xref: /haiku/src/system/kernel/thread.cpp (revision 8c78892580f132d10e624aef96f835df8d94bf19)
1 /*
2  * Copyright 2018, Jérôme Duval, jerome.duval@gmail.com.
3  * Copyright 2005-2011, Ingo Weinhold, ingo_weinhold@gmx.de.
4  * Copyright 2002-2009, Axel Dörfler, axeld@pinc-software.de.
5  * Distributed under the terms of the MIT License.
6  *
7  * Copyright 2001-2002, Travis Geiselbrecht. All rights reserved.
8  * Distributed under the terms of the NewOS License.
9  */
10 
11 
12 /*! Threading routines */
13 
14 
15 #include <thread.h>
16 
17 #include <errno.h>
18 #include <malloc.h>
19 #include <stdio.h>
20 #include <stdlib.h>
21 #include <string.h>
22 #include <sys/resource.h>
23 
24 #include <algorithm>
25 
26 #include <OS.h>
27 
28 #include <util/AutoLock.h>
29 
30 #include <arch/debug.h>
31 #include <boot/kernel_args.h>
32 #include <condition_variable.h>
33 #include <cpu.h>
34 #include <int.h>
35 #include <kimage.h>
36 #include <kscheduler.h>
37 #include <ksignal.h>
38 #include <Notifications.h>
39 #include <real_time_clock.h>
40 #include <slab/Slab.h>
41 #include <smp.h>
42 #include <syscalls.h>
43 #include <syscall_restart.h>
44 #include <team.h>
45 #include <tls.h>
46 #include <user_runtime.h>
47 #include <user_thread.h>
48 #include <vfs.h>
49 #include <vm/vm.h>
50 #include <vm/VMAddressSpace.h>
51 #include <wait_for_objects.h>
52 
53 #include "TeamThreadTables.h"
54 
55 
56 //#define TRACE_THREAD
57 #ifdef TRACE_THREAD
58 #	define TRACE(x) dprintf x
59 #else
60 #	define TRACE(x) ;
61 #endif
62 
63 
64 #define THREAD_MAX_MESSAGE_SIZE		65536
65 
66 
67 // #pragma mark - ThreadHashTable
68 
69 
70 typedef BKernel::TeamThreadTable<Thread> ThreadHashTable;
71 
72 
73 // thread list
74 static Thread sIdleThreads[SMP_MAX_CPUS];
75 static ThreadHashTable sThreadHash;
76 static rw_spinlock sThreadHashLock = B_RW_SPINLOCK_INITIALIZER;
77 static thread_id sNextThreadID = 2;
78 	// ID 1 is allocated for the kernel by Team::Team() behind our back
79 
80 // some arbitrarily chosen limits -- should probably depend on the available
81 // memory
82 static int32 sMaxThreads = 4096;
83 static int32 sUsedThreads = 0;
84 
85 spinlock gThreadCreationLock = B_SPINLOCK_INITIALIZER;
86 
87 
88 struct UndertakerEntry : DoublyLinkedListLinkImpl<UndertakerEntry> {
89 	Thread*	thread;
90 	team_id	teamID;
91 
92 	UndertakerEntry(Thread* thread, team_id teamID)
93 		:
94 		thread(thread),
95 		teamID(teamID)
96 	{
97 	}
98 };
99 
100 
101 struct ThreadEntryArguments {
102 	status_t	(*kernelFunction)(void* argument);
103 	void*		argument;
104 	bool		enterUserland;
105 };
106 
107 struct UserThreadEntryArguments : ThreadEntryArguments {
108 	addr_t			userlandEntry;
109 	void*			userlandArgument1;
110 	void*			userlandArgument2;
111 	pthread_t		pthread;
112 	arch_fork_arg*	forkArgs;
113 	uint32			flags;
114 };
115 
116 
117 class ThreadNotificationService : public DefaultNotificationService {
118 public:
119 	ThreadNotificationService()
120 		: DefaultNotificationService("threads")
121 	{
122 	}
123 
124 	void Notify(uint32 eventCode, team_id teamID, thread_id threadID,
125 		Thread* thread = NULL)
126 	{
127 		char eventBuffer[180];
128 		KMessage event;
129 		event.SetTo(eventBuffer, sizeof(eventBuffer), THREAD_MONITOR);
130 		event.AddInt32("event", eventCode);
131 		event.AddInt32("team", teamID);
132 		event.AddInt32("thread", threadID);
133 		if (thread != NULL)
134 			event.AddPointer("threadStruct", thread);
135 
136 		DefaultNotificationService::Notify(event, eventCode);
137 	}
138 
139 	void Notify(uint32 eventCode, Thread* thread)
140 	{
141 		return Notify(eventCode, thread->id, thread->team->id, thread);
142 	}
143 };
144 
145 
146 static DoublyLinkedList<UndertakerEntry> sUndertakerEntries;
147 static spinlock sUndertakerLock = B_SPINLOCK_INITIALIZER;
148 static ConditionVariable sUndertakerCondition;
149 static ThreadNotificationService sNotificationService;
150 
151 
152 // object cache to allocate thread structures from
153 static object_cache* sThreadCache;
154 
155 
156 // #pragma mark - Thread
157 
158 
159 /*!	Constructs a thread.
160 
161 	\param name The thread's name.
162 	\param threadID The ID to be assigned to the new thread. If
163 		  \code < 0 \endcode a fresh one is allocated.
164 	\param cpu The CPU the thread shall be assigned.
165 */
166 Thread::Thread(const char* name, thread_id threadID, struct cpu_ent* cpu)
167 	:
168 	flags(0),
169 	serial_number(-1),
170 	hash_next(NULL),
171 	team_next(NULL),
172 	priority(-1),
173 	io_priority(-1),
174 	cpu(cpu),
175 	previous_cpu(NULL),
176 	pinned_to_cpu(0),
177 	sig_block_mask(0),
178 	sigsuspend_original_unblocked_mask(0),
179 	user_signal_context(NULL),
180 	signal_stack_base(0),
181 	signal_stack_size(0),
182 	signal_stack_enabled(false),
183 	in_kernel(true),
184 	has_yielded(false),
185 	user_thread(NULL),
186 	fault_handler(0),
187 	page_faults_allowed(1),
188 	team(NULL),
189 	select_infos(NULL),
190 	kernel_stack_area(-1),
191 	kernel_stack_base(0),
192 	user_stack_area(-1),
193 	user_stack_base(0),
194 	user_local_storage(0),
195 	kernel_errno(0),
196 	user_time(0),
197 	kernel_time(0),
198 	last_time(0),
199 	cpu_clock_offset(0),
200 	post_interrupt_callback(NULL),
201 	post_interrupt_data(NULL)
202 {
203 	id = threadID >= 0 ? threadID : allocate_thread_id();
204 	visible = false;
205 
206 	// init locks
207 	char lockName[32];
208 	snprintf(lockName, sizeof(lockName), "Thread:%" B_PRId32, id);
209 	mutex_init_etc(&fLock, lockName, MUTEX_FLAG_CLONE_NAME);
210 
211 	B_INITIALIZE_SPINLOCK(&time_lock);
212 	B_INITIALIZE_SPINLOCK(&scheduler_lock);
213 	B_INITIALIZE_RW_SPINLOCK(&team_lock);
214 
215 	// init name
216 	if (name != NULL)
217 		strlcpy(this->name, name, B_OS_NAME_LENGTH);
218 	else
219 		strcpy(this->name, "unnamed thread");
220 
221 	exit.status = 0;
222 
223 	list_init(&exit.waiters);
224 
225 	exit.sem = -1;
226 	msg.write_sem = -1;
227 	msg.read_sem = -1;
228 
229 	// add to thread table -- yet invisible
230 	InterruptsWriteSpinLocker threadHashLocker(sThreadHashLock);
231 	sThreadHash.Insert(this);
232 }
233 
234 
235 Thread::~Thread()
236 {
237 	// Delete resources that should actually be deleted by the thread itself,
238 	// when it exited, but that might still exist, if the thread was never run.
