1 /* 2 * Copyright 2018, Jérôme Duval, jerome.duval@gmail.com. 3 * Copyright 2005-2011, Ingo Weinhold, ingo_weinhold@gmx.de. 4 * Copyright 2002-2009, Axel Dörfler, axeld@pinc-software.de. 5 * Distributed under the terms of the MIT License. 6 * 7 * Copyright 2001-2002, Travis Geiselbrecht. All rights reserved. 8 * Distributed under the terms of the NewOS License. 9 */ 10 11 12 /*! Threading routines */ 13 14 15 #include <thread.h> 16 17 #include <errno.h> 18 #include <malloc.h> 19 #include <stdio.h> 20 #include <stdlib.h> 21 #include <string.h> 22 #include <sys/resource.h> 23 24 #include <algorithm> 25 26 #include <OS.h> 27 28 #include <util/AutoLock.h> 29 #include <util/ThreadAutoLock.h> 30 31 #include <arch/debug.h> 32 #include <boot/kernel_args.h> 33 #include <condition_variable.h> 34 #include <cpu.h> 35 #include <int.h> 36 #include <kimage.h> 37 #include <kscheduler.h> 38 #include <ksignal.h> 39 #include <Notifications.h> 40 #include <real_time_clock.h> 41 #include <slab/Slab.h> 42 #include <smp.h> 43 #include <syscalls.h> 44 #include <syscall_restart.h> 45 #include <team.h> 46 #include <tls.h> 47 #include <user_runtime.h> 48 #include <user_thread.h> 49 #include <vfs.h> 50 #include <vm/vm.h> 51 #include <vm/VMAddressSpace.h> 52 #include <wait_for_objects.h> 53 54 #include "TeamThreadTables.h" 55 56 57 //#define TRACE_THREAD 58 #ifdef TRACE_THREAD 59 # define TRACE(x) dprintf x 60 #else 61 # define TRACE(x) ; 62 #endif 63 64 65 #define THREAD_MAX_MESSAGE_SIZE 65536 66 67 68 // #pragma mark - ThreadHashTable 69 70 71 typedef BKernel::TeamThreadTable<Thread> ThreadHashTable; 72 73 74 // thread list 75 static Thread sIdleThreads[SMP_MAX_CPUS]; 76 static ThreadHashTable sThreadHash; 77 static rw_spinlock sThreadHashLock = B_RW_SPINLOCK_INITIALIZER; 78 static thread_id sNextThreadID = 2; 79 // ID 1 is allocated for the kernel by Team::Team() behind our back 80 81 // some arbitrarily chosen limits -- should probably depend on the available 82 // memory 83 static int32 sMaxThreads = 4096; 84 static int32 sUsedThreads = 0; 85 86 spinlock gThreadCreationLock = B_SPINLOCK_INITIALIZER; 87 88 89 struct UndertakerEntry : DoublyLinkedListLinkImpl<UndertakerEntry> { 90 Thread* thread; 91 team_id teamID; 92 93 UndertakerEntry(Thread* thread, team_id teamID) 94 : 95 thread(thread), 96 teamID(teamID) 97 { 98 } 99 }; 100 101 102 struct ThreadEntryArguments { 103 status_t (*kernelFunction)(void* argument); 104 void* argument; 105 bool enterUserland; 106 }; 107 108 struct UserThreadEntryArguments : ThreadEntryArguments { 109 addr_t userlandEntry; 110 void* userlandArgument1; 111 void* userlandArgument2; 112 pthread_t pthread; 113 arch_fork_arg* forkArgs; 114 uint32 flags; 115 }; 116 117 118 class ThreadNotificationService : public DefaultNotificationService { 119 public: 120 ThreadNotificationService() 121 : DefaultNotificationService("threads") 122 { 123 } 124 125 void Notify(uint32 eventCode, team_id teamID, thread_id threadID, 126 Thread* thread = NULL) 127 { 128 char eventBuffer[180]; 129 KMessage event; 130 event.SetTo(eventBuffer, sizeof(eventBuffer), THREAD_MONITOR); 131 event.AddInt32("event", eventCode); 132 event.AddInt32("team", teamID); 133 event.AddInt32("thread", threadID); 134 if (thread != NULL) 135 event.AddPointer("threadStruct", thread); 136 137 DefaultNotificationService::Notify(event, eventCode); 138 } 139 140 void Notify(uint32 eventCode, Thread* thread) 141 { 142 return Notify(eventCode, thread->id, thread->team->id, thread); 143 } 144 }; 145 146 147 static DoublyLinkedList<UndertakerEntry> sUndertakerEntries; 148 static spinlock sUndertakerLock = B_SPINLOCK_INITIALIZER; 149 static ConditionVariable sUndertakerCondition; 150 static ThreadNotificationService sNotificationService; 151 152 153 // object cache to allocate thread structures from 154 static object_cache* sThreadCache; 155 156 157 // #pragma mark - Thread 158 159 160 /*! Constructs a thread. 161 162 \param name The thread's name. 163 \param threadID The ID to be assigned to the new thread. If 164 \code < 0 \endcode a fresh one is allocated. 165 \param cpu The CPU the thread shall be assigned. 166 */ 167 Thread::Thread(const char* name, thread_id threadID, struct cpu_ent* cpu) 168 : 169 flags(0), 170 serial_number(-1), 171 hash_next(NULL), 172 team_next(NULL), 173 priority(-1), 174 io_priority(-1), 175 cpu(cpu), 176 previous_cpu(NULL), 177 pinned_to_cpu(0), 178 sig_block_mask(0), 179 sigsuspend_original_unblocked_mask(0), 180 user_signal_context(NULL), 181 signal_stack_base(0), 182 signal_stack_size(0), 183 signal_stack_enabled(false), 184 in_kernel(true), 185 has_yielded(false), 186 user_thread(NULL), 187 fault_handler(0), 188 page_faults_allowed(1), 189 team(NULL), 190 select_infos(NULL), 191 kernel_stack_area(-1), 192 kernel_stack_base(0), 193 user_stack_area(-1), 194 user_stack_base(0), 195 user_local_storage(0), 196 kernel_errno(0), 197 user_time(0), 198 kernel_time(0), 199 last_time(0), 200 cpu_clock_offset(0), 201 post_interrupt_callback(NULL), 202 post_interrupt_data(NULL) 203 { 204 id = threadID >= 0 ? threadID : allocate_thread_id(); 205 visible = false; 206 207 // init locks 208 char lockName[32]; 209 snprintf(lockName, sizeof(lockName), "Thread:%" B_PRId32, id); 210 mutex_init_etc(&fLock, lockName, MUTEX_FLAG_CLONE_NAME); 211 212 B_INITIALIZE_SPINLOCK(&time_lock); 213 B_INITIALIZE_SPINLOCK(&scheduler_lock); 214 B_INITIALIZE_RW_SPINLOCK(&team_lock); 215 216 // init name 217 if (name != NULL) 218 strlcpy(this->name, name, B_OS_NAME_LENGTH); 219 else 220 strcpy(this->name, "unnamed thread"); 221 222 exit.status = 0; 223 224 list_init(&exit.waiters); 225 226 exit.sem = -1; 227 msg.write_sem = -1; 228 msg.read_sem = -1; 229 230 // add to thread table -- yet invisible 231 InterruptsWriteSpinLocker threadHashLocker(sThreadHashLock); 232 sThreadHash.Insert(this); 233 } 234 235 236 Thread::~Thread() 237 { 238 // Delete resources that should actually be deleted by the thread itself, 239 // when it exited, but that might still exist, if the thread was never run. 240 241 if (user_stack_area >= 0) 242 delete_area(user_stack_area); 243 244 DeleteUserTimers(false); 245 246 // delete the resources, that may remain in either case 247 248 if (kernel_stack_area >= 0) 249 delete_area(kernel_stack_area); 250 251 fPendingSignals.Clear(); 252 253 if (exit.sem >= 0) 254 delete_sem(exit.sem); 255 if (msg.write_sem >= 0) 256 delete_sem(msg.write_sem); 257 if (msg.read_sem >= 0) 258 delete_sem(msg.read_sem); 259 260 scheduler_on_thread_destroy(this); 261 262 mutex_destroy(&fLock); 263 264 // remove from thread table 265 InterruptsWriteSpinLocker threadHashLocker(sThreadHashLock); 266 sThreadHash.Remove(this); 267 } 268 269 270 /*static*/ status_t 271 Thread::Create(const char* name, Thread*& _thread) 272 { 273 Thread* thread = new Thread(name, -1, NULL); 274 if (thread == NULL) 275 return B_NO_MEMORY; 276 277 status_t error = thread->Init(false); 278 if (error != B_OK) { 279 delete thread; 280 return error; 281 } 282 283 _thread = thread; 284 return B_OK; 285 } 286 287 288 /*static*/ Thread* 289 Thread::Get(thread_id id) 290 { 291 InterruptsReadSpinLocker threadHashLocker(sThreadHashLock); 292 Thread* thread = sThreadHash.Lookup(id); 293 if (thread != NULL) 294 thread->AcquireReference(); 295 return thread; 296 } 297 298 299 /*static*/ Thread* 300 Thread::GetAndLock(thread_id id) 301 { 302 // look it up and acquire a reference 303 InterruptsReadSpinLocker threadHashLocker(sThreadHashLock); 304 Thread* thread = sThreadHash.Lookup(id); 305 if (thread == NULL) 306 return NULL; 307 308 thread->AcquireReference(); 309 threadHashLocker.Unlock(); 310 311 // lock and check, if it is still in the hash table 312 thread->Lock(); 313 threadHashLocker.Lock(); 314 315 if (sThreadHash.Lookup(id) == thread) 316 return thread; 317 318 threadHashLocker.Unlock(); 319 320 // nope, the thread is no longer in the hash table 321 thread->UnlockAndReleaseReference(); 322 323 return NULL; 324 } 325 326 327 /*static*/ Thread* 328 Thread::GetDebug(thread_id id) 329 { 330 return sThreadHash.Lookup(id, false); 331 } 332 333 334 /*static*/ bool 335 Thread::IsAlive(thread_id id) 336 { 337 InterruptsReadSpinLocker threadHashLocker(sThreadHashLock); 338 return sThreadHash.Lookup(id) != NULL; 339 } 340 341 342 void* 343 Thread::operator new(size_t size) 344 { 345 return object_cache_alloc(sThreadCache, 0); 346 } 347 348 349 void* 350 Thread::operator new(size_t, void* pointer) 351 { 352 return pointer; 353 } 354 355 356 void 357 Thread::operator delete(void* pointer, size_t size) 358 { 359 object_cache_free(sThreadCache, pointer, 0); 360 } 361 362 363 status_t 364 Thread::Init(bool idleThread) 365 { 366 status_t error = scheduler_on_thread_create(this, idleThread); 367 if (error != B_OK) 368 return error; 369 370 char temp[64]; 371 snprintf(temp, sizeof(temp), "thread_%" B_PRId32 "_retcode_sem", id); 372 exit.sem = create_sem(0, temp); 373 if (exit.sem < 0) 374 return exit.sem; 375 376 snprintf(temp, sizeof(temp), "%s send", name); 377 msg.write_sem = create_sem(1, temp); 378 if (msg.write_sem < 0) 379 return msg.write_sem; 380 381 snprintf(temp, sizeof(temp), "%s receive", name); 382 msg.read_sem = create_sem(0, temp); 383 if (msg.read_sem < 0) 384 return msg.read_sem; 385 386 error = arch_thread_init_thread_struct(this); 387 if (error != B_OK) 388 return error; 389 390 return B_OK; 391 } 392 393 394 /*! Checks whether the thread is still in the thread hash table. 395 */ 396 bool 397 Thread::IsAlive() const 398 { 399 InterruptsReadSpinLocker threadHashLocker(sThreadHashLock); 400 401 return sThreadHash.Lookup(id) != NULL; 402 } 403 404 405 void 406 Thread::ResetSignalsOnExec() 407 { 408 // We are supposed keep the pending signals and the signal mask. Only the 409 // signal stack, if set, shall be unset. 410 411 sigsuspend_original_unblocked_mask = 0; 412 user_signal_context = NULL; 413 signal_stack_base = 0; 414 signal_stack_size = 0; 415 signal_stack_enabled = false; 416 } 417 418 419 /*! Adds the given user timer to the thread and, if user-defined, assigns it an 420 ID. 421 422 The caller must hold the thread's lock. 423 424 \param timer The timer to be added. If it doesn't have an ID yet, it is 425 considered user-defined and will be assigned an ID. 426 \return \c B_OK, if the timer was added successfully, another error code 427 otherwise. 428 */ 429 status_t 430 Thread::AddUserTimer(UserTimer* timer) 431 { 432 // If the timer is user-defined, check timer limit and increment 433 // user-defined count. 434 if (timer->ID() < 0 && !team->CheckAddUserDefinedTimer()) 435 return EAGAIN; 436 437 fUserTimers.AddTimer(timer); 438 439 return B_OK; 440 } 441 442 443 /*! Removes the given user timer from the thread. 444 445 The caller must hold the thread's lock. 446 447 \param timer The timer to be removed. 448 449 */ 450 void 451 Thread::RemoveUserTimer(UserTimer* timer) 452 { 453 fUserTimers.RemoveTimer(timer); 454 455 if (timer->ID() >= USER_TIMER_FIRST_USER_DEFINED_ID) 456 team->UserDefinedTimersRemoved(1); 457 } 458 459 460 /*! Deletes all (or all user-defined) user timers of the thread. 461 462 The caller must hold the thread's lock. 463 464 \param userDefinedOnly If \c true, only the user-defined timers are deleted, 465 otherwise all timers are deleted. 466 */ 467 void 468 Thread::DeleteUserTimers(bool userDefinedOnly) 469 { 470 int32 count = fUserTimers.DeleteTimers(userDefinedOnly); 471 if (count > 0) 472 team->UserDefinedTimersRemoved(count); 473 } 474 475 476 void 477 Thread::DeactivateCPUTimeUserTimers() 478 { 479 while (ThreadTimeUserTimer* timer = fCPUTimeUserTimers.Head()) 480 timer->Deactivate(); 481 } 482 483 484 // #pragma mark - ThreadListIterator 485 486 487 ThreadListIterator::ThreadListIterator() 488 { 489 // queue the entry 490 InterruptsWriteSpinLocker locker(sThreadHashLock); 491 sThreadHash.InsertIteratorEntry(&fEntry); 492 } 493 494 495 ThreadListIterator::~ThreadListIterator() 496 { 497 // remove the entry 498 InterruptsWriteSpinLocker locker(sThreadHashLock); 499 sThreadHash.RemoveIteratorEntry(&fEntry); 500 } 501 502 503 Thread* 504 ThreadListIterator::Next() 505 { 506 // get the next team -- if there is one, get reference for it 507 InterruptsWriteSpinLocker locker(sThreadHashLock); 508 Thread* thread = sThreadHash.NextElement(&fEntry); 509 if (thread != NULL) 510 thread->AcquireReference(); 511 512 return thread; 513 } 514 515 516 // #pragma mark - ThreadCreationAttributes 517 518 519 ThreadCreationAttributes::ThreadCreationAttributes(thread_func function, 520 const char* name, int32 priority, void* arg, team_id team, 521 Thread* thread) 522 { 523 this->entry = NULL; 524 this->name = name; 525 this->priority = priority; 526 this->args1 = NULL; 527 this->args2 = NULL; 528 this->stack_address = NULL; 529 this->stack_size = 0; 530 this->guard_size = 0; 531 this->pthread = NULL; 532 this->flags = 0; 533 this->team = team >= 0 ? team : team_get_kernel_team()->id; 534 this->thread = thread; 535 this->signal_mask = 0; 536 this->additional_stack_size = 0; 537 this->kernelEntry = function; 538 this->kernelArgument = arg; 539 this->forkArgs = NULL; 540 } 541 542 543 /*! Initializes the structure from a userland structure. 544 \param userAttributes The userland structure (must be a userland address). 545 \param nameBuffer A character array of at least size B_OS_NAME_LENGTH, 546 which will be used for the \c name field, if the userland structure has 547 a name. The buffer must remain valid as long as this structure is in 548 use afterwards (or until it is reinitialized). 549 \return \c B_OK, if the initialization went fine, another error code 550 otherwise. 