1 /* 2 * Copyright 2018, Jérôme Duval, jerome.duval@gmail.com. 3 * Copyright 2005-2011, Ingo Weinhold, ingo_weinhold@gmx.de. 4 * Copyright 2002-2009, Axel Dörfler, axeld@pinc-software.de. 5 * Distributed under the terms of the MIT License. 6 * 7 * Copyright 2001-2002, Travis Geiselbrecht. All rights reserved. 8 * Distributed under the terms of the NewOS License. 9 */ 10 11 12 /*! Threading routines */ 13 14 15 #include <thread.h> 16 17 #include <errno.h> 18 #include <malloc.h> 19 #include <stdio.h> 20 #include <stdlib.h> 21 #include <string.h> 22 #include <sys/resource.h> 23 24 #include <algorithm> 25 26 #include <OS.h> 27 28 #include <util/AutoLock.h> 29 #include <util/ThreadAutoLock.h> 30 31 #include <arch/debug.h> 32 #include <boot/kernel_args.h> 33 #include <condition_variable.h> 34 #include <cpu.h> 35 #include <int.h> 36 #include <kimage.h> 37 #include <kscheduler.h> 38 #include <ksignal.h> 39 #include <Notifications.h> 40 #include <real_time_clock.h> 41 #include <slab/Slab.h> 42 #include <smp.h> 43 #include <syscalls.h> 44 #include <syscall_restart.h> 45 #include <team.h> 46 #include <tls.h> 47 #include <user_runtime.h> 48 #include <user_thread.h> 49 #include <vfs.h> 50 #include <vm/vm.h> 51 #include <vm/VMAddressSpace.h> 52 #include <wait_for_objects.h> 53 54 #include "TeamThreadTables.h" 55 56 57 //#define TRACE_THREAD 58 #ifdef TRACE_THREAD 59 # define TRACE(x) dprintf x 60 #else 61 # define TRACE(x) ; 62 #endif 63 64 65 #define THREAD_MAX_MESSAGE_SIZE 65536 66 67 68 // #pragma mark - ThreadHashTable 69 70 71 typedef BKernel::TeamThreadTable<Thread> ThreadHashTable; 72 73 74 // thread list 75 static Thread sIdleThreads[SMP_MAX_CPUS]; 76 static ThreadHashTable sThreadHash; 77 static rw_spinlock sThreadHashLock = B_RW_SPINLOCK_INITIALIZER; 78 static thread_id sNextThreadID = 2; 79 // ID 1 is allocated for the kernel by Team::Team() behind our back 80 81 // some arbitrarily chosen limits -- should probably depend on the available 82 // memory 83 static int32 sMaxThreads = 4096; 84 static int32 sUsedThreads = 0; 85 86 spinlock gThreadCreationLock = B_SPINLOCK_INITIALIZER; 87 88 89 struct UndertakerEntry : DoublyLinkedListLinkImpl<UndertakerEntry> { 90 Thread* thread; 91 team_id teamID; 92 93 UndertakerEntry(Thread* thread, team_id teamID) 94 : 95 thread(thread), 96 teamID(teamID) 97 { 98 } 99 }; 100 101 102 struct ThreadEntryArguments { 103 status_t (*kernelFunction)(void* argument); 104 void* argument; 105 bool enterUserland; 106 }; 107 108 struct UserThreadEntryArguments : ThreadEntryArguments { 109 addr_t userlandEntry; 110 void* userlandArgument1; 111 void* userlandArgument2; 112 pthread_t pthread; 113 arch_fork_arg* forkArgs; 114 uint32 flags; 115 }; 116 117 118 class ThreadNotificationService : public DefaultNotificationService { 119 public: 120 ThreadNotificationService() 121 : DefaultNotificationService("threads") 122 { 123 } 124 125 void Notify(uint32 eventCode, team_id teamID, thread_id threadID, 126 Thread* thread = NULL) 127 { 128 char eventBuffer[180]; 129 KMessage event; 130 event.SetTo(eventBuffer, sizeof(eventBuffer), THREAD_MONITOR); 131 event.AddInt32("event", eventCode); 132 event.AddInt32("team", teamID); 133 event.AddInt32("thread", threadID); 134 if (thread != NULL) 135 event.AddPointer("threadStruct", thread); 136 137 DefaultNotificationService::Notify(event, eventCode); 138 } 139 140 void Notify(uint32 eventCode, Thread* thread) 141 { 142 return Notify(eventCode, thread->id, thread->team->id, thread); 143 } 144 }; 145 146 147 static DoublyLinkedList<UndertakerEntry> sUndertakerEntries; 148 static spinlock sUndertakerLock = B_SPINLOCK_INITIALIZER; 149 static ConditionVariable sUndertakerCondition; 150 static ThreadNotificationService sNotificationService; 151 152 153 // object cache to allocate thread structures from 154 static object_cache* sThreadCache; 155 156 157 // #pragma mark - Thread 158 159 160 /*! Constructs a thread. 161 162 \param name The thread's name. 163 \param threadID The ID to be assigned to the new thread. If 164 \code < 0 \endcode a fresh one is allocated. 165 \param cpu The CPU the thread shall be assigned. 166 */ 167 Thread::Thread(const char* name, thread_id threadID, struct cpu_ent* cpu) 168 : 169 flags(0), 170 serial_number(-1), 171 hash_next(NULL), 172 team_next(NULL), 173 priority(-1), 174 io_priority(-1), 175 cpu(cpu), 176 previous_cpu(NULL), 177 pinned_to_cpu(0), 178 sig_block_mask(0), 179 sigsuspend_original_unblocked_mask(0), 180 user_signal_context(NULL), 181 signal_stack_base(0), 182 signal_stack_size(0), 183 signal_stack_enabled(false), 184 in_kernel(true), 185 has_yielded(false), 186 user_thread(NULL), 187 fault_handler(0), 188 page_faults_allowed(1), 189 team(NULL), 190 select_infos(NULL), 191 kernel_stack_area(-1), 192 kernel_stack_base(0), 193 user_stack_area(-1), 194 user_stack_base(0), 195 user_local_storage(0), 196 kernel_errno(0), 197 user_time(0), 198 kernel_time(0), 199 last_time(0), 200 cpu_clock_offset(0), 201 post_interrupt_callback(NULL), 202 post_interrupt_data(NULL) 203 { 204 id = threadID >= 0 ? threadID : allocate_thread_id(); 205 visible = false; 206 207 // init locks 208 char lockName[32]; 209 snprintf(lockName, sizeof(lockName), "Thread:%" B_PRId32, id); 210 mutex_init_etc(&fLock, lockName, MUTEX_FLAG_CLONE_NAME); 211 212 B_INITIALIZE_SPINLOCK(&time_lock); 213 B_INITIALIZE_SPINLOCK(&scheduler_lock); 214 B_INITIALIZE_RW_SPINLOCK(&team_lock); 215 216 // init name 217 if (name != NULL) 218 strlcpy(this->name, name, B_OS_NAME_LENGTH); 219 else 220 strcpy(this->name, "unnamed thread"); 221 222 exit.status = 0; 223 224 list_init(&exit.waiters); 225 226 exit.sem = -1; 227 msg.write_sem = -1; 228 msg.read_sem = -1; 229 230 // add to thread table -- yet invisible 231 InterruptsWriteSpinLocker threadHashLocker(sThreadHashLock); 232 sThreadHash.Insert(this); 233 } 234 235 236 Thread::~Thread() 237 { 238 // Delete resources that should actually be deleted by the thread itself, 239 // when it exited, but that might still exist, if the thread was never run. 240 241 if (user_stack_area >= 0) 242 delete_area(user_stack_area); 243 244 DeleteUserTimers(false); 245 246 // delete the resources, that may remain in either case 247 248 if (kernel_stack_area >= 0) 249 delete_area(kernel_stack_area); 250 251 fPendingSignals.Clear(); 252 253 if (exit.sem >= 0) 254 delete_sem(exit.sem); 255 if (msg.write_sem >= 0) 256 delete_sem(msg.write_sem); 257 if (msg.read_sem >= 0) 258 delete_sem(msg.read_sem); 259 260 scheduler_on_thread_destroy(this); 261 262 mutex_destroy(&fLock); 263 264 // remove from thread table 265 InterruptsWriteSpinLocker threadHashLocker(sThreadHashLock); 266 sThreadHash.Remove(this); 267 } 268 269 270 /*static*/ status_t 271 Thread::Create(const char* name, Thread*& _thread) 272 { 273 Thread* thread = new Thread(name, -1, NULL); 274 if (thread == NULL) 275 return B_NO_MEMORY; 276 277 status_t error = thread->Init(false); 278 if (error != B_OK) { 279 delete thread; 280 return error; 281 } 282 283 _thread = thread; 284 return B_OK; 285 } 286 287 288 /*static*/ Thread* 289 Thread::Get(thread_id id) 290 { 291 InterruptsReadSpinLocker threadHashLocker(sThreadHashLock); 292 Thread* thread = sThreadHash.Lookup(id); 293 if (thread != NULL) 294 thread->AcquireReference(); 295 return thread; 296 } 297 298 299 /*static*/ Thread* 300 Thread::GetAndLock(thread_id id) 301 { 302 // look it up and acquire a reference 303 InterruptsReadSpinLocker threadHashLocker(sThreadHashLock); 304 Thread* thread = sThreadHash.Lookup(id); 305 if (thread == NULL) 306 return NULL; 307 308 thread->AcquireReference(); 309 threadHashLocker.Unlock(); 310 311 // lock and check, if it is still in the hash table 312 thread->Lock(); 313 threadHashLocker.Lock(); 314 315 if (sThreadHash.Lookup(id) == thread) 316 return thread; 317 318 threadHashLocker.Unlock(); 319 320 // nope, the thread is no longer in the hash table 321 thread->UnlockAndReleaseReference(); 322 323 return NULL; 324 } 325 326 327 /*static*/ Thread* 328 Thread::GetDebug(thread_id id) 329 { 330 return sThreadHash.Lookup(id, false); 331 } 332 333 334 /*static*/ bool 335 Thread::IsAlive(thread_id id) 336 { 337 InterruptsReadSpinLocker threadHashLocker(sThreadHashLock); 338 return sThreadHash.Lookup(id) != NULL; 339 } 340 341 342 void* 343 Thread::operator new(size_t size) 344 { 345 return object_cache_alloc(sThreadCache, 0); 346 } 347 348 349 void* 350 Thread::operator new(size_t, void* pointer) 351 { 352 return pointer; 353 } 354 355 356 void 357 Thread::operator delete(void* pointer, size_t size) 358 { 359 object_cache_free(sThreadCache, pointer, 0); 360 } 361 362 363 status_t 364 Thread::Init(bool idleThread) 365 { 366 status_t error = scheduler_on_thread_create(this, idleThread); 367 if (error != B_OK) 368 return error; 369 370 char temp[64]; 371 snprintf(temp, sizeof(temp), "thread_%" B_PRId32 "_retcode_sem", id); 372 exit.sem = create_sem(0, temp); 373 if (exit.sem < 0) 374 return exit.sem; 375 376 snprintf(temp, sizeof(temp), "%s send", name); 377 msg.write_sem = create_sem(1, temp); 378 if (msg.write_sem < 0) 379 return msg.write_sem; 380 381 snprintf(temp, sizeof(temp), "%s receive", name); 382 msg.read_sem = create_sem(0, temp); 383 if (msg.read_sem < 0) 384 return msg.read_sem; 385 386 error = arch_thread_init_thread_struct(this); 387 if (error != B_OK) 388 return error; 389 390 return B_OK; 391 } 392 393 394 /*! Checks whether the thread is still in the thread hash table. 395 */ 396 bool 397 Thread::IsAlive() const 398 { 399 InterruptsReadSpinLocker threadHashLocker(sThreadHashLock); 400 401 return sThreadHash.Lookup(id) != NULL; 402 } 403 404 405 void 406 Thread::ResetSignalsOnExec() 407 { 408 // We are supposed keep the pending signals and the signal mask. Only the 409 // signal stack, if set, shall be unset. 410 411 sigsuspend_original_unblocked_mask = 0; 412 user_signal_context = NULL; 413 signal_stack_base = 0; 414 signal_stack_size = 0; 415 signal_stack_enabled = false; 416 } 417 418 419 /*! Adds the given user timer to the thread and, if user-defined, assigns it an 420 ID. 421 422 The caller must hold the thread's lock. 423 424 \param timer The timer to be added. If it doesn't have an ID yet, it is 425 considered user-defined and will be assigned an ID. 426 \return \c B_OK, if the timer was added successfully, another error code 427 otherwise. 428 */ 429 status_t 430 Thread::AddUserTimer(UserTimer* timer) 431 { 432 // If the timer is user-defined, check timer limit and increment 433 // user-defined count. 434 if (timer->ID() < 0 && !team->CheckAddUserDefinedTimer()) 435 return EAGAIN; 436 437 fUserTimers.AddTimer(timer); 438 439 return B_OK; 440 } 441 442 443 /*! Removes the given user timer from the thread. 444 445 The caller must hold the thread's lock. 446 447 \param timer The timer to be removed. 448 449 */ 450 void 451 Thread::RemoveUserTimer(UserTimer* timer) 452 { 453 fUserTimers.RemoveTimer(timer); 454 455 if (timer->ID() >= USER_TIMER_FIRST_USER_DEFINED_ID) 456 team->UserDefinedTimersRemoved(1); 457 } 458 459 460 /*! Deletes all (or all user-defined) user timers of the thread. 461 462 The caller must hold the thread's lock. 463 464 \param userDefinedOnly If \c true, only the user-defined timers are deleted, 465 otherwise all timers are deleted. 466 */ 467 void 468 Thread::DeleteUserTimers(bool userDefinedOnly) 469 { 470 int32 count = fUserTimers.DeleteTimers(userDefinedOnly); 471 if (count > 0) 472 team->UserDefinedTimersRemoved(count); 473 } 474 475 476 void 477 Thread::DeactivateCPUTimeUserTimers() 478 { 479 while (ThreadTimeUserTimer* timer = fCPUTimeUserTimers.Head()) 480 timer->Deactivate(); 481 } 482 483 484 // #pragma mark - ThreadListIterator 485 486 487 ThreadListIterator::ThreadListIterator() 488 { 489 // queue the entry 490 InterruptsWriteSpinLocker locker(sThreadHashLock); 491 sThreadHash.InsertIteratorEntry(&fEntry); 492 } 493 494 495 ThreadListIterator::~ThreadListIterator() 496 { 497 // remove the entry 498 InterruptsWriteSpinLocker locker(sThreadHashLock); 499 sThreadHash.RemoveIteratorEntry(&fEntry); 500 } 501 502 503 Thread* 504 ThreadListIterator::Next() 505 { 506 // get the next team -- if there is one, get reference for it 507 InterruptsWriteSpinLocker locker(sThreadHashLock); 508 Thread* thread = sThreadHash.NextElement(&fEntry); 509 if (thread != NULL) 510 thread->AcquireReference(); 511 512 return thread; 513 } 514 515 516 // #pragma mark - ThreadCreationAttributes 517 518 519 ThreadCreationAttributes::ThreadCreationAttributes(thread_func function, 520 const char* name, int32 priority, void* arg, team_id team, 521 Thread* thread) 522 { 523 this->entry = NULL; 524 this->name = name; 525 this->priority = priority; 526 this->args1 = NULL; 527 this->args2 = NULL; 528 this->stack_address = NULL; 529 this->stack_size = 0; 530 this->guard_size = 0; 531 this->pthread = NULL; 532 this->flags = 0; 533 this->team = team >= 0 ? team : team_get_kernel_team()->id; 534 this->thread = thread; 535 this->signal_mask = 0; 536 this->additional_stack_size = 0; 537 this->kernelEntry = function; 538 this->kernelArgument = arg; 539 this->forkArgs = NULL; 540 } 541 542 543 /*! Initializes the structure from a userland structure. 544 \param userAttributes The userland structure (must be a userland address). 545 \param nameBuffer A character array of at least size B_OS_NAME_LENGTH, 546 which will be used for the \c name field, if the userland structure has 547 a name. The buffer must remain valid as long as this structure is in 548 use afterwards (or until it is reinitialized). 549 \return \c B_OK, if the initialization went fine, another error code 550 otherwise. 