239 
240 	if (user_stack_area >= 0)
241 		delete_area(user_stack_area);
242 
243 	DeleteUserTimers(false);
244 
245 	// delete the resources, that may remain in either case
246 
247 	if (kernel_stack_area >= 0)
248 		delete_area(kernel_stack_area);
249 
250 	fPendingSignals.Clear();
251 
252 	if (exit.sem >= 0)
253 		delete_sem(exit.sem);
254 	if (msg.write_sem >= 0)
255 		delete_sem(msg.write_sem);
256 	if (msg.read_sem >= 0)
257 		delete_sem(msg.read_sem);
258 
259 	scheduler_on_thread_destroy(this);
260 
261 	mutex_destroy(&fLock);
262 
263 	// remove from thread table
264 	InterruptsWriteSpinLocker threadHashLocker(sThreadHashLock);
265 	sThreadHash.Remove(this);
266 }
267 
268 
269 /*static*/ status_t
270 Thread::Create(const char* name, Thread*& _thread)
271 {
272 	Thread* thread = new Thread(name, -1, NULL);
273 	if (thread == NULL)
274 		return B_NO_MEMORY;
275 
276 	status_t error = thread->Init(false);
277 	if (error != B_OK) {
278 		delete thread;
279 		return error;
280 	}
281 
282 	_thread = thread;
283 	return B_OK;
284 }
285 
286 
287 /*static*/ Thread*
288 Thread::Get(thread_id id)
289 {
290 	InterruptsReadSpinLocker threadHashLocker(sThreadHashLock);
291 	Thread* thread = sThreadHash.Lookup(id);
292 	if (thread != NULL)
293 		thread->AcquireReference();
294 	return thread;
295 }
296 
297 
298 /*static*/ Thread*
299 Thread::GetAndLock(thread_id id)
300 {
301 	// look it up and acquire a reference
302 	InterruptsReadSpinLocker threadHashLocker(sThreadHashLock);
303 	Thread* thread = sThreadHash.Lookup(id);
304 	if (thread == NULL)
305 		return NULL;
306 
307 	thread->AcquireReference();
308 	threadHashLocker.Unlock();
309 
310 	// lock and check, if it is still in the hash table
311 	thread->Lock();
312 	threadHashLocker.Lock();
313 
314 	if (sThreadHash.Lookup(id) == thread)
315 		return thread;
316 
317 	threadHashLocker.Unlock();
318 
319 	// nope, the thread is no longer in the hash table
320 	thread->UnlockAndReleaseReference();
321 
322 	return NULL;
323 }
324 
325 
326 /*static*/ Thread*
327 Thread::GetDebug(thread_id id)
328 {
329 	return sThreadHash.Lookup(id, false);
330 }
331 
332 
333 /*static*/ bool
334 Thread::IsAlive(thread_id id)
335 {
336 	InterruptsReadSpinLocker threadHashLocker(sThreadHashLock);
337 	return sThreadHash.Lookup(id) != NULL;
338 }
339 
340 
341 void*
342 Thread::operator new(size_t size)
343 {
344 	return object_cache_alloc(sThreadCache, 0);
345 }
346 
347 
348 void*
349 Thread::operator new(size_t, void* pointer)
350 {
351 	return pointer;
352 }
353 
354 
355 void
356 Thread::operator delete(void* pointer, size_t size)
357 {
358 	object_cache_free(sThreadCache, pointer, 0);
359 }
360 
361 
362 status_t
363 Thread::Init(bool idleThread)
364 {
365 	status_t error = scheduler_on_thread_create(this, idleThread);
366 	if (error != B_OK)
367 		return error;
368 
369 	char temp[64];
370 	snprintf(temp, sizeof(temp), "thread_%" B_PRId32 "_retcode_sem", id);
371 	exit.sem = create_sem(0, temp);
372 	if (exit.sem < 0)
373 		return exit.sem;
374 
375 	snprintf(temp, sizeof(temp), "%s send", name);
376 	msg.write_sem = create_sem(1, temp);
377 	if (msg.write_sem < 0)
378 		return msg.write_sem;
379 
380 	snprintf(temp, sizeof(temp), "%s receive", name);
381 	msg.read_sem = create_sem(0, temp);
382 	if (msg.read_sem < 0)
383 		return msg.read_sem;
384 
385 	error = arch_thread_init_thread_struct(this);
386 	if (error != B_OK)
387 		return error;
388 
389 	return B_OK;
390 }
391 
392 
393 /*!	Checks whether the thread is still in the thread hash table.
394 */
395 bool
396 Thread::IsAlive() const
397 {
398 	InterruptsReadSpinLocker threadHashLocker(sThreadHashLock);
399 
400 	return sThreadHash.Lookup(id) != NULL;
401 }
402 
403 
404 void
405 Thread::ResetSignalsOnExec()
406 {
407 	// We are supposed keep the pending signals and the signal mask. Only the
408 	// signal stack, if set, shall be unset.
409 
410 	sigsuspend_original_unblocked_mask = 0;
411 	user_signal_context = NULL;
412 	signal_stack_base = 0;
413 	signal_stack_size = 0;
414 	signal_stack_enabled = false;
415 }
416 
417 
418 /*!	Adds the given user timer to the thread and, if user-defined, assigns it an
419 	ID.
420 
421 	The caller must hold the thread's lock.
422 
423 	\param timer The timer to be added. If it doesn't have an ID yet, it is
424 		considered user-defined and will be assigned an ID.
425 	\return \c B_OK, if the timer was added successfully, another error code
426 		otherwise.
427 */
428 status_t
429 Thread::AddUserTimer(UserTimer* timer)
430 {
431 	// If the timer is user-defined, check timer limit and increment
432 	// user-defined count.
433 	if (timer->ID() < 0 && !team->CheckAddUserDefinedTimer())
434 		return EAGAIN;
435 
436 	fUserTimers.AddTimer(timer);
437 
438 	return B_OK;
439 }
440 
441 
442 /*!	Removes the given user timer from the thread.
443 
444 	The caller must hold the thread's lock.
445 
446 	\param timer The timer to be removed.
447 
448 */
449 void
450 Thread::RemoveUserTimer(UserTimer* timer)
451 {
452 	fUserTimers.RemoveTimer(timer);
453 
454 	if (timer->ID() >= USER_TIMER_FIRST_USER_DEFINED_ID)
455 		team->UserDefinedTimersRemoved(1);
456 }
457 
458 
459 /*!	Deletes all (or all user-defined) user timers of the thread.
460 
461 	The caller must hold the thread's lock.
462 
463 	\param userDefinedOnly If \c true, only the user-defined timers are deleted,
464 		otherwise all timers are deleted.
465 */
466 void
467 Thread::DeleteUserTimers(bool userDefinedOnly)
468 {
469 	int32 count = fUserTimers.DeleteTimers(userDefinedOnly);
470 	if (count > 0)
471 		team->UserDefinedTimersRemoved(count);
472 }
473 
474 
475 void
476 Thread::DeactivateCPUTimeUserTimers()
477 {
478 	while (ThreadTimeUserTimer* timer = fCPUTimeUserTimers.Head())
479 		timer->Deactivate();
480 }
481 
482 
483 // #pragma mark - ThreadListIterator
484 
485 
486 ThreadListIterator::ThreadListIterator()
487 {
488 	// queue the entry
489 	InterruptsWriteSpinLocker locker(sThreadHashLock);
490 	sThreadHash.InsertIteratorEntry(&fEntry);
491 }
492 
493 
494 ThreadListIterator::~ThreadListIterator()
495 {
496 	// remove the entry
497 	InterruptsWriteSpinLocker locker(sThreadHashLock);
498 	sThreadHash.RemoveIteratorEntry(&fEntry);
499 }
500 
501 
502 Thread*
503 ThreadListIterator::Next()
504 {
505 	// get the next team -- if there is one, get reference for it
506 	InterruptsWriteSpinLocker locker(sThreadHashLock);
507 	Thread* thread = sThreadHash.NextElement(&fEntry);
508 	if (thread != NULL)
509 		thread->AcquireReference();
510 
511 	return thread;
512 }
513 
514 
515 // #pragma mark - ThreadCreationAttributes
516 
517 
518 ThreadCreationAttributes::ThreadCreationAttributes(thread_func function,
519 	const char* name, int32 priority, void* arg, team_id team,
520 	Thread* thread)
521 {
522 	this->entry = NULL;
523 	this->name = name;
524 	this->priority = priority;
525 	this->args1 = NULL;
526 	this->args2 = NULL;
527 	this->stack_address = NULL;
528 	this->stack_size = 0;
529 	this->guard_size = 0;
530 	this->pthread = NULL;
531 	this->flags = 0;
532 	this->team = team >= 0 ? team : team_get_kernel_team()->id;
533 	this->thread = thread;
534 	this->signal_mask = 0;
535 	this->additional_stack_size = 0;
536 	this->kernelEntry = function;
537 	this->kernelArgument = arg;
538 	this->forkArgs = NULL;
539 }
540 
541 
542 /*!	Initializes the structure from a userland structure.
543 	\param userAttributes The userland structure (must be a userland address).
544 	\param nameBuffer A character array of at least size B_OS_NAME_LENGTH,
545 		which will be used for the \c name field, if the userland structure has
546 		a name. The buffer must remain valid as long as this structure is in
547 		use afterwards (or until it is reinitialized).
548 	\return \c B_OK, if the initialization went fine, another error code
549 		otherwise.
550 */
551 status_t
552 ThreadCreationAttributes::InitFromUserAttributes(
553 	const thread_creation_attributes* userAttributes, char* nameBuffer)
554 {
555 	if (userAttributes == NULL || !IS_USER_ADDRESS(userAttributes)
556 		|| user_memcpy((thread_creation_attributes*)this, userAttributes,
557 				sizeof(thread_creation_attributes)) != B_OK) {
558 		return B_BAD_ADDRESS;
559 	}
560 
561 	if (stack_size != 0
562 		&& (stack_size < MIN_USER_STACK_SIZE
563 			|| stack_size > MAX_USER_STACK_SIZE)) {
564 		return B_BAD_VALUE;
565 	}
566 
567 	if (entry == NULL || !IS_USER_ADDRESS(entry)
568 		|| (stack_address != NULL && !IS_USER_ADDRESS(stack_address))
569 		|| (name != NULL && (!IS_USER_ADDRESS(name)
570 			|| user_strlcpy(nameBuffer, name, B_OS_NAME_LENGTH) < 0))) {
571 		return B_BAD_ADDRESS;
572 	}
573 
574 	name = name != NULL ? nameBuffer : "user thread";
575 
576 	// kernel only attributes (not in thread_creation_attributes):
577 	Thread* currentThread = thread_get_current_thread();
578 	team = currentThread->team->id;
579 	thread = NULL;
580 	signal_mask = currentThread->sig_block_mask;
581 		// inherit the current thread's signal mask
582 	additional_stack_size = 0;
583 	kernelEntry = NULL;
584 	kernelArgument = NULL;
585 	forkArgs = NULL;
586 
587 	return B_OK;
588 }
589 
590 
591 // #pragma mark - private functions
592 
593 
594 /*!	Inserts a thread into a team.
595 	The caller must hold the team's lock, the thread's lock, and the scheduler
596 	lock.