551 */ 552 status_t 553 ThreadCreationAttributes::InitFromUserAttributes( 554 const thread_creation_attributes* userAttributes, char* nameBuffer) 555 { 556 if (userAttributes == NULL || !IS_USER_ADDRESS(userAttributes) 557 || user_memcpy((thread_creation_attributes*)this, userAttributes, 558 sizeof(thread_creation_attributes)) != B_OK) { 559 return B_BAD_ADDRESS; 560 } 561 562 if (stack_size != 0 563 && (stack_size < MIN_USER_STACK_SIZE 564 || stack_size > MAX_USER_STACK_SIZE)) { 565 return B_BAD_VALUE; 566 } 567 568 if (entry == NULL || !IS_USER_ADDRESS(entry) 569 || (stack_address != NULL && !IS_USER_ADDRESS(stack_address)) 570 || (name != NULL && (!IS_USER_ADDRESS(name) 571 || user_strlcpy(nameBuffer, name, B_OS_NAME_LENGTH) < 0))) { 572 return B_BAD_ADDRESS; 573 } 574 575 name = name != NULL ? nameBuffer : "user thread"; 576 577 // kernel only attributes (not in thread_creation_attributes): 578 Thread* currentThread = thread_get_current_thread(); 579 team = currentThread->team->id; 580 thread = NULL; 581 signal_mask = currentThread->sig_block_mask; 582 // inherit the current thread's signal mask 583 additional_stack_size = 0; 584 kernelEntry = NULL; 585 kernelArgument = NULL; 586 forkArgs = NULL; 587 588 return B_OK; 589 } 590 591 592 // #pragma mark - private functions 593 594 595 /*! Inserts a thread into a team. 596 The caller must hold the team's lock, the thread's lock, and the scheduler 597 lock. 598 */ 599 static void 600 insert_thread_into_team(Team *team, Thread *thread) 601 { 602 thread->team_next = team->thread_list; 603 team->thread_list = thread; 604 team->num_threads++; 605 606 if (team->num_threads == 1) { 607 // this was the first thread 608 team->main_thread = thread; 609 } 610 thread->team = team; 611 } 612 613 614 /*! Removes a thread from a team. 615 The caller must hold the team's lock, the thread's lock, and the scheduler 616 lock. 617 */ 618 static void 619 remove_thread_from_team(Team *team, Thread *thread) 620 { 621 Thread *temp, *last = NULL; 622 623 for (temp = team->thread_list; temp != NULL; temp = temp->team_next) { 624 if (temp == thread) { 625 if (last == NULL) 626 team->thread_list = temp->team_next; 627 else 628 last->team_next = temp->team_next; 629 630 team->num_threads--; 631 break; 632 } 633 last = temp; 634 } 635 } 636 637 638 static status_t 639 enter_userspace(Thread* thread, UserThreadEntryArguments* args) 640 { 641 status_t error = arch_thread_init_tls(thread); 642 if (error != B_OK) { 643 dprintf("Failed to init TLS for new userland thread \"%s\" (%" B_PRId32 644 ")\n", thread->name, thread->id); 645 free(args->forkArgs); 646 return error; 647 } 648 649 user_debug_update_new_thread_flags(thread); 650 651 // init the thread's user_thread 652 user_thread* userThread = thread->user_thread; 653 set_ac(); 654 userThread->pthread = args->pthread; 655 userThread->flags = 0; 656 userThread->wait_status = B_OK; 657 userThread->defer_signals 658 = (args->flags & THREAD_CREATION_FLAG_DEFER_SIGNALS) != 0 ? 1 : 0; 659 userThread->pending_signals = 0; 660 clear_ac(); 661 662 // initialize default TLS fields 663 addr_t tls[TLS_FIRST_FREE_SLOT]; 664 memset(tls, 0, sizeof(tls)); 665 tls[TLS_BASE_ADDRESS_SLOT] = thread->user_local_storage; 666 tls[TLS_THREAD_ID_SLOT] = thread->id; 667 tls[TLS_USER_THREAD_SLOT] = (addr_t)thread->user_thread; 668 669 if (args->forkArgs == NULL) { 670 if (user_memcpy((void*)thread->user_local_storage, tls, sizeof(tls)) != B_OK) 671 return B_BAD_ADDRESS; 672 } else { 673 // This is a fork()ed thread. 674 675 // Update select TLS values, do not clear the whole array. 676 set_ac(); 677 addr_t* userTls = (addr_t*)thread->user_local_storage; 678 ASSERT(userTls[TLS_BASE_ADDRESS_SLOT] == thread->user_local_storage); 679 userTls[TLS_THREAD_ID_SLOT] = tls[TLS_THREAD_ID_SLOT]; 680 userTls[TLS_USER_THREAD_SLOT] = tls[TLS_USER_THREAD_SLOT]; 681 clear_ac(); 682 683 // Copy the fork args onto the stack and free them. 684 arch_fork_arg archArgs = *args->forkArgs; 685 free(args->forkArgs); 686 687 arch_restore_fork_frame(&archArgs); 688 // this one won't return here 689 return B_ERROR; 690 } 691 692 // Jump to the entry point in user space. Only returns, if something fails. 693 return arch_thread_enter_userspace(thread, args->userlandEntry, 694 args->userlandArgument1, args->userlandArgument2); 695 } 696 697 698 status_t 699 thread_enter_userspace_new_team(Thread* thread, addr_t entryFunction, 700 void* argument1, void* argument2) 701 { 702 UserThreadEntryArguments entryArgs; 703 entryArgs.kernelFunction = NULL; 704 entryArgs.argument = NULL; 705 entryArgs.enterUserland = true; 706 entryArgs.userlandEntry = (addr_t)entryFunction; 707 entryArgs.userlandArgument1 = argument1; 708 entryArgs.userlandArgument2 = argument2; 709 entryArgs.pthread = NULL; 710 entryArgs.forkArgs = NULL; 711 entryArgs.flags = 0; 712 713 return enter_userspace(thread, &entryArgs); 714 } 715 716 717 static void 718 common_thread_entry(void* _args) 719 { 720 Thread* thread = thread_get_current_thread(); 721 722 // The thread is new and has been scheduled the first time. 723 724 scheduler_new_thread_entry(thread); 725 726 // unlock the scheduler lock and enable interrupts 727 release_spinlock(&thread->scheduler_lock); 728 enable_interrupts(); 729 730 // call the kernel function, if any 731 ThreadEntryArguments* args = (ThreadEntryArguments*)_args; 732 if (args->kernelFunction != NULL) 733 args->kernelFunction(args->argument); 734 735 // If requested, enter userland, now. 736 if (args->enterUserland) { 737 enter_userspace(thread, (UserThreadEntryArguments*)args); 738 // only returns or error 739 740 // If that's the team's main thread, init the team exit info. 741 if (thread == thread->team->main_thread) 742 team_init_exit_info_on_error(thread->team); 743 } 744 745 // we're done 746 thread_exit(); 747 } 748 749 750 /*! Prepares the given thread's kernel stack for executing its entry function. 751 752 The data pointed to by \a data of size \a dataSize are copied to the 753 thread's kernel stack. A pointer to the copy's data is passed to the entry 754 function. The entry function is common_thread_entry(). 755 756 \param thread The thread. 757 \param data Pointer to data to be copied to the thread's stack and passed 758 to the entry function. 759 \param dataSize The size of \a data. 760 */ 761 static void 762 init_thread_kernel_stack(Thread* thread, const void* data, size_t dataSize) 763 { 764 uint8* stack = (uint8*)thread->kernel_stack_base; 765 uint8* stackTop = (uint8*)thread->kernel_stack_top; 766 767 // clear (or rather invalidate) the kernel stack contents, if compiled with 768 // debugging 769 #if KDEBUG > 0 770 # if defined(DEBUG_KERNEL_STACKS) && defined(STACK_GROWS_DOWNWARDS) 771 memset((void*)(stack + KERNEL_STACK_GUARD_PAGES * B_PAGE_SIZE), 0xcc, 772 KERNEL_STACK_SIZE); 773 # else 774 memset(stack, 0xcc, KERNEL_STACK_SIZE); 775 # endif 776 #endif 777 778 // copy the data onto the stack, with 16-byte alignment to be on the safe 779 // side 780 void* clonedData; 781 #ifdef STACK_GROWS_DOWNWARDS 782 clonedData = (void*)ROUNDDOWN((addr_t)stackTop - dataSize, 16); 783 stackTop = (uint8*)clonedData; 784 #else 785 clonedData = (void*)ROUNDUP((addr_t)stack, 16); 786 stack = (uint8*)clonedData + ROUNDUP(dataSize, 16); 787 #endif 788 789 memcpy(clonedData, data, dataSize); 790 791 arch_thread_init_kthread_stack(thread, stack, stackTop, 792 &common_thread_entry, clonedData); 793 } 794 795 796 static status_t 797 create_thread_user_stack(Team* team, Thread* thread, void* _stackBase, 798 size_t stackSize, size_t additionalSize, size_t guardSize, 799 char* nameBuffer) 800 { 801 area_id stackArea = -1; 802 uint8* stackBase = (uint8*)_stackBase; 803 804 if (stackBase != NULL) { 805 // A stack has been specified. It must be large enough to hold the 806 // TLS space at least. Guard pages are ignored for existing stacks. 807 STATIC_ASSERT(TLS_SIZE < MIN_USER_STACK_SIZE); 808 if (stackSize < MIN_USER_STACK_SIZE) 809 return B_BAD_VALUE; 810 811 stackSize -= TLS_SIZE; 812 } else { 813 // No user-defined stack -- allocate one. For non-main threads the stack 814 // will be between USER_STACK_REGION and the main thread stack area. For 815 // a main thread the position is fixed. 816 817 guardSize = PAGE_ALIGN(guardSize); 818 819 if (stackSize == 0) { 820 // Use the default size (a different one for a main thread). 821 stackSize = thread->id == team->id 822 ? USER_MAIN_THREAD_STACK_SIZE : USER_STACK_SIZE; 823 } else { 824 // Verify that the given stack size is large enough. 825 if (stackSize < MIN_USER_STACK_SIZE) 826 return B_BAD_VALUE; 827 828 stackSize = PAGE_ALIGN(stackSize); 829 } 830 831 size_t areaSize = PAGE_ALIGN(guardSize + stackSize + TLS_SIZE 832 + additionalSize); 833 834 snprintf(nameBuffer, B_OS_NAME_LENGTH, "%s_%" B_PRId32 "_stack", 835 thread->name, thread->id); 836 837 stackBase = (uint8*)USER_STACK_REGION; 838 839 virtual_address_restrictions virtualRestrictions = {}; 840 virtualRestrictions.address_specification = B_RANDOMIZED_BASE_ADDRESS; 841 virtualRestrictions.address = (void*)stackBase; 842 843 physical_address_restrictions physicalRestrictions = {}; 844 845 stackArea = create_area_etc(team->id, nameBuffer, 846 areaSize, B_NO_LOCK, B_READ_AREA | B_WRITE_AREA | B_STACK_AREA, 847 0, guardSize, &virtualRestrictions, &physicalRestrictions, 848 (void**)&stackBase); 849 if (stackArea < 0) 850 return stackArea; 851 } 852 853 // set the stack 854 ThreadLocker threadLocker(thread); 855 #ifdef STACK_GROWS_DOWNWARDS 856 thread->user_stack_base = (addr_t)stackBase + guardSize; 857 #else 858 thread->user_stack_base = (addr_t)stackBase; 859 #endif 860 thread->user_stack_size = stackSize; 861 thread->user_stack_area = stackArea; 862 863 return B_OK; 864 } 865 866 867 status_t 868 thread_create_user_stack(Team* team, Thread* thread, void* stackBase, 869 size_t stackSize, size_t additionalSize) 870 { 871 char nameBuffer[B_OS_NAME_LENGTH]; 872 return create_thread_user_stack(team, thread, stackBase, stackSize, 873 additionalSize, USER_STACK_GUARD_SIZE, nameBuffer); 874 } 875 876 877 /*! Creates a new thread. 878 879 \param attributes The thread creation attributes, specifying the team in 880 which to create the thread, as well as a whole bunch of other arguments. 881 \param kernel \c true, if a kernel-only thread shall be created, \c false, 882 if the thread shall also be able to run in userland. 883 \return The ID of the newly created thread (>= 0) or an error code on 884 failure. 885 */ 886 thread_id 887 thread_create_thread(const ThreadCreationAttributes& attributes, bool kernel) 888 { 889 status_t status = B_OK; 890 891 TRACE(("thread_create_thread(%s, thread = %p, %s)\n", attributes.name, 892 attributes.thread, kernel ? "kernel" : "user")); 893 894 // get the team 895 Team* team = Team::Get(attributes.team); 896 if (team == NULL) 897 return B_BAD_TEAM_ID; 898 BReference<Team> teamReference(team, true); 899 900 // If a thread object is given, acquire a reference to it, otherwise create 901 // a new thread object with the given attributes. 902 Thread* thread = attributes.thread; 903 if (thread != NULL) { 904 thread->AcquireReference(); 905 } else { 906 status = Thread::Create(attributes.name, thread); 907 if (status != B_OK) 908 return status; 909 } 910 BReference<Thread> threadReference(thread, true); 911 912 thread->team = team; 913 // set already, so, if something goes wrong, the team pointer is 914 // available for deinitialization 915 thread->priority = attributes.priority == -1 916 ? B_NORMAL_PRIORITY : attributes.priority; 917 thread->priority = std::max(thread->priority, 918 (int32)THREAD_MIN_SET_PRIORITY); 919 thread->priority = std::min(thread->priority, 920 (int32)THREAD_MAX_SET_PRIORITY); 921 thread->state = B_THREAD_SUSPENDED; 922 923 thread->sig_block_mask = attributes.signal_mask; 924 925 // init debug structure 926 init_thread_debug_info(&thread->debug_info); 927 928 // create the kernel stack 929 char stackName[B_OS_NAME_LENGTH]; 930 snprintf(stackName, B_OS_NAME_LENGTH, "%s_%" B_PRId32 "_kstack", 931 thread->name, thread->id); 932 virtual_address_restrictions virtualRestrictions = {}; 933 virtualRestrictions.address_specification = B_ANY_KERNEL_ADDRESS; 934 physical_address_restrictions physicalRestrictions = {}; 935 936 thread->kernel_stack_area = create_area_etc(B_SYSTEM_TEAM, stackName, 937 KERNEL_STACK_SIZE + KERNEL_STACK_GUARD_PAGES * B_PAGE_SIZE, 938 B_FULL_LOCK, B_KERNEL_READ_AREA | B_KERNEL_WRITE_AREA 939 | B_KERNEL_STACK_AREA, 0, KERNEL_STACK_GUARD_PAGES * B_PAGE_SIZE, 940 &virtualRestrictions, &physicalRestrictions, 941 (void**)&thread->kernel_stack_base); 942 943 if (thread->kernel_stack_area < 0) { 944 // we're not yet part of a team, so we can just bail out 945 status = thread->kernel_stack_area; 946 947 dprintf("create_thread: error creating kernel stack: %s!\n", 948 strerror(status)); 949 950 return status; 951 } 952 953 thread->kernel_stack_top = thread->kernel_stack_base + KERNEL_STACK_SIZE 954 + KERNEL_STACK_GUARD_PAGES * B_PAGE_SIZE; 955 956 if (kernel) { 957 // Init the thread's kernel stack. It will start executing 958 // common_thread_entry() with the arguments we prepare here. 959 ThreadEntryArguments entryArgs; 960 entryArgs.kernelFunction = attributes.kernelEntry; 961 entryArgs.argument = attributes.kernelArgument; 962 entryArgs.enterUserland = false; 963 964 init_thread_kernel_stack(thread, &entryArgs, sizeof(entryArgs)); 965 } else { 966 // create the userland stack, if the thread doesn't have one yet 967 if (thread->user_stack_base == 0) { 968 status = create_thread_user_stack(team, thread, 969 attributes.stack_address, attributes.stack_size, 970 attributes.additional_stack_size, attributes.guard_size, 971 stackName); 972 if (status != B_OK) 973 return status; 974 } 975 976 // Init the thread's kernel stack. It will start executing 977 // common_thread_entry() with the arguments we prepare here. 978 UserThreadEntryArguments entryArgs; 979 entryArgs.kernelFunction = attributes.kernelEntry; 980 entryArgs.argument = attributes.kernelArgument; 981 entryArgs.enterUserland = true; 982 entryArgs.userlandEntry = (addr_t)attributes.entry; 983 entryArgs.userlandArgument1 = attributes.args1; 984 entryArgs.userlandArgument2 = attributes.args2; 985 entryArgs.pthread = attributes.pthread; 986 entryArgs.forkArgs = attributes.forkArgs; 987 entryArgs.flags = attributes.flags; 988 989 init_thread_kernel_stack(thread, &entryArgs, sizeof(entryArgs)); 990 991 // create the pre-defined thread timers 992 status = user_timer_create_thread_timers(team, thread); 993 if (status != B_OK) 994 return status; 995 } 996 997 // lock the team and see, if it is still alive 998 TeamLocker teamLocker(team); 999 if (team->state >= TEAM_STATE_SHUTDOWN) 1000 return B_BAD_TEAM_ID; 1001 1002 bool debugNewThread = false; 1003 if (!kernel) { 1004 // allocate the user_thread structure, if not already allocated 1005 if (thread->user_thread == NULL) { 1006 thread->user_thread = team_allocate_user_thread(team); 1007 if (thread->user_thread == NULL) 1008 return B_NO_MEMORY; 1009 } 1010 1011 // If the new thread belongs to the same team as the current thread, it 1012 // may inherit some of the thread debug flags. 