551 */ 552 status_t 553 ThreadCreationAttributes::InitFromUserAttributes( 554 const thread_creation_attributes* userAttributes, char* nameBuffer) 555 { 556 if (userAttributes == NULL || !IS_USER_ADDRESS(userAttributes) 557 || user_memcpy((thread_creation_attributes*)this, userAttributes, 558 sizeof(thread_creation_attributes)) != B_OK) { 559 return B_BAD_ADDRESS; 560 } 561 562 if (stack_size != 0 563 && (stack_size < MIN_USER_STACK_SIZE 564 || stack_size > MAX_USER_STACK_SIZE)) { 565 return B_BAD_VALUE; 566 } 567 568 if (entry == NULL || !IS_USER_ADDRESS(entry) 569 || (stack_address != NULL && !IS_USER_ADDRESS(stack_address)) 570 || (name != NULL && (!IS_USER_ADDRESS(name) 571 || user_strlcpy(nameBuffer, name, B_OS_NAME_LENGTH) < 0))) { 572 return B_BAD_ADDRESS; 573 } 574 575 name = name != NULL ? nameBuffer : "user thread"; 576 577 // kernel only attributes (not in thread_creation_attributes): 578 Thread* currentThread = thread_get_current_thread(); 579 team = currentThread->team->id; 580 thread = NULL; 581 signal_mask = currentThread->sig_block_mask; 582 // inherit the current thread's signal mask 583 additional_stack_size = 0; 584 kernelEntry = NULL; 585 kernelArgument = NULL; 586 forkArgs = NULL; 587 588 return B_OK; 589 } 590 591 592 // #pragma mark - private functions 593 594 595 /*! Inserts a thread into a team. 596 The caller must hold the team's lock, the thread's lock, and the scheduler 597 lock. 598 */ 599 static void 600 insert_thread_into_team(Team *team, Thread *thread) 601 { 602 thread->team_next = team->thread_list; 603 team->thread_list = thread; 604 team->num_threads++; 605 606 if (team->num_threads == 1) { 607 // this was the first thread 608 team->main_thread = thread; 609 } 610 thread->team = team; 611 } 612 613 614 /*! Removes a thread from a team. 615 The caller must hold the team's lock, the thread's lock, and the scheduler 616 lock. 617 */ 618 static void 619 remove_thread_from_team(Team *team, Thread *thread) 620 { 621 Thread *temp, *last = NULL; 622 623 for (temp = team->thread_list; temp != NULL; temp = temp->team_next) { 624 if (temp == thread) { 625 if (last == NULL) 626 team->thread_list = temp->team_next; 627 else 628 last->team_next = temp->team_next; 629 630 team->num_threads--; 631 break; 632 } 633 last = temp; 634 } 635 } 636 637 638 static status_t 639 enter_userspace(Thread* thread, UserThreadEntryArguments* args) 640 { 641 status_t error = arch_thread_init_tls(thread); 642 if (error != B_OK) { 643 dprintf("Failed to init TLS for new userland thread \"%s\" (%" B_PRId32 644 ")\n", thread->name, thread->id); 645 free(args->forkArgs); 646 return error; 647 } 648 649 user_debug_update_new_thread_flags(thread); 650 651 // init the thread's user_thread 652 user_thread* userThread = thread->user_thread; 653 set_ac(); 654 userThread->pthread = args->pthread; 655 userThread->flags = 0; 656 userThread->wait_status = B_OK; 657 userThread->defer_signals 658 = (args->flags & THREAD_CREATION_FLAG_DEFER_SIGNALS) != 0 ? 1 : 0; 659 userThread->pending_signals = 0; 660 clear_ac(); 661 662 // initialize default TLS fields 663 addr_t tls[TLS_FIRST_FREE_SLOT]; 664 memset(tls, 0, sizeof(tls)); 665 tls[TLS_BASE_ADDRESS_SLOT] = thread->user_local_storage; 666 tls[TLS_THREAD_ID_SLOT] = thread->id; 667 tls[TLS_USER_THREAD_SLOT] = (addr_t)thread->user_thread; 668 669 if (args->forkArgs == NULL) { 670 if (user_memcpy((void*)thread->user_local_storage, tls, sizeof(tls)) != B_OK) 671 return B_BAD_ADDRESS; 672 } else { 673 // This is a fork()ed thread. 674 675 // Update select TLS values, do not clear the whole array. 676 set_ac(); 677 addr_t* userTls = (addr_t*)thread->user_local_storage; 678 ASSERT(userTls[TLS_BASE_ADDRESS_SLOT] == thread->user_local_storage); 679 userTls[TLS_THREAD_ID_SLOT] = tls[TLS_THREAD_ID_SLOT]; 680 userTls[TLS_USER_THREAD_SLOT] = tls[TLS_USER_THREAD_SLOT]; 681 clear_ac(); 682 683 // Copy the fork args onto the stack and free them. 684 arch_fork_arg archArgs = *args->forkArgs; 685 free(args->forkArgs); 686 687 arch_restore_fork_frame(&archArgs); 688 // this one won't return here 689 return B_ERROR; 690 } 691 692 // Jump to the entry point in user space. Only returns, if something fails. 693 return arch_thread_enter_userspace(thread, args->userlandEntry, 694 args->userlandArgument1, args->userlandArgument2); 695 } 696 697 698 status_t 699 thread_enter_userspace_new_team(Thread* thread, addr_t entryFunction, 700 void* argument1, void* argument2) 701 { 702 UserThreadEntryArguments entryArgs; 703 entryArgs.kernelFunction = NULL; 704 entryArgs.argument = NULL; 705 entryArgs.enterUserland = true; 706 entryArgs.userlandEntry = (addr_t)entryFunction; 707 entryArgs.userlandArgument1 = argument1; 708 entryArgs.userlandArgument2 = argument2; 709 entryArgs.pthread = NULL; 710 entryArgs.forkArgs = NULL; 711 entryArgs.flags = 0; 712 713 return enter_userspace(thread, &entryArgs); 714 } 715 716 717 static void 718 common_thread_entry(void* _args) 719 { 720 Thread* thread = thread_get_current_thread(); 721 722 // The thread is new and has been scheduled the first time. 723 724 scheduler_new_thread_entry(thread); 725 726 // unlock the scheduler lock and enable interrupts 727 release_spinlock(&thread->scheduler_lock); 728 enable_interrupts(); 729 730 // call the kernel function, if any 731 ThreadEntryArguments* args = (ThreadEntryArguments*)_args; 732 if (args->kernelFunction != NULL) 733 args->kernelFunction(args->argument); 734 735 // If requested, enter userland, now. 736 if (args->enterUserland) { 737 enter_userspace(thread, (UserThreadEntryArguments*)args); 738 // only returns or error 739 740 // If that's the team's main thread, init the team exit info. 741 if (thread == thread->team->main_thread) 742 team_init_exit_info_on_error(thread->team); 743 } 744 745 // we're done 746 thread_exit(); 747 } 748 749 750 /*! Prepares the given thread's kernel stack for executing its entry function. 751 752 The data pointed to by \a data of size \a dataSize are copied to the 753 thread's kernel stack. A pointer to the copy's data is passed to the entry 754 function. The entry function is common_thread_entry(). 755 756 \param thread The thread. 757 \param data Pointer to data to be copied to the thread's stack and passed 758 to the entry function. 759 \param dataSize The size of \a data. 760 */ 761 static void 762 init_thread_kernel_stack(Thread* thread, const void* data, size_t dataSize) 763 { 764 uint8* stack = (uint8*)thread->kernel_stack_base; 765 uint8* stackTop = (uint8*)thread->kernel_stack_top; 766 767 // clear (or rather invalidate) the kernel stack contents, if compiled with 768 // debugging 769 #if KDEBUG > 0 770 # if defined(DEBUG_KERNEL_STACKS) && defined(STACK_GROWS_DOWNWARDS) 771 memset((void*)(stack + KERNEL_STACK_GUARD_PAGES * B_PAGE_SIZE), 0xcc, 772 KERNEL_STACK_SIZE); 773 # else 774 memset(stack, 0xcc, KERNEL_STACK_SIZE); 775 # endif 776 #endif 777 778 // copy the data onto the stack, with 16-byte alignment to be on the safe 779 // side 780 void* clonedData; 781 #ifdef STACK_GROWS_DOWNWARDS 782 clonedData = (void*)ROUNDDOWN((addr_t)stackTop - dataSize, 16); 783 stackTop = (uint8*)clonedData; 784 #else 785 clonedData = (void*)ROUNDUP((addr_t)stack, 16); 786 stack = (uint8*)clonedData + ROUNDUP(dataSize, 16); 787 #endif 788 789 memcpy(clonedData, data, dataSize); 790 791 arch_thread_init_kthread_stack(thread, stack, stackTop, 792 &common_thread_entry, clonedData); 793 } 794 795 796 static status_t 797 create_thread_user_stack(Team* team, Thread* thread, void* _stackBase, 798 size_t stackSize, size_t additionalSize, size_t guardSize, 799 char* nameBuffer) 800 { 801 area_id stackArea = -1; 802 uint8* stackBase = (uint8*)_stackBase; 803 804 if (stackBase != NULL) { 805 // A stack has been specified. It must be large enough to hold the 806 // TLS space at least. Guard pages are ignored for existing stacks. 807 STATIC_ASSERT(TLS_SIZE < MIN_USER_STACK_SIZE); 808 if (stackSize < MIN_USER_STACK_SIZE) 809 return B_BAD_VALUE; 810 811 stackSize -= TLS_SIZE; 812 } else { 813 // No user-defined stack -- allocate one. For non-main threads the stack 814 // will be between USER_STACK_REGION and the main thread stack area. For 815 // a main thread the position is fixed. 816 817 guardSize = PAGE_ALIGN(guardSize); 818 819 if (stackSize == 0) { 820 // Use the default size (a different one for a main thread). 821 stackSize = thread->id == team->id 822 ? USER_MAIN_THREAD_STACK_SIZE : USER_STACK_SIZE; 823 } else { 824 // Verify that the given stack size is large enough. 825 if (stackSize < MIN_USER_STACK_SIZE) 826 return B_BAD_VALUE; 827 828 stackSize = PAGE_ALIGN(stackSize); 829 } 830 831 size_t areaSize = PAGE_ALIGN(guardSize + stackSize + TLS_SIZE 832 + additionalSize); 833 834 snprintf(nameBuffer, B_OS_NAME_LENGTH, "%s_%" B_PRId32 "_stack", 835 thread->name, thread->id); 836 837 stackBase = (uint8*)USER_STACK_REGION; 838 839 virtual_address_restrictions virtualRestrictions = {}; 840 virtualRestrictions.address_specification = B_RANDOMIZED_BASE_ADDRESS; 841 virtualRestrictions.address = (void*)stackBase; 842 843 physical_address_restrictions physicalRestrictions = {}; 844 845 stackArea = create_area_etc(team->id, nameBuffer, 846 areaSize, B_NO_LOCK, B_READ_AREA | B_WRITE_AREA | B_STACK_AREA, 847 0, guardSize, &virtualRestrictions, &physicalRestrictions, 848 (void**)&stackBase); 849 if (stackArea < 0) 850 return stackArea; 851 } 852 853 // set the stack 854 ThreadLocker threadLocker(thread); 855 #ifdef STACK_GROWS_DOWNWARDS 856 thread->user_stack_base = (addr_t)stackBase + guardSize; 857 #else 858 thread->user_stack_base = (addr_t)stackBase; 859 #endif 860 thread->user_stack_size = stackSize; 861 thread->user_stack_area = stackArea; 862 863 return B_OK; 864 } 865 866 867 status_t 868 thread_create_user_stack(Team* team, Thread* thread, void* stackBase, 869 size_t stackSize, size_t additionalSize) 870 { 871 char nameBuffer[B_OS_NAME_LENGTH]; 872 return create_thread_user_stack(team, thread, stackBase, stackSize, 873 additionalSize, USER_STACK_GUARD_SIZE, nameBuffer); 874 } 875 876 877 /*! Creates a new thread. 878 879 \param attributes The thread creation attributes, specifying the team in 880 which to create the thread, as well as a whole bunch of other arguments. 881 \param kernel \c true, if a kernel-only thread shall be created, \c false, 882 if the thread shall also be able to run in userland. 883 \return The ID of the newly created thread (>= 0) or an error code on 884 failure. 885 */ 886 thread_id 887 thread_create_thread(const ThreadCreationAttributes& attributes, bool kernel) 888 { 889 status_t status = B_OK; 890 891 TRACE(("thread_create_thread(%s, thread = %p, %s)\n", attributes.name, 892 attributes.thread, kernel ? "kernel" : "user")); 893 894 // get the team 895 Team* team = Team::Get(attributes.team); 896 if (team == NULL) 897 return B_BAD_TEAM_ID; 898 BReference<Team> teamReference(team, true); 899 900 // If a thread object is given, acquire a reference to it, otherwise create 901 // a new thread object with the given attributes. 902 Thread* thread = attributes.thread; 903 if (thread != NULL) { 904 thread->AcquireReference(); 905 } else { 906 status = Thread::Create(attributes.name, thread); 907 if (status != B_OK) 908 return status; 909 } 910 BReference<Thread> threadReference(thread, true); 911 912 thread->team = team; 913 // set already, so, if something goes wrong, the team pointer is 914 // available for deinitialization 915 thread->priority = attributes.priority == -1 916 ? B_NORMAL_PRIORITY : attributes.priority; 917 thread->priority = std::max(thread->priority, 918 (int32)THREAD_MIN_SET_PRIORITY); 919 thread->priority = std::min(thread->priority, 920 (int32)THREAD_MAX_SET_PRIORITY); 921 thread->state = B_THREAD_SUSPENDED; 922 923 thread->sig_block_mask = attributes.signal_mask; 924 925 // init debug structure 926 init_thread_debug_info(&thread->debug_info); 927 928 // create the kernel stack 929 char stackName[B_OS_NAME_LENGTH]; 930 snprintf(stackName, B_OS_NAME_LENGTH, "%s_%" B_PRId32 "_kstack", 931 thread->name, thread->id); 932 virtual_address_restrictions virtualRestrictions = {}; 933 virtualRestrictions.address_specification = B_ANY_KERNEL_ADDRESS; 934 physical_address_restrictions physicalRestrictions = {}; 935 936 thread->kernel_stack_area = create_area_etc(B_SYSTEM_TEAM, stackName, 937 KERNEL_STACK_SIZE + KERNEL_STACK_GUARD_PAGES * B_PAGE_SIZE, 938 B_FULL_LOCK, B_KERNEL_READ_AREA | B_KERNEL_WRITE_AREA 939 | B_KERNEL_STACK_AREA, 0, KERNEL_STACK_GUARD_PAGES * B_PAGE_SIZE, 940 &virtualRestrictions, &physicalRestrictions, 941 (void**)&thread->kernel_stack_base); 942 943 if (thread->kernel_stack_area < 0) { 944 // we're not yet part of a team, so we can just bail out 945 status = thread->kernel_stack_area; 946 947 dprintf("create_thread: error creating kernel stack: %s!\n", 948 strerror(status)); 949 950 return status; 951 } 952 953 thread->kernel_stack_top = thread->kernel_stack_base + KERNEL_STACK_SIZE 954 + KERNEL_STACK_GUARD_PAGES * B_PAGE_SIZE; 955 956 if (kernel) { 957 // Init the thread's kernel stack. It will start executing 958 // common_thread_entry() with the arguments we prepare here. 959 ThreadEntryArguments entryArgs; 960 entryArgs.kernelFunction = attributes.kernelEntry; 961 entryArgs.argument = attributes.kernelArgument; 962 entryArgs.enterUserland = false; 963 964 init_thread_kernel_stack(thread, &entryArgs, sizeof(entryArgs)); 965 } else { 966 // create the userland stack, if the thread doesn't have one yet 967 if (thread->user_stack_base == 0) { 968 status = create_thread_user_stack(team, thread, 969 attributes.stack_address, attributes.stack_size, 970 attributes.additional_stack_size, attributes.guard_size, 971 stackName); 972 if (status != B_OK) 973 return status; 974 } 975 976 // Init the thread's kernel stack. It will start executing 977 // common_thread_entry() with the arguments we prepare here. 978 UserThreadEntryArguments entryArgs; 979 entryArgs.kernelFunction = attributes.kernelEntry; 980 entryArgs.argument = attributes.kernelArgument; 981 entryArgs.enterUserland = true; 982 entryArgs.userlandEntry = (addr_t)attributes.entry; 983 entryArgs.userlandArgument1 = attributes.args1; 984 entryArgs.userlandArgument2 = attributes.args2; 985 entryArgs.pthread = attributes.pthread; 986 entryArgs.forkArgs = attributes.forkArgs; 987 entryArgs.flags = attributes.flags; 988 989 init_thread_kernel_stack(thread, &entryArgs, sizeof(entryArgs)); 990 991 // create the pre-defined thread timers 992 status = user_timer_create_thread_timers(team, thread); 993 if (status != B_OK) 994 return status; 995 } 996 997 // lock the team and see, if it is still alive 998 TeamLocker teamLocker(team); 999 if (team->state >= TEAM_STATE_SHUTDOWN) 1000 return B_BAD_TEAM_ID; 1001 1002 bool debugNewThread = false; 1003 if (!kernel) { 1004 // allocate the user_thread structure, if not already allocated 1005 if (thread->user_thread == NULL) { 1006 thread->user_thread = team_allocate_user_thread(team); 1007 if (thread->user_thread == NULL) 1008 return B_NO_MEMORY; 1009 } 1010 1011 // If the new thread belongs to the same team as the current thread, it 1012 // may inherit some of the thread debug flags. 