597 */
598 static void
599 insert_thread_into_team(Team *team, Thread *thread)
600 {
601 	thread->team_next = team->thread_list;
602 	team->thread_list = thread;
603 	team->num_threads++;
604 
605 	if (team->num_threads == 1) {
606 		// this was the first thread
607 		team->main_thread = thread;
608 	}
609 	thread->team = team;
610 }
611 
612 
613 /*!	Removes a thread from a team.
614 	The caller must hold the team's lock, the thread's lock, and the scheduler
615 	lock.
616 */
617 static void
618 remove_thread_from_team(Team *team, Thread *thread)
619 {
620 	Thread *temp, *last = NULL;
621 
622 	for (temp = team->thread_list; temp != NULL; temp = temp->team_next) {
623 		if (temp == thread) {
624 			if (last == NULL)
625 				team->thread_list = temp->team_next;
626 			else
627 				last->team_next = temp->team_next;
628 
629 			team->num_threads--;
630 			break;
631 		}
632 		last = temp;
633 	}
634 }
635 
636 
637 static status_t
638 enter_userspace(Thread* thread, UserThreadEntryArguments* args)
639 {
640 	status_t error = arch_thread_init_tls(thread);
641 	if (error != B_OK) {
642 		dprintf("Failed to init TLS for new userland thread \"%s\" (%" B_PRId32
643 			")\n", thread->name, thread->id);
644 		free(args->forkArgs);
645 		return error;
646 	}
647 
648 	user_debug_update_new_thread_flags(thread);
649 
650 	// init the thread's user_thread
651 	user_thread* userThread = thread->user_thread;
652 	set_ac();
653 	userThread->pthread = args->pthread;
654 	userThread->flags = 0;
655 	userThread->wait_status = B_OK;
656 	userThread->defer_signals
657 		= (args->flags & THREAD_CREATION_FLAG_DEFER_SIGNALS) != 0 ? 1 : 0;
658 	userThread->pending_signals = 0;
659 	clear_ac();
660 
661 	if (args->forkArgs != NULL) {
662 		// This is a fork()ed thread. Copy the fork args onto the stack and
663 		// free them.
664 		arch_fork_arg archArgs = *args->forkArgs;
665 		free(args->forkArgs);
666 
667 		arch_restore_fork_frame(&archArgs);
668 			// this one won't return here
669 		return B_ERROR;
670 	}
671 
672 	// Jump to the entry point in user space. Only returns, if something fails.
673 	return arch_thread_enter_userspace(thread, args->userlandEntry,
674 		args->userlandArgument1, args->userlandArgument2);
675 }
676 
677 
678 status_t
679 thread_enter_userspace_new_team(Thread* thread, addr_t entryFunction,
680 	void* argument1, void* argument2)
681 {
682 	UserThreadEntryArguments entryArgs;
683 	entryArgs.kernelFunction = NULL;
684 	entryArgs.argument = NULL;
685 	entryArgs.enterUserland = true;
686 	entryArgs.userlandEntry = (addr_t)entryFunction;
687 	entryArgs.userlandArgument1 = argument1;
688 	entryArgs.userlandArgument2 = argument2;
689 	entryArgs.pthread = NULL;
690 	entryArgs.forkArgs = NULL;
691 	entryArgs.flags = 0;
692 
693 	return enter_userspace(thread, &entryArgs);
694 }
695 
696 
697 static void
698 common_thread_entry(void* _args)
699 {
700 	Thread* thread = thread_get_current_thread();
701 
702 	// The thread is new and has been scheduled the first time.
703 
704 	scheduler_new_thread_entry(thread);
705 
706 	// unlock the scheduler lock and enable interrupts
707 	release_spinlock(&thread->scheduler_lock);
708 	enable_interrupts();
709 
710 	// call the kernel function, if any
711 	ThreadEntryArguments* args = (ThreadEntryArguments*)_args;
712 	if (args->kernelFunction != NULL)
713 		args->kernelFunction(args->argument);
714 
715 	// If requested, enter userland, now.
716 	if (args->enterUserland) {
717 		enter_userspace(thread, (UserThreadEntryArguments*)args);
718 			// only returns or error
719 
720 		// If that's the team's main thread, init the team exit info.
721 		if (thread == thread->team->main_thread)
722 			team_init_exit_info_on_error(thread->team);
723 	}
724 
725 	// we're done
726 	thread_exit();
727 }
728 
729 
730 /*!	Prepares the given thread's kernel stack for executing its entry function.
731 
732 	The data pointed to by \a data of size \a dataSize are copied to the
733 	thread's kernel stack. A pointer to the copy's data is passed to the entry
734 	function. The entry function is common_thread_entry().
735 
736 	\param thread The thread.
737 	\param data Pointer to data to be copied to the thread's stack and passed
738 		to the entry function.
739 	\param dataSize The size of \a data.
740  */
741 static void
742 init_thread_kernel_stack(Thread* thread, const void* data, size_t dataSize)
743 {
744 	uint8* stack = (uint8*)thread->kernel_stack_base;
745 	uint8* stackTop = (uint8*)thread->kernel_stack_top;
746 
747 	// clear (or rather invalidate) the kernel stack contents, if compiled with
748 	// debugging
749 #if KDEBUG > 0
750 #	if defined(DEBUG_KERNEL_STACKS) && defined(STACK_GROWS_DOWNWARDS)
751 	memset((void*)(stack + KERNEL_STACK_GUARD_PAGES * B_PAGE_SIZE), 0xcc,
752 		KERNEL_STACK_SIZE);
753 #	else
754 	memset(stack, 0xcc, KERNEL_STACK_SIZE);
755 #	endif
756 #endif
757 
758 	// copy the data onto the stack, with 16-byte alignment to be on the safe
759 	// side
760 	void* clonedData;
761 #ifdef STACK_GROWS_DOWNWARDS
762 	clonedData = (void*)ROUNDDOWN((addr_t)stackTop - dataSize, 16);
763 	stackTop = (uint8*)clonedData;
764 #else
765 	clonedData = (void*)ROUNDUP((addr_t)stack, 16);
766 	stack = (uint8*)clonedData + ROUNDUP(dataSize, 16);
767 #endif
768 
769 	memcpy(clonedData, data, dataSize);
770 
771 	arch_thread_init_kthread_stack(thread, stack, stackTop,
772 		&common_thread_entry, clonedData);
773 }
774 
775 
776 static status_t
777 create_thread_user_stack(Team* team, Thread* thread, void* _stackBase,
778 	size_t stackSize, size_t additionalSize, size_t guardSize,
779 	char* nameBuffer)
780 {
781 	area_id stackArea = -1;
782 	uint8* stackBase = (uint8*)_stackBase;
783 
784 	if (stackBase != NULL) {
785 		// A stack has been specified. It must be large enough to hold the
786 		// TLS space at least. Guard pages are ignored for existing stacks.
787 		STATIC_ASSERT(TLS_SIZE < MIN_USER_STACK_SIZE);
788 		if (stackSize < MIN_USER_STACK_SIZE)
789 			return B_BAD_VALUE;
790 
791 		stackSize -= TLS_SIZE;
792 	} else {
793 		// No user-defined stack -- allocate one. For non-main threads the stack
794 		// will be between USER_STACK_REGION and the main thread stack area. For
795 		// a main thread the position is fixed.
796 
797 		guardSize = PAGE_ALIGN(guardSize);
798 
799 		if (stackSize == 0) {
800 			// Use the default size (a different one for a main thread).
801 			stackSize = thread->id == team->id
802 				? USER_MAIN_THREAD_STACK_SIZE : USER_STACK_SIZE;
803 		} else {
804 			// Verify that the given stack size is large enough.
805 			if (stackSize < MIN_USER_STACK_SIZE)
806 				return B_BAD_VALUE;
807 
808 			stackSize = PAGE_ALIGN(stackSize);
809 		}
810 
811 		size_t areaSize = PAGE_ALIGN(guardSize + stackSize + TLS_SIZE
812 			+ additionalSize);
813 
814 		snprintf(nameBuffer, B_OS_NAME_LENGTH, "%s_%" B_PRId32 "_stack",
815 			thread->name, thread->id);
816 
817 		stackBase = (uint8*)USER_STACK_REGION;
818 
819 		virtual_address_restrictions virtualRestrictions = {};
820 		virtualRestrictions.address_specification = B_RANDOMIZED_BASE_ADDRESS;
821 		virtualRestrictions.address = (void*)stackBase;
822 
823 		physical_address_restrictions physicalRestrictions = {};
824 
825 		stackArea = create_area_etc(team->id, nameBuffer,
826 			areaSize, B_NO_LOCK, B_READ_AREA | B_WRITE_AREA | B_STACK_AREA,
827 			0, guardSize, &virtualRestrictions, &physicalRestrictions,
828 			(void**)&stackBase);
829 		if (stackArea < 0)
830 			return stackArea;
831 	}
832 
833 	// set the stack
834 	ThreadLocker threadLocker(thread);
835 #ifdef STACK_GROWS_DOWNWARDS
836 	thread->user_stack_base = (addr_t)stackBase + guardSize;
837 #else
838 	thread->user_stack_base = (addr_t)stackBase;
839 #endif
840 	thread->user_stack_size = stackSize;
841 	thread->user_stack_area = stackArea;
842 
843 	return B_OK;
844 }
845 
846 
847 status_t
848 thread_create_user_stack(Team* team, Thread* thread, void* stackBase,
849 	size_t stackSize, size_t additionalSize)
850 {
851 	char nameBuffer[B_OS_NAME_LENGTH];
852 	return create_thread_user_stack(team, thread, stackBase, stackSize,
853 		additionalSize, USER_STACK_GUARD_SIZE, nameBuffer);
854 }
855 
856 
857 /*!	Creates a new thread.