1013 Thread* currentThread = thread_get_current_thread(); 1014 if (currentThread != NULL && currentThread->team == team) { 1015 // inherit all user flags... 1016 int32 debugFlags = atomic_get(¤tThread->debug_info.flags) 1017 & B_THREAD_DEBUG_USER_FLAG_MASK; 1018 1019 // ... save the syscall tracing flags, unless explicitely specified 1020 if (!(debugFlags & B_THREAD_DEBUG_SYSCALL_TRACE_CHILD_THREADS)) { 1021 debugFlags &= ~(B_THREAD_DEBUG_PRE_SYSCALL 1022 | B_THREAD_DEBUG_POST_SYSCALL); 1023 } 1024 1025 thread->debug_info.flags = debugFlags; 1026 1027 // stop the new thread, if desired 1028 debugNewThread = debugFlags & B_THREAD_DEBUG_STOP_CHILD_THREADS; 1029 } 1030 } 1031 1032 // We're going to make the thread live, now. The thread itself will take 1033 // over a reference to its Thread object. We'll acquire another reference 1034 // for our own use (and threadReference remains armed). 1035 1036 ThreadLocker threadLocker(thread); 1037 1038 InterruptsSpinLocker threadCreationLocker(gThreadCreationLock); 1039 WriteSpinLocker threadHashLocker(sThreadHashLock); 1040 1041 // check the thread limit 1042 if (sUsedThreads >= sMaxThreads) { 1043 // Clean up the user_thread structure. It's a bit unfortunate that the 1044 // Thread destructor cannot do that, so we have to do that explicitly. 1045 threadHashLocker.Unlock(); 1046 threadCreationLocker.Unlock(); 1047 1048 user_thread* userThread = thread->user_thread; 1049 thread->user_thread = NULL; 1050 1051 threadLocker.Unlock(); 1052 teamLocker.Unlock(); 1053 1054 if (userThread != NULL) 1055 team_free_user_thread(team, userThread); 1056 1057 return B_NO_MORE_THREADS; 1058 } 1059 1060 // make thread visible in global hash/list 1061 thread->visible = true; 1062 sUsedThreads++; 1063 1064 scheduler_on_thread_init(thread); 1065 1066 thread->AcquireReference(); 1067 1068 // Debug the new thread, if the parent thread required that (see above), 1069 // or the respective global team debug flag is set. But only, if a 1070 // debugger is installed for the team. 1071 if (!kernel) { 1072 int32 teamDebugFlags = atomic_get(&team->debug_info.flags); 1073 debugNewThread |= (teamDebugFlags & B_TEAM_DEBUG_STOP_NEW_THREADS) != 0; 1074 if (debugNewThread 1075 && (teamDebugFlags & B_TEAM_DEBUG_DEBUGGER_INSTALLED) != 0) { 1076 thread->debug_info.flags |= B_THREAD_DEBUG_STOP; 1077 } 1078 } 1079 1080 { 1081 SpinLocker signalLocker(team->signal_lock); 1082 SpinLocker timeLocker(team->time_lock); 1083 1084 // insert thread into team 1085 insert_thread_into_team(team, thread); 1086 } 1087 1088 threadHashLocker.Unlock(); 1089 threadCreationLocker.Unlock(); 1090 threadLocker.Unlock(); 1091 teamLocker.Unlock(); 1092 1093 // notify listeners 1094 sNotificationService.Notify(THREAD_ADDED, thread); 1095 1096 return thread->id; 1097 } 1098 1099 1100 static status_t 1101 undertaker(void* /*args*/) 1102 { 1103 while (true) { 1104 // wait for a thread to bury 1105 InterruptsSpinLocker locker(sUndertakerLock); 1106 1107 while (sUndertakerEntries.IsEmpty()) { 1108 ConditionVariableEntry conditionEntry; 1109 sUndertakerCondition.Add(&conditionEntry); 1110 locker.Unlock(); 1111 1112 conditionEntry.Wait(); 1113 1114 locker.Lock(); 1115 } 1116 1117 UndertakerEntry* _entry = sUndertakerEntries.RemoveHead(); 1118 locker.Unlock(); 1119 1120 UndertakerEntry entry = *_entry; 1121 // we need a copy, since the original entry is on the thread's stack 1122 1123 // we've got an entry 1124 Thread* thread = entry.thread; 1125 1126 // make sure the thread isn't running anymore 1127 InterruptsSpinLocker schedulerLocker(thread->scheduler_lock); 1128 ASSERT(thread->state == THREAD_STATE_FREE_ON_RESCHED); 1129 schedulerLocker.Unlock(); 1130 1131 // remove this thread from from the kernel team -- this makes it 1132 // unaccessible 1133 Team* kernelTeam = team_get_kernel_team(); 1134 TeamLocker kernelTeamLocker(kernelTeam); 1135 thread->Lock(); 1136 1137 InterruptsSpinLocker threadCreationLocker(gThreadCreationLock); 1138 SpinLocker signalLocker(kernelTeam->signal_lock); 1139 SpinLocker timeLocker(kernelTeam->time_lock); 1140 1141 remove_thread_from_team(kernelTeam, thread); 1142 1143 timeLocker.Unlock(); 1144 signalLocker.Unlock(); 1145 threadCreationLocker.Unlock(); 1146 1147 kernelTeamLocker.Unlock(); 1148 1149 // free the thread structure 1150 thread->UnlockAndReleaseReference(); 1151 } 1152 1153 // can never get here 1154 return B_OK; 1155 } 1156 1157 1158 /*! Returns the semaphore the thread is currently waiting on. 1159 1160 The return value is purely informative. 1161 The caller must hold the scheduler lock. 1162 1163 \param thread The thread. 1164 \return The ID of the semaphore the thread is currently waiting on or \c -1, 1165 if it isn't waiting on a semaphore. 1166 */ 1167 static sem_id 1168 get_thread_wait_sem(Thread* thread) 1169 { 1170 if (thread->state == B_THREAD_WAITING 1171 && thread->wait.type == THREAD_BLOCK_TYPE_SEMAPHORE) { 1172 return (sem_id)(addr_t)thread->wait.object; 1173 } 1174 return -1; 1175 } 1176 1177 1178 /*! Fills the thread_info structure with information from the specified thread. 1179 The caller must hold the thread's lock and the scheduler lock. 1180 */ 1181 static void 1182 fill_thread_info(Thread *thread, thread_info *info, size_t size) 1183 { 1184 info->thread = thread->id; 1185 info->team = thread->team->id; 1186 1187 strlcpy(info->name, thread->name, B_OS_NAME_LENGTH); 1188 1189 info->sem = -1; 1190 1191 if (thread->state == B_THREAD_WAITING) { 1192 info->state = B_THREAD_WAITING; 1193 1194 switch (thread->wait.type) { 1195 case THREAD_BLOCK_TYPE_SNOOZE: 1196 info->state = B_THREAD_ASLEEP; 1197 break; 1198 1199 case THREAD_BLOCK_TYPE_SEMAPHORE: 1200 { 1201 sem_id sem = (sem_id)(addr_t)thread->wait.object; 1202 if (sem == thread->msg.read_sem) 1203 info->state = B_THREAD_RECEIVING; 1204 else 1205 info->sem = sem; 1206 break; 1207 } 1208 1209 case THREAD_BLOCK_TYPE_CONDITION_VARIABLE: 1210 default: 1211 break; 1212 } 1213 } else 1214 info->state = (thread_state)thread->state; 1215 1216 info->priority = thread->priority; 1217 info->stack_base = (void *)thread->user_stack_base; 1218 info->stack_end = (void *)(thread->user_stack_base 1219 + thread->user_stack_size); 1220 1221 InterruptsSpinLocker threadTimeLocker(thread->time_lock); 1222 info->user_time = thread->user_time; 1223 info->kernel_time = thread->kernel_time; 1224 } 1225 1226 1227 static status_t 1228 send_data_etc(thread_id id, int32 code, const void *buffer, size_t bufferSize, 1229 int32 flags) 1230 { 1231 // get the thread 1232 Thread *target = Thread::Get(id); 1233 if (target == NULL) 1234 return B_BAD_THREAD_ID; 1235 BReference<Thread> targetReference(target, true); 1236 1237 // get the write semaphore 1238 ThreadLocker targetLocker(target); 1239 sem_id cachedSem = target->msg.write_sem; 1240 targetLocker.Unlock(); 1241 1242 if (bufferSize > THREAD_MAX_MESSAGE_SIZE) 1243 return B_NO_MEMORY; 1244 1245 status_t status = acquire_sem_etc(cachedSem, 1, flags, 0); 1246 if (status == B_INTERRUPTED) { 1247 // we got interrupted by a signal 1248 return status; 1249 } 1250 if (status != B_OK) { 1251 // Any other acquisition problems may be due to thread deletion 1252 return B_BAD_THREAD_ID; 1253 } 1254 1255 void* data; 1256 if (bufferSize > 0) { 1257 data = malloc(bufferSize); 1258 if (data == NULL) 1259 return B_NO_MEMORY; 1260 if (user_memcpy(data, buffer, bufferSize) != B_OK) { 1261 free(data); 1262 return B_BAD_DATA; 1263 } 1264 } else 1265 data = NULL; 1266 1267 targetLocker.Lock(); 1268 1269 // The target thread could have been deleted at this point. 1270 if (!target->IsAlive()) { 1271 targetLocker.Unlock(); 1272 free(data); 1273 return B_BAD_THREAD_ID; 1274 } 1275 1276 // Save message informations 1277 target->msg.sender = thread_get_current_thread()->id; 1278 target->msg.code = code; 1279 target->msg.size = bufferSize; 1280 target->msg.buffer = data; 1281 cachedSem = target->msg.read_sem; 1282 1283 targetLocker.Unlock(); 1284 1285 release_sem(cachedSem); 1286 return B_OK; 1287 } 1288 1289 1290 static int32 1291 receive_data_etc(thread_id *_sender, void *buffer, size_t bufferSize, 1292 int32 flags) 1293 { 1294 Thread *thread = thread_get_current_thread(); 1295 size_t size; 1296 int32 code; 1297 1298 status_t status = acquire_sem_etc(thread->msg.read_sem, 1, flags, 0); 1299 if (status != B_OK) { 1300 // Actually, we're not supposed to return error codes 1301 // but since the only reason this can fail is that we 1302 // were killed, it's probably okay to do so (but also 1303 // meaningless). 1304 return status; 1305 } 1306 1307 if (buffer != NULL && bufferSize != 0 && thread->msg.buffer != NULL) { 1308 size = min_c(bufferSize, thread->msg.size); 1309 status = user_memcpy(buffer, thread->msg.buffer, size); 1310 if (status != B_OK) { 1311 free(thread->msg.buffer); 1312 release_sem(thread->msg.write_sem); 1313 return status; 1314 } 1315 } 1316 1317 *_sender = thread->msg.sender; 1318 code = thread->msg.code; 1319 1320 free(thread->msg.buffer); 1321 release_sem(thread->msg.write_sem); 1322 1323 return code; 1324 } 1325 1326 1327 static status_t 1328 common_getrlimit(int resource, struct rlimit * rlp) 1329 { 1330 if (!rlp) 1331 return B_BAD_ADDRESS; 1332 1333 switch (resource) { 1334 case RLIMIT_AS: 1335 rlp->rlim_cur = __HAIKU_ADDR_MAX; 1336 rlp->rlim_max = __HAIKU_ADDR_MAX; 1337 return B_OK; 1338 1339 case RLIMIT_CORE: 1340 rlp->rlim_cur = 0; 1341 rlp->rlim_max = 0; 1342 return B_OK; 1343 1344 case RLIMIT_DATA: 1345 rlp->rlim_cur = RLIM_INFINITY; 1346 rlp->rlim_max = RLIM_INFINITY; 1347 return B_OK; 1348 1349 case RLIMIT_NOFILE: 1350 case RLIMIT_NOVMON: 1351 return vfs_getrlimit(resource, rlp); 1352 1353 case RLIMIT_STACK: 1354 { 1355 rlp->rlim_cur = USER_MAIN_THREAD_STACK_SIZE; 1356 rlp->rlim_max = USER_MAIN_THREAD_STACK_SIZE; 1357 return B_OK; 1358 } 1359 1360 default: 1361 return EINVAL; 1362 } 1363 1364 return B_OK; 1365 } 1366 1367 1368 static status_t 1369 common_setrlimit(int resource, const struct rlimit * rlp) 1370 { 1371 if (!rlp) 1372 return B_BAD_ADDRESS; 1373 1374 switch (resource) { 1375 case RLIMIT_CORE: 1376 // We don't support core file, so allow settings to 0/0 only. 1377 if (rlp->rlim_cur != 0 || rlp->rlim_max != 0) 1378 return EINVAL; 1379 return B_OK; 1380 1381 case RLIMIT_NOFILE: 1382 case RLIMIT_NOVMON: 1383 return vfs_setrlimit(resource, rlp); 1384 1385 default: 1386 return EINVAL; 1387 } 1388 1389 return B_OK; 1390 } 1391 1392 1393 static status_t 1394 common_snooze_etc(bigtime_t timeout, clockid_t clockID, uint32 flags, 1395 bigtime_t* _remainingTime) 1396 { 1397 #if KDEBUG 1398 if (!are_interrupts_enabled()) { 1399 panic("common_snooze_etc(): called with interrupts disabled, timeout " 1400 "%" B_PRIdBIGTIME, timeout); 1401 } 1402 #endif 1403 1404 switch (clockID) { 1405 case CLOCK_REALTIME: 1406 // make sure the B_TIMEOUT_REAL_TIME_BASE flag is set and fall 1407 // through 1408 flags |= B_TIMEOUT_REAL_TIME_BASE; 1409 case CLOCK_MONOTONIC: 1410 { 1411 // Store the start time, for the case that we get interrupted and 1412 // need to return the remaining time. For absolute timeouts we can 1413 // still get he time later, if needed. 1414 bigtime_t startTime 1415 = _remainingTime != NULL && (flags & B_RELATIVE_TIMEOUT) != 0 1416 ? system_time() : 0; 1417 1418 Thread* thread = thread_get_current_thread(); 1419 1420 thread_prepare_to_block(thread, flags, THREAD_BLOCK_TYPE_SNOOZE, 1421 NULL); 1422 status_t status = thread_block_with_timeout(flags, timeout); 1423 1424 if (status == B_TIMED_OUT || status == B_WOULD_BLOCK) 1425 return B_OK; 1426 1427 // If interrupted, compute the remaining time, if requested. 1428 if (status == B_INTERRUPTED && _remainingTime != NULL) { 1429 if ((flags & B_RELATIVE_TIMEOUT) != 0) { 1430 *_remainingTime = std::max( 1431 startTime + timeout - system_time(), (bigtime_t)0); 1432 } else { 1433 bigtime_t now = (flags & B_TIMEOUT_REAL_TIME_BASE) != 0 1434 ? real_time_clock_usecs() : system_time(); 1435 *_remainingTime = std::max(timeout - now, (bigtime_t)0); 1436 } 1437 } 1438 1439 return status; 1440 } 1441 1442 case CLOCK_THREAD_CPUTIME_ID: 1443 // Waiting for ourselves to do something isn't particularly 1444 // productive. 