1013 Thread* currentThread = thread_get_current_thread(); 1014 if (currentThread != NULL && currentThread->team == team) { 1015 // inherit all user flags... 1016 int32 debugFlags = atomic_get(¤tThread->debug_info.flags) 1017 & B_THREAD_DEBUG_USER_FLAG_MASK; 1018 1019 // ... save the syscall tracing flags, unless explicitely specified 1020 if (!(debugFlags & B_THREAD_DEBUG_SYSCALL_TRACE_CHILD_THREADS)) { 1021 debugFlags &= ~(B_THREAD_DEBUG_PRE_SYSCALL 1022 | B_THREAD_DEBUG_POST_SYSCALL); 1023 } 1024 1025 thread->debug_info.flags = debugFlags; 1026 1027 // stop the new thread, if desired 1028 debugNewThread = debugFlags & B_THREAD_DEBUG_STOP_CHILD_THREADS; 1029 } 1030 } 1031 1032 // We're going to make the thread live, now. The thread itself will take 1033 // over a reference to its Thread object. We'll acquire another reference 1034 // for our own use (and threadReference remains armed). 1035 1036 ThreadLocker threadLocker(thread); 1037 1038 InterruptsSpinLocker threadCreationLocker(gThreadCreationLock); 1039 WriteSpinLocker threadHashLocker(sThreadHashLock); 1040 1041 // check the thread limit 1042 if (sUsedThreads >= sMaxThreads) { 1043 // Clean up the user_thread structure. It's a bit unfortunate that the 1044 // Thread destructor cannot do that, so we have to do that explicitly. 1045 threadHashLocker.Unlock(); 1046 threadCreationLocker.Unlock(); 1047 1048 user_thread* userThread = thread->user_thread; 1049 thread->user_thread = NULL; 1050 1051 threadLocker.Unlock(); 1052 teamLocker.Unlock(); 1053 1054 if (userThread != NULL) 1055 team_free_user_thread(team, userThread); 1056 1057 return B_NO_MORE_THREADS; 1058 } 1059 1060 // make thread visible in global hash/list 1061 thread->visible = true; 1062 sUsedThreads++; 1063 1064 scheduler_on_thread_init(thread); 1065 1066 thread->AcquireReference(); 1067 1068 // Debug the new thread, if the parent thread required that (see above), 1069 // or the respective global team debug flag is set. But only, if a 1070 // debugger is installed for the team. 1071 if (!kernel) { 1072 int32 teamDebugFlags = atomic_get(&team->debug_info.flags); 1073 debugNewThread |= (teamDebugFlags & B_TEAM_DEBUG_STOP_NEW_THREADS) != 0; 1074 if (debugNewThread 1075 && (teamDebugFlags & B_TEAM_DEBUG_DEBUGGER_INSTALLED) != 0) { 1076 thread->debug_info.flags |= B_THREAD_DEBUG_STOP; 1077 } 1078 } 1079 1080 { 1081 SpinLocker signalLocker(team->signal_lock); 1082 SpinLocker timeLocker(team->time_lock); 1083 1084 // insert thread into team 1085 insert_thread_into_team(team, thread); 1086 } 1087 1088 threadHashLocker.Unlock(); 1089 threadCreationLocker.Unlock(); 1090 threadLocker.Unlock(); 1091 teamLocker.Unlock(); 1092 1093 // notify listeners 1094 sNotificationService.Notify(THREAD_ADDED, thread); 1095 1096 return thread->id; 1097 } 1098 1099 1100 static status_t 1101 undertaker(void* /*args*/) 1102 { 1103 while (true) { 1104 // wait for a thread to bury 1105 InterruptsSpinLocker locker(sUndertakerLock); 1106 1107 while (sUndertakerEntries.IsEmpty()) { 1108 ConditionVariableEntry conditionEntry; 1109 sUndertakerCondition.Add(&conditionEntry); 1110 locker.Unlock(); 1111 1112 conditionEntry.Wait(); 1113 1114 locker.Lock(); 1115 } 1116 1117 UndertakerEntry* _entry = sUndertakerEntries.RemoveHead(); 1118 locker.Unlock(); 1119 1120 UndertakerEntry entry = *_entry; 1121 // we need a copy, since the original entry is on the thread's stack 1122 1123 // we've got an entry 1124 Thread* thread = entry.thread; 1125 1126 // make sure the thread isn't running anymore 1127 InterruptsSpinLocker schedulerLocker(thread->scheduler_lock); 1128 ASSERT(thread->state == THREAD_STATE_FREE_ON_RESCHED); 1129 schedulerLocker.Unlock(); 1130 1131 // remove this thread from from the kernel team -- this makes it 1132 // unaccessible 1133 Team* kernelTeam = team_get_kernel_team(); 1134 TeamLocker kernelTeamLocker(kernelTeam); 1135 thread->Lock(); 1136 1137 InterruptsSpinLocker threadCreationLocker(gThreadCreationLock); 1138 SpinLocker signalLocker(kernelTeam->signal_lock); 1139 SpinLocker timeLocker(kernelTeam->time_lock); 1140 1141 remove_thread_from_team(kernelTeam, thread); 1142 1143 timeLocker.Unlock(); 1144 signalLocker.Unlock(); 1145 threadCreationLocker.Unlock(); 1146 1147 kernelTeamLocker.Unlock(); 1148 1149 // free the thread structure 1150 thread->UnlockAndReleaseReference(); 1151 } 1152 1153 // can never get here 1154 return B_OK; 1155 } 1156 1157 1158 /*! Returns the semaphore the thread is currently waiting on. 1159 1160 The return value is purely informative. 1161 The caller must hold the scheduler lock. 1162 1163 \param thread The thread. 1164 \return The ID of the semaphore the thread is currently waiting on or \c -1, 1165 if it isn't waiting on a semaphore. 1166 */ 1167 static sem_id 1168 get_thread_wait_sem(Thread* thread) 1169 { 1170 if (thread->state == B_THREAD_WAITING 1171 && thread->wait.type == THREAD_BLOCK_TYPE_SEMAPHORE) { 1172 return (sem_id)(addr_t)thread->wait.object; 1173 } 1174 return -1; 1175 } 1176 1177 1178 /*! Fills the thread_info structure with information from the specified thread. 1179 The caller must hold the thread's lock and the scheduler lock. 1180 */ 1181 static void 1182 fill_thread_info(Thread *thread, thread_info *info, size_t size) 1183 { 1184 info->thread = thread->id; 1185 info->team = thread->team->id; 1186 1187 strlcpy(info->name, thread->name, B_OS_NAME_LENGTH); 1188 1189 info->sem = -1; 1190 1191 if (thread->state == B_THREAD_WAITING) { 1192 info->state = B_THREAD_WAITING; 1193 1194 switch (thread->wait.type) { 1195 case THREAD_BLOCK_TYPE_SNOOZE: 1196 info->state = B_THREAD_ASLEEP; 1197 break; 1198 1199 case THREAD_BLOCK_TYPE_SEMAPHORE: 1200 { 1201 sem_id sem = (sem_id)(addr_t)thread->wait.object; 1202 if (sem == thread->msg.read_sem) 1203 info->state = B_THREAD_RECEIVING; 1204 else 1205 info->sem = sem; 1206 break; 1207 } 1208 1209 case THREAD_BLOCK_TYPE_CONDITION_VARIABLE: 1210 default: 1211 break; 1212 } 1213 } else 1214 info->state = (thread_state)thread->state; 1215 1216 info->priority = thread->priority; 1217 info->stack_base = (void *)thread->user_stack_base; 1218 info->stack_end = (void *)(thread->user_stack_base 1219 + thread->user_stack_size); 1220 1221 InterruptsSpinLocker threadTimeLocker(thread->time_lock); 1222 info->user_time = thread->user_time; 1223 info->kernel_time = thread->kernel_time; 1224 } 1225 1226 1227 static status_t 1228 send_data_etc(thread_id id, int32 code, const void *buffer, size_t bufferSize, 1229 int32 flags) 1230 { 1231 // get the thread 1232 Thread *target = Thread::Get(id); 1233 if (target == NULL) 1234 return B_BAD_THREAD_ID; 1235 BReference<Thread> targetReference(target, true); 1236 1237 // get the write semaphore 1238 ThreadLocker targetLocker(target); 1239 sem_id cachedSem = target->msg.write_sem; 1240 targetLocker.Unlock(); 1241 1242 if (bufferSize > THREAD_MAX_MESSAGE_SIZE) 1243 return B_NO_MEMORY; 1244 1245 status_t status = acquire_sem_etc(cachedSem, 1, flags, 0); 1246 if (status == B_INTERRUPTED) { 1247 // we got interrupted by a signal 1248 return status; 1249 } 1250 if (status != B_OK) { 1251 // Any other acquisition problems may be due to thread deletion 1252 return B_BAD_THREAD_ID; 1253 } 1254 1255 void* data; 1256 if (bufferSize > 0) { 1257 data = malloc(bufferSize); 1258 if (data == NULL) 1259 return B_NO_MEMORY; 1260 if (user_memcpy(data, buffer, bufferSize) != B_OK) { 1261 free(data); 1262 return B_BAD_DATA; 1263 } 1264 } else 1265 data = NULL; 1266 1267 targetLocker.Lock(); 1268 1269 // The target thread could have been deleted at this point. 1270 if (!target->IsAlive()) { 1271 targetLocker.Unlock(); 1272 free(data); 1273 return B_BAD_THREAD_ID; 1274 } 1275 1276 // Save message informations 1277 target->msg.sender = thread_get_current_thread()->id; 1278 target->msg.code = code; 1279 target->msg.size = bufferSize; 1280 target->msg.buffer = data; 1281 cachedSem = target->msg.read_sem; 1282 1283 targetLocker.Unlock(); 1284 1285 release_sem(cachedSem); 1286 return B_OK; 1287 } 1288 1289 1290 static int32 1291 receive_data_etc(thread_id *_sender, void *buffer, size_t bufferSize, 1292 int32 flags) 1293 { 1294 Thread *thread = thread_get_current_thread(); 1295 size_t size; 1296 int32 code; 1297 1298 status_t status = acquire_sem_etc(thread->msg.read_sem, 1, flags, 0); 1299 if (status != B_OK) { 1300 // Actually, we're not supposed to return error codes 1301 // but since the only reason this can fail is that we 1302 // were killed, it's probably okay to do so (but also 1303 // meaningless). 1304 return status; 1305 } 1306 1307 if (buffer != NULL && bufferSize != 0 && thread->msg.buffer != NULL) { 1308 size = min_c(bufferSize, thread->msg.size); 1309 status = user_memcpy(buffer, thread->msg.buffer, size); 1310 if (status != B_OK) { 1311 free(thread->msg.buffer); 1312 release_sem(thread->msg.write_sem); 1313 return status; 1314 } 1315 } 1316 1317 *_sender = thread->msg.sender; 1318 code = thread->msg.code; 1319 1320 free(thread->msg.buffer); 1321 release_sem(thread->msg.write_sem); 1322 1323 return code; 1324 } 1325 1326 1327 static status_t 1328 common_getrlimit(int resource, struct rlimit * rlp) 1329 { 1330 if (!rlp) 1331 return B_BAD_ADDRESS; 1332 1333 switch (resource) { 1334 case RLIMIT_AS: 1335 rlp->rlim_cur = __HAIKU_ADDR_MAX; 1336 rlp->rlim_max = __HAIKU_ADDR_MAX; 1337 return B_OK; 1338 1339 case RLIMIT_CORE: 1340 rlp->rlim_cur = 0; 1341 rlp->rlim_max = 0; 1342 return B_OK; 1343 1344 case RLIMIT_DATA: 1345 rlp->rlim_cur = RLIM_INFINITY; 1346 rlp->rlim_max = RLIM_INFINITY; 1347 return B_OK; 1348 1349 case RLIMIT_NOFILE: 1350 case RLIMIT_NOVMON: 1351 return vfs_getrlimit(resource, rlp); 1352 1353 case RLIMIT_STACK: 1354 { 1355 rlp->rlim_cur = USER_MAIN_THREAD_STACK_SIZE; 1356 rlp->rlim_max = USER_MAIN_THREAD_STACK_SIZE; 1357 return B_OK; 1358 } 1359 1360 default: 1361 return EINVAL; 1362 } 1363 1364 return B_OK; 1365 } 1366 1367 1368 static status_t 1369 common_setrlimit(int resource, const struct rlimit * rlp) 1370 { 1371 if (!rlp) 1372 return B_BAD_ADDRESS; 1373 1374 switch (resource) { 1375 case RLIMIT_CORE: 1376 // We don't support core file, so allow settings to 0/0 only. 1377 if (rlp->rlim_cur != 0 || rlp->rlim_max != 0) 1378 return EINVAL; 1379 return B_OK; 1380 1381 case RLIMIT_NOFILE: 1382 case RLIMIT_NOVMON: 1383 return vfs_setrlimit(resource, rlp); 1384 1385 default: 1386 return EINVAL; 1387 } 1388 1389 return B_OK; 1390 } 1391 1392 1393 static status_t 1394 common_snooze_etc(bigtime_t timeout, clockid_t clockID, uint32 flags, 1395 bigtime_t* _remainingTime) 1396 { 1397 #if KDEBUG 1398 if (!are_interrupts_enabled()) { 1399 panic("common_snooze_etc(): called with interrupts disabled, timeout " 1400 "%" B_PRIdBIGTIME, timeout); 1401 } 1402 #endif 1403 1404 switch (clockID) { 1405 case CLOCK_REALTIME: 1406 // make sure the B_TIMEOUT_REAL_TIME_BASE flag is set and fall 1407 // through 1408 flags |= B_TIMEOUT_REAL_TIME_BASE; 1409 case CLOCK_MONOTONIC: 1410 { 1411 // Store the start time, for the case that we get interrupted and 1412 // need to return the remaining time. For absolute timeouts we can 1413 // still get he time later, if needed. 1414 bigtime_t startTime 1415 = _remainingTime != NULL && (flags & B_RELATIVE_TIMEOUT) != 0 1416 ? system_time() : 0; 1417 1418 Thread* thread = thread_get_current_thread(); 1419 1420 thread_prepare_to_block(thread, flags, THREAD_BLOCK_TYPE_SNOOZE, 1421 NULL); 1422 status_t status = thread_block_with_timeout(flags, timeout); 1423 1424 if (status == B_TIMED_OUT || status == B_WOULD_BLOCK) 1425 return B_OK; 1426 1427 // If interrupted, compute the remaining time, if requested. 1428 if (status == B_INTERRUPTED && _remainingTime != NULL) { 1429 if ((flags & B_RELATIVE_TIMEOUT) != 0) { 1430 *_remainingTime = std::max( 1431 startTime + timeout - system_time(), (bigtime_t)0); 1432 } else { 1433 bigtime_t now = (flags & B_TIMEOUT_REAL_TIME_BASE) != 0 1434 ? real_time_clock_usecs() : system_time(); 1435 *_remainingTime = std::max(timeout - now, (bigtime_t)0); 1436 } 1437 } 1438 1439 return status; 1440 } 1441 1442 case CLOCK_THREAD_CPUTIME_ID: 1443 // Waiting for ourselves to do something isn't particularly 1444 // productive. 