858 
859 	\param attributes The thread creation attributes, specifying the team in
860 		which to create the thread, as well as a whole bunch of other arguments.
861 	\param kernel \c true, if a kernel-only thread shall be created, \c false,
862 		if the thread shall also be able to run in userland.
863 	\return The ID of the newly created thread (>= 0) or an error code on
864 		failure.
865 */
866 thread_id
867 thread_create_thread(const ThreadCreationAttributes& attributes, bool kernel)
868 {
869 	status_t status = B_OK;
870 
871 	TRACE(("thread_create_thread(%s, thread = %p, %s)\n", attributes.name,
872 		attributes.thread, kernel ? "kernel" : "user"));
873 
874 	// get the team
875 	Team* team = Team::Get(attributes.team);
876 	if (team == NULL)
877 		return B_BAD_TEAM_ID;
878 	BReference<Team> teamReference(team, true);
879 
880 	// If a thread object is given, acquire a reference to it, otherwise create
881 	// a new thread object with the given attributes.
882 	Thread* thread = attributes.thread;
883 	if (thread != NULL) {
884 		thread->AcquireReference();
885 	} else {
886 		status = Thread::Create(attributes.name, thread);
887 		if (status != B_OK)
888 			return status;
889 	}
890 	BReference<Thread> threadReference(thread, true);
891 
892 	thread->team = team;
893 		// set already, so, if something goes wrong, the team pointer is
894 		// available for deinitialization
895 	thread->priority = attributes.priority == -1
896 		? B_NORMAL_PRIORITY : attributes.priority;
897 	thread->priority = std::max(thread->priority,
898 			(int32)THREAD_MIN_SET_PRIORITY);
899 	thread->priority = std::min(thread->priority,
900 			(int32)THREAD_MAX_SET_PRIORITY);
901 	thread->state = B_THREAD_SUSPENDED;
902 
903 	thread->sig_block_mask = attributes.signal_mask;
904 
905 	// init debug structure
906 	init_thread_debug_info(&thread->debug_info);
907 
908 	// create the kernel stack
909 	char stackName[B_OS_NAME_LENGTH];
910 	snprintf(stackName, B_OS_NAME_LENGTH, "%s_%" B_PRId32 "_kstack",
911 		thread->name, thread->id);
912 	virtual_address_restrictions virtualRestrictions = {};
913 	virtualRestrictions.address_specification = B_ANY_KERNEL_ADDRESS;
914 	physical_address_restrictions physicalRestrictions = {};
915 
916 	thread->kernel_stack_area = create_area_etc(B_SYSTEM_TEAM, stackName,
917 		KERNEL_STACK_SIZE + KERNEL_STACK_GUARD_PAGES * B_PAGE_SIZE,
918 		B_FULL_LOCK, B_KERNEL_READ_AREA | B_KERNEL_WRITE_AREA
919 			| B_KERNEL_STACK_AREA, 0, KERNEL_STACK_GUARD_PAGES * B_PAGE_SIZE,
920 		&virtualRestrictions, &physicalRestrictions,
921 		(void**)&thread->kernel_stack_base);
922 
923 	if (thread->kernel_stack_area < 0) {
924 		// we're not yet part of a team, so we can just bail out
925 		status = thread->kernel_stack_area;
926 
927 		dprintf("create_thread: error creating kernel stack: %s!\n",
928 			strerror(status));
929 
930 		return status;
931 	}
932 
933 	thread->kernel_stack_top = thread->kernel_stack_base + KERNEL_STACK_SIZE
934 		+ KERNEL_STACK_GUARD_PAGES * B_PAGE_SIZE;
935 
936 	if (kernel) {
937 		// Init the thread's kernel stack. It will start executing
938 		// common_thread_entry() with the arguments we prepare here.
939 		ThreadEntryArguments entryArgs;
940 		entryArgs.kernelFunction = attributes.kernelEntry;
941 		entryArgs.argument = attributes.kernelArgument;
942 		entryArgs.enterUserland = false;
943 
944 		init_thread_kernel_stack(thread, &entryArgs, sizeof(entryArgs));
945 	} else {
946 		// create the userland stack, if the thread doesn't have one yet
947 		if (thread->user_stack_base == 0) {
948 			status = create_thread_user_stack(team, thread,
949 				attributes.stack_address, attributes.stack_size,
950 				attributes.additional_stack_size, attributes.guard_size,
951 				stackName);
952 			if (status != B_OK)
953 				return status;
954 		}
955 
956 		// Init the thread's kernel stack. It will start executing
957 		// common_thread_entry() with the arguments we prepare here.
958 		UserThreadEntryArguments entryArgs;
959 		entryArgs.kernelFunction = attributes.kernelEntry;
960 		entryArgs.argument = attributes.kernelArgument;
961 		entryArgs.enterUserland = true;
962 		entryArgs.userlandEntry = (addr_t)attributes.entry;
963 		entryArgs.userlandArgument1 = attributes.args1;
964 		entryArgs.userlandArgument2 = attributes.args2;
965 		entryArgs.pthread = attributes.pthread;
966 		entryArgs.forkArgs = attributes.forkArgs;
967 		entryArgs.flags = attributes.flags;
968 
969 		init_thread_kernel_stack(thread, &entryArgs, sizeof(entryArgs));
970 
971 		// create the pre-defined thread timers
972 		status = user_timer_create_thread_timers(team, thread);
973 		if (status != B_OK)
974 			return status;
975 	}
976 
977 	// lock the team and see, if it is still alive
978 	TeamLocker teamLocker(team);
979 	if (team->state >= TEAM_STATE_SHUTDOWN)
980 		return B_BAD_TEAM_ID;
981 
982 	bool debugNewThread = false;
983 	if (!kernel) {
984 		// allocate the user_thread structure, if not already allocated
985 		if (thread->user_thread == NULL) {
986 			thread->user_thread = team_allocate_user_thread(team);
987 			if (thread->user_thread == NULL)
988 				return B_NO_MEMORY;
989 		}
990 
991 		// If the new thread belongs to the same team as the current thread, it
992 		// may inherit some of the thread debug flags.
993 		Thread* currentThread = thread_get_current_thread();
994 		if (currentThread != NULL && currentThread->team == team) {
995 			// inherit all user flags...
996 			int32 debugFlags = atomic_get(&currentThread->debug_info.flags)
997 				& B_THREAD_DEBUG_USER_FLAG_MASK;
998 
999 			// ... save the syscall tracing flags, unless explicitely specified
1000 			if (!(debugFlags & B_THREAD_DEBUG_SYSCALL_TRACE_CHILD_THREADS)) {
1001 				debugFlags &= ~(B_THREAD_DEBUG_PRE_SYSCALL
1002 					| B_THREAD_DEBUG_POST_SYSCALL);
1003 			}
1004 
1005 			thread->debug_info.flags = debugFlags;
1006 
1007 			// stop the new thread, if desired
1008 			debugNewThread = debugFlags & B_THREAD_DEBUG_STOP_CHILD_THREADS;
1009 		}
1010 	}
1011 
1012 	// We're going to make the thread live, now. The thread itself will take
1013 	// over a reference to its Thread object. We'll acquire another reference
1014 	// for our own use (and threadReference remains armed).
1015 
1016 	ThreadLocker threadLocker(thread);
1017 
1018 	InterruptsSpinLocker threadCreationLocker(gThreadCreationLock);
1019 	WriteSpinLocker threadHashLocker(sThreadHashLock);
1020 
1021 	// check the thread limit
1022 	if (sUsedThreads >= sMaxThreads) {
1023 		// Clean up the user_thread structure. It's a bit unfortunate that the
1024 		// Thread destructor cannot do that, so we have to do that explicitly.
1025 		threadHashLocker.Unlock();
1026 		threadCreationLocker.Unlock();
1027 
1028 		user_thread* userThread = thread->user_thread;
1029 		thread->user_thread = NULL;
1030 
1031 		threadLocker.Unlock();
1032 		teamLocker.Unlock();
1033 
1034 		if (userThread != NULL)
1035 			team_free_user_thread(team, userThread);
1036 
1037 		return B_NO_MORE_THREADS;
1038 	}
1039 
1040 	// make thread visible in global hash/list
1041 	thread->visible = true;
1042 	sUsedThreads++;
1043 
1044 	scheduler_on_thread_init(thread);
1045 
1046 	thread->AcquireReference();
1047 
1048 	// Debug the new thread, if the parent thread required that (see above),
1049 	// or the respective global team debug flag is set. But only, if a
1050 	// debugger is installed for the team.