1445 return B_BAD_VALUE; 1446 1447 case CLOCK_PROCESS_CPUTIME_ID: 1448 default: 1449 // We don't have to support those, but we are allowed to. Could be 1450 // done be creating a UserTimer on the fly with a custom UserEvent 1451 // that would just wake us up. 1452 return ENOTSUP; 1453 } 1454 } 1455 1456 1457 // #pragma mark - debugger calls 1458 1459 1460 static int 1461 make_thread_unreal(int argc, char **argv) 1462 { 1463 int32 id = -1; 1464 1465 if (argc > 2) { 1466 print_debugger_command_usage(argv[0]); 1467 return 0; 1468 } 1469 1470 if (argc > 1) 1471 id = strtoul(argv[1], NULL, 0); 1472 1473 for (ThreadHashTable::Iterator it = sThreadHash.GetIterator(); 1474 Thread* thread = it.Next();) { 1475 if (id != -1 && thread->id != id) 1476 continue; 1477 1478 if (thread->priority > B_DISPLAY_PRIORITY) { 1479 scheduler_set_thread_priority(thread, B_NORMAL_PRIORITY); 1480 kprintf("thread %" B_PRId32 " made unreal\n", thread->id); 1481 } 1482 } 1483 1484 return 0; 1485 } 1486 1487 1488 static int 1489 set_thread_prio(int argc, char **argv) 1490 { 1491 int32 id; 1492 int32 prio; 1493 1494 if (argc > 3 || argc < 2) { 1495 print_debugger_command_usage(argv[0]); 1496 return 0; 1497 } 1498 1499 prio = strtoul(argv[1], NULL, 0); 1500 if (prio > THREAD_MAX_SET_PRIORITY) 1501 prio = THREAD_MAX_SET_PRIORITY; 1502 if (prio < THREAD_MIN_SET_PRIORITY) 1503 prio = THREAD_MIN_SET_PRIORITY; 1504 1505 if (argc > 2) 1506 id = strtoul(argv[2], NULL, 0); 1507 else 1508 id = thread_get_current_thread()->id; 1509 1510 bool found = false; 1511 for (ThreadHashTable::Iterator it = sThreadHash.GetIterator(); 1512 Thread* thread = it.Next();) { 1513 if (thread->id != id) 1514 continue; 1515 scheduler_set_thread_priority(thread, prio); 1516 kprintf("thread %" B_PRId32 " set to priority %" B_PRId32 "\n", id, prio); 1517 found = true; 1518 break; 1519 } 1520 if (!found) 1521 kprintf("thread %" B_PRId32 " (%#" B_PRIx32 ") not found\n", id, id); 1522 1523 return 0; 1524 } 1525 1526 1527 static int 1528 make_thread_suspended(int argc, char **argv) 1529 { 1530 int32 id; 1531 1532 if (argc > 2) { 1533 print_debugger_command_usage(argv[0]); 1534 return 0; 1535 } 1536 1537 if (argc == 1) 1538 id = thread_get_current_thread()->id; 1539 else 1540 id = strtoul(argv[1], NULL, 0); 1541 1542 bool found = false; 1543 for (ThreadHashTable::Iterator it = sThreadHash.GetIterator(); 1544 Thread* thread = it.Next();) { 1545 if (thread->id != id) 1546 continue; 1547 1548 Signal signal(SIGSTOP, SI_USER, B_OK, team_get_kernel_team()->id); 1549 send_signal_to_thread(thread, signal, B_DO_NOT_RESCHEDULE); 1550 1551 kprintf("thread %" B_PRId32 " suspended\n", id); 1552 found = true; 1553 break; 1554 } 1555 if (!found) 1556 kprintf("thread %" B_PRId32 " (%#" B_PRIx32 ") not found\n", id, id); 1557 1558 return 0; 1559 } 1560 1561 1562 static int 1563 make_thread_resumed(int argc, char **argv) 1564 { 1565 int32 id; 1566 1567 if (argc != 2) { 1568 print_debugger_command_usage(argv[0]); 1569 return 0; 1570 } 1571 1572 // force user to enter a thread id, as using 1573 // the current thread is usually not intended 1574 id = strtoul(argv[1], NULL, 0); 1575 1576 bool found = false; 1577 for (ThreadHashTable::Iterator it = sThreadHash.GetIterator(); 1578 Thread* thread = it.Next();) { 1579 if (thread->id != id) 1580 continue; 1581 1582 if (thread->state == B_THREAD_SUSPENDED || thread->state == B_THREAD_ASLEEP 1583 || thread->state == B_THREAD_WAITING) { 1584 scheduler_enqueue_in_run_queue(thread); 1585 kprintf("thread %" B_PRId32 " resumed\n", thread->id); 1586 } else 1587 kprintf("thread %" B_PRId32 " is already running\n", thread->id); 1588 found = true; 1589 break; 1590 } 1591 if (!found) 1592 kprintf("thread %" B_PRId32 " (%#" B_PRIx32 ") not found\n", id, id); 1593 1594 return 0; 1595 } 1596 1597 1598 static int 1599 drop_into_debugger(int argc, char **argv) 1600 { 1601 status_t err; 1602 int32 id; 1603 1604 if (argc > 2) { 1605 print_debugger_command_usage(argv[0]); 1606 return 0; 1607 } 1608 1609 if (argc == 1) 1610 id = thread_get_current_thread()->id; 1611 else 1612 id = strtoul(argv[1], NULL, 0); 1613 1614 err = _user_debug_thread(id); 1615 // TODO: This is a non-trivial syscall doing some locking, so this is 1616 // really nasty and may go seriously wrong. 1617 if (err) 1618 kprintf("drop failed\n"); 1619 else 1620 kprintf("thread %" B_PRId32 " dropped into user debugger\n", id); 1621 1622 return 0; 1623 } 1624 1625 1626 /*! Returns a user-readable string for a thread state. 1627 Only for use in the kernel debugger. 1628 */ 1629 static const char * 1630 state_to_text(Thread *thread, int32 state) 1631 { 1632 switch (state) { 1633 case B_THREAD_READY: 1634 return "ready"; 1635 1636 case B_THREAD_RUNNING: 1637 return "running"; 1638 1639 case B_THREAD_WAITING: 1640 { 1641 if (thread != NULL) { 1642 switch (thread->wait.type) { 1643 case THREAD_BLOCK_TYPE_SNOOZE: 1644 return "zzz"; 1645 1646 case THREAD_BLOCK_TYPE_SEMAPHORE: 1647 { 1648 sem_id sem = (sem_id)(addr_t)thread->wait.object; 1649 if (sem == thread->msg.read_sem) 1650 return "receive"; 1651 break; 1652 } 1653 } 1654 } 1655 1656 return "waiting"; 1657 } 1658 1659 case B_THREAD_SUSPENDED: 1660 return "suspended"; 1661 1662 case THREAD_STATE_FREE_ON_RESCHED: 1663 return "death"; 1664 1665 default: 1666 return "UNKNOWN"; 1667 } 1668 } 1669 1670 1671 static void 1672 print_thread_list_table_head() 1673 { 1674 kprintf("%-*s id state wait for %-*s cpu pri %-*s team " 1675 "name\n", 1676 B_PRINTF_POINTER_WIDTH, "thread", B_PRINTF_POINTER_WIDTH, "object", 1677 B_PRINTF_POINTER_WIDTH, "stack"); 1678 } 1679 1680 1681 static void 1682 _dump_thread_info(Thread *thread, bool shortInfo) 1683 { 1684 if (shortInfo) { 1685 kprintf("%p %6" B_PRId32 " %-10s", thread, thread->id, 1686 state_to_text(thread, thread->state)); 1687 1688 // does it block on a semaphore or a condition variable? 1689 if (thread->state == B_THREAD_WAITING) { 1690 switch (thread->wait.type) { 1691 case THREAD_BLOCK_TYPE_SEMAPHORE: 1692 { 1693 sem_id sem = (sem_id)(addr_t)thread->wait.object; 1694 if (sem == thread->msg.read_sem) 1695 kprintf("%*s", B_PRINTF_POINTER_WIDTH + 15, ""); 1696 else { 1697 kprintf("sem %-*" B_PRId32, 1698 B_PRINTF_POINTER_WIDTH + 5, sem); 1699 } 1700 break; 1701 } 1702 1703 case THREAD_BLOCK_TYPE_CONDITION_VARIABLE: 1704 kprintf("cvar %p ", thread->wait.object); 1705 break; 1706 1707 case THREAD_BLOCK_TYPE_SNOOZE: 1708 kprintf("%*s", B_PRINTF_POINTER_WIDTH + 15, ""); 1709 break; 1710 1711 case THREAD_BLOCK_TYPE_SIGNAL: 1712 kprintf("signal%*s", B_PRINTF_POINTER_WIDTH + 9, ""); 1713 break; 1714 1715 case THREAD_BLOCK_TYPE_MUTEX: 1716 kprintf("mutex %p ", thread->wait.object); 1717 break; 1718 1719 case THREAD_BLOCK_TYPE_RW_LOCK: 1720 kprintf("rwlock %p ", thread->wait.object); 1721 break; 1722 1723 case THREAD_BLOCK_TYPE_USER: 1724 kprintf("user%*s", B_PRINTF_POINTER_WIDTH + 11, ""); 1725 break; 1726 1727 case THREAD_BLOCK_TYPE_OTHER: 1728 kprintf("other%*s", B_PRINTF_POINTER_WIDTH + 10, ""); 1729 break; 1730 1731 default: 1732 kprintf("??? %p ", thread->wait.object); 1733 break; 1734 } 1735 } else 1736 kprintf("-%*s", B_PRINTF_POINTER_WIDTH + 14, ""); 1737 1738 // on which CPU does it run? 1739 if (thread->cpu) 1740 kprintf("%2d", thread->cpu->cpu_num); 1741 else 1742 kprintf(" -"); 1743 1744 kprintf("%4" B_PRId32 " %p%5" B_PRId32 " %s\n", thread->priority, 1745 (void *)thread->kernel_stack_base, thread->team->id, thread->name); 1746 1747 return; 1748 } 1749 1750 // print the long info 1751 1752 struct thread_death_entry *death = NULL; 1753 1754 kprintf("THREAD: %p\n", thread); 1755 kprintf("id: %" B_PRId32 " (%#" B_PRIx32 ")\n", thread->id, 1756 thread->id); 1757 kprintf("serial_number: %" B_PRId64 "\n", thread->serial_number); 1758 kprintf("name: \"%s\"\n", thread->name); 1759 kprintf("hash_next: %p\nteam_next: %p\n", 1760 thread->hash_next, thread->team_next); 1761 kprintf("priority: %" B_PRId32 " (I/O: %" B_PRId32 ")\n", 1762 thread->priority, thread->io_priority); 1763 kprintf("state: %s\n", state_to_text(thread, thread->state)); 1764 kprintf("cpu: %p ", thread->cpu); 1765 if (thread->cpu) 1766 kprintf("(%d)\n", thread->cpu->cpu_num); 1767 else 1768 kprintf("\n"); 1769 kprintf("sig_pending: %#" B_PRIx64 " (blocked: %#" B_PRIx64 1770 ", before sigsuspend(): %#" B_PRIx64 ")\n", 1771 (int64)thread->ThreadPendingSignals(), 1772 (int64)thread->sig_block_mask, 1773 (int64)thread->sigsuspend_original_unblocked_mask); 1774 kprintf("in_kernel: %d\n", thread->in_kernel); 1775 1776 if (thread->state == B_THREAD_WAITING) { 1777 kprintf("waiting for: "); 1778 1779 switch (thread->wait.type) { 1780 case THREAD_BLOCK_TYPE_SEMAPHORE: 1781 { 1782 sem_id sem = (sem_id)(addr_t)thread->wait.object; 1783 if (sem == thread->msg.read_sem) 1784 kprintf("data\n"); 1785 else 1786 kprintf("semaphore %" B_PRId32 "\n", sem); 1787 break; 1788 } 1789 1790 case THREAD_BLOCK_TYPE_CONDITION_VARIABLE: 1791 kprintf("condition variable %p\n", thread->wait.object); 1792 break; 1793 1794 case THREAD_BLOCK_TYPE_SNOOZE: 1795 kprintf("snooze()\n"); 1796 break; 1797 1798 case THREAD_BLOCK_TYPE_SIGNAL: 1799 kprintf("signal\n"); 1800 break; 1801 1802 case THREAD_BLOCK_TYPE_MUTEX: 1803 kprintf("mutex %p\n", thread->wait.object); 1804 break; 1805 1806 case THREAD_BLOCK_TYPE_RW_LOCK: 1807 kprintf("rwlock %p\n", thread->wait.object); 1808 break; 1809 1810 case THREAD_BLOCK_TYPE_USER: 1811 kprintf("user\n"); 1812 break; 1813 1814 case THREAD_BLOCK_TYPE_OTHER: 1815 kprintf("other (%s)\n", (char*)thread->wait.object); 1816 break; 1817 1818 default: 1819 kprintf("unknown (%p)\n", thread->wait.object); 1820 break; 1821 } 1822 } 1823 1824 kprintf("fault_handler: %p\n", (void *)thread->fault_handler); 1825 kprintf("team: %p, \"%s\"\n", thread->team, 1826 thread->team->Name()); 1827 kprintf(" exit.sem: %" B_PRId32 "\n", thread->exit.sem); 1828 kprintf(" exit.status: %#" B_PRIx32 " (%s)\n", thread->exit.status, 1829 strerror(thread->exit.status)); 1830 kprintf(" exit.waiters:\n"); 1831 while ((death = (struct thread_death_entry*)list_get_next_item( 1832 &thread->exit.waiters, death)) != NULL) { 1833 kprintf("\t%p (thread %" B_PRId32 ")\n", death, death->thread); 1834 } 1835 1836 kprintf("kernel_stack_area: %" B_PRId32 "\n", thread->kernel_stack_area); 1837 kprintf("kernel_stack_base: %p\n", (void *)thread->kernel_stack_base); 1838 kprintf("user_stack_area: %" B_PRId32 "\n", thread->user_stack_area); 1839 kprintf("user_stack_base: %p\n", (void *)thread->user_stack_base); 1840 kprintf("user_local_storage: %p\n", (void *)thread->user_local_storage); 1841 kprintf("user_thread: %p\n", (void *)thread->user_thread); 1842 kprintf("kernel_errno: %#x (%s)\n", thread->kernel_errno, 1843 strerror(thread->kernel_errno)); 1844 kprintf("kernel_time: %" B_PRId64 "\n", thread->kernel_time); 1845 kprintf("user_time: %" B_PRId64 "\n", thread->user_time); 1846 kprintf("flags: 0x%" B_PRIx32 "\n", thread->flags); 1847 kprintf("architecture dependant section:\n"); 1848 arch_thread_dump_info(&thread->arch_info); 1849 kprintf("scheduler data:\n"); 1850 scheduler_dump_thread_data(thread); 1851 } 1852 1853 1854 static int 1855 dump_thread_info(int argc, char **argv) 1856 { 1857 bool shortInfo = false; 1858 int argi = 1; 1859 if (argi < argc && strcmp(argv[argi], "-s") == 0) { 1860 shortInfo = true; 1861 print_thread_list_table_head(); 1862 argi++; 1863 } 1864 1865 if (argi == argc) { 1866 _dump_thread_info(thread_get_current_thread(), shortInfo); 1867 return 0; 1868 } 1869 1870 for (; argi < argc; argi++) { 1871 const char *name = argv[argi]; 1872 ulong arg = strtoul(name, NULL, 0); 1873 1874 if (IS_KERNEL_ADDRESS(arg)) { 1875 // semi-hack 1876 _dump_thread_info((Thread *)arg, shortInfo); 1877 continue; 1878 } 1879 1880 // walk through the thread list, trying to match name or id 1881 bool found = false; 1882 for (ThreadHashTable::Iterator it = sThreadHash.GetIterator(); 1883 Thread* thread = it.Next();) { 1884 if (!strcmp(name, thread->name) || thread->id == (thread_id)arg) { 1885 _dump_thread_info(thread, shortInfo); 1886 found = true; 1887 break; 1888 } 1889 } 1890 1891 if (!found) 1892 kprintf("thread \"%s\" (%" B_PRId32 ") doesn't exist!\n", name, (thread_id)arg); 1893 } 1894 1895 return 0; 1896 } 1897 1898 1899 static int 1900 dump_thread_list(int argc, char **argv) 1901 { 1902 bool realTimeOnly = false; 1903 bool calling = false; 1904 const char *callSymbol = NULL; 1905 addr_t callStart = 0; 1906 addr_t callEnd = 0; 1907 int32 requiredState = 0; 1908 team_id team = -1; 1909 sem_id sem = -1; 1910 1911 if (!strcmp(argv[0], "realtime")) 1912 realTimeOnly = true; 1913 else if (!strcmp(argv[0], "ready")) 1914 requiredState = B_THREAD_READY; 1915 else if (!strcmp(argv[0], "running")) 1916 requiredState = B_THREAD_RUNNING; 1917 else if (!strcmp(argv[0], "waiting")) { 1918 requiredState = B_THREAD_WAITING; 1919 1920 if (argc > 1) { 1921 sem = strtoul(argv[1], NULL, 0); 1922 if (sem == 0) 1923 kprintf("ignoring invalid semaphore argument.\n"); 1924 } 1925 } else if (!strcmp(argv[0], "calling")) { 1926 if (argc < 2) { 1927 kprintf("Need to give a symbol name or start and end arguments.\n"); 1928 return 0; 1929 } else if (argc == 3) { 1930 callStart = parse_expression(argv[1]); 1931 callEnd = parse_expression(argv[2]); 1932 } else 1933 callSymbol = argv[1]; 1934 1935 calling = true; 1936 } else if (argc > 1) { 1937 team = strtoul(argv[1], NULL, 0); 1938 if (team == 0) 1939 kprintf("ignoring invalid team argument.\n"); 1940 } 1941 1942 print_thread_list_table_head(); 1943 1944 for (ThreadHashTable::Iterator it = sThreadHash.GetIterator(); 1945 Thread* thread = it.Next();) { 1946 // filter out threads not matching the search criteria 1947 if ((requiredState && thread->state != requiredState) 1948 || (calling && !arch_debug_contains_call(thread, callSymbol, 1949 callStart, callEnd)) 1950 || (sem > 0 && get_thread_wait_sem(thread) != sem) 1951 || (team > 0 && thread->team->id != team) 1952 || (realTimeOnly && thread->priority < B_REAL_TIME_DISPLAY_PRIORITY)) 1953 continue; 1954 1955 _dump_thread_info(thread, true); 1956 } 1957 return 0; 1958 } 1959 1960 1961 static void 1962 update_thread_sigmask_on_exit(Thread* thread) 1963 { 1964 if ((thread->flags & THREAD_FLAGS_OLD_SIGMASK) != 0) { 1965 thread->flags &= ~THREAD_FLAGS_OLD_SIGMASK; 1966 sigprocmask(SIG_SETMASK, &thread->old_sig_block_mask, NULL); 1967 } 1968 } 1969 1970 1971 // #pragma mark - private kernel API 1972 1973 1974 void 1975 thread_exit(void) 1976 { 1977 cpu_status state; 1978 Thread* thread = thread_get_current_thread(); 1979 Team* team = thread->team; 1980 Team* kernelTeam = team_get_kernel_team(); 1981 status_t status; 1982 struct thread_debug_info debugInfo; 1983 team_id teamID = team->id; 1984 1985 TRACE(("thread %" B_PRId32 " exiting w/return code %#" B_PRIx32 "\n", 1986 thread->id, thread->exit.status)); 1987 1988 if (!are_interrupts_enabled()) 1989 panic("thread_exit() called with interrupts disabled!\n"); 1990 1991 // boost our priority to get this over with 1992 scheduler_set_thread_priority(thread, B_URGENT_DISPLAY_PRIORITY); 1993 1994 if (team != kernelTeam) { 1995 // Delete all user timers associated with the thread. 