1445 return B_BAD_VALUE; 1446 1447 case CLOCK_PROCESS_CPUTIME_ID: 1448 default: 1449 // We don't have to support those, but we are allowed to. Could be 1450 // done be creating a UserTimer on the fly with a custom UserEvent 1451 // that would just wake us up. 1452 return ENOTSUP; 1453 } 1454 } 1455 1456 1457 // #pragma mark - debugger calls 1458 1459 1460 static int 1461 make_thread_unreal(int argc, char **argv) 1462 { 1463 int32 id = -1; 1464 1465 if (argc > 2) { 1466 print_debugger_command_usage(argv[0]); 1467 return 0; 1468 } 1469 1470 if (argc > 1) 1471 id = strtoul(argv[1], NULL, 0); 1472 1473 for (ThreadHashTable::Iterator it = sThreadHash.GetIterator(); 1474 Thread* thread = it.Next();) { 1475 if (id != -1 && thread->id != id) 1476 continue; 1477 1478 if (thread->priority > B_DISPLAY_PRIORITY) { 1479 scheduler_set_thread_priority(thread, B_NORMAL_PRIORITY); 1480 kprintf("thread %" B_PRId32 " made unreal\n", thread->id); 1481 } 1482 } 1483 1484 return 0; 1485 } 1486 1487 1488 static int 1489 set_thread_prio(int argc, char **argv) 1490 { 1491 int32 id; 1492 int32 prio; 1493 1494 if (argc > 3 || argc < 2) { 1495 print_debugger_command_usage(argv[0]); 1496 return 0; 1497 } 1498 1499 prio = strtoul(argv[1], NULL, 0); 1500 if (prio > THREAD_MAX_SET_PRIORITY) 1501 prio = THREAD_MAX_SET_PRIORITY; 1502 if (prio < THREAD_MIN_SET_PRIORITY) 1503 prio = THREAD_MIN_SET_PRIORITY; 1504 1505 if (argc > 2) 1506 id = strtoul(argv[2], NULL, 0); 1507 else 1508 id = thread_get_current_thread()->id; 1509 1510 bool found = false; 1511 for (ThreadHashTable::Iterator it = sThreadHash.GetIterator(); 1512 Thread* thread = it.Next();) { 1513 if (thread->id != id) 1514 continue; 1515 scheduler_set_thread_priority(thread, prio); 1516 kprintf("thread %" B_PRId32 " set to priority %" B_PRId32 "\n", id, prio); 1517 found = true; 1518 break; 1519 } 1520 if (!found) 1521 kprintf("thread %" B_PRId32 " (%#" B_PRIx32 ") not found\n", id, id); 1522 1523 return 0; 1524 } 1525 1526 1527 static int 1528 make_thread_suspended(int argc, char **argv) 1529 { 1530 int32 id; 1531 1532 if (argc > 2) { 1533 print_debugger_command_usage(argv[0]); 1534 return 0; 1535 } 1536 1537 if (argc == 1) 1538 id = thread_get_current_thread()->id; 1539 else 1540 id = strtoul(argv[1], NULL, 0); 1541 1542 bool found = false; 1543 for (ThreadHashTable::Iterator it = sThreadHash.GetIterator(); 1544 Thread* thread = it.Next();) { 1545 if (thread->id != id) 1546 continue; 1547 1548 Signal signal(SIGSTOP, SI_USER, B_OK, team_get_kernel_team()->id); 1549 send_signal_to_thread(thread, signal, B_DO_NOT_RESCHEDULE); 1550 1551 kprintf("thread %" B_PRId32 " suspended\n", id); 1552 found = true; 1553 break; 1554 } 1555 if (!found) 1556 kprintf("thread %" B_PRId32 " (%#" B_PRIx32 ") not found\n", id, id); 1557 1558 return 0; 1559 } 1560 1561 1562 static int 1563 make_thread_resumed(int argc, char **argv) 1564 { 1565 int32 id; 1566 1567 if (argc != 2) { 1568 print_debugger_command_usage(argv[0]); 1569 return 0; 1570 } 1571 1572 // force user to enter a thread id, as using 1573 // the current thread is usually not intended 1574 id = strtoul(argv[1], NULL, 0); 1575 1576 bool found = false; 1577 for (ThreadHashTable::Iterator it = sThreadHash.GetIterator(); 1578 Thread* thread = it.Next();) { 1579 if (thread->id != id) 1580 continue; 1581 1582 if (thread->state == B_THREAD_SUSPENDED || thread->state == B_THREAD_ASLEEP 1583 || thread->state == B_THREAD_WAITING) { 1584 scheduler_enqueue_in_run_queue(thread); 1585 kprintf("thread %" B_PRId32 " resumed\n", thread->id); 1586 } else 1587 kprintf("thread %" B_PRId32 " is already running\n", thread->id); 1588 found = true; 1589 break; 1590 } 1591 if (!found) 1592 kprintf("thread %" B_PRId32 " (%#" B_PRIx32 ") not found\n", id, id); 1593 1594 return 0; 1595 } 1596 1597 1598 static int 1599 drop_into_debugger(int argc, char **argv) 1600 { 1601 status_t err; 1602 int32 id; 1603 1604 if (argc > 2) { 1605 print_debugger_command_usage(argv[0]); 1606 return 0; 1607 } 1608 1609 if (argc == 1) 1610 id = thread_get_current_thread()->id; 1611 else 1612 id = strtoul(argv[1], NULL, 0); 1613 1614 err = _user_debug_thread(id); 1615 // TODO: This is a non-trivial syscall doing some locking, so this is 1616 // really nasty and may go seriously wrong. 1617 if (err) 1618 kprintf("drop failed\n"); 1619 else 1620 kprintf("thread %" B_PRId32 " dropped into user debugger\n", id); 1621 1622 return 0; 1623 } 1624 1625 1626 /*! Returns a user-readable string for a thread state. 1627 Only for use in the kernel debugger. 1628 */ 1629 static const char * 1630 state_to_text(Thread *thread, int32 state) 1631 { 1632 switch (state) { 1633 case B_THREAD_READY: 1634 return "ready"; 1635 1636 case B_THREAD_RUNNING: 1637 return "running"; 1638 1639 case B_THREAD_WAITING: 1640 { 1641 if (thread != NULL) { 1642 switch (thread->wait.type) { 1643 case THREAD_BLOCK_TYPE_SNOOZE: 1644 return "zzz"; 1645 1646 case THREAD_BLOCK_TYPE_SEMAPHORE: 1647 { 1648 sem_id sem = (sem_id)(addr_t)thread->wait.object; 1649 if (sem == thread->msg.read_sem) 1650 return "receive"; 1651 break; 1652 } 1653 } 1654 } 1655 1656 return "waiting"; 1657 } 1658 1659 case B_THREAD_SUSPENDED: 1660 return "suspended"; 1661 1662 case THREAD_STATE_FREE_ON_RESCHED: 1663 return "death"; 1664 1665 default: 1666 return "UNKNOWN"; 1667 } 1668 } 1669 1670 1671 static void 1672 print_thread_list_table_head() 1673 { 1674 kprintf("%-*s id state wait for %-*s cpu pri %-*s team " 1675 "name\n", 1676 B_PRINTF_POINTER_WIDTH, "thread", B_PRINTF_POINTER_WIDTH, "object", 1677 B_PRINTF_POINTER_WIDTH, "stack"); 1678 } 1679 1680 1681 static void 1682 _dump_thread_info(Thread *thread, bool shortInfo) 1683 { 1684 if (shortInfo) { 1685 kprintf("%p %6" B_PRId32 " %-10s", thread, thread->id, 1686 state_to_text(thread, thread->state)); 1687 1688 // does it block on a semaphore or a condition variable? 1689 if (thread->state == B_THREAD_WAITING) { 1690 switch (thread->wait.type) { 1691 case THREAD_BLOCK_TYPE_SEMAPHORE: 1692 { 1693 sem_id sem = (sem_id)(addr_t)thread->wait.object; 1694 if (sem == thread->msg.read_sem) 1695 kprintf("%*s", B_PRINTF_POINTER_WIDTH + 15, ""); 1696 else { 1697 kprintf("sem %-*" B_PRId32, 1698 B_PRINTF_POINTER_WIDTH + 5, sem); 1699 } 1700 break; 1701 } 1702 1703 case THREAD_BLOCK_TYPE_CONDITION_VARIABLE: 1704 kprintf("cvar %p ", thread->wait.object); 1705 break; 1706 1707 case THREAD_BLOCK_TYPE_SNOOZE: 1708 kprintf("%*s", B_PRINTF_POINTER_WIDTH + 15, ""); 1709 break; 1710 1711 case THREAD_BLOCK_TYPE_SIGNAL: 1712 kprintf("signal%*s", B_PRINTF_POINTER_WIDTH + 9, ""); 1713 break; 1714 1715 case THREAD_BLOCK_TYPE_MUTEX: 1716 kprintf("mutex %p ", thread->wait.object); 1717 break; 1718 1719 case THREAD_BLOCK_TYPE_RW_LOCK: 1720 kprintf("rwlock %p ", thread->wait.object); 1721 break; 1722 1723 case THREAD_BLOCK_TYPE_USER: 1724 kprintf("user%*s", B_PRINTF_POINTER_WIDTH + 11, ""); 1725 break; 1726 1727 case THREAD_BLOCK_TYPE_OTHER: 1728 kprintf("other%*s", B_PRINTF_POINTER_WIDTH + 10, ""); 1729 break; 1730 1731 case THREAD_BLOCK_TYPE_OTHER_OBJECT: 1732 kprintf("other %p ", thread->wait.object); 1733 break; 1734 1735 default: 1736 kprintf("??? %p ", thread->wait.object); 1737 break; 1738 } 1739 } else 1740 kprintf("-%*s", B_PRINTF_POINTER_WIDTH + 14, ""); 1741 1742 // on which CPU does it run? 1743 if (thread->cpu) 1744 kprintf("%2d", thread->cpu->cpu_num); 1745 else 1746 kprintf(" -"); 1747 1748 kprintf("%4" B_PRId32 " %p%5" B_PRId32 " %s\n", thread->priority, 1749 (void *)thread->kernel_stack_base, thread->team->id, thread->name); 1750 1751 return; 1752 } 1753 1754 // print the long info 1755 1756 struct thread_death_entry *death = NULL; 1757 1758 kprintf("THREAD: %p\n", thread); 1759 kprintf("id: %" B_PRId32 " (%#" B_PRIx32 ")\n", thread->id, 1760 thread->id); 1761 kprintf("serial_number: %" B_PRId64 "\n", thread->serial_number); 1762 kprintf("name: \"%s\"\n", thread->name); 1763 kprintf("hash_next: %p\nteam_next: %p\n", 1764 thread->hash_next, thread->team_next); 1765 kprintf("priority: %" B_PRId32 " (I/O: %" B_PRId32 ")\n", 1766 thread->priority, thread->io_priority); 1767 kprintf("state: %s\n", state_to_text(thread, thread->state)); 1768 kprintf("cpu: %p ", thread->cpu); 1769 if (thread->cpu) 1770 kprintf("(%d)\n", thread->cpu->cpu_num); 1771 else 1772 kprintf("\n"); 1773 kprintf("sig_pending: %#" B_PRIx64 " (blocked: %#" B_PRIx64 1774 ", before sigsuspend(): %#" B_PRIx64 ")\n", 1775 (int64)thread->ThreadPendingSignals(), 1776 (int64)thread->sig_block_mask, 1777 (int64)thread->sigsuspend_original_unblocked_mask); 1778 kprintf("in_kernel: %d\n", thread->in_kernel); 1779 1780 if (thread->state == B_THREAD_WAITING) { 1781 kprintf("waiting for: "); 1782 1783 switch (thread->wait.type) { 1784 case THREAD_BLOCK_TYPE_SEMAPHORE: 1785 { 1786 sem_id sem = (sem_id)(addr_t)thread->wait.object; 1787 if (sem == thread->msg.read_sem) 1788 kprintf("data\n"); 1789 else 1790 kprintf("semaphore %" B_PRId32 "\n", sem); 1791 break; 1792 } 1793 1794 case THREAD_BLOCK_TYPE_CONDITION_VARIABLE: 1795 kprintf("condition variable %p\n", thread->wait.object); 1796 break; 1797 1798 case THREAD_BLOCK_TYPE_SNOOZE: 1799 kprintf("snooze()\n"); 1800 break; 1801 1802 case THREAD_BLOCK_TYPE_SIGNAL: 1803 kprintf("signal\n"); 1804 break; 1805 1806 case THREAD_BLOCK_TYPE_MUTEX: 1807 kprintf("mutex %p\n", thread->wait.object); 1808 break; 1809 1810 case THREAD_BLOCK_TYPE_RW_LOCK: 1811 kprintf("rwlock %p\n", thread->wait.object); 1812 break; 1813 1814 case THREAD_BLOCK_TYPE_USER: 1815 kprintf("user\n"); 1816 break; 1817 1818 case THREAD_BLOCK_TYPE_OTHER: 1819 kprintf("other (%s)\n", (char*)thread->wait.object); 1820 break; 1821 1822 case THREAD_BLOCK_TYPE_OTHER_OBJECT: 1823 kprintf("other (%p)\n", thread->wait.object); 1824 break; 1825 1826 default: 1827 kprintf("unknown (%p)\n", thread->wait.object); 1828 break; 1829 } 1830 } 1831 1832 kprintf("fault_handler: %p\n", (void *)thread->fault_handler); 1833 kprintf("team: %p, \"%s\"\n", thread->team, 1834 thread->team->Name()); 1835 kprintf(" exit.sem: %" B_PRId32 "\n", thread->exit.sem); 1836 kprintf(" exit.status: %#" B_PRIx32 " (%s)\n", thread->exit.status, 1837 strerror(thread->exit.status)); 1838 kprintf(" exit.waiters:\n"); 1839 while ((death = (struct thread_death_entry*)list_get_next_item( 1840 &thread->exit.waiters, death)) != NULL) { 1841 kprintf("\t%p (thread %" B_PRId32 ")\n", death, death->thread); 1842 } 1843 1844 kprintf("kernel_stack_area: %" B_PRId32 "\n", thread->kernel_stack_area); 1845 kprintf("kernel_stack_base: %p\n", (void *)thread->kernel_stack_base); 1846 kprintf("user_stack_area: %" B_PRId32 "\n", thread->user_stack_area); 1847 kprintf("user_stack_base: %p\n", (void *)thread->user_stack_base); 1848 kprintf("user_local_storage: %p\n", (void *)thread->user_local_storage); 1849 kprintf("user_thread: %p\n", (void *)thread->user_thread); 1850 kprintf("kernel_errno: %#x (%s)\n", thread->kernel_errno, 1851 strerror(thread->kernel_errno)); 1852 kprintf("kernel_time: %" B_PRId64 "\n", thread->kernel_time); 1853 kprintf("user_time: %" B_PRId64 "\n", thread->user_time); 1854 kprintf("flags: 0x%" B_PRIx32 "\n", thread->flags); 1855 kprintf("architecture dependant section:\n"); 1856 arch_thread_dump_info(&thread->arch_info); 1857 kprintf("scheduler data:\n"); 1858 scheduler_dump_thread_data(thread); 1859 } 1860 1861 1862 static int 1863 dump_thread_info(int argc, char **argv) 1864 { 1865 bool shortInfo = false; 1866 int argi = 1; 1867 if (argi < argc && strcmp(argv[argi], "-s") == 0) { 1868 shortInfo = true; 1869 print_thread_list_table_head(); 1870 argi++; 1871 } 1872 1873 if (argi == argc) { 1874 _dump_thread_info(thread_get_current_thread(), shortInfo); 1875 return 0; 1876 } 1877 1878 for (; argi < argc; argi++) { 1879 const char *name = argv[argi]; 1880 ulong arg = strtoul(name, NULL, 0); 1881 1882 if (IS_KERNEL_ADDRESS(arg)) { 1883 // semi-hack 1884 _dump_thread_info((Thread *)arg, shortInfo); 1885 continue; 1886 } 1887 1888 // walk through the thread list, trying to match name or id 1889 bool found = false; 1890 for (ThreadHashTable::Iterator it = sThreadHash.GetIterator(); 1891 Thread* thread = it.Next();) { 1892 if (!strcmp(name, thread->name) || thread->id == (thread_id)arg) { 1893 _dump_thread_info(thread, shortInfo); 1894 found = true; 1895 break; 1896 } 1897 } 1898 1899 if (!found) 1900 kprintf("thread \"%s\" (%" B_PRId32 ") doesn't exist!\n", name, (thread_id)arg); 1901 } 1902 1903 return 0; 1904 } 1905 1906 1907 static int 1908 dump_thread_list(int argc, char **argv) 1909 { 1910 bool realTimeOnly = false; 1911 bool calling = false; 1912 const char *callSymbol = NULL; 1913 addr_t callStart = 0; 1914 addr_t callEnd = 0; 1915 int32 requiredState = 0; 1916 team_id team = -1; 1917 sem_id sem = -1; 1918 1919 if (!strcmp(argv[0], "realtime")) 1920 realTimeOnly = true; 1921 else if (!strcmp(argv[0], "ready")) 1922 requiredState = B_THREAD_READY; 1923 else if (!strcmp(argv[0], "running")) 1924 requiredState = B_THREAD_RUNNING; 1925 else if (!strcmp(argv[0], "waiting")) { 1926 requiredState = B_THREAD_WAITING; 1927 1928 if (argc > 1) { 1929 sem = strtoul(argv[1], NULL, 0); 1930 if (sem == 0) 1931 kprintf("ignoring invalid semaphore argument.\n"); 1932 } 1933 } else if (!strcmp(argv[0], "calling")) { 1934 if (argc < 2) { 1935 kprintf("Need to give a symbol name or start and end arguments.\n"); 1936 return 0; 1937 } else if (argc == 3) { 1938 callStart = parse_expression(argv[1]); 1939 callEnd = parse_expression(argv[2]); 1940 } else 1941 callSymbol = argv[1]; 1942 1943 calling = true; 1944 } else if (argc > 1) { 1945 team = strtoul(argv[1], NULL, 0); 1946 if (team == 0) 1947 kprintf("ignoring invalid team argument.\n"); 1948 } 1949 1950 print_thread_list_table_head(); 1951 1952 for (ThreadHashTable::Iterator it = sThreadHash.GetIterator(); 1953 Thread* thread = it.Next();) { 1954 // filter out threads not matching the search criteria 1955 if ((requiredState && thread->state != requiredState) 1956 || (calling && !arch_debug_contains_call(thread, callSymbol, 1957 callStart, callEnd)) 1958 || (sem > 0 && get_thread_wait_sem(thread) != sem) 1959 || (team > 0 && thread->team->id != team) 1960 || (realTimeOnly && thread->priority < B_REAL_TIME_DISPLAY_PRIORITY)) 1961 continue; 1962 1963 _dump_thread_info(thread, true); 1964 } 1965 return 0; 1966 } 1967 1968 1969 static void 1970 update_thread_sigmask_on_exit(Thread* thread) 1971 { 1972 if ((thread->flags & THREAD_FLAGS_OLD_SIGMASK) != 0) { 1973 thread->flags &= ~THREAD_FLAGS_OLD_SIGMASK; 1974 sigprocmask(SIG_SETMASK, &thread->old_sig_block_mask, NULL); 1975 } 1976 } 1977 1978 1979 // #pragma mark - private kernel API 1980 1981 1982 void 1983 thread_exit(void) 1984 { 1985 cpu_status state; 1986 Thread* thread = thread_get_current_thread(); 1987 Team* team = thread->team; 1988 Team* kernelTeam = team_get_kernel_team(); 1989 status_t status; 1990 struct thread_debug_info debugInfo; 1991 team_id teamID = team->id; 1992 1993 TRACE(("thread %" B_PRId32 " exiting w/return code %#" B_PRIx32 "\n", 1994 thread->id, thread->exit.status)); 1995 1996 if (!are_interrupts_enabled()) 1997 panic("thread_exit() called with interrupts disabled!\n"); 1998 1999 // boost our priority to get this over with 2000 scheduler_set_thread_priority(thread, B_URGENT_DISPLAY_PRIORITY); 2001 2002 if (team != kernelTeam) { 2003 // Delete all user timers associated with the thread. 