.
1606 
1607 		// TODO: Some kind of BFS uuid would be great here :)
1608 		const char* enabled = get_driver_parameter(settings, "vm", NULL, NULL);
1609 
1610 		if (enabled != NULL) {
1611 			swapEnabled = get_driver_boolean_parameter(settings, "vm",
1612 				true, false);
1613 			swapAutomatic = get_driver_boolean_parameter(settings, "swap_auto",
1614 				true, false);
1615 
1616 			if (swapEnabled && !swapAutomatic) {
1617 				const char* size = get_driver_parameter(settings, "swap_size",
1618 					NULL, NULL);
1619 				const char* volume = get_driver_parameter(settings,
1620 					"swap_volume_name", NULL, NULL);
1621 				const char* device = get_driver_parameter(settings,
1622 					"swap_volume_device", NULL, NULL);
1623 				const char* filesystem = get_driver_parameter(settings,
1624 					"swap_volume_filesystem", NULL, NULL);
1625 				const char* capacity = get_driver_parameter(settings,
1626 					"swap_volume_capacity", NULL, NULL);
1627 
1628 				if (size != NULL && device != NULL && volume != NULL
1629 					&& filesystem != NULL && capacity != NULL) {
1630 					// User specified a size / volume that seems valid
1631 					swapAutomatic = false;
1632 					swapSize = atoll(size);
1633 					strlcpy(selectedVolume.name, volume,
1634 						sizeof(selectedVolume.name));
1635 					strlcpy(selectedVolume.device, device,
1636 						sizeof(selectedVolume.device));
1637 					strlcpy(selectedVolume.filesystem, filesystem,
1638 						sizeof(selectedVolume.filesystem));
1639 					selectedVolume.capacity = atoll(capacity);
1640 				} else {
1641 					// Something isn't right with swap config, go auto
1642 					swapAutomatic = true;
1643 					dprintf("%s: virtual_memory configuration is invalid, "
1644 						"using automatic swap\n", __func__);
1645 				}
1646 			}
1647 		}
1648 		unload_driver_settings(settings);
1649 	}
1650 
1651 	if (swapAutomatic) {
1652 		swapSize = (off_t)vm_page_num_pages() * B_PAGE_SIZE;
1653 		if (swapSize <= (1024 * 1024 * 1024)) {
1654 			// Memory under 1GB? double the swap
1655 			swapSize *= 2;
1656 		}
1657 		// Automatic swap defaults to the boot device
1658 		swapDeviceID = gBootDevice;
1659 	}
1660 
1661 	if (!swapEnabled || swapSize < B_PAGE_SIZE) {
1662 		dprintf("%s: virtual_memory is disabled\n", __func__);
1663 		return;
1664 	}
1665 
1666 	if (!swapAutomatic && swapDeviceID < 0) {
1667 		// If user-specified swap, and no swap device has been chosen yet...
1668 		KDiskDeviceManager::CreateDefault();
1669 		KDiskDeviceManager* manager = KDiskDeviceManager::Default();
1670 		PartitionScorer visitor(selectedVolume);
1671 
1672 		KDiskDevice* device;
1673 		int32 cookie = 0;
1674 		while ((device = manager->NextDevice(&cookie)) != NULL) {
1675 			if (device->IsReadOnlyMedia() || device->IsWriteOnce()
1676 				|| device->IsRemovable()) {
1677 				continue;
1678 			}
1679 			device->VisitEachDescendant(&visitor);
1680 		}
1681 
1682 		if (!visitor.fBestPartition) {
1683 			dprintf("%s: Can't find configured swap partition '%s'\n",
1684 				__func__, selectedVolume.name);
1685 		} else {
1686 			if (visitor.fBestPartition->IsMounted())
1687 				swapDeviceID = visitor.fBestPartition->VolumeID();
1688 			else {
1689 				KPath devPath, mountPoint;
1690 				visitor.fBestPartition->GetPath(&devPath);
1691 				get_mount_point(visitor.fBestPartition, &mountPoint);
1692 				const char* mountPath = mountPoint.Path();
1693 				mkdir(mountPath, S_IRWXU | S_IRWXG | S_IRWXO);
1694 				swapDeviceID = _kern_mount(mountPath, devPath.Path(),
1695 					NULL, 0, NULL, 0);
1696 				if (swapDeviceID < 0) {
1697 					dprintf("%s: Can't mount configured swap partition '%s'\n",
1698 						__func__, selectedVolume.name);