1996 ThreadLocker threadLocker(thread); 1997 thread->DeleteUserTimers(false); 1998 1999 // detach the thread's user thread 2000 user_thread* userThread = thread->user_thread; 2001 thread->user_thread = NULL; 2002 2003 threadLocker.Unlock(); 2004 2005 // Delete the thread's user thread, if it's not the main thread. If it 2006 // is, we can save the work, since it will be deleted with the team's 2007 // address space. 2008 if (thread != team->main_thread) 2009 team_free_user_thread(team, userThread); 2010 } 2011 2012 // remember the user stack area -- we will delete it below 2013 area_id userStackArea = -1; 2014 if (team->address_space != NULL && thread->user_stack_area >= 0) { 2015 userStackArea = thread->user_stack_area; 2016 thread->user_stack_area = -1; 2017 } 2018 2019 struct job_control_entry *death = NULL; 2020 struct thread_death_entry* threadDeathEntry = NULL; 2021 bool deleteTeam = false; 2022 port_id debuggerPort = -1; 2023 2024 if (team != kernelTeam) { 2025 user_debug_thread_exiting(thread); 2026 2027 if (team->main_thread == thread) { 2028 // The main thread is exiting. Shut down the whole team. 2029 deleteTeam = true; 2030 2031 // kill off all other threads and the user debugger facilities 2032 debuggerPort = team_shutdown_team(team); 2033 2034 // acquire necessary locks, which are: process group lock, kernel 2035 // team lock, parent team lock, and the team lock 2036 team->LockProcessGroup(); 2037 kernelTeam->Lock(); 2038 team->LockTeamAndParent(true); 2039 } else { 2040 threadDeathEntry 2041 = (thread_death_entry*)malloc(sizeof(thread_death_entry)); 2042 2043 // acquire necessary locks, which are: kernel team lock and the team 2044 // lock 2045 kernelTeam->Lock(); 2046 team->Lock(); 2047 } 2048 2049 ThreadLocker threadLocker(thread); 2050 2051 state = disable_interrupts(); 2052 2053 // swap address spaces, to make sure we're running on the kernel's pgdir 2054 vm_swap_address_space(team->address_space, VMAddressSpace::Kernel()); 2055 2056 WriteSpinLocker teamLocker(thread->team_lock); 2057 SpinLocker threadCreationLocker(gThreadCreationLock); 2058 // removing the thread and putting its death entry to the parent 2059 // team needs to be an atomic operation 2060 2061 // remember how long this thread lasted 2062 bigtime_t now = system_time(); 2063 2064 InterruptsSpinLocker signalLocker(kernelTeam->signal_lock); 2065 SpinLocker teamTimeLocker(kernelTeam->time_lock); 2066 SpinLocker threadTimeLocker(thread->time_lock); 2067 2068 thread->kernel_time += now - thread->last_time; 2069 thread->last_time = now; 2070 2071 team->dead_threads_kernel_time += thread->kernel_time; 2072 team->dead_threads_user_time += thread->user_time; 2073 2074 // stop/update thread/team CPU time user timers 2075 if (thread->HasActiveCPUTimeUserTimers() 2076 || team->HasActiveCPUTimeUserTimers()) { 2077 user_timer_stop_cpu_timers(thread, NULL); 2078 } 2079 2080 // deactivate CPU time user timers for the thread 2081 if (thread->HasActiveCPUTimeUserTimers()) 2082 thread->DeactivateCPUTimeUserTimers(); 2083 2084 threadTimeLocker.Unlock(); 2085 2086 // put the thread into the kernel team until it dies 2087 remove_thread_from_team(team, thread); 2088 insert_thread_into_team(kernelTeam, thread); 2089 2090 teamTimeLocker.Unlock(); 2091 signalLocker.Unlock(); 2092 2093 teamLocker.Unlock(); 2094 2095 if (team->death_entry != NULL) { 2096 if (--team->death_entry->remaining_threads == 0) 2097 team->death_entry->condition.NotifyOne(); 2098 } 2099 2100 if (deleteTeam) { 2101 Team* parent = team->parent; 2102 2103 // Set the team job control state to "dead" and detach the job 2104 // control entry from our team struct. 2105 team_set_job_control_state(team, JOB_CONTROL_STATE_DEAD, NULL); 2106 death = team->job_control_entry; 2107 team->job_control_entry = NULL; 2108 2109 if (death != NULL) { 2110 death->InitDeadState(); 2111 2112 // team_set_job_control_state() already moved our entry 2113 // into the parent's list. We just check the soft limit of 2114 // death entries. 2115 if (parent->dead_children.count > MAX_DEAD_CHILDREN) { 2116 death = parent->dead_children.entries.RemoveHead(); 2117 parent->dead_children.count--; 2118 } else 2119 death = NULL; 2120 } 2121 2122 threadCreationLocker.Unlock(); 2123 restore_interrupts(state); 2124 2125 threadLocker.Unlock(); 2126 2127 // Get a temporary reference to the team's process group 2128 // -- team_remove_team() removes the team from the group, which 2129 // might destroy it otherwise and we wouldn't be able to unlock it. 2130 ProcessGroup* group = team->group; 2131 group->AcquireReference(); 2132 2133 pid_t foregroundGroupToSignal; 2134 team_remove_team(team, foregroundGroupToSignal); 2135 2136 // unlock everything but the parent team 2137 team->Unlock(); 2138 if (parent != kernelTeam) 2139 kernelTeam->Unlock(); 2140 group->Unlock(); 2141 group->ReleaseReference(); 2142 2143 // Send SIGCHLD to the parent as long as we still have its lock. 2144 // This makes job control state change + signalling atomic. 2145 Signal childSignal(SIGCHLD, team->exit.reason, B_OK, team->id); 2146 if (team->exit.reason == CLD_EXITED) { 2147 childSignal.SetStatus(team->exit.status); 2148 } else { 2149 childSignal.SetStatus(team->exit.signal); 2150 childSignal.SetSendingUser(team->exit.signaling_user); 2151 } 2152 send_signal_to_team(parent, childSignal, B_DO_NOT_RESCHEDULE); 2153 2154 // also unlock the parent 2155 parent->Unlock(); 2156 2157 // If the team was a session leader with controlling TTY, we have 2158 // to send SIGHUP to the foreground process group. 2159 if (foregroundGroupToSignal >= 0) { 2160 Signal groupSignal(SIGHUP, SI_USER, B_OK, team->id); 2161 send_signal_to_process_group(foregroundGroupToSignal, 2162 groupSignal, B_DO_NOT_RESCHEDULE); 2163 } 2164 } else { 2165 // The thread is not the main thread. We store a thread death entry 2166 // for it, unless someone is already waiting for it. 2167 if (threadDeathEntry != NULL 2168 && list_is_empty(&thread->exit.waiters)) { 2169 threadDeathEntry->thread = thread->id; 2170 threadDeathEntry->status = thread->exit.status; 2171 2172 // add entry to dead thread list 2173 list_add_item(&team->dead_threads, threadDeathEntry); 2174 } 2175 2176 threadCreationLocker.Unlock(); 2177 restore_interrupts(state); 2178 2179 threadLocker.Unlock(); 2180 team->Unlock(); 2181 kernelTeam->Unlock(); 2182 } 2183 2184 TRACE(("thread_exit: thread %" B_PRId32 " now a kernel thread!\n", 2185 thread->id)); 2186 } 2187 2188 // delete the team if we're its main thread 2189 if (deleteTeam) { 2190 team_delete_team(team, debuggerPort); 2191 2192 // we need to delete any death entry that made it to here 2193 delete death; 2194 } 2195 2196 ThreadLocker threadLocker(thread); 2197 2198 state = disable_interrupts(); 2199 SpinLocker threadCreationLocker(gThreadCreationLock); 2200 2201 // mark invisible in global hash/list, so it's no longer accessible 2202 WriteSpinLocker threadHashLocker(sThreadHashLock); 2203 thread->visible = false; 2204 sUsedThreads--; 2205 threadHashLocker.Unlock(); 2206 2207 // Stop debugging for this thread 2208 SpinLocker threadDebugInfoLocker(thread->debug_info.lock); 2209 debugInfo = thread->debug_info; 2210 clear_thread_debug_info(&thread->debug_info, true); 2211 threadDebugInfoLocker.Unlock(); 2212 2213 // Remove the select infos. We notify them a little later. 2214 select_info* selectInfos = thread->select_infos; 2215 thread->select_infos = NULL; 2216 2217 threadCreationLocker.Unlock(); 2218 restore_interrupts(state); 2219 2220 threadLocker.Unlock(); 2221 2222 destroy_thread_debug_info(&debugInfo); 2223 2224 // notify select infos 2225 select_info* info = selectInfos; 2226 while (info != NULL) { 2227 select_sync* sync = info->sync; 2228 2229 notify_select_events(info, B_EVENT_INVALID); 2230 info = info->next; 2231 put_select_sync(sync); 2232 } 2233 2234 // notify listeners 2235 sNotificationService.Notify(THREAD_REMOVED, thread); 2236 2237 // shutdown the thread messaging 2238 2239 status = acquire_sem_etc(thread->msg.write_sem, 1, B_RELATIVE_TIMEOUT, 0); 2240 if (status == B_WOULD_BLOCK) { 2241 // there is data waiting for us, so let us eat it 2242 thread_id sender; 2243 2244 delete_sem(thread->msg.write_sem); 2245 // first, let's remove all possibly waiting writers 2246 receive_data_etc(&sender, NULL, 0, B_RELATIVE_TIMEOUT); 2247 } else { 2248 // we probably own the semaphore here, and we're the last to do so 2249 delete_sem(thread->msg.write_sem); 2250 } 2251 // now we can safely remove the msg.read_sem 2252 delete_sem(thread->msg.read_sem); 2253 2254 // fill all death entries and delete the sem that others will use to wait 2255 // for us 2256 { 2257 sem_id cachedExitSem = thread->exit.sem; 2258 2259 ThreadLocker threadLocker(thread); 2260 2261 // make sure no one will grab this semaphore again 2262 thread->exit.sem = -1; 2263 2264 // fill all death entries 2265 thread_death_entry* entry = NULL; 2266 while ((entry = (thread_death_entry*)list_get_next_item( 2267 &thread->exit.waiters, entry)) != NULL) { 2268 entry->status = thread->exit.status; 2269 } 2270 2271 threadLocker.Unlock(); 2272 2273 delete_sem(cachedExitSem); 2274 } 2275 2276 // delete the user stack, if this was a user thread 2277 if (!deleteTeam && userStackArea >= 0) { 2278 // We postponed deleting the user stack until now, since this way all 2279 // notifications for the thread's death are out already and all other 2280 // threads waiting for this thread's death and some object on its stack 2281 // will wake up before we (try to) delete the stack area. Of most 2282 // relevance is probably the case where this is the main thread and 2283 // other threads use objects on its stack -- so we want them terminated 2284 // first. 2285 // When the team is deleted, all areas are deleted anyway, so we don't 2286 // need to do that explicitly in that case. 2287 vm_delete_area(teamID, userStackArea, true); 2288 } 2289 2290 // notify the debugger 2291 if (teamID != kernelTeam->id) 2292 user_debug_thread_deleted(teamID, thread->id); 2293 2294 // enqueue in the undertaker list and reschedule for the last time 2295 UndertakerEntry undertakerEntry(thread, teamID); 2296 2297 disable_interrupts(); 2298 2299 SpinLocker schedulerLocker(thread->scheduler_lock); 2300 2301 SpinLocker undertakerLocker(sUndertakerLock); 2302 sUndertakerEntries.Add(&undertakerEntry); 2303 sUndertakerCondition.NotifyOne(); 2304 undertakerLocker.Unlock(); 2305 2306 scheduler_reschedule(THREAD_STATE_FREE_ON_RESCHED); 2307 2308 panic("never can get here\n"); 2309 } 2310 2311 2312 /*! Called in the interrupt handler code when a thread enters 2313 the kernel for any reason. 2314 Only tracks time for now. 2315 Interrupts are disabled. 2316 */ 2317 void 2318 thread_at_kernel_entry(bigtime_t now) 2319 { 2320 Thread *thread = thread_get_current_thread(); 2321 2322 TRACE(("thread_at_kernel_entry: entry thread %" B_PRId32 "\n", thread->id)); 2323 2324 // track user time 2325 SpinLocker threadTimeLocker(thread->time_lock); 2326 thread->user_time += now - thread->last_time; 2327 thread->last_time = now; 2328 thread->in_kernel = true; 2329 threadTimeLocker.Unlock(); 2330 } 2331 2332 2333 /*! Called whenever a thread exits kernel space to user space. 2334 Tracks time, handles signals, ... 2335 Interrupts must be enabled. When the function returns, interrupts will be 2336 disabled. 2337 The function may not return. This e.g. happens when the thread has received 2338 a deadly signal. 2339 */ 2340 void 2341 thread_at_kernel_exit(void) 2342 { 2343 Thread *thread = thread_get_current_thread(); 2344 2345 TRACE(("thread_at_kernel_exit: exit thread %" B_PRId32 "\n", thread->id)); 2346 2347 handle_signals(thread); 2348 2349 disable_interrupts(); 2350 2351 update_thread_sigmask_on_exit(thread); 2352 2353 // track kernel time 2354 bigtime_t now = system_time(); 2355 SpinLocker threadTimeLocker(thread->time_lock); 2356 thread->in_kernel = false; 2357 thread->kernel_time += now - thread->last_time; 2358 thread->last_time = now; 2359 } 2360 2361 2362 /*! The quick version of thread_kernel_exit(), in case no signals are pending 2363 and no debugging shall be done. 2364 Interrupts must be disabled. 2365 */ 2366 void 2367 thread_at_kernel_exit_no_signals(void) 2368 { 2369 Thread *thread = thread_get_current_thread(); 2370 2371 TRACE(("thread_at_kernel_exit_no_signals: exit thread %" B_PRId32 "\n", 2372 thread->id)); 2373 2374 update_thread_sigmask_on_exit(thread); 2375 2376 // track kernel time 2377 bigtime_t now = system_time(); 2378 SpinLocker threadTimeLocker(thread->time_lock); 2379 thread->in_kernel = false; 2380 thread->kernel_time += now - thread->last_time; 2381 thread->last_time = now; 2382 } 2383 2384 2385 void 2386 thread_reset_for_exec(void) 2387 { 2388 Thread* thread = thread_get_current_thread(); 2389 2390 ThreadLocker threadLocker(thread); 2391 2392 // delete user-defined timers 2393 thread->DeleteUserTimers(true); 2394 2395 // cancel pre-defined timer 2396 if (UserTimer* timer = thread->UserTimerFor(USER_TIMER_REAL_TIME_ID)) 2397 timer->Cancel(); 2398 2399 // reset user_thread and user stack 2400 thread->user_thread = NULL; 2401 thread->user_stack_area = -1; 2402 thread->user_stack_base = 0; 2403 thread->user_stack_size = 0; 2404 2405 // reset signals 2406 thread->ResetSignalsOnExec(); 2407 2408 // reset thread CPU time clock 2409 InterruptsSpinLocker timeLocker(thread->time_lock); 2410 thread->cpu_clock_offset = -thread->CPUTime(false); 2411 } 2412 2413 2414 thread_id 2415 allocate_thread_id() 2416 { 2417 InterruptsWriteSpinLocker threadHashLocker(sThreadHashLock); 2418 2419 // find the next unused ID 2420 thread_id id; 2421 do { 2422 id = sNextThreadID++; 2423 2424 // deal with integer overflow 2425 if (sNextThreadID < 0) 2426 sNextThreadID = 2; 2427 2428 // check whether the ID is already in use 2429 } while (sThreadHash.Lookup(id, false) != NULL); 2430 2431 return id; 2432 } 2433 2434 2435 thread_id 2436 peek_next_thread_id() 2437 { 2438 InterruptsReadSpinLocker threadHashLocker(sThreadHashLock); 2439 return sNextThreadID; 2440 } 2441 2442 2443 /*! Yield the CPU to other threads. 