2004 ThreadLocker threadLocker(thread); 2005 thread->DeleteUserTimers(false); 2006 2007 // detach the thread's user thread 2008 user_thread* userThread = thread->user_thread; 2009 thread->user_thread = NULL; 2010 2011 threadLocker.Unlock(); 2012 2013 // Delete the thread's user thread, if it's not the main thread. If it 2014 // is, we can save the work, since it will be deleted with the team's 2015 // address space. 2016 if (thread != team->main_thread) 2017 team_free_user_thread(team, userThread); 2018 } 2019 2020 // remember the user stack area -- we will delete it below 2021 area_id userStackArea = -1; 2022 if (team->address_space != NULL && thread->user_stack_area >= 0) { 2023 userStackArea = thread->user_stack_area; 2024 thread->user_stack_area = -1; 2025 } 2026 2027 struct job_control_entry *death = NULL; 2028 struct thread_death_entry* threadDeathEntry = NULL; 2029 bool deleteTeam = false; 2030 port_id debuggerPort = -1; 2031 2032 if (team != kernelTeam) { 2033 user_debug_thread_exiting(thread); 2034 2035 if (team->main_thread == thread) { 2036 // The main thread is exiting. Shut down the whole team. 2037 deleteTeam = true; 2038 2039 // kill off all other threads and the user debugger facilities 2040 debuggerPort = team_shutdown_team(team); 2041 2042 // acquire necessary locks, which are: process group lock, kernel 2043 // team lock, parent team lock, and the team lock 2044 team->LockProcessGroup(); 2045 kernelTeam->Lock(); 2046 team->LockTeamAndParent(true); 2047 } else { 2048 threadDeathEntry 2049 = (thread_death_entry*)malloc(sizeof(thread_death_entry)); 2050 2051 // acquire necessary locks, which are: kernel team lock and the team 2052 // lock 2053 kernelTeam->Lock(); 2054 team->Lock(); 2055 } 2056 2057 ThreadLocker threadLocker(thread); 2058 2059 state = disable_interrupts(); 2060 2061 // swap address spaces, to make sure we're running on the kernel's pgdir 2062 vm_swap_address_space(team->address_space, VMAddressSpace::Kernel()); 2063 2064 WriteSpinLocker teamLocker(thread->team_lock); 2065 SpinLocker threadCreationLocker(gThreadCreationLock); 2066 // removing the thread and putting its death entry to the parent 2067 // team needs to be an atomic operation 2068 2069 // remember how long this thread lasted 2070 bigtime_t now = system_time(); 2071 2072 InterruptsSpinLocker signalLocker(kernelTeam->signal_lock); 2073 SpinLocker teamTimeLocker(kernelTeam->time_lock); 2074 SpinLocker threadTimeLocker(thread->time_lock); 2075 2076 thread->kernel_time += now - thread->last_time; 2077 thread->last_time = now; 2078 2079 team->dead_threads_kernel_time += thread->kernel_time; 2080 team->dead_threads_user_time += thread->user_time; 2081 2082 // stop/update thread/team CPU time user timers 2083 if (thread->HasActiveCPUTimeUserTimers() 2084 || team->HasActiveCPUTimeUserTimers()) { 2085 user_timer_stop_cpu_timers(thread, NULL); 2086 } 2087 2088 // deactivate CPU time user timers for the thread 2089 if (thread->HasActiveCPUTimeUserTimers()) 2090 thread->DeactivateCPUTimeUserTimers(); 2091 2092 threadTimeLocker.Unlock(); 2093 2094 // put the thread into the kernel team until it dies 2095 remove_thread_from_team(team, thread); 2096 insert_thread_into_team(kernelTeam, thread); 2097 2098 teamTimeLocker.Unlock(); 2099 signalLocker.Unlock(); 2100 2101 teamLocker.Unlock(); 2102 2103 if (team->death_entry != NULL) { 2104 if (--team->death_entry->remaining_threads == 0) 2105 team->death_entry->condition.NotifyOne(); 2106 } 2107 2108 if (deleteTeam) { 2109 Team* parent = team->parent; 2110 2111 // Set the team job control state to "dead" and detach the job 2112 // control entry from our team struct. 2113 team_set_job_control_state(team, JOB_CONTROL_STATE_DEAD, NULL); 2114 death = team->job_control_entry; 2115 team->job_control_entry = NULL; 2116 2117 if (death != NULL) { 2118 death->InitDeadState(); 2119 2120 // team_set_job_control_state() already moved our entry 2121 // into the parent's list. We just check the soft limit of 2122 // death entries. 2123 if (parent->dead_children.count > MAX_DEAD_CHILDREN) { 2124 death = parent->dead_children.entries.RemoveHead(); 2125 parent->dead_children.count--; 2126 } else 2127 death = NULL; 2128 } 2129 2130 threadCreationLocker.Unlock(); 2131 restore_interrupts(state); 2132 2133 threadLocker.Unlock(); 2134 2135 // Get a temporary reference to the team's process group 2136 // -- team_remove_team() removes the team from the group, which 2137 // might destroy it otherwise and we wouldn't be able to unlock it. 2138 ProcessGroup* group = team->group; 2139 group->AcquireReference(); 2140 2141 pid_t foregroundGroupToSignal; 2142 team_remove_team(team, foregroundGroupToSignal); 2143 2144 // unlock everything but the parent team 2145 team->Unlock(); 2146 if (parent != kernelTeam) 2147 kernelTeam->Unlock(); 2148 group->Unlock(); 2149 group->ReleaseReference(); 2150 2151 // Send SIGCHLD to the parent as long as we still have its lock. 2152 // This makes job control state change + signalling atomic. 2153 Signal childSignal(SIGCHLD, team->exit.reason, B_OK, team->id); 2154 if (team->exit.reason == CLD_EXITED) { 2155 childSignal.SetStatus(team->exit.status); 2156 } else { 2157 childSignal.SetStatus(team->exit.signal); 2158 childSignal.SetSendingUser(team->exit.signaling_user); 2159 } 2160 send_signal_to_team(parent, childSignal, B_DO_NOT_RESCHEDULE); 2161 2162 // also unlock the parent 2163 parent->Unlock(); 2164 2165 // If the team was a session leader with controlling TTY, we have 2166 // to send SIGHUP to the foreground process group. 2167 if (foregroundGroupToSignal >= 0) { 2168 Signal groupSignal(SIGHUP, SI_USER, B_OK, team->id); 2169 send_signal_to_process_group(foregroundGroupToSignal, 2170 groupSignal, B_DO_NOT_RESCHEDULE); 2171 } 2172 } else { 2173 // The thread is not the main thread. We store a thread death entry 2174 // for it, unless someone is already waiting for it. 2175 if (threadDeathEntry != NULL 2176 && list_is_empty(&thread->exit.waiters)) { 2177 threadDeathEntry->thread = thread->id; 2178 threadDeathEntry->status = thread->exit.status; 2179 2180 // add entry to dead thread list 2181 list_add_item(&team->dead_threads, threadDeathEntry); 2182 } 2183 2184 threadCreationLocker.Unlock(); 2185 restore_interrupts(state); 2186 2187 threadLocker.Unlock(); 2188 team->Unlock(); 2189 kernelTeam->Unlock(); 2190 } 2191 2192 TRACE(("thread_exit: thread %" B_PRId32 " now a kernel thread!\n", 2193 thread->id)); 2194 } 2195 2196 // delete the team if we're its main thread 2197 if (deleteTeam) { 2198 team_delete_team(team, debuggerPort); 2199 2200 // we need to delete any death entry that made it to here 2201 delete death; 2202 } 2203 2204 ThreadLocker threadLocker(thread); 2205 2206 state = disable_interrupts(); 2207 SpinLocker threadCreationLocker(gThreadCreationLock); 2208 2209 // mark invisible in global hash/list, so it's no longer accessible 2210 WriteSpinLocker threadHashLocker(sThreadHashLock); 2211 thread->visible = false; 2212 sUsedThreads--; 2213 threadHashLocker.Unlock(); 2214 2215 // Stop debugging for this thread 2216 SpinLocker threadDebugInfoLocker(thread->debug_info.lock); 2217 debugInfo = thread->debug_info; 2218 clear_thread_debug_info(&thread->debug_info, true); 2219 threadDebugInfoLocker.Unlock(); 2220 2221 // Remove the select infos. We notify them a little later. 2222 select_info* selectInfos = thread->select_infos; 2223 thread->select_infos = NULL; 2224 2225 threadCreationLocker.Unlock(); 2226 restore_interrupts(state); 2227 2228 threadLocker.Unlock(); 2229 2230 destroy_thread_debug_info(&debugInfo); 2231 2232 // notify select infos 2233 select_info* info = selectInfos; 2234 while (info != NULL) { 2235 select_sync* sync = info->sync; 2236 2237 notify_select_events(info, B_EVENT_INVALID); 2238 info = info->next; 2239 put_select_sync(sync); 2240 } 2241 2242 // notify listeners 2243 sNotificationService.Notify(THREAD_REMOVED, thread); 2244 2245 // shutdown the thread messaging 2246 2247 status = acquire_sem_etc(thread->msg.write_sem, 1, B_RELATIVE_TIMEOUT, 0); 2248 if (status == B_WOULD_BLOCK) { 2249 // there is data waiting for us, so let us eat it 2250 thread_id sender; 2251 2252 delete_sem(thread->msg.write_sem); 2253 // first, let's remove all possibly waiting writers 2254 receive_data_etc(&sender, NULL, 0, B_RELATIVE_TIMEOUT); 2255 } else { 2256 // we probably own the semaphore here, and we're the last to do so 2257 delete_sem(thread->msg.write_sem); 2258 } 2259 // now we can safely remove the msg.read_sem 2260 delete_sem(thread->msg.read_sem); 2261 2262 // fill all death entries and delete the sem that others will use to wait 2263 // for us 2264 { 2265 sem_id cachedExitSem = thread->exit.sem; 2266 2267 ThreadLocker threadLocker(thread); 2268 2269 // make sure no one will grab this semaphore again 2270 thread->exit.sem = -1; 2271 2272 // fill all death entries 2273 thread_death_entry* entry = NULL; 2274 while ((entry = (thread_death_entry*)list_get_next_item( 2275 &thread->exit.waiters, entry)) != NULL) { 2276 entry->status = thread->exit.status; 2277 } 2278 2279 threadLocker.Unlock(); 2280 2281 delete_sem(cachedExitSem); 2282 } 2283 2284 // delete the user stack, if this was a user thread 2285 if (!deleteTeam && userStackArea >= 0) { 2286 // We postponed deleting the user stack until now, since this way all 2287 // notifications for the thread's death are out already and all other 2288 // threads waiting for this thread's death and some object on its stack 2289 // will wake up before we (try to) delete the stack area. Of most 2290 // relevance is probably the case where this is the main thread and 2291 // other threads use objects on its stack -- so we want them terminated 2292 // first. 2293 // When the team is deleted, all areas are deleted anyway, so we don't 2294 // need to do that explicitly in that case. 2295 vm_delete_area(teamID, userStackArea, true); 2296 } 2297 2298 // notify the debugger 2299 if (teamID != kernelTeam->id) 2300 user_debug_thread_deleted(teamID, thread->id); 2301 2302 // enqueue in the undertaker list and reschedule for the last time 2303 UndertakerEntry undertakerEntry(thread, teamID); 2304 2305 disable_interrupts(); 2306 2307 SpinLocker schedulerLocker(thread->scheduler_lock); 2308 2309 SpinLocker undertakerLocker(sUndertakerLock); 2310 sUndertakerEntries.Add(&undertakerEntry); 2311 sUndertakerCondition.NotifyOne(); 2312 undertakerLocker.Unlock(); 2313 2314 scheduler_reschedule(THREAD_STATE_FREE_ON_RESCHED); 2315 2316 panic("never can get here\n"); 2317 } 2318 2319 2320 /*! Called in the interrupt handler code when a thread enters 2321 the kernel for any reason. 2322 Only tracks time for now. 2323 Interrupts are disabled. 2324 */ 2325 void 2326 thread_at_kernel_entry(bigtime_t now) 2327 { 2328 Thread *thread = thread_get_current_thread(); 2329 2330 TRACE(("thread_at_kernel_entry: entry thread %" B_PRId32 "\n", thread->id)); 2331 2332 // track user time 2333 SpinLocker threadTimeLocker(thread->time_lock); 2334 thread->user_time += now - thread->last_time; 2335 thread->last_time = now; 2336 thread->in_kernel = true; 2337 threadTimeLocker.Unlock(); 2338 } 2339 2340 2341 /*! Called whenever a thread exits kernel space to user space. 2342 Tracks time, handles signals, ... 2343 Interrupts must be enabled. When the function returns, interrupts will be 2344 disabled. 2345 The function may not return. This e.g. happens when the thread has received 2346 a deadly signal. 2347 */ 2348 void 2349 thread_at_kernel_exit(void) 2350 { 2351 Thread *thread = thread_get_current_thread(); 2352 2353 TRACE(("thread_at_kernel_exit: exit thread %" B_PRId32 "\n", thread->id)); 2354 2355 handle_signals(thread); 2356 2357 disable_interrupts(); 2358 2359 update_thread_sigmask_on_exit(thread); 2360 2361 // track kernel time 2362 bigtime_t now = system_time(); 2363 SpinLocker threadTimeLocker(thread->time_lock); 2364 thread->in_kernel = false; 2365 thread->kernel_time += now - thread->last_time; 2366 thread->last_time = now; 2367 } 2368 2369 2370 /*! The quick version of thread_kernel_exit(), in case no signals are pending 2371 and no debugging shall be done. 2372 Interrupts must be disabled. 2373 */ 2374 void 2375 thread_at_kernel_exit_no_signals(void) 2376 { 2377 Thread *thread = thread_get_current_thread(); 2378 2379 TRACE(("thread_at_kernel_exit_no_signals: exit thread %" B_PRId32 "\n", 2380 thread->id)); 2381 2382 update_thread_sigmask_on_exit(thread); 2383 2384 // track kernel time 2385 bigtime_t now = system_time(); 2386 SpinLocker threadTimeLocker(thread->time_lock); 2387 thread->in_kernel = false; 2388 thread->kernel_time += now - thread->last_time; 2389 thread->last_time = now; 2390 } 2391 2392 2393 void 2394 thread_reset_for_exec(void) 2395 { 2396 Thread* thread = thread_get_current_thread(); 2397 2398 ThreadLocker threadLocker(thread); 2399 2400 // delete user-defined timers 2401 thread->DeleteUserTimers(true); 2402 2403 // cancel pre-defined timer 2404 if (UserTimer* timer = thread->UserTimerFor(USER_TIMER_REAL_TIME_ID)) 2405 timer->Cancel(); 2406 2407 // reset user_thread and user stack 2408 thread->user_thread = NULL; 2409 thread->user_stack_area = -1; 2410 thread->user_stack_base = 0; 2411 thread->user_stack_size = 0; 2412 2413 // reset signals 2414 thread->ResetSignalsOnExec(); 2415 2416 // reset thread CPU time clock 2417 InterruptsSpinLocker timeLocker(thread->time_lock); 2418 thread->cpu_clock_offset = -thread->CPUTime(false); 2419 } 2420 2421 2422 thread_id 2423 allocate_thread_id() 2424 { 2425 InterruptsWriteSpinLocker threadHashLocker(sThreadHashLock); 2426 2427 // find the next unused ID 2428 thread_id id; 2429 do { 2430 id = sNextThreadID++; 2431 2432 // deal with integer overflow 2433 if (sNextThreadID < 0) 2434 sNextThreadID = 2; 2435 2436 // check whether the ID is already in use 2437 } while (sThreadHash.Lookup(id, false) != NULL); 2438 2439 return id; 2440 } 2441 2442 2443 thread_id 2444 peek_next_thread_id() 2445 { 2446 InterruptsReadSpinLocker threadHashLocker(sThreadHashLock); 2447 return sNextThreadID; 2448 } 2449 2450 2451 /*! Yield the CPU to other threads. 