1699 				}
1700 			}
1701 		}
1702 	}
1703 
1704 	if (swapDeviceID < 0)
1705 		swapDeviceID = gBootDevice;
1706 
1707 	// We now have a swapDeviceID which is used for the swap file
1708 
1709 	KPath path;
1710 	struct fs_info info;
1711 	_kern_read_fs_info(swapDeviceID, &info);
1712 	if (swapDeviceID == gBootDevice)
1713 		path = kDefaultSwapPath;
1714 	else {
1715 		vfs_entry_ref_to_path(info.dev, info.root, ".", true, path.LockBuffer(),
1716 			path.BufferSize());
1717 		path.UnlockBuffer();
1718 		path.Append("swap");
1719 	}
1720 
1721 	const char* swapPath = path.Path();
1722 
1723 	// Swap size limits prevent oversized swap files
1724 	if (swapAutomatic) {
1725 		off_t existingSwapSize = 0;
1726 		struct stat existingSwapStat;
1727 		if (stat(swapPath, &existingSwapStat) == 0)
1728 			existingSwapSize = existingSwapStat.st_size;
1729 
1730 		off_t freeSpace = info.free_blocks * info.block_size + existingSwapSize;
1731 
1732 		// Adjust automatic swap to a maximum of 25% of the free space
1733 		if (swapSize > (freeSpace / 4))
1734 			swapSize = (freeSpace / 4);
1735 	}
1736 
1737 	// Create swap file
1738 	int fd = open(swapPath, O_RDWR | O_CREAT | O_NOCACHE, S_IRUSR | S_IWUSR);
1739 	if (fd < 0) {
1740 		dprintf("%s: Can't open/create %s: %s\n", __func__,
1741 			swapPath, strerror(errno));
1742 		return;
1743 	}
1744 
1745 	struct stat stat;
1746 	stat.st_size = swapSize;
1747 	status_t error = _kern_write_stat(fd, NULL, false, &stat,
1748 		sizeof(struct stat), B_STAT_SIZE | B_STAT_SIZE_INSECURE);
1749 	if (error != B_OK) {
1750 		dprintf("%s: Failed to resize %s to %" B_PRIdOFF " bytes: %s\n",
1751 			__func__, swapPath, swapSize, strerror(error));
1752 	}
1753 
1754 	close(fd);
1755 
1756 	error = swap_file_add(swapPath);
1757 	if (error != B_OK) {
1758 		dprintf("%s: Failed to add swap file %s: %s\n", __func__, swapPath,
1759 			strerror(error));
1760 	}
1761 }
1762 
1763 
1764 //! Used by page daemon to free swap space.
1765 bool
1766 swap_free_page_swap_space(vm_page* page)
1767 {
1768 	VMAnonymousCache* cache = dynamic_cast<VMAnonymousCache*>(page->Cache());
1769 	if (cache == NULL)
1770 		return false;
1771 
1772 	swap_addr_t slotIndex = cache->_SwapBlockGetAddress(page->cache_offset);
1773 	if (slotIndex == SWAP_SLOT_NONE)
1774 		return false;
1775 
1776 	swap_slot_dealloc(slotIndex, 1);
1777 	cache->fAllocatedSwapSize -= B_PAGE_SIZE;
1778 	cache->_SwapBlockFree(page->cache_offset, 1);
1779 
1780 	return true;
1781 }
1782 
1783 
1784 uint32
1785 swap_available_pages()
1786 {
1787 	mutex_lock(&sAvailSwapSpaceLock);
1788 	uint32 avail = sAvailSwapSpace >> PAGE_SHIFT;
1789 	mutex_unlock(&sAvailSwapSpaceLock);
1790 
1791 	return avail;
1792 }
1793 
1794 
1795 uint32
1796 swap_total_swap_pages()
1797 {
1798 	mutex_lock(&sSwapFileListLock);
1799 
1800 	uint32 totalSwapSlots = 0;
1801 	for (SwapFileList::Iterator it = sSwapFileList.GetIterator();
1802 		swap_file* swapFile = it.Next();) {
1803 		totalSwapSlots += swapFile->last_slot - swapFile->first_slot;
1804 	}
1805 
1806 	mutex_unlock(&sSwapFileListLock);
1807 
1808 	return totalSwapSlots;
1809 }
1810 
1811 
1812 #endif	// ENABLE_SWAP_SUPPORT
1813 
1814 
1815 void
1816 swap_get_info(system_info* info)
1817 {
1818 #if ENABLE_SWAP_SUPPORT
1819 	MutexLocker locker(sSwapFileListLock);
1820 	for (SwapFileList::Iterator it = sSwapFileList.GetIterator();
1821 		swap_file* swapFile = it.Next();) {
1822 		info->max_swap_pages += swapFile->last_slot - swapFile->first_slot;
1823 		info->free_swap_pages += swapFile->bmp->free_slots;
1824 	}
1825 #else
1826 	info->max_swap_pages = 0;
1827 	info->free_swap_pages = 0;
1828 #endif
1829 }
1830 
1831