2444 Thread will continue to run, if there's no other thread in ready 2445 state, and if it has a higher priority than the other ready threads, it 2446 still has a good chance to continue. 2447 */ 2448 void 2449 thread_yield(void) 2450 { 2451 Thread *thread = thread_get_current_thread(); 2452 if (thread == NULL) 2453 return; 2454 2455 InterruptsSpinLocker _(thread->scheduler_lock); 2456 2457 thread->has_yielded = true; 2458 scheduler_reschedule(B_THREAD_READY); 2459 } 2460 2461 2462 void 2463 thread_map(void (*function)(Thread* thread, void* data), void* data) 2464 { 2465 InterruptsWriteSpinLocker threadHashLocker(sThreadHashLock); 2466 2467 for (ThreadHashTable::Iterator it = sThreadHash.GetIterator(); 2468 Thread* thread = it.Next();) { 2469 function(thread, data); 2470 } 2471 } 2472 2473 2474 /*! Kernel private thread creation function. 2475 */ 2476 thread_id 2477 spawn_kernel_thread_etc(thread_func function, const char *name, int32 priority, 2478 void *arg, team_id team) 2479 { 2480 return thread_create_thread( 2481 ThreadCreationAttributes(function, name, priority, arg, team), 2482 true); 2483 } 2484 2485 2486 status_t 2487 wait_for_thread_etc(thread_id id, uint32 flags, bigtime_t timeout, 2488 status_t *_returnCode) 2489 { 2490 if (id < 0) 2491 return B_BAD_THREAD_ID; 2492 if (id == thread_get_current_thread_id()) 2493 return EDEADLK; 2494 2495 // get the thread, queue our death entry, and fetch the semaphore we have to 2496 // wait on 2497 sem_id exitSem = B_BAD_THREAD_ID; 2498 struct thread_death_entry death; 2499 2500 Thread* thread = Thread::GetAndLock(id); 2501 if (thread != NULL) { 2502 // remember the semaphore we have to wait on and place our death entry 2503 exitSem = thread->exit.sem; 2504 if (exitSem >= 0) 2505 list_add_link_to_head(&thread->exit.waiters, &death); 2506 2507 thread->UnlockAndReleaseReference(); 2508 2509 if (exitSem < 0) 2510 return B_BAD_THREAD_ID; 2511 } else { 2512 // we couldn't find this thread -- maybe it's already gone, and we'll 2513 // find its death entry in our team 2514 Team* team = thread_get_current_thread()->team; 2515 TeamLocker teamLocker(team); 2516 2517 // check the child death entries first (i.e. main threads of child 2518 // teams) 2519 bool deleteEntry; 2520 job_control_entry* freeDeath 2521 = team_get_death_entry(team, id, &deleteEntry); 2522 if (freeDeath != NULL) { 2523 death.status = freeDeath->status; 2524 if (deleteEntry) 2525 delete freeDeath; 2526 } else { 2527 // check the thread death entries of the team (non-main threads) 2528 thread_death_entry* threadDeathEntry = NULL; 2529 while ((threadDeathEntry = (thread_death_entry*)list_get_next_item( 2530 &team->dead_threads, threadDeathEntry)) != NULL) { 2531 if (threadDeathEntry->thread == id) { 2532 list_remove_item(&team->dead_threads, threadDeathEntry); 2533 death.status = threadDeathEntry->status; 2534 free(threadDeathEntry); 2535 break; 2536 } 2537 } 2538 2539 if (threadDeathEntry == NULL) 2540 return B_BAD_THREAD_ID; 2541 } 2542 2543 // we found the thread's death entry in our team 2544 if (_returnCode) 2545 *_returnCode = death.status; 2546 2547 return B_OK; 2548 } 2549 2550 // we need to wait for the death of the thread 2551 2552 resume_thread(id); 2553 // make sure we don't wait forever on a suspended thread 2554 2555 status_t status = acquire_sem_etc(exitSem, 1, flags, timeout); 2556 2557 if (status == B_OK) { 2558 // this should never happen as the thread deletes the semaphore on exit 2559 panic("could acquire exit_sem for thread %" B_PRId32 "\n", id); 2560 } else if (status == B_BAD_SEM_ID) { 2561 // this is the way the thread normally exits 2562 status = B_OK; 2563 } else { 2564 // We were probably interrupted or the timeout occurred; we need to 2565 // remove our death entry now. 2566 thread = Thread::GetAndLock(id); 2567 if (thread != NULL) { 2568 list_remove_link(&death); 2569 thread->UnlockAndReleaseReference(); 2570 } else { 2571 // The thread is already gone, so we need to wait uninterruptibly 2572 // for its exit semaphore to make sure our death entry stays valid. 2573 // It won't take long, since the thread is apparently already in the 2574 // middle of the cleanup. 2575 acquire_sem(exitSem); 2576 status = B_OK; 2577 } 2578 } 2579 2580 if (status == B_OK && _returnCode != NULL) 2581 *_returnCode = death.status; 2582 2583 return status; 2584 } 2585 2586 2587 status_t 2588 select_thread(int32 id, struct select_info* info, bool kernel) 2589 { 2590 // get and lock the thread 2591 Thread* thread = Thread::GetAndLock(id); 2592 if (thread == NULL) 2593 return B_BAD_THREAD_ID; 2594 BReference<Thread> threadReference(thread, true); 2595 ThreadLocker threadLocker(thread, true); 2596 2597 // We support only B_EVENT_INVALID at the moment. 2598 info->selected_events &= B_EVENT_INVALID; 2599 2600 // add info to list 2601 if (info->selected_events != 0) { 2602 info->next = thread->select_infos; 2603 thread->select_infos = info; 2604 2605 // we need a sync reference 2606 atomic_add(&info->sync->ref_count, 1); 2607 } 2608 2609 return B_OK; 2610 } 2611 2612 2613 status_t 2614 deselect_thread(int32 id, struct select_info* info, bool kernel) 2615 { 2616 // get and lock the thread 2617 Thread* thread = Thread::GetAndLock(id); 2618 if (thread == NULL) 2619 return B_BAD_THREAD_ID; 2620 BReference<Thread> threadReference(thread, true); 2621 ThreadLocker threadLocker(thread, true); 2622 2623 // remove info from list 2624 select_info** infoLocation = &thread->select_infos; 2625 while (*infoLocation != NULL && *infoLocation != info) 2626 infoLocation = &(*infoLocation)->next; 2627 2628 if (*infoLocation != info) 2629 return B_OK; 2630 2631 *infoLocation = info->next; 2632 2633 threadLocker.Unlock(); 2634 2635 // surrender sync reference 2636 put_select_sync(info->sync); 2637 2638 return B_OK; 2639 } 2640 2641 2642 int32 2643 thread_max_threads(void) 2644 { 2645 return sMaxThreads; 2646 } 2647 2648 2649 int32 2650 thread_used_threads(void) 2651 { 2652 InterruptsReadSpinLocker threadHashLocker(sThreadHashLock); 2653 return sUsedThreads; 2654 } 2655 2656 2657 /*! Returns a user-readable string for a thread state. 2658 Only for use in the kernel debugger. 2659 */ 2660 const char* 2661 thread_state_to_text(Thread* thread, int32 state) 2662 { 2663 return state_to_text(thread, state); 2664 } 2665 2666 2667 int32 2668 thread_get_io_priority(thread_id id) 2669 { 2670 Thread* thread = Thread::GetAndLock(id); 2671 if (thread == NULL) 2672 return B_BAD_THREAD_ID; 2673 BReference<Thread> threadReference(thread, true); 2674 ThreadLocker threadLocker(thread, true); 2675 2676 int32 priority = thread->io_priority; 2677 if (priority < 0) { 2678 // negative I/O priority means using the (CPU) priority 2679 priority = thread->priority; 2680 } 2681 2682 return priority; 2683 } 2684 2685 2686 void 2687 thread_set_io_priority(int32 priority) 2688 { 2689 Thread* thread = thread_get_current_thread(); 2690 ThreadLocker threadLocker(thread); 2691 2692 thread->io_priority = priority; 2693 } 2694 2695 2696 status_t 2697 thread_init(kernel_args *args) 2698 { 2699 TRACE(("thread_init: entry\n")); 2700 2701 // create the thread hash table 2702 new(&sThreadHash) ThreadHashTable(); 2703 if (sThreadHash.Init(128) != B_OK) 2704 panic("thread_init(): failed to init thread hash table!"); 2705 2706 // create the thread structure object cache 2707 sThreadCache = create_object_cache("threads", sizeof(Thread), 64, NULL, 2708 NULL, NULL); 2709 // Note: The x86 port requires 64 byte alignment of thread structures. 2710 if (sThreadCache == NULL) 2711 panic("thread_init(): failed to allocate thread object cache!"); 2712 2713 if (arch_thread_init(args) < B_OK) 2714 panic("arch_thread_init() failed!\n"); 2715 2716 // skip all thread IDs including B_SYSTEM_TEAM, which is reserved 2717 sNextThreadID = B_SYSTEM_TEAM + 1; 2718 2719 // create an idle thread for each cpu 2720 for (uint32 i = 0; i < args->num_cpus; i++) { 2721 Thread *thread; 2722 area_info info; 2723 char name[64]; 2724 2725 sprintf(name, "idle thread %" B_PRIu32, i + 1); 2726 thread = new(&sIdleThreads[i]) Thread(name, 2727 i == 0 ? team_get_kernel_team_id() : -1, &gCPU[i]); 2728 if (thread == NULL || thread->Init(true) != B_OK) { 2729 panic("error creating idle thread struct\n"); 2730 return B_NO_MEMORY; 2731 } 2732 2733 gCPU[i].running_thread = thread; 2734 2735 thread->team = team_get_kernel_team(); 2736 thread->priority = B_IDLE_PRIORITY; 2737 thread->state = B_THREAD_RUNNING; 2738 sprintf(name, "idle thread %" B_PRIu32 " kstack", i + 1); 2739 thread->kernel_stack_area = find_area(name); 2740 2741 if (get_area_info(thread->kernel_stack_area, &info) != B_OK) 2742 panic("error finding idle kstack area\n"); 2743 2744 thread->kernel_stack_base = (addr_t)info.address; 2745 thread->kernel_stack_top = thread->kernel_stack_base + info.size; 2746 2747 thread->visible = true; 2748 insert_thread_into_team(thread->team, thread); 2749 2750 scheduler_on_thread_init(thread); 2751 } 2752 sUsedThreads = args->num_cpus; 2753 2754 // init the notification service 2755 new(&sNotificationService) ThreadNotificationService(); 2756 2757 sNotificationService.Register(); 2758 2759 // start the undertaker thread 2760 new(&sUndertakerEntries) DoublyLinkedList<UndertakerEntry>(); 2761 sUndertakerCondition.Init(&sUndertakerEntries, "undertaker entries"); 2762 2763 thread_id undertakerThread = spawn_kernel_thread(&undertaker, "undertaker", 2764 B_DISPLAY_PRIORITY, NULL); 2765 if (undertakerThread < 0) 2766 panic("Failed to create undertaker thread!"); 2767 resume_thread(undertakerThread); 2768 2769 // set up some debugger commands 2770 add_debugger_command_etc("threads", &dump_thread_list, "List all threads", 2771 "[ <team> ]\n" 2772 "Prints a list of all existing threads, or, if a team ID is given,\n" 2773 "all threads of the specified team.\n" 2774 " <team> - The ID of the team whose threads shall be listed.\n", 0); 2775 add_debugger_command_etc("ready", &dump_thread_list, 2776 "List all ready threads", 2777 "\n" 2778 "Prints a list of all threads in ready state.\n", 0); 2779 add_debugger_command_etc("running", &dump_thread_list, 2780 "List all running threads", 2781 "\n" 2782 "Prints a list of all threads in running state.\n", 0); 2783 add_debugger_command_etc("waiting", &dump_thread_list, 2784 "List all waiting threads (optionally for a specific semaphore)", 2785 "[ <sem> ]\n" 2786 "Prints a list of all threads in waiting state. If a semaphore is\n" 2787 "specified, only the threads waiting on that semaphore are listed.\n" 2788 " <sem> - ID of the semaphore.\n", 0); 2789 add_debugger_command_etc("realtime", &dump_thread_list, 2790 "List all realtime threads", 2791 "\n" 2792 "Prints a list of all threads with realtime priority.\n", 0); 2793 add_debugger_command_etc("thread", &dump_thread_info, 2794 "Dump info about a particular thread", 2795 "[ -s ] ( <id> | <address> | <name> )*\n" 2796 "Prints information about the specified thread. If no argument is\n" 2797 "given the current thread is selected.\n" 2798 " -s - Print info in compact table form (like \"threads\").\n" 2799 " <id> - The ID of the thread.\n" 2800 " <address> - The address of the thread structure.\n" 2801 " <name> - The thread's name.\n", 0); 2802 add_debugger_command_etc("calling", &dump_thread_list, 2803 "Show all threads that have a specific address in their call chain", 2804 "{ <symbol-pattern> | <start> <end> }\n", 0); 2805 add_debugger_command_etc("unreal", &make_thread_unreal, 2806 "Set realtime priority threads to normal priority", 2807 "[ <id> ]\n" 2808 "Sets the priority of all realtime threads or, if given, the one\n" 2809 "with the specified ID to \"normal\" priority.\n" 2810 " <id> - The ID of the thread.\n", 0); 2811 add_debugger_command_etc("suspend", &make_thread_suspended, 2812 "Suspend a thread", 2813 "[ <id> ]\n" 2814 "Suspends the thread with the given ID. If no ID argument is given\n" 2815 "the current thread is selected.\n" 2816 " <id> - The ID of the thread.\n", 0); 2817 add_debugger_command_etc("resume", &make_thread_resumed, "Resume a thread", 2818 "<id>\n" 2819 "Resumes the specified thread, if it is currently suspended.\n" 2820 " <id> - The ID of the thread.\n", 0); 2821 add_debugger_command_etc("drop", &drop_into_debugger, 2822 "Drop a thread into the userland debugger", 2823 "<id>\n" 2824 "Drops the specified (userland) thread into the userland debugger\n" 2825 "after leaving the kernel debugger.\n" 2826 " <id> - The ID of the thread.\n", 0); 2827 add_debugger_command_etc("priority", &set_thread_prio, 2828 "Set a thread's priority", 2829 "<priority> [ <id> ]\n" 2830 "Sets the priority of the thread with the specified ID to the given\n" 2831 "priority. If no thread ID is given, the current thread is selected.\n" 2832 " <priority> - The thread's new priority (0 - 120)\n" 2833 " <id> - The ID of the thread.\n", 0); 2834 2835 return B_OK; 2836 } 2837 2838 2839 status_t 2840 thread_preboot_init_percpu(struct kernel_args *args, int32 cpuNum) 2841 { 2842 // set up the cpu pointer in the not yet initialized per-cpu idle thread 2843 // so that get_current_cpu and friends will work, which is crucial for 2844 // a lot of low level routines 2845 sIdleThreads[cpuNum].cpu = &gCPU[cpuNum]; 2846 arch_thread_set_current_thread(&sIdleThreads[cpuNum]); 2847 return B_OK; 2848 } 2849 2850 2851 // #pragma mark - thread blocking API 2852 2853 2854 static status_t 2855 thread_block_timeout(timer* timer) 2856 { 2857 Thread* thread = (Thread*)timer->user_data; 2858 thread_unblock(thread, B_TIMED_OUT); 2859 2860 return B_HANDLED_INTERRUPT; 2861 } 2862 2863 2864 /*! Blocks the current thread. 2865 2866 The thread is blocked until someone else unblock it. Must be called after a 2867 call to thread_prepare_to_block(). If the thread has already been unblocked 2868 after the previous call to thread_prepare_to_block(), this function will 2869 return immediately. Cf. the documentation of thread_prepare_to_block() for 2870 more details. 2871 2872 The caller must hold the scheduler lock. 2873 2874 \param thread The current thread. 