2452 Thread will continue to run, if there's no other thread in ready 2453 state, and if it has a higher priority than the other ready threads, it 2454 still has a good chance to continue. 2455 */ 2456 void 2457 thread_yield(void) 2458 { 2459 Thread *thread = thread_get_current_thread(); 2460 if (thread == NULL) 2461 return; 2462 2463 InterruptsSpinLocker _(thread->scheduler_lock); 2464 2465 thread->has_yielded = true; 2466 scheduler_reschedule(B_THREAD_READY); 2467 } 2468 2469 2470 void 2471 thread_map(void (*function)(Thread* thread, void* data), void* data) 2472 { 2473 InterruptsWriteSpinLocker threadHashLocker(sThreadHashLock); 2474 2475 for (ThreadHashTable::Iterator it = sThreadHash.GetIterator(); 2476 Thread* thread = it.Next();) { 2477 function(thread, data); 2478 } 2479 } 2480 2481 2482 /*! Kernel private thread creation function. 2483 */ 2484 thread_id 2485 spawn_kernel_thread_etc(thread_func function, const char *name, int32 priority, 2486 void *arg, team_id team) 2487 { 2488 return thread_create_thread( 2489 ThreadCreationAttributes(function, name, priority, arg, team), 2490 true); 2491 } 2492 2493 2494 status_t 2495 wait_for_thread_etc(thread_id id, uint32 flags, bigtime_t timeout, 2496 status_t *_returnCode) 2497 { 2498 if (id < 0) 2499 return B_BAD_THREAD_ID; 2500 if (id == thread_get_current_thread_id()) 2501 return EDEADLK; 2502 2503 // get the thread, queue our death entry, and fetch the semaphore we have to 2504 // wait on 2505 sem_id exitSem = B_BAD_THREAD_ID; 2506 struct thread_death_entry death; 2507 2508 Thread* thread = Thread::GetAndLock(id); 2509 if (thread != NULL) { 2510 // remember the semaphore we have to wait on and place our death entry 2511 exitSem = thread->exit.sem; 2512 if (exitSem >= 0) 2513 list_add_link_to_head(&thread->exit.waiters, &death); 2514 2515 thread->UnlockAndReleaseReference(); 2516 2517 if (exitSem < 0) 2518 return B_BAD_THREAD_ID; 2519 } else { 2520 // we couldn't find this thread -- maybe it's already gone, and we'll 2521 // find its death entry in our team 2522 Team* team = thread_get_current_thread()->team; 2523 TeamLocker teamLocker(team); 2524 2525 // check the child death entries first (i.e. main threads of child 2526 // teams) 2527 bool deleteEntry; 2528 job_control_entry* freeDeath 2529 = team_get_death_entry(team, id, &deleteEntry); 2530 if (freeDeath != NULL) { 2531 death.status = freeDeath->status; 2532 if (deleteEntry) 2533 delete freeDeath; 2534 } else { 2535 // check the thread death entries of the team (non-main threads) 2536 thread_death_entry* threadDeathEntry = NULL; 2537 while ((threadDeathEntry = (thread_death_entry*)list_get_next_item( 2538 &team->dead_threads, threadDeathEntry)) != NULL) { 2539 if (threadDeathEntry->thread == id) { 2540 list_remove_item(&team->dead_threads, threadDeathEntry); 2541 death.status = threadDeathEntry->status; 2542 free(threadDeathEntry); 2543 break; 2544 } 2545 } 2546 2547 if (threadDeathEntry == NULL) 2548 return B_BAD_THREAD_ID; 2549 } 2550 2551 // we found the thread's death entry in our team 2552 if (_returnCode) 2553 *_returnCode = death.status; 2554 2555 return B_OK; 2556 } 2557 2558 // we need to wait for the death of the thread 2559 2560 resume_thread(id); 2561 // make sure we don't wait forever on a suspended thread 2562 2563 status_t status = acquire_sem_etc(exitSem, 1, flags, timeout); 2564 2565 if (status == B_OK) { 2566 // this should never happen as the thread deletes the semaphore on exit 2567 panic("could acquire exit_sem for thread %" B_PRId32 "\n", id); 2568 } else if (status == B_BAD_SEM_ID) { 2569 // this is the way the thread normally exits 2570 status = B_OK; 2571 } else { 2572 // We were probably interrupted or the timeout occurred; we need to 2573 // remove our death entry now. 2574 thread = Thread::GetAndLock(id); 2575 if (thread != NULL) { 2576 list_remove_link(&death); 2577 thread->UnlockAndReleaseReference(); 2578 } else { 2579 // The thread is already gone, so we need to wait uninterruptibly 2580 // for its exit semaphore to make sure our death entry stays valid. 2581 // It won't take long, since the thread is apparently already in the 2582 // middle of the cleanup. 2583 acquire_sem(exitSem); 2584 status = B_OK; 2585 } 2586 } 2587 2588 if (status == B_OK && _returnCode != NULL) 2589 *_returnCode = death.status; 2590 2591 return status; 2592 } 2593 2594 2595 status_t 2596 select_thread(int32 id, struct select_info* info, bool kernel) 2597 { 2598 // get and lock the thread 2599 Thread* thread = Thread::GetAndLock(id); 2600 if (thread == NULL) 2601 return B_BAD_THREAD_ID; 2602 BReference<Thread> threadReference(thread, true); 2603 ThreadLocker threadLocker(thread, true); 2604 2605 // We support only B_EVENT_INVALID at the moment. 2606 info->selected_events &= B_EVENT_INVALID; 2607 2608 // add info to list 2609 if (info->selected_events != 0) { 2610 info->next = thread->select_infos; 2611 thread->select_infos = info; 2612 2613 // we need a sync reference 2614 atomic_add(&info->sync->ref_count, 1); 2615 } 2616 2617 return B_OK; 2618 } 2619 2620 2621 status_t 2622 deselect_thread(int32 id, struct select_info* info, bool kernel) 2623 { 2624 // get and lock the thread 2625 Thread* thread = Thread::GetAndLock(id); 2626 if (thread == NULL) 2627 return B_BAD_THREAD_ID; 2628 BReference<Thread> threadReference(thread, true); 2629 ThreadLocker threadLocker(thread, true); 2630 2631 // remove info from list 2632 select_info** infoLocation = &thread->select_infos; 2633 while (*infoLocation != NULL && *infoLocation != info) 2634 infoLocation = &(*infoLocation)->next; 2635 2636 if (*infoLocation != info) 2637 return B_OK; 2638 2639 *infoLocation = info->next; 2640 2641 threadLocker.Unlock(); 2642 2643 // surrender sync reference 2644 put_select_sync(info->sync); 2645 2646 return B_OK; 2647 } 2648 2649 2650 int32 2651 thread_max_threads(void) 2652 { 2653 return sMaxThreads; 2654 } 2655 2656 2657 int32 2658 thread_used_threads(void) 2659 { 2660 InterruptsReadSpinLocker threadHashLocker(sThreadHashLock); 2661 return sUsedThreads; 2662 } 2663 2664 2665 /*! Returns a user-readable string for a thread state. 2666 Only for use in the kernel debugger. 2667 */ 2668 const char* 2669 thread_state_to_text(Thread* thread, int32 state) 2670 { 2671 return state_to_text(thread, state); 2672 } 2673 2674 2675 int32 2676 thread_get_io_priority(thread_id id) 2677 { 2678 Thread* thread = Thread::GetAndLock(id); 2679 if (thread == NULL) 2680 return B_BAD_THREAD_ID; 2681 BReference<Thread> threadReference(thread, true); 2682 ThreadLocker threadLocker(thread, true); 2683 2684 int32 priority = thread->io_priority; 2685 if (priority < 0) { 2686 // negative I/O priority means using the (CPU) priority 2687 priority = thread->priority; 2688 } 2689 2690 return priority; 2691 } 2692 2693 2694 void 2695 thread_set_io_priority(int32 priority) 2696 { 2697 Thread* thread = thread_get_current_thread(); 2698 ThreadLocker threadLocker(thread); 2699 2700 thread->io_priority = priority; 2701 } 2702 2703 2704 status_t 2705 thread_init(kernel_args *args) 2706 { 2707 TRACE(("thread_init: entry\n")); 2708 2709 // create the thread hash table 2710 new(&sThreadHash) ThreadHashTable(); 2711 if (sThreadHash.Init(128) != B_OK) 2712 panic("thread_init(): failed to init thread hash table!"); 2713 2714 // create the thread structure object cache 2715 sThreadCache = create_object_cache("threads", sizeof(Thread), 64, NULL, 2716 NULL, NULL); 2717 // Note: The x86 port requires 64 byte alignment of thread structures. 2718 if (sThreadCache == NULL) 2719 panic("thread_init(): failed to allocate thread object cache!"); 2720 2721 if (arch_thread_init(args) < B_OK) 2722 panic("arch_thread_init() failed!\n"); 2723 2724 // skip all thread IDs including B_SYSTEM_TEAM, which is reserved 2725 sNextThreadID = B_SYSTEM_TEAM + 1; 2726 2727 // create an idle thread for each cpu 2728 for (uint32 i = 0; i < args->num_cpus; i++) { 2729 Thread *thread; 2730 area_info info; 2731 char name[64]; 2732 2733 sprintf(name, "idle thread %" B_PRIu32, i + 1); 2734 thread = new(&sIdleThreads[i]) Thread(name, 2735 i == 0 ? team_get_kernel_team_id() : -1, &gCPU[i]); 2736 if (thread == NULL || thread->Init(true) != B_OK) { 2737 panic("error creating idle thread struct\n"); 2738 return B_NO_MEMORY; 2739 } 2740 2741 gCPU[i].running_thread = thread; 2742 2743 thread->team = team_get_kernel_team(); 2744 thread->priority = B_IDLE_PRIORITY; 2745 thread->state = B_THREAD_RUNNING; 2746 sprintf(name, "idle thread %" B_PRIu32 " kstack", i + 1); 2747 thread->kernel_stack_area = find_area(name); 2748 2749 if (get_area_info(thread->kernel_stack_area, &info) != B_OK) 2750 panic("error finding idle kstack area\n"); 2751 2752 thread->kernel_stack_base = (addr_t)info.address; 2753 thread->kernel_stack_top = thread->kernel_stack_base + info.size; 2754 2755 thread->visible = true; 2756 insert_thread_into_team(thread->team, thread); 2757 2758 scheduler_on_thread_init(thread); 2759 } 2760 sUsedThreads = args->num_cpus; 2761 2762 // init the notification service 2763 new(&sNotificationService) ThreadNotificationService(); 2764 2765 sNotificationService.Register(); 2766 2767 // start the undertaker thread 2768 new(&sUndertakerEntries) DoublyLinkedList<UndertakerEntry>(); 2769 sUndertakerCondition.Init(&sUndertakerEntries, "undertaker entries"); 2770 2771 thread_id undertakerThread = spawn_kernel_thread(&undertaker, "undertaker", 2772 B_DISPLAY_PRIORITY, NULL); 2773 if (undertakerThread < 0) 2774 panic("Failed to create undertaker thread!"); 2775 resume_thread(undertakerThread); 2776 2777 // set up some debugger commands 2778 add_debugger_command_etc("threads", &dump_thread_list, "List all threads", 2779 "[ <team> ]\n" 2780 "Prints a list of all existing threads, or, if a team ID is given,\n" 2781 "all threads of the specified team.\n" 2782 " <team> - The ID of the team whose threads shall be listed.\n", 0); 2783 add_debugger_command_etc("ready", &dump_thread_list, 2784 "List all ready threads", 2785 "\n" 2786 "Prints a list of all threads in ready state.\n", 0); 2787 add_debugger_command_etc("running", &dump_thread_list, 2788 "List all running threads", 2789 "\n" 2790 "Prints a list of all threads in running state.\n", 0); 2791 add_debugger_command_etc("waiting", &dump_thread_list, 2792 "List all waiting threads (optionally for a specific semaphore)", 2793 "[ <sem> ]\n" 2794 "Prints a list of all threads in waiting state. If a semaphore is\n" 2795 "specified, only the threads waiting on that semaphore are listed.\n" 2796 " <sem> - ID of the semaphore.\n", 0); 2797 add_debugger_command_etc("realtime", &dump_thread_list, 2798 "List all realtime threads", 2799 "\n" 2800 "Prints a list of all threads with realtime priority.\n", 0); 2801 add_debugger_command_etc("thread", &dump_thread_info, 2802 "Dump info about a particular thread", 2803 "[ -s ] ( <id> | <address> | <name> )*\n" 2804 "Prints information about the specified thread. If no argument is\n" 2805 "given the current thread is selected.\n" 2806 " -s - Print info in compact table form (like \"threads\").\n" 2807 " <id> - The ID of the thread.\n" 2808 " <address> - The address of the thread structure.\n" 2809 " <name> - The thread's name.\n", 0); 2810 add_debugger_command_etc("calling", &dump_thread_list, 2811 "Show all threads that have a specific address in their call chain", 2812 "{ <symbol-pattern> | <start> <end> }\n", 0); 2813 add_debugger_command_etc("unreal", &make_thread_unreal, 2814 "Set realtime priority threads to normal priority", 2815 "[ <id> ]\n" 2816 "Sets the priority of all realtime threads or, if given, the one\n" 2817 "with the specified ID to \"normal\" priority.\n" 2818 " <id> - The ID of the thread.\n", 0); 2819 add_debugger_command_etc("suspend", &make_thread_suspended, 2820 "Suspend a thread", 2821 "[ <id> ]\n" 2822 "Suspends the thread with the given ID. If no ID argument is given\n" 2823 "the current thread is selected.\n" 2824 " <id> - The ID of the thread.\n", 0); 2825 add_debugger_command_etc("resume", &make_thread_resumed, "Resume a thread", 2826 "<id>\n" 2827 "Resumes the specified thread, if it is currently suspended.\n" 2828 " <id> - The ID of the thread.\n", 0); 2829 add_debugger_command_etc("drop", &drop_into_debugger, 2830 "Drop a thread into the userland debugger", 2831 "<id>\n" 2832 "Drops the specified (userland) thread into the userland debugger\n" 2833 "after leaving the kernel debugger.\n" 2834 " <id> - The ID of the thread.\n", 0); 2835 add_debugger_command_etc("priority", &set_thread_prio, 2836 "Set a thread's priority", 2837 "<priority> [ <id> ]\n" 2838 "Sets the priority of the thread with the specified ID to the given\n" 2839 "priority. If no thread ID is given, the current thread is selected.\n" 2840 " <priority> - The thread's new priority (0 - 120)\n" 2841 " <id> - The ID of the thread.\n", 0); 2842 2843 return B_OK; 2844 } 2845 2846 2847 status_t 2848 thread_preboot_init_percpu(struct kernel_args *args, int32 cpuNum) 2849 { 2850 // set up the cpu pointer in the not yet initialized per-cpu idle thread 2851 // so that get_current_cpu and friends will work, which is crucial for 2852 // a lot of low level routines 2853 sIdleThreads[cpuNum].cpu = &gCPU[cpuNum]; 2854 arch_thread_set_current_thread(&sIdleThreads[cpuNum]); 2855 return B_OK; 2856 } 2857 2858 2859 // #pragma mark - thread blocking API 2860 2861 2862 static status_t 2863 thread_block_timeout(timer* timer) 2864 { 2865 Thread* thread = (Thread*)timer->user_data; 2866 thread_unblock(thread, B_TIMED_OUT); 2867 2868 return B_HANDLED_INTERRUPT; 2869 } 2870 2871 2872 /*! Blocks the current thread. 2873 2874 The thread is blocked until someone else unblock it. Must be called after a 2875 call to thread_prepare_to_block(). If the thread has already been unblocked 2876 after the previous call to thread_prepare_to_block(), this function will 2877 return immediately. Cf. the documentation of thread_prepare_to_block() for 2878 more details. 