1051 	if (!kernel) {
1052 		int32 teamDebugFlags = atomic_get(&team->debug_info.flags);
1053 		debugNewThread |= (teamDebugFlags & B_TEAM_DEBUG_STOP_NEW_THREADS) != 0;
1054 		if (debugNewThread
1055 			&& (teamDebugFlags & B_TEAM_DEBUG_DEBUGGER_INSTALLED) != 0) {
1056 			thread->debug_info.flags |= B_THREAD_DEBUG_STOP;
1057 		}
1058 	}
1059 
1060 	{
1061 		SpinLocker signalLocker(team->signal_lock);
1062 		SpinLocker timeLocker(team->time_lock);
1063 
1064 		// insert thread into team
1065 		insert_thread_into_team(team, thread);
1066 	}
1067 
1068 	threadHashLocker.Unlock();
1069 	threadCreationLocker.Unlock();
1070 	threadLocker.Unlock();
1071 	teamLocker.Unlock();
1072 
1073 	// notify listeners
1074 	sNotificationService.Notify(THREAD_ADDED, thread);
1075 
1076 	return thread->id;
1077 }
1078 
1079 
1080 static status_t
1081 undertaker(void* /*args*/)
1082 {
1083 	while (true) {
1084 		// wait for a thread to bury
1085 		InterruptsSpinLocker locker(sUndertakerLock);
1086 
1087 		while (sUndertakerEntries.IsEmpty()) {
1088 			ConditionVariableEntry conditionEntry;
1089 			sUndertakerCondition.Add(&conditionEntry);
1090 			locker.Unlock();
1091 
1092 			conditionEntry.Wait();
1093 
1094 			locker.Lock();
1095 		}
1096 
1097 		UndertakerEntry* _entry = sUndertakerEntries.RemoveHead();
1098 		locker.Unlock();
1099 
1100 		UndertakerEntry entry = *_entry;
1101 			// we need a copy, since the original entry is on the thread's stack
1102 
1103 		// we've got an entry
1104 		Thread* thread = entry.thread;
1105 
1106 		// make sure the thread isn't running anymore
1107 		InterruptsSpinLocker schedulerLocker(thread->scheduler_lock);
1108 		ASSERT(thread->state == THREAD_STATE_FREE_ON_RESCHED);
1109 		schedulerLocker.Unlock();
1110 
1111 		// remove this thread from from the kernel team -- this makes it
1112 		// unaccessible
1113 		Team* kernelTeam = team_get_kernel_team();
1114 		TeamLocker kernelTeamLocker(kernelTeam);
1115 		thread->Lock();
1116 
1117 		InterruptsSpinLocker threadCreationLocker(gThreadCreationLock);
1118 		SpinLocker signalLocker(kernelTeam->signal_lock);
1119 		SpinLocker timeLocker(kernelTeam->time_lock);
1120 
1121 		remove_thread_from_team(kernelTeam, thread);
1122 
1123 		timeLocker.Unlock();
1124 		signalLocker.Unlock();
1125 		threadCreationLocker.Unlock();
1126 
1127 		kernelTeamLocker.Unlock();
1128 
1129 		// free the thread structure
1130 		thread->UnlockAndReleaseReference();
1131 	}
1132 
1133 	// can never get here
1134 	return B_OK;
1135 }
1136 
1137 
1138 /*!	Returns the semaphore the thread is currently waiting on.
1139 
1140 	The return value is purely informative.
1141 	The caller must hold the scheduler lock.
1142 
1143 	\param thread The thread.
1144 	\return The ID of the semaphore the thread is currently waiting on or \c -1,
1145 		if it isn't waiting on a semaphore.
1146 */
1147 static sem_id
1148 get_thread_wait_sem(Thread* thread)
1149 {
1150 	if (thread->state == B_THREAD_WAITING
1151 		&& thread->wait.type == THREAD_BLOCK_TYPE_SEMAPHORE) {
1152 		return (sem_id)(addr_t)thread->wait.object;
1153 	}
1154 	return -1;
1155 }
1156 
1157 
1158 /*!	Fills the thread_info structure with information from the specified thread.
1159 	The caller must hold the thread's lock and the scheduler lock.
1160 */
1161 static void
1162 fill_thread_info(Thread *thread, thread_info *info, size_t size)
1163 {
1164 	info->thread = thread->id;
1165 	info->team = thread->team->id;
1166 
1167 	strlcpy(info->name, thread->name, B_OS_NAME_LENGTH);
1168 
1169 	info->sem = -1;
1170 
1171 	if (thread->state == B_THREAD_WAITING) {
1172 		info->state = B_THREAD_WAITING;
1173 
1174 		switch (thread->wait.type) {
1175 			case THREAD_BLOCK_TYPE_SNOOZE:
1176 				info->state = B_THREAD_ASLEEP;
1177 				break;
1178 
1179 			case THREAD_BLOCK_TYPE_SEMAPHORE:
1180 			{
1181 				sem_id sem = (sem_id)(addr_t)thread->wait.object;
1182 				if (sem == thread->msg.read_sem)
1183 					info->state = B_THREAD_RECEIVING;
1184 				else
1185 					info->sem = sem;
1186 				break;
1187 			}
1188 
1189 			case THREAD_BLOCK_TYPE_CONDITION_VARIABLE:
1190 			default:
1191 				break;
1192 		}
1193 	} else
1194 		info->state = (thread_state)thread->state;
1195 
1196 	info->priority = thread->priority;
1197 	info->stack_base = (void *)thread->user_stack_base;
1198 	info->stack_end = (void *)(thread->user_stack_base
1199 		+ thread->user_stack_size);
1200 
1201 	InterruptsSpinLocker threadTimeLocker(thread->time_lock);
1202 	info->user_time = thread->user_time;
1203 	info->kernel_time = thread->kernel_time;
1204 }
1205 
1206 
1207 static status_t
1208 send_data_etc(thread_id id, int32 code, const void *buffer, size_t bufferSize,
1209 	int32 flags)
1210 {
1211 	// get the thread
1212 	Thread *target = Thread::Get(id);
1213 	if (target == NULL)
1214 		return B_BAD_THREAD_ID;
1215 	BReference<Thread> targetReference(target, true);
1216 
1217 	// get the write semaphore
1218 	ThreadLocker targetLocker(target);
1219 	sem_id cachedSem = target->msg.write_sem;
1220 	targetLocker.Unlock();
1221 
1222 	if (bufferSize > THREAD_MAX_MESSAGE_SIZE)
1223 		return B_NO_MEMORY;
1224 
1225 	status_t status = acquire_sem_etc(cachedSem, 1, flags, 0);
1226 	if (status == B_INTERRUPTED) {
1227 		// we got interrupted by a signal
1228 		return status;
1229 	}
1230 	if (status != B_OK) {
1231 		// Any other acquisition problems may be due to thread deletion
1232 		return B_BAD_THREAD_ID;
1233 	}
1234 
1235 	void* data;
1236 	if (bufferSize > 0) {
1237 		data = malloc(bufferSize);
1238 		if (data == NULL)
1239 			return B_NO_MEMORY;
1240 		if (user_memcpy(data, buffer, bufferSize) != B_OK) {
1241 			free(data);
1242 			return B_BAD_DATA;
1243 		}
1244 	} else
1245 		data = NULL;
1246 
1247 	targetLocker.Lock();
1248 
1249 	// The target thread could have been deleted at this point.
1250 	if (!target->IsAlive()) {
1251 		targetLocker.Unlock();
1252 		free(data);
1253 		return B_BAD_THREAD_ID;
1254 	}
1255 
1256 	// Save message informations
1257 	target->msg.sender = thread_get_current_thread()->id;
1258 	target->msg.code = code;
1259 	target->msg.size = bufferSize;
1260 	target->msg.buffer = data;
1261 	cachedSem = target->msg.read_sem;
1262 
1263 	targetLocker.Unlock();
1264 
1265 	release_sem(cachedSem);
1266 	return B_OK;
1267 }
1268 
1269 
1270 static int32
1271 receive_data_etc(thread_id *_sender, void *buffer, size_t bufferSize,
1272 	int32 flags)
1273 {
1274 	Thread *thread = thread_get_current_thread();
1275 	size_t size;
1276 	int32 code;
1277 
1278 	status_t status = acquire_sem_etc(thread->msg.read_sem, 1, flags, 0);
1279 	if (status != B_OK) {
1280 		// Actually, we're not supposed to return error codes
1281 		// but since the only reason this can fail is that we
1282 		// were killed, it's probably okay to do so (but also
1283 		// meaningless).
1284 		return status;
1285 	}
1286 
1287 	if (buffer != NULL && bufferSize != 0 && thread->msg.buffer != NULL) {
1288 		size = min_c(bufferSize, thread->msg.size);
1289 		status = user_memcpy(buffer, thread->msg.buffer, size);
1290 		if (status != B_OK) {
1291 			free(thread->msg.buffer);
1292 			release_sem(thread->msg.write_sem);
1293 			return status;
1294 		}
1295 	}
1296 
1297 	*_sender = thread->msg.sender;
1298 	code = thread->msg.code;
1299 
1300 	free(thread->msg.buffer);
1301 	release_sem(thread->msg.write_sem);
1302 
1303 	return code;
1304 }
1305 
1306 
1307 static status_t
1308 common_getrlimit(int resource, struct rlimit * rlp)
1309 {
1310 	if (!rlp)
1311 		return B_BAD_ADDRESS;
1312 
1313 	switch (resource) {
1314 		case RLIMIT_AS:
1315 			rlp->rlim_cur = __HAIKU_ADDR_MAX;
1316 			rlp->rlim_max = __HAIKU_ADDR_MAX;
1317 			return B_OK;
1318 
1319 		case RLIMIT_CORE:
1320 			rlp->rlim_cur = 0;
1321 			rlp->rlim_max = 0;
1322 			return B_OK;
1323 
1324 		case RLIMIT_DATA:
1325 			rlp->rlim_cur = RLIM_INFINITY;
1326 			rlp->rlim_max = RLIM_INFINITY;
1327 			return B_OK;
1328 
1329 		case RLIMIT_NOFILE:
1330 		case RLIMIT_NOVMON:
1331 			return vfs_getrlimit(resource, rlp);
1332 
1333 		case RLIMIT_STACK:
1334 		{
1335 			rlp->rlim_cur = USER_MAIN_THREAD_STACK_SIZE;
1336 			rlp->rlim_max = USER_MAIN_THREAD_STACK_SIZE;
1337 			return B_OK;
1338 		}
1339 
1340 		default:
1341 			return EINVAL;
1342 	}
1343 
1344 	return B_OK;
1345 }
1346 
1347 
1348 static status_t
1349 common_setrlimit(int resource, const struct rlimit * rlp)
1350 {
1351 	if (!rlp)
1352 		return B_BAD_ADDRESS;
1353 
1354 	switch (resource) {
1355 		case RLIMIT_CORE:
1356 			// We don't support core file, so allow settings to 0/0 only.