2875 \return The error code passed to the unblocking function. thread_interrupt() 2876 uses \c B_INTERRUPTED. By convention \c B_OK means that the wait was 2877 successful while another error code indicates a failure (what that means 2878 depends on the client code). 2879 */ 2880 static inline status_t 2881 thread_block_locked(Thread* thread) 2882 { 2883 if (thread->wait.status == 1) { 2884 // check for signals, if interruptible 2885 if (thread_is_interrupted(thread, thread->wait.flags)) { 2886 thread->wait.status = B_INTERRUPTED; 2887 } else 2888 scheduler_reschedule(B_THREAD_WAITING); 2889 } 2890 2891 return thread->wait.status; 2892 } 2893 2894 2895 /*! Blocks the current thread. 2896 2897 The function acquires the scheduler lock and calls thread_block_locked(). 2898 See there for more information. 2899 */ 2900 status_t 2901 thread_block() 2902 { 2903 InterruptsSpinLocker _(thread_get_current_thread()->scheduler_lock); 2904 return thread_block_locked(thread_get_current_thread()); 2905 } 2906 2907 2908 /*! Blocks the current thread with a timeout. 2909 2910 The current thread is blocked until someone else unblock it or the specified 2911 timeout occurs. Must be called after a call to thread_prepare_to_block(). If 2912 the thread has already been unblocked after the previous call to 2913 thread_prepare_to_block(), this function will return immediately. See 2914 thread_prepare_to_block() for more details. 2915 2916 The caller must not hold the scheduler lock. 2917 2918 \param timeoutFlags The standard timeout flags: 2919 - \c B_RELATIVE_TIMEOUT: \a timeout specifies the time to wait. 2920 - \c B_ABSOLUTE_TIMEOUT: \a timeout specifies the absolute end time when 2921 the timeout shall occur. 2922 - \c B_TIMEOUT_REAL_TIME_BASE: Only relevant when \c B_ABSOLUTE_TIMEOUT 2923 is specified, too. Specifies that \a timeout is a real time, not a 2924 system time. 2925 If neither \c B_RELATIVE_TIMEOUT nor \c B_ABSOLUTE_TIMEOUT are 2926 specified, an infinite timeout is implied and the function behaves like 2927 thread_block_locked(). 2928 \return The error code passed to the unblocking function. thread_interrupt() 2929 uses \c B_INTERRUPTED. When the timeout occurred, \c B_TIMED_OUT is 2930 returned. By convention \c B_OK means that the wait was successful while 2931 another error code indicates a failure (what that means depends on the 2932 client code). 2933 */ 2934 status_t 2935 thread_block_with_timeout(uint32 timeoutFlags, bigtime_t timeout) 2936 { 2937 Thread* thread = thread_get_current_thread(); 2938 2939 InterruptsSpinLocker locker(thread->scheduler_lock); 2940 2941 if (thread->wait.status != 1) 2942 return thread->wait.status; 2943 2944 bool useTimer = (timeoutFlags & (B_RELATIVE_TIMEOUT | B_ABSOLUTE_TIMEOUT)) 2945 && timeout != B_INFINITE_TIMEOUT; 2946 2947 if (useTimer) { 2948 // Timer flags: absolute/relative. 2949 uint32 timerFlags; 2950 if ((timeoutFlags & B_RELATIVE_TIMEOUT) != 0) { 2951 timerFlags = B_ONE_SHOT_RELATIVE_TIMER; 2952 } else { 2953 timerFlags = B_ONE_SHOT_ABSOLUTE_TIMER; 2954 if ((timeoutFlags & B_TIMEOUT_REAL_TIME_BASE) != 0) 2955 timerFlags |= B_TIMER_REAL_TIME_BASE; 2956 } 2957 2958 // install the timer 2959 thread->wait.unblock_timer.user_data = thread; 2960 add_timer(&thread->wait.unblock_timer, &thread_block_timeout, timeout, 2961 timerFlags); 2962 } 2963 2964 // block 2965 status_t error = thread_block_locked(thread); 2966 2967 locker.Unlock(); 2968 2969 // cancel timer, if it didn't fire 2970 if (error != B_TIMED_OUT && useTimer) 2971 cancel_timer(&thread->wait.unblock_timer); 2972 2973 return error; 2974 } 2975 2976 2977 /*! Unblocks a thread. 2978 2979 Acquires the scheduler lock and calls thread_unblock_locked(). 2980 See there for more information. 2981 */ 2982 void 2983 thread_unblock(Thread* thread, status_t status) 2984 { 2985 InterruptsSpinLocker locker(thread->scheduler_lock); 2986 thread_unblock_locked(thread, status); 2987 } 2988 2989 2990 /*! Unblocks a userland-blocked thread. 2991 The caller must not hold any locks. 2992 */ 2993 static status_t 2994 user_unblock_thread(thread_id threadID, status_t status) 2995 { 2996 // get the thread 2997 Thread* thread = Thread::GetAndLock(threadID); 2998 if (thread == NULL) 2999 return B_BAD_THREAD_ID; 3000 BReference<Thread> threadReference(thread, true); 3001 ThreadLocker threadLocker(thread, true); 3002 3003 if (thread->user_thread == NULL) 3004 return B_NOT_ALLOWED; 3005 3006 InterruptsSpinLocker locker(thread->scheduler_lock); 3007 3008 status_t waitStatus; 3009 if (user_memcpy(&waitStatus, &thread->user_thread->wait_status, 3010 sizeof(waitStatus)) < B_OK) { 3011 return B_BAD_ADDRESS; 3012 } 3013 if (waitStatus > 0) { 3014 if (user_memcpy(&thread->user_thread->wait_status, &status, 3015 sizeof(status)) < B_OK) { 3016 return B_BAD_ADDRESS; 3017 } 3018 3019 // Even if the user_thread->wait_status was > 0, it may be the 3020 // case that this thread is actually blocked on something else. 3021 if (thread->wait.status > 0 3022 && thread->wait.type == THREAD_BLOCK_TYPE_USER) { 3023 thread_unblock_locked(thread, status); 3024 } 3025 } 3026 return B_OK; 3027 } 3028 3029 3030 static bool 3031 thread_check_permissions(const Thread* currentThread, const Thread* thread, 3032 bool kernel) 3033 { 3034 if (kernel) 3035 return true; 3036 3037 if (thread->team->id == team_get_kernel_team_id()) 3038 return false; 3039 3040 if (thread->team == currentThread->team 3041 || currentThread->team->effective_uid == 0 3042 || thread->team->real_uid == currentThread->team->real_uid) 3043 return true; 3044 3045 return false; 3046 } 3047 3048 3049 static status_t 3050 thread_send_signal(thread_id id, uint32 number, int32 signalCode, 3051 int32 errorCode, bool kernel) 3052 { 3053 if (id <= 0) 3054 return B_BAD_VALUE; 3055 3056 Thread* currentThread = thread_get_current_thread(); 3057 Thread* thread = Thread::Get(id); 3058 if (thread == NULL) 3059 return B_BAD_THREAD_ID; 3060 BReference<Thread> threadReference(thread, true); 3061 3062 // check whether sending the signal is allowed 3063 if (!thread_check_permissions(currentThread, thread, kernel)) 3064 return B_NOT_ALLOWED; 3065 3066 Signal signal(number, signalCode, errorCode, currentThread->team->id); 3067 return send_signal_to_thread(thread, signal, 0); 3068 } 3069 3070 3071 // #pragma mark - public kernel API 3072 3073 3074 void 3075 exit_thread(status_t returnValue) 3076 { 3077 Thread *thread = thread_get_current_thread(); 3078 Team* team = thread->team; 3079 3080 thread->exit.status = returnValue; 3081 3082 // if called from a kernel thread, we don't deliver the signal, 3083 // we just exit directly to keep the user space behaviour of 3084 // this function 3085 if (team != team_get_kernel_team()) { 3086 // If this is its main thread, set the team's exit status. 3087 if (thread == team->main_thread) { 3088 TeamLocker teamLocker(team); 3089 3090 if (!team->exit.initialized) { 3091 team->exit.reason = CLD_EXITED; 3092 team->exit.signal = 0; 3093 team->exit.signaling_user = 0; 3094 team->exit.status = returnValue; 3095 team->exit.initialized = true; 3096 } 3097 3098 teamLocker.Unlock(); 3099 } 3100 3101 Signal signal(SIGKILLTHR, SI_USER, B_OK, team->id); 3102 send_signal_to_thread(thread, signal, B_DO_NOT_RESCHEDULE); 3103 } else 3104 thread_exit(); 3105 } 3106 3107 3108 static status_t 3109 thread_kill_thread(thread_id id, bool kernel) 3110 { 3111 return thread_send_signal(id, SIGKILLTHR, SI_USER, B_OK, kernel); 3112 } 3113 3114 3115 status_t 3116 kill_thread(thread_id id) 3117 { 3118 return thread_kill_thread(id, true); 3119 } 3120 3121 3122 status_t 3123 send_data(thread_id thread, int32 code, const void *buffer, size_t bufferSize) 3124 { 3125 return send_data_etc(thread, code, buffer, bufferSize, 0); 3126 } 3127 3128 3129 int32 3130 receive_data(thread_id *sender, void *buffer, size_t bufferSize) 3131 { 3132 return receive_data_etc(sender, buffer, bufferSize, 0); 3133 } 3134 3135 3136 static bool 3137 thread_has_data(thread_id id, bool kernel) 3138 { 3139 Thread* currentThread = thread_get_current_thread(); 3140 Thread* thread; 3141 BReference<Thread> threadReference; 3142 if (id == currentThread->id) { 3143 thread = currentThread; 3144 } else { 3145 thread = Thread::Get(id); 3146 if (thread == NULL) 3147 return false; 3148 3149 threadReference.SetTo(thread, true); 3150 } 3151 3152 if (!kernel && thread->team != currentThread->team) 3153 return false; 3154 3155 int32 count; 3156 if (get_sem_count(thread->msg.read_sem, &count) != B_OK) 3157 return false; 3158 3159 return count == 0 ? false : true; 3160 } 3161 3162 3163 bool 3164 has_data(thread_id thread) 3165 { 3166 return thread_has_data(thread, true); 3167 } 3168 3169 3170 status_t 3171 _get_thread_info(thread_id id, thread_info *info, size_t size) 3172 { 3173 if (info == NULL || size != sizeof(thread_info) || id < B_OK) 3174 return B_BAD_VALUE; 3175 3176 // get the thread 3177 Thread* thread = Thread::GetAndLock(id); 3178 if (thread == NULL) 3179 return B_BAD_THREAD_ID; 3180 BReference<Thread> threadReference(thread, true); 3181 ThreadLocker threadLocker(thread, true); 3182 3183 // fill the info -- also requires the scheduler lock to be held 3184 InterruptsSpinLocker locker(thread->scheduler_lock); 3185 3186 fill_thread_info(thread, info, size); 3187 3188 return B_OK; 3189 } 3190 3191 3192 status_t 3193 _get_next_thread_info(team_id teamID, int32 *_cookie, thread_info *info, 3194 size_t size) 3195 { 3196 if (info == NULL || size != sizeof(thread_info) || teamID < 0) 3197 return B_BAD_VALUE; 3198 3199 int32 lastID = *_cookie; 3200 3201 // get the team 3202 Team* team = Team::GetAndLock(teamID); 3203 if (team == NULL) 3204 return B_BAD_VALUE; 3205 BReference<Team> teamReference(team, true); 3206 TeamLocker teamLocker(team, true); 3207 3208 Thread* thread = NULL; 3209 3210 if (lastID == 0) { 3211 // We start with the main thread 3212 thread = team->main_thread; 3213 } else { 3214 // Find the one thread with an ID greater than ours (as long as the IDs 3215 // don't wrap they are always sorted from highest to lowest). 3216 // TODO: That is broken not only when the IDs wrap, but also for the 3217 // kernel team, to which threads are added when they are dying. 3218 for (Thread* next = team->thread_list; next != NULL; 3219 next = next->team_next) { 3220 if (next->id <= lastID) 3221 break; 3222 3223 thread = next; 3224 } 3225 } 3226 3227 if (thread == NULL) 3228 return B_BAD_VALUE; 3229 3230 lastID = thread->id; 3231 *_cookie = lastID; 3232 3233 ThreadLocker threadLocker(thread); 3234 InterruptsSpinLocker locker(thread->scheduler_lock); 3235 3236 fill_thread_info(thread, info, size); 3237 3238 return B_OK; 3239 } 3240 3241 3242 thread_id 3243 find_thread(const char* name) 3244 { 3245 if (name == NULL) 3246 return thread_get_current_thread_id(); 3247 3248 InterruptsReadSpinLocker threadHashLocker(sThreadHashLock); 3249 3250 // Scanning the whole hash with the thread hash lock held isn't exactly 3251 // cheap, but since this function is probably used very rarely, and we 3252 // only need a read lock, it's probably acceptable. 3253 3254 for (ThreadHashTable::Iterator it = sThreadHash.GetIterator(); 3255 Thread* thread = it.Next();) { 3256 if (!thread->visible) 3257 continue; 3258 3259 if (strcmp(thread->name, name) == 0) 3260 return thread->id; 3261 } 3262 3263 return B_NAME_NOT_FOUND; 3264 } 3265 3266 3267 status_t 3268 rename_thread(thread_id id, const char* name) 3269 { 3270 if (name == NULL) 3271 return B_BAD_VALUE; 3272 3273 // get the thread 3274 Thread* thread = Thread::GetAndLock(id); 3275 if (thread == NULL) 3276 return B_BAD_THREAD_ID; 3277 BReference<Thread> threadReference(thread, true); 3278 ThreadLocker threadLocker(thread, true); 3279 3280 // check whether the operation is allowed 3281 if (thread->team != thread_get_current_thread()->team) 3282 return B_NOT_ALLOWED; 3283 3284 strlcpy(thread->name, name, B_OS_NAME_LENGTH); 3285 3286 team_id teamID = thread->team->id; 3287 3288 threadLocker.Unlock(); 3289 3290 // notify listeners 3291 sNotificationService.Notify(THREAD_NAME_CHANGED, teamID, id); 3292 // don't pass the thread structure, as it's unsafe, if it isn't ours 3293 3294 return B_OK; 3295 } 3296 3297 3298 static status_t 3299 thread_set_thread_priority(thread_id id, int32 priority, bool kernel) 3300 { 3301 // make sure the passed in priority is within bounds 3302 if (priority > THREAD_MAX_SET_PRIORITY) 3303 priority = THREAD_MAX_SET_PRIORITY; 3304 if (priority < THREAD_MIN_SET_PRIORITY) 3305 priority = THREAD_MIN_SET_PRIORITY; 3306 3307 // get the thread 3308 Thread* thread = Thread::GetAndLock(id); 3309 if (thread == NULL) 3310 return B_BAD_THREAD_ID; 3311 BReference<Thread> threadReference(thread, true); 3312 ThreadLocker threadLocker(thread, true); 3313 3314 // check whether the change is allowed 3315 if (thread_is_idle_thread(thread) || !thread_check_permissions( 3316 thread_get_current_thread(), thread, kernel)) 3317 return B_NOT_ALLOWED; 3318 3319 return scheduler_set_thread_priority(thread, priority); 3320 } 3321 3322 3323 status_t 3324 set_thread_priority(thread_id id, int32 priority) 3325 { 3326 return thread_set_thread_priority(id, priority, true); 3327 } 3328 3329 3330 status_t 3331 snooze_etc(bigtime_t timeout, int timebase, uint32 flags) 3332 { 3333 return common_snooze_etc(timeout, timebase, flags, NULL); 3334 } 3335 3336 3337 /*! snooze() for internal kernel use only; doesn't interrupt on signals. */ 3338 status_t 3339 snooze(bigtime_t timeout) 3340 { 3341 return snooze_etc(timeout, B_SYSTEM_TIMEBASE, B_RELATIVE_TIMEOUT); 3342 } 3343 3344 3345 /*! snooze_until() for internal kernel use only; doesn't interrupt on 3346 signals. 