2879 2880 The caller must hold the scheduler lock. 2881 2882 \param thread The current thread. 2883 \return The error code passed to the unblocking function. thread_interrupt() 2884 uses \c B_INTERRUPTED. By convention \c B_OK means that the wait was 2885 successful while another error code indicates a failure (what that means 2886 depends on the client code). 2887 */ 2888 static inline status_t 2889 thread_block_locked(Thread* thread) 2890 { 2891 if (thread->wait.status == 1) { 2892 // check for signals, if interruptible 2893 if (thread_is_interrupted(thread, thread->wait.flags)) { 2894 thread->wait.status = B_INTERRUPTED; 2895 } else 2896 scheduler_reschedule(B_THREAD_WAITING); 2897 } 2898 2899 return thread->wait.status; 2900 } 2901 2902 2903 /*! Blocks the current thread. 2904 2905 The function acquires the scheduler lock and calls thread_block_locked(). 2906 See there for more information. 2907 */ 2908 status_t 2909 thread_block() 2910 { 2911 InterruptsSpinLocker _(thread_get_current_thread()->scheduler_lock); 2912 return thread_block_locked(thread_get_current_thread()); 2913 } 2914 2915 2916 /*! Blocks the current thread with a timeout. 2917 2918 The current thread is blocked until someone else unblock it or the specified 2919 timeout occurs. Must be called after a call to thread_prepare_to_block(). If 2920 the thread has already been unblocked after the previous call to 2921 thread_prepare_to_block(), this function will return immediately. See 2922 thread_prepare_to_block() for more details. 2923 2924 The caller must not hold the scheduler lock. 2925 2926 \param timeoutFlags The standard timeout flags: 2927 - \c B_RELATIVE_TIMEOUT: \a timeout specifies the time to wait. 2928 - \c B_ABSOLUTE_TIMEOUT: \a timeout specifies the absolute end time when 2929 the timeout shall occur. 2930 - \c B_TIMEOUT_REAL_TIME_BASE: Only relevant when \c B_ABSOLUTE_TIMEOUT 2931 is specified, too. Specifies that \a timeout is a real time, not a 2932 system time. 2933 If neither \c B_RELATIVE_TIMEOUT nor \c B_ABSOLUTE_TIMEOUT are 2934 specified, an infinite timeout is implied and the function behaves like 2935 thread_block_locked(). 2936 \return The error code passed to the unblocking function. thread_interrupt() 2937 uses \c B_INTERRUPTED. When the timeout occurred, \c B_TIMED_OUT is 2938 returned. By convention \c B_OK means that the wait was successful while 2939 another error code indicates a failure (what that means depends on the 2940 client code). 2941 */ 2942 status_t 2943 thread_block_with_timeout(uint32 timeoutFlags, bigtime_t timeout) 2944 { 2945 Thread* thread = thread_get_current_thread(); 2946 2947 InterruptsSpinLocker locker(thread->scheduler_lock); 2948 2949 if (thread->wait.status != 1) 2950 return thread->wait.status; 2951 2952 bool useTimer = (timeoutFlags & (B_RELATIVE_TIMEOUT | B_ABSOLUTE_TIMEOUT)) 2953 && timeout != B_INFINITE_TIMEOUT; 2954 2955 if (useTimer) { 2956 // Timer flags: absolute/relative. 2957 uint32 timerFlags; 2958 if ((timeoutFlags & B_RELATIVE_TIMEOUT) != 0) { 2959 timerFlags = B_ONE_SHOT_RELATIVE_TIMER; 2960 } else { 2961 timerFlags = B_ONE_SHOT_ABSOLUTE_TIMER; 2962 if ((timeoutFlags & B_TIMEOUT_REAL_TIME_BASE) != 0) 2963 timerFlags |= B_TIMER_REAL_TIME_BASE; 2964 } 2965 2966 // install the timer 2967 thread->wait.unblock_timer.user_data = thread; 2968 add_timer(&thread->wait.unblock_timer, &thread_block_timeout, timeout, 2969 timerFlags); 2970 } 2971 2972 // block 2973 status_t error = thread_block_locked(thread); 2974 2975 locker.Unlock(); 2976 2977 // cancel timer, if it didn't fire 2978 if (error != B_TIMED_OUT && useTimer) 2979 cancel_timer(&thread->wait.unblock_timer); 2980 2981 return error; 2982 } 2983 2984 2985 /*! Unblocks a thread. 2986 2987 Acquires the scheduler lock and calls thread_unblock_locked(). 2988 See there for more information. 2989 */ 2990 void 2991 thread_unblock(Thread* thread, status_t status) 2992 { 2993 InterruptsSpinLocker locker(thread->scheduler_lock); 2994 thread_unblock_locked(thread, status); 2995 } 2996 2997 2998 /*! Unblocks a userland-blocked thread. 2999 The caller must not hold any locks. 3000 */ 3001 static status_t 3002 user_unblock_thread(thread_id threadID, status_t status) 3003 { 3004 // get the thread 3005 Thread* thread = Thread::GetAndLock(threadID); 3006 if (thread == NULL) 3007 return B_BAD_THREAD_ID; 3008 BReference<Thread> threadReference(thread, true); 3009 ThreadLocker threadLocker(thread, true); 3010 3011 if (thread->user_thread == NULL) 3012 return B_NOT_ALLOWED; 3013 3014 InterruptsSpinLocker locker(thread->scheduler_lock); 3015 3016 status_t waitStatus; 3017 if (user_memcpy(&waitStatus, &thread->user_thread->wait_status, 3018 sizeof(waitStatus)) < B_OK) { 3019 return B_BAD_ADDRESS; 3020 } 3021 if (waitStatus > 0) { 3022 if (user_memcpy(&thread->user_thread->wait_status, &status, 3023 sizeof(status)) < B_OK) { 3024 return B_BAD_ADDRESS; 3025 } 3026 3027 // Even if the user_thread->wait_status was > 0, it may be the 3028 // case that this thread is actually blocked on something else. 3029 if (thread->wait.status > 0 3030 && thread->wait.type == THREAD_BLOCK_TYPE_USER) { 3031 thread_unblock_locked(thread, status); 3032 } 3033 } 3034 return B_OK; 3035 } 3036 3037 3038 static bool 3039 thread_check_permissions(const Thread* currentThread, const Thread* thread, 3040 bool kernel) 3041 { 3042 if (kernel) 3043 return true; 3044 3045 if (thread->team->id == team_get_kernel_team_id()) 3046 return false; 3047 3048 if (thread->team == currentThread->team 3049 || currentThread->team->effective_uid == 0 3050 || thread->team->real_uid == currentThread->team->real_uid) 3051 return true; 3052 3053 return false; 3054 } 3055 3056 3057 static status_t 3058 thread_send_signal(thread_id id, uint32 number, int32 signalCode, 3059 int32 errorCode, bool kernel) 3060 { 3061 if (id <= 0) 3062 return B_BAD_VALUE; 3063 3064 Thread* currentThread = thread_get_current_thread(); 3065 Thread* thread = Thread::Get(id); 3066 if (thread == NULL) 3067 return B_BAD_THREAD_ID; 3068 BReference<Thread> threadReference(thread, true); 3069 3070 // check whether sending the signal is allowed 3071 if (!thread_check_permissions(currentThread, thread, kernel)) 3072 return B_NOT_ALLOWED; 3073 3074 Signal signal(number, signalCode, errorCode, currentThread->team->id); 3075 return send_signal_to_thread(thread, signal, 0); 3076 } 3077 3078 3079 // #pragma mark - public kernel API 3080 3081 3082 void 3083 exit_thread(status_t returnValue) 3084 { 3085 Thread *thread = thread_get_current_thread(); 3086 Team* team = thread->team; 3087 3088 thread->exit.status = returnValue; 3089 3090 // if called from a kernel thread, we don't deliver the signal, 3091 // we just exit directly to keep the user space behaviour of 3092 // this function 3093 if (team != team_get_kernel_team()) { 3094 // If this is its main thread, set the team's exit status. 3095 if (thread == team->main_thread) { 3096 TeamLocker teamLocker(team); 3097 3098 if (!team->exit.initialized) { 3099 team->exit.reason = CLD_EXITED; 3100 team->exit.signal = 0; 3101 team->exit.signaling_user = 0; 3102 team->exit.status = returnValue; 3103 team->exit.initialized = true; 3104 } 3105 3106 teamLocker.Unlock(); 3107 } 3108 3109 Signal signal(SIGKILLTHR, SI_USER, B_OK, team->id); 3110 send_signal_to_thread(thread, signal, B_DO_NOT_RESCHEDULE); 3111 } else 3112 thread_exit(); 3113 } 3114 3115 3116 static status_t 3117 thread_kill_thread(thread_id id, bool kernel) 3118 { 3119 return thread_send_signal(id, SIGKILLTHR, SI_USER, B_OK, kernel); 3120 } 3121 3122 3123 status_t 3124 kill_thread(thread_id id) 3125 { 3126 return thread_kill_thread(id, true); 3127 } 3128 3129 3130 status_t 3131 send_data(thread_id thread, int32 code, const void *buffer, size_t bufferSize) 3132 { 3133 return send_data_etc(thread, code, buffer, bufferSize, 0); 3134 } 3135 3136 3137 int32 3138 receive_data(thread_id *sender, void *buffer, size_t bufferSize) 3139 { 3140 return receive_data_etc(sender, buffer, bufferSize, 0); 3141 } 3142 3143 3144 static bool 3145 thread_has_data(thread_id id, bool kernel) 3146 { 3147 Thread* currentThread = thread_get_current_thread(); 3148 Thread* thread; 3149 BReference<Thread> threadReference; 3150 if (id == currentThread->id) { 3151 thread = currentThread; 3152 } else { 3153 thread = Thread::Get(id); 3154 if (thread == NULL) 3155 return false; 3156 3157 threadReference.SetTo(thread, true); 3158 } 3159 3160 if (!kernel && thread->team != currentThread->team) 3161 return false; 3162 3163 int32 count; 3164 if (get_sem_count(thread->msg.read_sem, &count) != B_OK) 3165 return false; 3166 3167 return count == 0 ? false : true; 3168 } 3169 3170 3171 bool 3172 has_data(thread_id thread) 3173 { 3174 return thread_has_data(thread, true); 3175 } 3176 3177 3178 status_t 3179 _get_thread_info(thread_id id, thread_info *info, size_t size) 3180 { 3181 if (info == NULL || size != sizeof(thread_info) || id < B_OK) 3182 return B_BAD_VALUE; 3183 3184 // get the thread 3185 Thread* thread = Thread::GetAndLock(id); 3186 if (thread == NULL) 3187 return B_BAD_THREAD_ID; 3188 BReference<Thread> threadReference(thread, true); 3189 ThreadLocker threadLocker(thread, true); 3190 3191 // fill the info -- also requires the scheduler lock to be held 3192 InterruptsSpinLocker locker(thread->scheduler_lock); 3193 3194 fill_thread_info(thread, info, size); 3195 3196 return B_OK; 3197 } 3198 3199 3200 status_t 3201 _get_next_thread_info(team_id teamID, int32 *_cookie, thread_info *info, 3202 size_t size) 3203 { 3204 if (info == NULL || size != sizeof(thread_info) || teamID < 0) 3205 return B_BAD_VALUE; 3206 3207 int32 lastID = *_cookie; 3208 3209 // get the team 3210 Team* team = Team::GetAndLock(teamID); 3211 if (team == NULL) 3212 return B_BAD_VALUE; 3213 BReference<Team> teamReference(team, true); 3214 TeamLocker teamLocker(team, true); 3215 3216 Thread* thread = NULL; 3217 3218 if (lastID == 0) { 3219 // We start with the main thread 3220 thread = team->main_thread; 3221 } else { 3222 // Find the one thread with an ID greater than ours (as long as the IDs 3223 // don't wrap they are always sorted from highest to lowest). 3224 // TODO: That is broken not only when the IDs wrap, but also for the 3225 // kernel team, to which threads are added when they are dying. 3226 for (Thread* next = team->thread_list; next != NULL; 3227 next = next->team_next) { 3228 if (next->id <= lastID) 3229 break; 3230 3231 thread = next; 3232 } 3233 } 3234 3235 if (thread == NULL) 3236 return B_BAD_VALUE; 3237 3238 lastID = thread->id; 3239 *_cookie = lastID; 3240 3241 ThreadLocker threadLocker(thread); 3242 InterruptsSpinLocker locker(thread->scheduler_lock); 3243 3244 fill_thread_info(thread, info, size); 3245 3246 return B_OK; 3247 } 3248 3249 3250 thread_id 3251 find_thread(const char* name) 3252 { 3253 if (name == NULL) 3254 return thread_get_current_thread_id(); 3255 3256 InterruptsReadSpinLocker threadHashLocker(sThreadHashLock); 3257 3258 // Scanning the whole hash with the thread hash lock held isn't exactly 3259 // cheap, but since this function is probably used very rarely, and we 3260 // only need a read lock, it's probably acceptable. 3261 3262 for (ThreadHashTable::Iterator it = sThreadHash.GetIterator(); 3263 Thread* thread = it.Next();) { 3264 if (!thread->visible) 3265 continue; 3266 3267 if (strcmp(thread->name, name) == 0) 3268 return thread->id; 3269 } 3270 3271 return B_NAME_NOT_FOUND; 3272 } 3273 3274 3275 status_t 3276 rename_thread(thread_id id, const char* name) 3277 { 3278 if (name == NULL) 3279 return B_BAD_VALUE; 3280 3281 // get the thread 3282 Thread* thread = Thread::GetAndLock(id); 3283 if (thread == NULL) 3284 return B_BAD_THREAD_ID; 3285 BReference<Thread> threadReference(thread, true); 3286 ThreadLocker threadLocker(thread, true); 3287 3288 // check whether the operation is allowed 3289 if (thread->team != thread_get_current_thread()->team) 3290 return B_NOT_ALLOWED; 3291 3292 strlcpy(thread->name, name, B_OS_NAME_LENGTH); 3293 3294 team_id teamID = thread->team->id; 3295 3296 threadLocker.Unlock(); 3297 3298 // notify listeners 3299 sNotificationService.Notify(THREAD_NAME_CHANGED, teamID, id); 3300 // don't pass the thread structure, as it's unsafe, if it isn't ours 3301 3302 return B_OK; 3303 } 3304 3305 3306 static status_t 3307 thread_set_thread_priority(thread_id id, int32 priority, bool kernel) 3308 { 3309 // make sure the passed in priority is within bounds 3310 if (priority > THREAD_MAX_SET_PRIORITY) 3311 priority = THREAD_MAX_SET_PRIORITY; 3312 if (priority < THREAD_MIN_SET_PRIORITY) 3313 priority = THREAD_MIN_SET_PRIORITY; 3314 3315 // get the thread 3316 Thread* thread = Thread::GetAndLock(id); 3317 if (thread == NULL) 3318 return B_BAD_THREAD_ID; 3319 BReference<Thread> threadReference(thread, true); 3320 ThreadLocker threadLocker(thread, true); 3321 3322 // check whether the change is allowed 3323 if (thread_is_idle_thread(thread) || !thread_check_permissions( 3324 thread_get_current_thread(), thread, kernel)) 3325 return B_NOT_ALLOWED; 3326 3327 return scheduler_set_thread_priority(thread, priority); 3328 } 3329 3330 3331 status_t 3332 set_thread_priority(thread_id id, int32 priority) 3333 { 3334 return thread_set_thread_priority(id, priority, true); 3335 } 3336 3337 3338 status_t 3339 snooze_etc(bigtime_t timeout, int timebase, uint32 flags) 3340 { 3341 return common_snooze_etc(timeout, timebase, flags, NULL); 3342 } 3343 3344 3345 /*! snooze() for internal kernel use only; doesn't interrupt on signals. */ 3346 status_t 3347 snooze(bigtime_t timeout) 3348 { 3349 return snooze_etc(timeout, B_SYSTEM_TIMEBASE, B_RELATIVE_TIMEOUT); 3350 } 3351 3352 3353 /*! snooze_until() for internal kernel use only; doesn't interrupt on 3354 signals. 