1357 			if (rlp->rlim_cur != 0 || rlp->rlim_max != 0)
1358 				return EINVAL;
1359 			return B_OK;
1360 
1361 		case RLIMIT_NOFILE:
1362 		case RLIMIT_NOVMON:
1363 			return vfs_setrlimit(resource, rlp);
1364 
1365 		default:
1366 			return EINVAL;
1367 	}
1368 
1369 	return B_OK;
1370 }
1371 
1372 
1373 static status_t
1374 common_snooze_etc(bigtime_t timeout, clockid_t clockID, uint32 flags,
1375 	bigtime_t* _remainingTime)
1376 {
1377 #if KDEBUG
1378 	if (!are_interrupts_enabled()) {
1379 		panic("common_snooze_etc(): called with interrupts disabled, timeout "
1380 			"%" B_PRIdBIGTIME, timeout);
1381 	}
1382 #endif
1383 
1384 	switch (clockID) {
1385 		case CLOCK_REALTIME:
1386 			// make sure the B_TIMEOUT_REAL_TIME_BASE flag is set and fall
1387 			// through
1388 			flags |= B_TIMEOUT_REAL_TIME_BASE;
1389 		case CLOCK_MONOTONIC:
1390 		{
1391 			// Store the start time, for the case that we get interrupted and
1392 			// need to return the remaining time. For absolute timeouts we can
1393 			// still get he time later, if needed.
1394 			bigtime_t startTime
1395 				= _remainingTime != NULL && (flags & B_RELATIVE_TIMEOUT) != 0
1396 					? system_time() : 0;
1397 
1398 			Thread* thread = thread_get_current_thread();
1399 
1400 			thread_prepare_to_block(thread, flags, THREAD_BLOCK_TYPE_SNOOZE,
1401 				NULL);
1402 			status_t status = thread_block_with_timeout(flags, timeout);
1403 
1404 			if (status == B_TIMED_OUT || status == B_WOULD_BLOCK)
1405 				return B_OK;
1406 
1407 			// If interrupted, compute the remaining time, if requested.
1408 			if (status == B_INTERRUPTED && _remainingTime != NULL) {
1409 				if ((flags & B_RELATIVE_TIMEOUT) != 0) {
1410 					*_remainingTime = std::max(
1411 						startTime + timeout - system_time(), (bigtime_t)0);
1412 				} else {
1413 					bigtime_t now = (flags & B_TIMEOUT_REAL_TIME_BASE) != 0
1414 						? real_time_clock_usecs() : system_time();
1415 					*_remainingTime = std::max(timeout - now, (bigtime_t)0);
1416 				}
1417 			}
1418 
1419 			return status;
1420 		}
1421 
1422 		case CLOCK_THREAD_CPUTIME_ID:
1423 			// Waiting for ourselves to do something isn't particularly
1424 			// productive.
1425 			return B_BAD_VALUE;
1426 
1427 		case CLOCK_PROCESS_CPUTIME_ID:
1428 		default:
1429 			// We don't have to support those, but we are allowed to. Could be
1430 			// done be creating a UserTimer on the fly with a custom UserEvent
1431 			// that would just wake us up.
1432 			return ENOTSUP;
1433 	}
1434 }
1435 
1436 
1437 //	#pragma mark - debugger calls
1438 
1439 
1440 static int
1441 make_thread_unreal(int argc, char **argv)
1442 {
1443 	int32 id = -1;
1444 
1445 	if (argc > 2) {
1446 		print_debugger_command_usage(argv[0]);
1447 		return 0;
1448 	}
1449 
1450 	if (argc > 1)
1451 		id = strtoul(argv[1], NULL, 0);
1452 
1453 	for (ThreadHashTable::Iterator it = sThreadHash.GetIterator();
1454 			Thread* thread = it.Next();) {
1455 		if (id != -1 && thread->id != id)
1456 			continue;
1457 
1458 		if (thread->priority > B_DISPLAY_PRIORITY) {
1459 			scheduler_set_thread_priority(thread, B_NORMAL_PRIORITY);
1460 			kprintf("thread %" B_PRId32 " made unreal\n", thread->id);
1461 		}
1462 	}
1463 
1464 	return 0;
1465 }
1466 
1467 
1468 static int
1469 set_thread_prio(int argc, char **argv)
1470 {
1471 	int32 id;
1472 	int32 prio;
1473 
1474 	if (argc > 3 || argc < 2) {
1475 		print_debugger_command_usage(argv[0]);
1476 		return 0;
1477 	}
1478 
1479 	prio = strtoul(argv[1], NULL, 0);
1480 	if (prio > THREAD_MAX_SET_PRIORITY)
1481 		prio = THREAD_MAX_SET_PRIORITY;
1482 	if (prio < THREAD_MIN_SET_PRIORITY)
1483 		prio = THREAD_MIN_SET_PRIORITY;
1484 
1485 	if (argc > 2)
1486 		id = strtoul(argv[2], NULL, 0);
1487 	else
1488 		id = thread_get_current_thread()->id;
1489 
1490 	bool found = false;
1491 	for (ThreadHashTable::Iterator it = sThreadHash.GetIterator();
1492 			Thread* thread = it.Next();) {
1493 		if (thread->id != id)
1494 			continue;
1495 		scheduler_set_thread_priority(thread, prio);
1496 		kprintf("thread %" B_PRId32 " set to priority %" B_PRId32 "\n", id, prio);
1497 		found = true;
1498 		break;
1499 	}
1500 	if (!found)
1501 		kprintf("thread %" B_PRId32 " (%#" B_PRIx32 ") not found\n", id, id);
1502 
1503 	return 0;
1504 }
1505 
1506 
1507 static int
1508 make_thread_suspended(int argc, char **argv)
1509 {
1510 	int32 id;
1511 
1512 	if (argc > 2) {
1513 		print_debugger_command_usage(argv[0]);
1514 		return 0;
1515 	}
1516 
1517 	if (argc == 1)
1518 		id = thread_get_current_thread()->id;
1519 	else
1520 		id = strtoul(argv[1], NULL, 0);
1521 
1522 	bool found = false;
1523 	for (ThreadHashTable::Iterator it = sThreadHash.GetIterator();
1524 			Thread* thread = it.Next();) {
1525 		if (thread->id != id)
1526 			continue;
1527 
1528 		Signal signal(SIGSTOP, SI_USER, B_OK, team_get_kernel_team()->id);
1529 		send_signal_to_thread(thread, signal, B_DO_NOT_RESCHEDULE);
1530 
1531 		kprintf("thread %" B_PRId32 " suspended\n", id);
1532 		found = true;
1533 		break;
1534 	}
1535 	if (!found)
1536 		kprintf("thread %" B_PRId32 " (%#" B_PRIx32 ") not found\n", id, id);
1537 
1538 	return 0;
1539 }
1540 
1541 
1542 static int
1543 make_thread_resumed(int argc, char **argv)
1544 {
1545 	int32 id;
1546 
1547 	if (argc != 2) {
1548 		print_debugger_command_usage(argv[0]);
1549 		return 0;
1550 	}
1551 
1552 	// force user to enter a thread id, as using
1553 	// the current thread is usually not intended
1554 	id = strtoul(argv[1], NULL, 0);
1555 
1556 	bool found = false;
1557 	for (ThreadHashTable::Iterator it = sThreadHash.GetIterator();
1558 			Thread* thread = it.Next();) {
1559 		if (thread->id != id)
1560 			continue;
1561 
1562 		if (thread->state == B_THREAD_SUSPENDED || thread->state == B_THREAD_ASLEEP
1563 				|| thread->state == B_THREAD_WAITING) {
1564 			scheduler_enqueue_in_run_queue(thread);
1565 			kprintf("thread %" B_PRId32 " resumed\n", thread->id);
1566 		} else
1567 			kprintf("thread %" B_PRId32 " is already running\n", thread->id);
1568 		found = true;
1569 		break;
1570 	}
1571 	if (!found)
1572 		kprintf("thread %" B_PRId32 " (%#" B_PRIx32 ") not found\n", id, id);
1573 
1574 	return 0;
1575 }
1576 
1577 
1578 static int
1579 drop_into_debugger(int argc, char **argv)
1580 {
1581 	status_t err;
1582 	int32 id;
1583 
1584 	if (argc > 2) {
1585 		print_debugger_command_usage(argv[0]);
1586 		return 0;
1587 	}
1588 
1589 	if (argc == 1)
1590 		id = thread_get_current_thread()->id;
1591 	else
1592 		id = strtoul(argv[1], NULL, 0);
1593 
1594 	err = _user_debug_thread(id);
1595 		// TODO: This is a non-trivial syscall doing some locking, so this is
1596 		// really nasty and may go seriously wrong.
1597 	if (err)
1598 		kprintf("drop failed\n");
1599 	else
1600 		kprintf("thread %" B_PRId32 " dropped into user debugger\n", id);
1601 
1602 	return 0;
1603 }
1604 
1605 
1606 /*!	Returns a user-readable string for a thread state.