3347 */ 3348 status_t 3349 snooze_until(bigtime_t timeout, int timebase) 3350 { 3351 return snooze_etc(timeout, timebase, B_ABSOLUTE_TIMEOUT); 3352 } 3353 3354 3355 status_t 3356 wait_for_thread(thread_id thread, status_t *_returnCode) 3357 { 3358 return wait_for_thread_etc(thread, 0, 0, _returnCode); 3359 } 3360 3361 3362 static status_t 3363 thread_suspend_thread(thread_id id, bool kernel) 3364 { 3365 return thread_send_signal(id, SIGSTOP, SI_USER, B_OK, kernel); 3366 } 3367 3368 3369 status_t 3370 suspend_thread(thread_id id) 3371 { 3372 return thread_suspend_thread(id, true); 3373 } 3374 3375 3376 static status_t 3377 thread_resume_thread(thread_id id, bool kernel) 3378 { 3379 // Using the kernel internal SIGNAL_CONTINUE_THREAD signal retains 3380 // compatibility to BeOS which documents the combination of suspend_thread() 3381 // and resume_thread() to interrupt threads waiting on semaphores. 3382 return thread_send_signal(id, SIGNAL_CONTINUE_THREAD, SI_USER, B_OK, kernel); 3383 } 3384 3385 3386 status_t 3387 resume_thread(thread_id id) 3388 { 3389 return thread_resume_thread(id, true); 3390 } 3391 3392 3393 thread_id 3394 spawn_kernel_thread(thread_func function, const char *name, int32 priority, 3395 void *arg) 3396 { 3397 return thread_create_thread( 3398 ThreadCreationAttributes(function, name, priority, arg), 3399 true); 3400 } 3401 3402 3403 int 3404 getrlimit(int resource, struct rlimit * rlp) 3405 { 3406 status_t error = common_getrlimit(resource, rlp); 3407 if (error != B_OK) { 3408 errno = error; 3409 return -1; 3410 } 3411 3412 return 0; 3413 } 3414 3415 3416 int 3417 setrlimit(int resource, const struct rlimit * rlp) 3418 { 3419 status_t error = common_setrlimit(resource, rlp); 3420 if (error != B_OK) { 3421 errno = error; 3422 return -1; 3423 } 3424 3425 return 0; 3426 } 3427 3428 3429 // #pragma mark - syscalls 3430 3431 3432 void 3433 _user_exit_thread(status_t returnValue) 3434 { 3435 exit_thread(returnValue); 3436 } 3437 3438 3439 status_t 3440 _user_kill_thread(thread_id thread) 3441 { 3442 return thread_kill_thread(thread, false); 3443 } 3444 3445 3446 status_t 3447 _user_cancel_thread(thread_id threadID, void (*cancelFunction)(int)) 3448 { 3449 // check the cancel function 3450 if (cancelFunction == NULL || !IS_USER_ADDRESS(cancelFunction)) 3451 return B_BAD_VALUE; 3452 3453 // get and lock the thread 3454 Thread* thread = Thread::GetAndLock(threadID); 3455 if (thread == NULL) 3456 return B_BAD_THREAD_ID; 3457 BReference<Thread> threadReference(thread, true); 3458 ThreadLocker threadLocker(thread, true); 3459 3460 // only threads of the same team can be canceled 3461 if (thread->team != thread_get_current_thread()->team) 3462 return B_NOT_ALLOWED; 3463 3464 // set the cancel function 3465 thread->cancel_function = cancelFunction; 3466 3467 // send the cancellation signal to the thread 3468 InterruptsReadSpinLocker teamLocker(thread->team_lock); 3469 SpinLocker locker(thread->team->signal_lock); 3470 return send_signal_to_thread_locked(thread, SIGNAL_CANCEL_THREAD, NULL, 0); 3471 } 3472 3473 3474 status_t 3475 _user_resume_thread(thread_id thread) 3476 { 3477 return thread_resume_thread(thread, false); 3478 } 3479 3480 3481 status_t 3482 _user_suspend_thread(thread_id thread) 3483 { 3484 return thread_suspend_thread(thread, false); 3485 } 3486 3487 3488 status_t 3489 _user_rename_thread(thread_id thread, const char *userName) 3490 { 3491 char name[B_OS_NAME_LENGTH]; 3492 3493 if (!IS_USER_ADDRESS(userName) 3494 || userName == NULL 3495 || user_strlcpy(name, userName, B_OS_NAME_LENGTH) < B_OK) 3496 return B_BAD_ADDRESS; 3497 3498 // rename_thread() forbids thread renames across teams, so we don't 3499 // need a "kernel" flag here. 3500 return rename_thread(thread, name); 3501 } 3502 3503 3504 int32 3505 _user_set_thread_priority(thread_id thread, int32 newPriority) 3506 { 3507 return thread_set_thread_priority(thread, newPriority, false); 3508 } 3509 3510 3511 thread_id 3512 _user_spawn_thread(thread_creation_attributes* userAttributes) 3513 { 3514 // copy the userland structure to the kernel 3515 char nameBuffer[B_OS_NAME_LENGTH]; 3516 ThreadCreationAttributes attributes; 3517 status_t error = attributes.InitFromUserAttributes(userAttributes, 3518 nameBuffer); 3519 if (error != B_OK) 3520 return error; 3521 3522 // create the thread 3523 thread_id threadID = thread_create_thread(attributes, false); 3524 3525 if (threadID >= 0) 3526 user_debug_thread_created(threadID); 3527 3528 return threadID; 3529 } 3530 3531 3532 status_t 3533 _user_snooze_etc(bigtime_t timeout, int timebase, uint32 flags, 3534 bigtime_t* userRemainingTime) 3535 { 3536 // We need to store more syscall restart parameters than usual and need a 3537 // somewhat different handling. Hence we can't use 3538 // syscall_restart_handle_timeout_pre() but do the job ourselves. 3539 struct restart_parameters { 3540 bigtime_t timeout; 3541 clockid_t timebase; 3542 uint32 flags; 3543 }; 3544 3545 Thread* thread = thread_get_current_thread(); 3546 3547 if ((thread->flags & THREAD_FLAGS_SYSCALL_RESTARTED) != 0) { 3548 // The syscall was restarted. Fetch the parameters from the stored 3549 // restart parameters. 3550 restart_parameters* restartParameters 3551 = (restart_parameters*)thread->syscall_restart.parameters; 3552 timeout = restartParameters->timeout; 3553 timebase = restartParameters->timebase; 3554 flags = restartParameters->flags; 3555 } else { 3556 // convert relative timeouts to absolute ones 3557 if ((flags & B_RELATIVE_TIMEOUT) != 0) { 3558 // not restarted yet and the flags indicate a relative timeout 3559 3560 // Make sure we use the system time base, so real-time clock changes 3561 // won't affect our wait. 3562 flags &= ~(uint32)B_TIMEOUT_REAL_TIME_BASE; 3563 if (timebase == CLOCK_REALTIME) 3564 timebase = CLOCK_MONOTONIC; 3565 3566 // get the current time and make the timeout absolute 3567 bigtime_t now; 3568 status_t error = user_timer_get_clock(timebase, now); 3569 if (error != B_OK) 3570 return error; 3571 3572 timeout += now; 3573 3574 // deal with overflow 3575 if (timeout < 0) 3576 timeout = B_INFINITE_TIMEOUT; 3577 3578 flags = (flags & ~B_RELATIVE_TIMEOUT) | B_ABSOLUTE_TIMEOUT; 3579 } else 3580 flags |= B_ABSOLUTE_TIMEOUT; 3581 } 3582 3583 // snooze 3584 bigtime_t remainingTime; 3585 status_t error = common_snooze_etc(timeout, timebase, 3586 flags | B_CAN_INTERRUPT | B_CHECK_PERMISSION, 3587 userRemainingTime != NULL ? &remainingTime : NULL); 3588 3589 // If interrupted, copy the remaining time back to userland and prepare the 3590 // syscall restart. 3591 if (error == B_INTERRUPTED) { 3592 if (userRemainingTime != NULL 3593 && (!IS_USER_ADDRESS(userRemainingTime) 3594 || user_memcpy(userRemainingTime, &remainingTime, 3595 sizeof(remainingTime)) != B_OK)) { 3596 return B_BAD_ADDRESS; 3597 } 3598 3599 // store the normalized values in the restart parameters 3600 restart_parameters* restartParameters 3601 = (restart_parameters*)thread->syscall_restart.parameters; 3602 restartParameters->timeout = timeout; 3603 restartParameters->timebase = timebase; 3604 restartParameters->flags = flags; 3605 3606 // restart the syscall, if possible 3607 atomic_or(&thread->flags, THREAD_FLAGS_RESTART_SYSCALL); 3608 } 3609 3610 return error; 3611 } 3612 3613 3614 void 3615 _user_thread_yield(void) 3616 { 3617 thread_yield(); 3618 } 3619 3620 3621 status_t 3622 _user_get_thread_info(thread_id id, thread_info *userInfo) 3623 { 3624 thread_info info; 3625 status_t status; 3626 3627 if (!IS_USER_ADDRESS(userInfo)) 3628 return B_BAD_ADDRESS; 3629 3630 status = _get_thread_info(id, &info, sizeof(thread_info)); 3631 3632 if (status >= B_OK 3633 && user_memcpy(userInfo, &info, sizeof(thread_info)) < B_OK) 3634 return B_BAD_ADDRESS; 3635 3636 return status; 3637 } 3638 3639 3640 status_t 3641 _user_get_next_thread_info(team_id team, int32 *userCookie, 3642 thread_info *userInfo) 3643 { 3644 status_t status; 3645 thread_info info; 3646 int32 cookie; 3647 3648 if (!IS_USER_ADDRESS(userCookie) || !IS_USER_ADDRESS(userInfo) 3649 || user_memcpy(&cookie, userCookie, sizeof(int32)) < B_OK) 3650 return B_BAD_ADDRESS; 3651 3652 status = _get_next_thread_info(team, &cookie, &info, sizeof(thread_info)); 3653 if (status < B_OK) 3654 return status; 3655 3656 if (user_memcpy(userCookie, &cookie, sizeof(int32)) < B_OK 3657 || user_memcpy(userInfo, &info, sizeof(thread_info)) < B_OK) 3658 return B_BAD_ADDRESS; 3659 3660 return status; 3661 } 3662 3663 3664 thread_id 3665 _user_find_thread(const char *userName) 3666 { 3667 char name[B_OS_NAME_LENGTH]; 3668 3669 if (userName == NULL) 3670 return find_thread(NULL); 3671 3672 if (!IS_USER_ADDRESS(userName) 3673 || user_strlcpy(name, userName, sizeof(name)) < B_OK) 3674 return B_BAD_ADDRESS; 3675 3676 return find_thread(name); 3677 } 3678 3679 3680 status_t 3681 _user_wait_for_thread(thread_id id, status_t *userReturnCode) 3682 { 3683 status_t returnCode; 3684 status_t status; 3685 3686 if (userReturnCode != NULL && !IS_USER_ADDRESS(userReturnCode)) 3687 return B_BAD_ADDRESS; 3688 3689 status = wait_for_thread_etc(id, B_CAN_INTERRUPT, 0, &returnCode); 3690 3691 if (status == B_OK && userReturnCode != NULL 3692 && user_memcpy(userReturnCode, &returnCode, sizeof(status_t)) < B_OK) { 3693 return B_BAD_ADDRESS; 3694 } 3695 3696 return syscall_restart_handle_post(status); 3697 } 3698 3699 3700 status_t 3701 _user_wait_for_thread_etc(thread_id id, uint32 flags, bigtime_t timeout, status_t *userReturnCode) 3702 { 3703 status_t returnCode; 3704 status_t status; 3705 3706 if (userReturnCode != NULL && !IS_USER_ADDRESS(userReturnCode)) 3707 return B_BAD_ADDRESS; 3708 3709 syscall_restart_handle_timeout_pre(flags, timeout); 3710 3711 status = wait_for_thread_etc(id, flags | B_CAN_INTERRUPT, timeout, &returnCode); 3712 3713 if (status == B_OK && userReturnCode != NULL 3714 && user_memcpy(userReturnCode, &returnCode, sizeof(status_t)) < B_OK) { 3715 return B_BAD_ADDRESS; 3716 } 3717 3718 return syscall_restart_handle_timeout_post(status, timeout); 3719 } 3720 3721 3722 bool 3723 _user_has_data(thread_id thread) 3724 { 3725 return thread_has_data(thread, false); 3726 } 3727 3728 3729 status_t 3730 _user_send_data(thread_id thread, int32 code, const void *buffer, 3731 size_t bufferSize) 3732 { 3733 if (buffer != NULL && !IS_USER_ADDRESS(buffer)) 3734 return B_BAD_ADDRESS; 3735 3736 return send_data_etc(thread, code, buffer, bufferSize, 3737 B_KILL_CAN_INTERRUPT); 3738 // supports userland buffers 3739 } 3740 3741 3742 status_t 3743 _user_receive_data(thread_id *_userSender, void *buffer, size_t bufferSize) 3744 { 3745 thread_id sender; 3746 status_t code; 3747 3748 if ((!IS_USER_ADDRESS(_userSender) && _userSender != NULL) 3749 || (!IS_USER_ADDRESS(buffer) && buffer != NULL)) { 3750 return B_BAD_ADDRESS; 3751 } 3752 3753 code = receive_data_etc(&sender, buffer, bufferSize, B_KILL_CAN_INTERRUPT); 3754 // supports userland buffers 3755 3756 if (_userSender != NULL) 3757 if (user_memcpy(_userSender, &sender, sizeof(thread_id)) < B_OK) 3758 return B_BAD_ADDRESS; 3759 3760 return code; 3761 } 3762 3763 3764 status_t 3765 _user_block_thread(uint32 flags, bigtime_t timeout) 3766 { 3767 syscall_restart_handle_timeout_pre(flags, timeout); 3768 flags |= B_CAN_INTERRUPT; 3769 3770 Thread* thread = thread_get_current_thread(); 3771 ThreadLocker threadLocker(thread); 3772 3773 // check, if already done 3774 status_t waitStatus; 3775 if (user_memcpy(&waitStatus, &thread->user_thread->wait_status, 3776 sizeof(waitStatus)) < B_OK) { 3777 return B_BAD_ADDRESS; 3778 } 3779 if (waitStatus <= 0) 3780 return waitStatus; 3781 3782 // nope, so wait 3783 thread_prepare_to_block(thread, flags, THREAD_BLOCK_TYPE_USER, NULL); 3784 3785 threadLocker.Unlock(); 3786 3787 status_t status = thread_block_with_timeout(flags, timeout); 3788 3789 threadLocker.Lock(); 3790 3791 // Interruptions or timeouts can race with other threads unblocking us. 3792 // Favor a wake-up by another thread, i.e. if someone changed the wait 3793 // status, use that. 3794 status_t oldStatus; 3795 if (user_memcpy(&oldStatus, &thread->user_thread->wait_status, 3796 sizeof(oldStatus)) < B_OK) { 3797 return B_BAD_ADDRESS; 3798 } 3799 if (oldStatus > 0) { 3800 if (user_memcpy(&thread->user_thread->wait_status, &status, 3801 sizeof(status)) < B_OK) { 3802 return B_BAD_ADDRESS; 3803 } 3804 } else { 3805 status = oldStatus; 3806 } 3807 3808 threadLocker.Unlock(); 3809 3810 return syscall_restart_handle_timeout_post(status, timeout); 3811 } 3812 3813 3814 status_t 3815 _user_unblock_thread(thread_id threadID, status_t status) 3816 { 3817 status_t error = user_unblock_thread(threadID, status); 3818 3819 if (error == B_OK) 3820 scheduler_reschedule_if_necessary(); 3821 3822 return error; 3823 } 3824 3825 3826 status_t 3827 _user_unblock_threads(thread_id* userThreads, uint32 count, status_t status) 3828 { 3829 enum { 3830 MAX_USER_THREADS_TO_UNBLOCK = 128 3831 }; 3832 3833 if (userThreads == NULL || !IS_USER_ADDRESS(userThreads)) 3834 return B_BAD_ADDRESS; 3835 if (count > MAX_USER_THREADS_TO_UNBLOCK) 3836 return B_BAD_VALUE; 3837 3838 thread_id threads[MAX_USER_THREADS_TO_UNBLOCK]; 3839 if (user_memcpy(threads, userThreads, count * sizeof(thread_id)) != B_OK) 3840 return B_BAD_ADDRESS; 3841 3842 for (uint32 i = 0; i < count; i++) 3843 user_unblock_thread(threads[i], status); 3844 3845 scheduler_reschedule_if_necessary(); 3846 3847 return B_OK; 3848 } 3849 3850 3851 // TODO: the following two functions don't belong here 3852 3853 3854 int 3855 _user_getrlimit(int resource, struct rlimit *urlp) 3856 { 3857 struct rlimit rl; 3858 int ret; 3859 3860 if (urlp == NULL) 3861 return EINVAL; 3862 3863 if (!IS_USER_ADDRESS(urlp)) 3864 return B_BAD_ADDRESS; 3865 3866 ret = common_getrlimit(resource, &rl); 3867 3868 if (ret == 0) { 3869 ret = user_memcpy(urlp, &rl, sizeof(struct rlimit)); 3870 if (ret < 0) 3871 return ret; 3872 3873 return 0; 3874 } 3875 3876 return ret; 3877 } 3878 3879 3880 int 3881 _user_setrlimit(int resource, const struct rlimit *userResourceLimit) 3882 { 3883 struct rlimit resourceLimit; 3884 3885 if (userResourceLimit == NULL) 3886 return EINVAL; 3887 3888 if (!IS_USER_ADDRESS(userResourceLimit) 3889 || user_memcpy(&resourceLimit, userResourceLimit, 3890 sizeof(struct rlimit)) < B_OK) 3891 return B_BAD_ADDRESS; 3892 3893 return common_setrlimit(resource, &resourceLimit); 3894 } 3895