3355 */ 3356 status_t 3357 snooze_until(bigtime_t timeout, int timebase) 3358 { 3359 return snooze_etc(timeout, timebase, B_ABSOLUTE_TIMEOUT); 3360 } 3361 3362 3363 status_t 3364 wait_for_thread(thread_id thread, status_t *_returnCode) 3365 { 3366 return wait_for_thread_etc(thread, 0, 0, _returnCode); 3367 } 3368 3369 3370 static status_t 3371 thread_suspend_thread(thread_id id, bool kernel) 3372 { 3373 return thread_send_signal(id, SIGSTOP, SI_USER, B_OK, kernel); 3374 } 3375 3376 3377 status_t 3378 suspend_thread(thread_id id) 3379 { 3380 return thread_suspend_thread(id, true); 3381 } 3382 3383 3384 static status_t 3385 thread_resume_thread(thread_id id, bool kernel) 3386 { 3387 // Using the kernel internal SIGNAL_CONTINUE_THREAD signal retains 3388 // compatibility to BeOS which documents the combination of suspend_thread() 3389 // and resume_thread() to interrupt threads waiting on semaphores. 3390 return thread_send_signal(id, SIGNAL_CONTINUE_THREAD, SI_USER, B_OK, kernel); 3391 } 3392 3393 3394 status_t 3395 resume_thread(thread_id id) 3396 { 3397 return thread_resume_thread(id, true); 3398 } 3399 3400 3401 thread_id 3402 spawn_kernel_thread(thread_func function, const char *name, int32 priority, 3403 void *arg) 3404 { 3405 return thread_create_thread( 3406 ThreadCreationAttributes(function, name, priority, arg), 3407 true); 3408 } 3409 3410 3411 int 3412 getrlimit(int resource, struct rlimit * rlp) 3413 { 3414 status_t error = common_getrlimit(resource, rlp); 3415 if (error != B_OK) { 3416 errno = error; 3417 return -1; 3418 } 3419 3420 return 0; 3421 } 3422 3423 3424 int 3425 setrlimit(int resource, const struct rlimit * rlp) 3426 { 3427 status_t error = common_setrlimit(resource, rlp); 3428 if (error != B_OK) { 3429 errno = error; 3430 return -1; 3431 } 3432 3433 return 0; 3434 } 3435 3436 3437 // #pragma mark - syscalls 3438 3439 3440 void 3441 _user_exit_thread(status_t returnValue) 3442 { 3443 exit_thread(returnValue); 3444 } 3445 3446 3447 status_t 3448 _user_kill_thread(thread_id thread) 3449 { 3450 return thread_kill_thread(thread, false); 3451 } 3452 3453 3454 status_t 3455 _user_cancel_thread(thread_id threadID, void (*cancelFunction)(int)) 3456 { 3457 // check the cancel function 3458 if (cancelFunction == NULL || !IS_USER_ADDRESS(cancelFunction)) 3459 return B_BAD_VALUE; 3460 3461 // get and lock the thread 3462 Thread* thread = Thread::GetAndLock(threadID); 3463 if (thread == NULL) 3464 return B_BAD_THREAD_ID; 3465 BReference<Thread> threadReference(thread, true); 3466 ThreadLocker threadLocker(thread, true); 3467 3468 // only threads of the same team can be canceled 3469 if (thread->team != thread_get_current_thread()->team) 3470 return B_NOT_ALLOWED; 3471 3472 // set the cancel function 3473 thread->cancel_function = cancelFunction; 3474 3475 // send the cancellation signal to the thread 3476 InterruptsReadSpinLocker teamLocker(thread->team_lock); 3477 SpinLocker locker(thread->team->signal_lock); 3478 return send_signal_to_thread_locked(thread, SIGNAL_CANCEL_THREAD, NULL, 0); 3479 } 3480 3481 3482 status_t 3483 _user_resume_thread(thread_id thread) 3484 { 3485 return thread_resume_thread(thread, false); 3486 } 3487 3488 3489 status_t 3490 _user_suspend_thread(thread_id thread) 3491 { 3492 return thread_suspend_thread(thread, false); 3493 } 3494 3495 3496 status_t 3497 _user_rename_thread(thread_id thread, const char *userName) 3498 { 3499 char name[B_OS_NAME_LENGTH]; 3500 3501 if (!IS_USER_ADDRESS(userName) 3502 || userName == NULL 3503 || user_strlcpy(name, userName, B_OS_NAME_LENGTH) < B_OK) 3504 return B_BAD_ADDRESS; 3505 3506 // rename_thread() forbids thread renames across teams, so we don't 3507 // need a "kernel" flag here. 3508 return rename_thread(thread, name); 3509 } 3510 3511 3512 int32 3513 _user_set_thread_priority(thread_id thread, int32 newPriority) 3514 { 3515 return thread_set_thread_priority(thread, newPriority, false); 3516 } 3517 3518 3519 thread_id 3520 _user_spawn_thread(thread_creation_attributes* userAttributes) 3521 { 3522 // copy the userland structure to the kernel 3523 char nameBuffer[B_OS_NAME_LENGTH]; 3524 ThreadCreationAttributes attributes; 3525 status_t error = attributes.InitFromUserAttributes(userAttributes, 3526 nameBuffer); 3527 if (error != B_OK) 3528 return error; 3529 3530 // create the thread 3531 thread_id threadID = thread_create_thread(attributes, false); 3532 3533 if (threadID >= 0) 3534 user_debug_thread_created(threadID); 3535 3536 return threadID; 3537 } 3538 3539 3540 status_t 3541 _user_snooze_etc(bigtime_t timeout, int timebase, uint32 flags, 3542 bigtime_t* userRemainingTime) 3543 { 3544 // We need to store more syscall restart parameters than usual and need a 3545 // somewhat different handling. Hence we can't use 3546 // syscall_restart_handle_timeout_pre() but do the job ourselves. 3547 struct restart_parameters { 3548 bigtime_t timeout; 3549 clockid_t timebase; 3550 uint32 flags; 3551 }; 3552 3553 Thread* thread = thread_get_current_thread(); 3554 3555 if ((thread->flags & THREAD_FLAGS_SYSCALL_RESTARTED) != 0) { 3556 // The syscall was restarted. Fetch the parameters from the stored 3557 // restart parameters. 3558 restart_parameters* restartParameters 3559 = (restart_parameters*)thread->syscall_restart.parameters; 3560 timeout = restartParameters->timeout; 3561 timebase = restartParameters->timebase; 3562 flags = restartParameters->flags; 3563 } else { 3564 // convert relative timeouts to absolute ones 3565 if ((flags & B_RELATIVE_TIMEOUT) != 0) { 3566 // not restarted yet and the flags indicate a relative timeout 3567 3568 // Make sure we use the system time base, so real-time clock changes 3569 // won't affect our wait. 3570 flags &= ~(uint32)B_TIMEOUT_REAL_TIME_BASE; 3571 if (timebase == CLOCK_REALTIME) 3572 timebase = CLOCK_MONOTONIC; 3573 3574 // get the current time and make the timeout absolute 3575 bigtime_t now; 3576 status_t error = user_timer_get_clock(timebase, now); 3577 if (error != B_OK) 3578 return error; 3579 3580 timeout += now; 3581 3582 // deal with overflow 3583 if (timeout < 0) 3584 timeout = B_INFINITE_TIMEOUT; 3585 3586 flags = (flags & ~B_RELATIVE_TIMEOUT) | B_ABSOLUTE_TIMEOUT; 3587 } else 3588 flags |= B_ABSOLUTE_TIMEOUT; 3589 } 3590 3591 // snooze 3592 bigtime_t remainingTime; 3593 status_t error = common_snooze_etc(timeout, timebase, 3594 flags | B_CAN_INTERRUPT | B_CHECK_PERMISSION, 3595 userRemainingTime != NULL ? &remainingTime : NULL); 3596 3597 // If interrupted, copy the remaining time back to userland and prepare the 3598 // syscall restart. 3599 if (error == B_INTERRUPTED) { 3600 if (userRemainingTime != NULL 3601 && (!IS_USER_ADDRESS(userRemainingTime) 3602 || user_memcpy(userRemainingTime, &remainingTime, 3603 sizeof(remainingTime)) != B_OK)) { 3604 return B_BAD_ADDRESS; 3605 } 3606 3607 // store the normalized values in the restart parameters 3608 restart_parameters* restartParameters 3609 = (restart_parameters*)thread->syscall_restart.parameters; 3610 restartParameters->timeout = timeout; 3611 restartParameters->timebase = timebase; 3612 restartParameters->flags = flags; 3613 3614 // restart the syscall, if possible 3615 atomic_or(&thread->flags, THREAD_FLAGS_RESTART_SYSCALL); 3616 } 3617 3618 return error; 3619 } 3620 3621 3622 void 3623 _user_thread_yield(void) 3624 { 3625 thread_yield(); 3626 } 3627 3628 3629 status_t 3630 _user_get_thread_info(thread_id id, thread_info *userInfo) 3631 { 3632 thread_info info; 3633 status_t status; 3634 3635 if (!IS_USER_ADDRESS(userInfo)) 3636 return B_BAD_ADDRESS; 3637 3638 status = _get_thread_info(id, &info, sizeof(thread_info)); 3639 3640 if (status >= B_OK 3641 && user_memcpy(userInfo, &info, sizeof(thread_info)) < B_OK) 3642 return B_BAD_ADDRESS; 3643 3644 return status; 3645 } 3646 3647 3648 status_t 3649 _user_get_next_thread_info(team_id team, int32 *userCookie, 3650 thread_info *userInfo) 3651 { 3652 status_t status; 3653 thread_info info; 3654 int32 cookie; 3655 3656 if (!IS_USER_ADDRESS(userCookie) || !IS_USER_ADDRESS(userInfo) 3657 || user_memcpy(&cookie, userCookie, sizeof(int32)) < B_OK) 3658 return B_BAD_ADDRESS; 3659 3660 status = _get_next_thread_info(team, &cookie, &info, sizeof(thread_info)); 3661 if (status < B_OK) 3662 return status; 3663 3664 if (user_memcpy(userCookie, &cookie, sizeof(int32)) < B_OK 3665 || user_memcpy(userInfo, &info, sizeof(thread_info)) < B_OK) 3666 return B_BAD_ADDRESS; 3667 3668 return status; 3669 } 3670 3671 3672 thread_id 3673 _user_find_thread(const char *userName) 3674 { 3675 char name[B_OS_NAME_LENGTH]; 3676 3677 if (userName == NULL) 3678 return find_thread(NULL); 3679 3680 if (!IS_USER_ADDRESS(userName) 3681 || user_strlcpy(name, userName, sizeof(name)) < B_OK) 3682 return B_BAD_ADDRESS; 3683 3684 return find_thread(name); 3685 } 3686 3687 3688 status_t 3689 _user_wait_for_thread(thread_id id, status_t *userReturnCode) 3690 { 3691 status_t returnCode; 3692 status_t status; 3693 3694 if (userReturnCode != NULL && !IS_USER_ADDRESS(userReturnCode)) 3695 return B_BAD_ADDRESS; 3696 3697 status = wait_for_thread_etc(id, B_CAN_INTERRUPT, 0, &returnCode); 3698 3699 if (status == B_OK && userReturnCode != NULL 3700 && user_memcpy(userReturnCode, &returnCode, sizeof(status_t)) < B_OK) { 3701 return B_BAD_ADDRESS; 3702 } 3703 3704 return syscall_restart_handle_post(status); 3705 } 3706 3707 3708 status_t 3709 _user_wait_for_thread_etc(thread_id id, uint32 flags, bigtime_t timeout, status_t *userReturnCode) 3710 { 3711 status_t returnCode; 3712 status_t status; 3713 3714 if (userReturnCode != NULL && !IS_USER_ADDRESS(userReturnCode)) 3715 return B_BAD_ADDRESS; 3716 3717 syscall_restart_handle_timeout_pre(flags, timeout); 3718 3719 status = wait_for_thread_etc(id, flags | B_CAN_INTERRUPT, timeout, &returnCode); 3720 3721 if (status == B_OK && userReturnCode != NULL 3722 && user_memcpy(userReturnCode, &returnCode, sizeof(status_t)) < B_OK) { 3723 return B_BAD_ADDRESS; 3724 } 3725 3726 return syscall_restart_handle_timeout_post(status, timeout); 3727 } 3728 3729 3730 bool 3731 _user_has_data(thread_id thread) 3732 { 3733 return thread_has_data(thread, false); 3734 } 3735 3736 3737 status_t 3738 _user_send_data(thread_id thread, int32 code, const void *buffer, 3739 size_t bufferSize) 3740 { 3741 if (buffer != NULL && !IS_USER_ADDRESS(buffer)) 3742 return B_BAD_ADDRESS; 3743 3744 return send_data_etc(thread, code, buffer, bufferSize, 3745 B_KILL_CAN_INTERRUPT); 3746 // supports userland buffers 3747 } 3748 3749 3750 status_t 3751 _user_receive_data(thread_id *_userSender, void *buffer, size_t bufferSize) 3752 { 3753 thread_id sender; 3754 status_t code; 3755 3756 if ((!IS_USER_ADDRESS(_userSender) && _userSender != NULL) 3757 || (!IS_USER_ADDRESS(buffer) && buffer != NULL)) { 3758 return B_BAD_ADDRESS; 3759 } 3760 3761 code = receive_data_etc(&sender, buffer, bufferSize, B_KILL_CAN_INTERRUPT); 3762 // supports userland buffers 3763 3764 if (_userSender != NULL) 3765 if (user_memcpy(_userSender, &sender, sizeof(thread_id)) < B_OK) 3766 return B_BAD_ADDRESS; 3767 3768 return code; 3769 } 3770 3771 3772 status_t 3773 _user_block_thread(uint32 flags, bigtime_t timeout) 3774 { 3775 syscall_restart_handle_timeout_pre(flags, timeout); 3776 flags |= B_CAN_INTERRUPT; 3777 3778 Thread* thread = thread_get_current_thread(); 3779 ThreadLocker threadLocker(thread); 3780 3781 // check, if already done 3782 status_t waitStatus; 3783 if (user_memcpy(&waitStatus, &thread->user_thread->wait_status, 3784 sizeof(waitStatus)) < B_OK) { 3785 return B_BAD_ADDRESS; 3786 } 3787 if (waitStatus <= 0) 3788 return waitStatus; 3789 3790 // nope, so wait 3791 thread_prepare_to_block(thread, flags, THREAD_BLOCK_TYPE_USER, NULL); 3792 3793 threadLocker.Unlock(); 3794 3795 status_t status = thread_block_with_timeout(flags, timeout); 3796 3797 threadLocker.Lock(); 3798 3799 // Interruptions or timeouts can race with other threads unblocking us. 3800 // Favor a wake-up by another thread, i.e. if someone changed the wait 3801 // status, use that. 3802 status_t oldStatus; 3803 if (user_memcpy(&oldStatus, &thread->user_thread->wait_status, 3804 sizeof(oldStatus)) < B_OK) { 3805 return B_BAD_ADDRESS; 3806 } 3807 if (oldStatus > 0) { 3808 if (user_memcpy(&thread->user_thread->wait_status, &status, 3809 sizeof(status)) < B_OK) { 3810 return B_BAD_ADDRESS; 3811 } 3812 } else { 3813 status = oldStatus; 3814 } 3815 3816 threadLocker.Unlock(); 3817 3818 return syscall_restart_handle_timeout_post(status, timeout); 3819 } 3820 3821 3822 status_t 3823 _user_unblock_thread(thread_id threadID, status_t status) 3824 { 3825 status_t error = user_unblock_thread(threadID, status); 3826 3827 if (error == B_OK) 3828 scheduler_reschedule_if_necessary(); 3829 3830 return error; 3831 } 3832 3833 3834 status_t 3835 _user_unblock_threads(thread_id* userThreads, uint32 count, status_t status) 3836 { 3837 enum { 3838 MAX_USER_THREADS_TO_UNBLOCK = 128 3839 }; 3840 3841 if (userThreads == NULL || !IS_USER_ADDRESS(userThreads)) 3842 return B_BAD_ADDRESS; 3843 if (count > MAX_USER_THREADS_TO_UNBLOCK) 3844 return B_BAD_VALUE; 3845 3846 thread_id threads[MAX_USER_THREADS_TO_UNBLOCK]; 3847 if (user_memcpy(threads, userThreads, count * sizeof(thread_id)) != B_OK) 3848 return B_BAD_ADDRESS; 3849 3850 for (uint32 i = 0; i < count; i++) 3851 user_unblock_thread(threads[i], status); 3852 3853 scheduler_reschedule_if_necessary(); 3854 3855 return B_OK; 3856 } 3857 3858 3859 // TODO: the following two functions don't belong here 3860 3861 3862 int 3863 _user_getrlimit(int resource, struct rlimit *urlp) 3864 { 3865 struct rlimit rl; 3866 int ret; 3867 3868 if (urlp == NULL) 3869 return EINVAL; 3870 3871 if (!IS_USER_ADDRESS(urlp)) 3872 return B_BAD_ADDRESS; 3873 3874 ret = common_getrlimit(resource, &rl); 3875 3876 if (ret == 0) { 3877 ret = user_memcpy(urlp, &rl, sizeof(struct rlimit)); 3878 if (ret < 0) 3879 return ret; 3880 3881 return 0; 3882 } 3883 3884 return ret; 3885 } 3886 3887 3888 int 3889 _user_setrlimit(int resource, const struct rlimit *userResourceLimit) 3890 { 3891 struct rlimit resourceLimit; 3892 3893 if (userResourceLimit == NULL) 3894 return EINVAL; 3895 3896 if (!IS_USER_ADDRESS(userResourceLimit) 3897 || user_memcpy(&resourceLimit, userResourceLimit, 3898 sizeof(struct rlimit)) < B_OK) 3899 return B_BAD_ADDRESS; 3900 3901 return common_setrlimit(resource, &resourceLimit); 3902 } 3903