1607 	Only for use in the kernel debugger.
1608 */
1609 static const char *
1610 state_to_text(Thread *thread, int32 state)
1611 {
1612 	switch (state) {
1613 		case B_THREAD_READY:
1614 			return "ready";
1615 
1616 		case B_THREAD_RUNNING:
1617 			return "running";
1618 
1619 		case B_THREAD_WAITING:
1620 		{
1621 			if (thread != NULL) {
1622 				switch (thread->wait.type) {
1623 					case THREAD_BLOCK_TYPE_SNOOZE:
1624 						return "zzz";
1625 
1626 					case THREAD_BLOCK_TYPE_SEMAPHORE:
1627 					{
1628 						sem_id sem = (sem_id)(addr_t)thread->wait.object;
1629 						if (sem == thread->msg.read_sem)
1630 							return "receive";
1631 						break;
1632 					}
1633 				}
1634 			}
1635 
1636 			return "waiting";
1637 		}
1638 
1639 		case B_THREAD_SUSPENDED:
1640 			return "suspended";
1641 
1642 		case THREAD_STATE_FREE_ON_RESCHED:
1643 			return "death";
1644 
1645 		default:
1646 			return "UNKNOWN";
1647 	}
1648 }
1649 
1650 
1651 static void
1652 print_thread_list_table_head()
1653 {
1654 	kprintf("%-*s       id  state     wait for  %-*s    cpu pri  %-*s   team  "
1655 		"name\n",
1656 		B_PRINTF_POINTER_WIDTH, "thread", B_PRINTF_POINTER_WIDTH, "object",
1657 		B_PRINTF_POINTER_WIDTH, "stack");
1658 }
1659 
1660 
1661 static void
1662 _dump_thread_info(Thread *thread, bool shortInfo)
1663 {
1664 	if (shortInfo) {
1665 		kprintf("%p %6" B_PRId32 "  %-10s", thread, thread->id,
1666 			state_to_text(thread, thread->state));
1667 
1668 		// does it block on a semaphore or a condition variable?
1669 		if (thread->state == B_THREAD_WAITING) {
1670 			switch (thread->wait.type) {
1671 				case THREAD_BLOCK_TYPE_SEMAPHORE:
1672 				{
1673 					sem_id sem = (sem_id)(addr_t)thread->wait.object;
1674 					if (sem == thread->msg.read_sem)
1675 						kprintf("%*s", B_PRINTF_POINTER_WIDTH + 15, "");
1676 					else {
1677 						kprintf("sem       %-*" B_PRId32,
1678 							B_PRINTF_POINTER_WIDTH + 5, sem);
1679 					}
1680 					break;
1681 				}
1682 
1683 				case THREAD_BLOCK_TYPE_CONDITION_VARIABLE:
1684 					kprintf("cvar      %p   ", thread->wait.object);
1685 					break;
1686 
1687 				case THREAD_BLOCK_TYPE_SNOOZE:
1688 					kprintf("%*s", B_PRINTF_POINTER_WIDTH + 15, "");
1689 					break;
1690 
1691 				case THREAD_BLOCK_TYPE_SIGNAL:
1692 					kprintf("signal%*s", B_PRINTF_POINTER_WIDTH + 9, "");
1693 					break;
1694 
1695 				case THREAD_BLOCK_TYPE_MUTEX:
1696 					kprintf("mutex     %p   ", thread->wait.object);
1697 					break;
1698 
1699 				case THREAD_BLOCK_TYPE_RW_LOCK:
1700 					kprintf("rwlock    %p   ", thread->wait.object);
1701 					break;
1702 
1703 				case THREAD_BLOCK_TYPE_USER:
1704 					kprintf("user%*s", B_PRINTF_POINTER_WIDTH + 11, "");
1705 					break;
1706 
1707 				case THREAD_BLOCK_TYPE_OTHER:
1708 					kprintf("other%*s", B_PRINTF_POINTER_WIDTH + 10, "");
1709 					break;
1710 
1711 				default:
1712 					kprintf("???       %p   ", thread->wait.object);
1713 					break;
1714 			}
1715 		} else
1716 			kprintf("-%*s", B_PRINTF_POINTER_WIDTH + 14, "");
1717 
1718 		// on which CPU does it run?
1719 		if (thread->cpu)
1720 			kprintf("%2d", thread->cpu->cpu_num);
1721 		else
1722 			kprintf(" -");
1723 
1724 		kprintf("%4" B_PRId32 "  %p%5" B_PRId32 "  %s\n", thread->priority,
1725 			(void *)thread->kernel_stack_base, thread->team->id, thread->name);
1726 
1727 		return;
1728 	}
1729 
1730 	// print the long info
1731 
1732 	struct thread_death_entry *death = NULL;
1733 
1734 	kprintf("THREAD: %p\n", thread);
1735 	kprintf("id:                 %" B_PRId32 " (%#" B_PRIx32 ")\n", thread->id,
1736 		thread->id);
1737 	kprintf("serial_number:      %" B_PRId64 "\n", thread->serial_number);
1738 	kprintf("name:               \"%s\"\n", thread->name);
1739 	kprintf("hash_next:          %p\nteam_next:          %p\n",
1740 		thread->hash_next, thread->team_next);
1741 	kprintf("priority:           %" B_PRId32 " (I/O: %" B_PRId32 ")\n",
1742 		thread->priority, thread->io_priority);
1743 	kprintf("state:              %s\n", state_to_text(thread, thread->state));
1744 	kprintf("cpu:                %p ", thread->cpu);
1745 	if (thread->cpu)
1746 		kprintf("(%d)\n", thread->cpu->cpu_num);
1747 	else
1748 		kprintf("\n");
1749 	kprintf("sig_pending:        %#" B_PRIx64 " (blocked: %#" B_PRIx64
1750 		", before sigsuspend(): %#" B_PRIx64 ")\n",
1751 		(int64)thread->ThreadPendingSignals(),
1752 		(int64)thread->sig_block_mask,
1753 		(int64)thread->sigsuspend_original_unblocked_mask);
1754 	kprintf("in_kernel:          %d\n", thread->in_kernel);
1755 
1756 	if (thread->state == B_THREAD_WAITING) {
1757 		kprintf("waiting for:        ");
1758 
1759 		switch (thread->wait.type) {
1760 			case THREAD_BLOCK_TYPE_SEMAPHORE:
1761 			{
1762 				sem_id sem = (sem_id)(addr_t)thread->wait.object;
1763 				if (sem == thread->msg.read_sem)
1764 					kprintf("data\n");
1765 				else
1766 					kprintf("semaphore %" B_PRId32 "\n", sem);
1767 				break;
1768 			}
1769 
1770 			case THREAD_BLOCK_TYPE_CONDITION_VARIABLE:
1771 				kprintf("condition variable %p\n", thread->wait.object);
1772 				break;
1773 
1774 			case THREAD_BLOCK_TYPE_SNOOZE:
1775 				kprintf("snooze()\n");
1776 				break;
1777 
1778 			case THREAD_BLOCK_TYPE_SIGNAL:
1779 				kprintf("signal\n");
1780 				break;
1781 
1782 			case THREAD_BLOCK_TYPE_MUTEX:
1783 				kprintf("mutex %p\n", thread->wait.object);
1784 				break;
1785 
1786 			case THREAD_BLOCK_TYPE_RW_LOCK:
1787 				kprintf("rwlock %p\n", thread->wait.object);
1788 				break;
1789 
1790 			case THREAD_BLOCK_TYPE_USER:
1791 				kprintf("user\n");
1792 				break;
1793 
1794 			case THREAD_BLOCK_TYPE_OTHER:
1795 				kprintf("other (%s)\n", (char*)thread->wait.object);
1796 				break;
1797 
1798 			default:
1799 				kprintf("unknown (%p)\n", thread->wait.object);
1800 				break;
1801 		}
1802 	}
1803 
1804 	kprintf("fault_handler:      %p\n", (void *)thread->fault_handler);
1805 	kprintf("team:               %p, \"%s\"\n", thread->team,
1806 		thread->team->Name());
1807 	kprintf("  exit.sem:         %" B_PRId32 "\n", thread->exit.sem);
1808 	kprintf("  exit.status:      %#" B_PRIx32 " (%s)\n", thread->exit.status,
1809 		strerror(thread->exit.status));
1810 	kprintf("  exit.waiters:\n");
1811 	while ((death = (struct thread_death_entry*)list_get_next_item(
1812 			&thread->exit.waiters, death)) != NULL) {
1813 		kprintf("\t%p (thread %" B_PRId32 ")\n", death, death->thread);
1814 	}
1815 
1816 	kprintf("kernel_stack_area:  %" B_PRId32 "\n", thread->kernel_stack_area);
1817 	kprintf("kernel_stack_base:  %p\n", (void *)thread->kernel_stack_base);
1818 	kprintf("user_stack_area:    %" B_PRId32 "\n", thread->user_stack_area);
1819 	kprintf("user_stack_base:    %p\n", (void *)thread->user_stack_base);
1820 	kprintf("user_local_storage: %p\n", (void *)thread->user_local_storage);
1821 	kprintf("user_thread:        %p\n", (void *)thread->user_thread);
1822 	kprintf("kernel_errno:       %#x (%s)\n", thread->kernel_errno,
1823 		strerror(thread->kernel_errno));
1824 	kprintf("kernel_time:        %" B_PRId64 "\n", thread->kernel_time);
1825 	kprintf("user_time:          %" B_PRId64 "\n", thread->user_time);
1826 	kprintf("flags:              0x%" B_PRIx32 "\n", thread->flags);
1827 	kprintf("architecture dependant section:\n");
1828 	arch_thread_dump_info(&thread->arch_info);
1829 	kprintf("scheduler data:\n");
1830 	scheduler_dump_thread_data(thread);
1831 }
1832 
1833 
1834 static int
1835 dump_thread_info(int argc, char **argv)
1836 {
1837 	bool shortInfo = false;
1838 	int argi = 1;
1839 	if (argi < argc && strcmp(argv[argi], "-s") == 0) {
1840 		shortInfo = true;
1841 		print_thread_list_table_head();
1842 		argi++;
1843 	}
1844 
1845 	if (argi == argc) {
1846 		_dump_thread_info(thread_get_current_thread(), shortInfo);
1847 		return 0;
1848 	}
1849 
1850 	for (; argi < argc; argi++) {
1851 		const char *name = argv[argi];
1852 		ulong arg = strtoul(name, NULL, 0);
1853 
1854 		if (IS_KERNEL_ADDRESS(arg)) {
1855 			// semi-hack
1856 			_dump_thread_info((Thread *)arg, shortInfo);
1857 			continue;
1858 		}
1859 
1860 		// walk through the thread list, trying to match name or id
1861 		bool found = false;
1862 		for (ThreadHashTable::Iterator it = sThreadHash.GetIterator();
1863 				Thread* thread = it.Next();) {
1864 			if (!strcmp(name, thread->name) || thread->id == (thread_id)arg) {
1865 				_dump_thread_info(thread, shortInfo);
1866 				found = true;
1867 				break;
1868 			}
1869 		}
1870 
1871 		if (!found)
1872 			kprintf("thread \"%s\" (%" B_PRId32 ") doesn't exist!\n", name, (thread_id)arg);
1873 	}
1874 
1875 	return 0;
1876 }
1877 
1878 
1879 static int
1880 dump_thread_list(int argc, char **argv)
1881 {
1882 	bool realTimeOnly = false;
1883 	bool calling = false;
1884 	const char *callSymbol = NULL;
1885 	addr_t callStart = 0;
1886 	addr_t callEnd = 0;
1887 	int32 requiredState = 0;
1888 	team_id team = -1;
1889 	sem_id sem = -1;
1890 
1891 	if (!strcmp(argv[0], "realtime"))
1892 		realTimeOnly = true;
1893 	else if (!strcmp(argv[0], "ready"))
1894 		requiredState = B_THREAD_READY;
1895 	else if (!strcmp(argv[0], "running"))
1896 		requiredState = B_THREAD_RUNNING;
1897 	else if (!strcmp(argv[0], "waiting")) {
1898 		requiredState = B_THREAD_WAITING;
1899 
1900 		if (argc > 1) {
1901 			sem = strtoul(argv[1], NULL, 0);
1902 			if (sem == 0)
1903 				kprintf("ignoring invalid semaphore argument.\n");
1904 		}
1905 	} else if (!strcmp(argv[0], "calling")) {
1906 		if (argc < 2) {
1907 			kprintf("Need to give a symbol name or start and end arguments.\n");
1908 			return 0;
1909 		} else if (argc == 3) {
1910 			callStart = parse_expression(argv[1]);
1911 			callEnd = parse_expression(argv[2]);
1912 		} else
1913 			callSymbol = argv[1];
1914 
1915 		calling = true;
1916 	} else if (argc > 1) {
1917 		team = strtoul(argv[1], NULL, 0);
1918 		if (team == 0)
1919 			kprintf("ignoring invalid team argument.\n");
1920 	}
1921 
1922 	print_thread_list_table_head();
1923 
1924 	for (ThreadHashTable::Iterator it = sThreadHash.GetIterator();
1925 			Thread* thread = it.Next();) {
1926 		// filter out threads not matching the search criteria
1927 		if ((requiredState && thread->state != requiredState)
1928 			|| (calling && !arch_debug_contains_call(thread, callSymbol,
1929 					callStart, callEnd))
1930 			|| (sem > 0 && get_thread_wait_sem(thread) != sem)
1931 			|| (team > 0 && thread->team->id != team)
1932 			|| (realTimeOnly && thread->priority < B_REAL_TIME_DISPLAY_PRIORITY))
1933 			continue;
1934 
1935 		_dump_thread_info(thread, true);
1936 	}
1937 	return 0;
1938 }
1939 
1940 
1941 //	#pragma mark - private kernel API
1942 
1943 
1944 void
1945 thread_exit(void)
1946 {
1947 	cpu_status state;
1948 	Thread* thread = thread_get_current_thread();
1949 	Team* team = thread->team;
1950 	Team* kernelTeam = team_get_kernel_team();
1951 	status_t status;
1952 	struct thread_debug_info debugInfo;
1953 	team_id teamID = team->id;
1954 
1955 	TRACE(("thread %" B_PRId32 " exiting w/return code %#" B_PRIx32 "\n",
1956 		thread->id, thread->exit.status));
1957 
1958 	if (!are_interrupts_enabled())
1959 		panic("thread_exit() called with interrupts disabled!\n");
1960 
1961 	// boost our priority to get this over with
1962 	scheduler_set_thread_priority(thread, B_URGENT_DISPLAY_PRIORITY);
1963 
1964 	if (team != kernelTeam) {
1965 		// Delete all user timers associated with the thread.
1966 		ThreadLocker threadLocker(thread);
1967 		thread->DeleteUserTimers(false);
1968 
1969 		// detach the thread's user thread
1970 		user_thread* userThread = thread->user_thread;
1971 		thread->user_thread = NULL;
1972 
1973 		threadLocker.Unlock();
1974 
1975 		// Delete the thread's user thread, if it's not the main thread. If it
1976 		// is, we can save the work, since it will be deleted with the team's
1977 		// address space.
1978 		if (thread != team->main_thread)
1979 			team_free_user_thread(team, userThread);
1980 	}
1981 
1982 	// remember the user stack area -- we will delete it below
1983 	area_id userStackArea = -1;
1984 	if (team->address_space != NULL && thread->user_stack_area >= 0) {
1985 		userStackArea = thread->user_stack_area;
1986 		thread->user_stack_area = -1;
1987 	}
1988 
1989 	struct job_control_entry *death = NULL;
1990 	struct thread_death_entry* threadDeathEntry = NULL;
1991 	bool deleteTeam = false;
1992 	port_id debuggerPort = -1;
1993 
1994 	if (team != kernelTeam) {
1995 		user_debug_thread_exiting(thread);
1996 
1997 		if (team->main_thread == thread) {
1998 			// The main thread is exiting. Shut down the whole team.
1999 			deleteTeam = true;
2000 
2001 			// kill off all other threads and the user debugger facilities
2002 			debuggerPort = team_shutdown_team(team);
2003 
2004 			// acquire necessary locks, which are: process group lock, kernel
2005 			// team lock, parent team lock, and the team lock
2006 			team->LockProcessGroup();
2007 			kernelTeam->Lock();
2008 			team->LockTeamAndParent(true);
2009 		} else {
2010 			threadDeathEntry
2011 				= (thread_death_entry*)malloc(sizeof(thread_death_entry));
2012 
2013 			// acquire necessary locks, which are: kernel team lock and the team
2014 			// lock
2015 			kernelTeam->Lock();
2016 			team->Lock();
2017 		}
2018 
2019 		ThreadLocker threadLocker(thread);
2020 
2021 		state = disable_interrupts();
2022 
2023 		// swap address spaces, to make sure we're running on the kernel's pgdir
2024 		vm_swap_address_space(team->address_space, VMAddressSpace::Kernel());
2025 
2026 		WriteSpinLocker teamLocker(thread->team_lock);
2027 		SpinLocker threadCreationLocker(gThreadCreationLock);
2028 			// removing the thread and putting its death entry to the parent
2029 			// team needs to be an atomic operation
2030 
2031 		// remember how long this thread lasted
2032 		bigtime_t now = system_time();
2033 
2034 		InterruptsSpinLocker signalLocker(kernelTeam->signal_lock);
2035 		SpinLocker teamTimeLocker(kernelTeam->time_lock);
2036 		SpinLocker threadTimeLocker(thread->time_lock);
2037 
2038 		thread->kernel_time += now - thread->last_time;
2039 		thread->last_time = now;
2040 
2041 		team->dead_threads_kernel_time += thread->kernel_time;
2042 		team->dead_threads_user_time += thread->user_time;
2043 
2044 		// stop/update thread/team CPU time user timers
2045 		if (thread->HasActiveCPUTimeUserTimers()
2046 			|| team->HasActiveCPUTimeUserTimers()) {
2047 			user_timer_stop_cpu_timers(thread, NULL);
2048 		}
2049 
2050 		// deactivate CPU time user timers for the thread
2051 		if (thread->HasActiveCPUTimeUserTimers())
2052 			thread->DeactivateCPUTimeUserTimers();
2053 
2054 		threadTimeLocker.Unlock();
2055 
2056 		// put the thread into the kernel team until it dies
2057 		remove_thread_from_team(team, thread);
2058 		insert_thread_into_team(kernelTeam, thread);
2059 
2060 		teamTimeLocker.Unlock();
2061 		signalLocker.Unlock();
2062 
2063 		teamLocker.Unlock();
2064 
2065 		if (team->death_entry != NULL) {
2066 			if (--team->death_entry->remaining_threads == 0)
2067 				team->death_entry->condition.NotifyOne();
2068 		}
2069 
2070 		if (deleteTeam) {
2071 			Team* parent = team->parent;
2072 
2073 			// Set the team job control state to "dead" and detach the job
2074 			// control entry from our team struct.
2075 			team_set_job_control_state(team, JOB_CONTROL_STATE_DEAD, NULL);
2076 			death = team->job_control_entry;
2077 			team->job_control_entry = NULL;
2078 
2079 			if (death != NULL) {
2080 				death->InitDeadState();
2081 
2082 				// team_set_job_control_state() already moved our entry
2083 				// into the parent's list. We just check the soft limit of
2084 				// death entries.
2085 				if (parent->dead_children.count > MAX_DEAD_CHILDREN) {
2086 					death = parent->dead_children.entries.RemoveHead();
2087 					parent->dead_children.count--;
2088 				} else
2089 					death = NULL;
2090 			}
2091 
2092 			threadCreationLocker.Unlock();
2093 			restore_interrupts(state);
2094 
2095 			threadLocker.Unlock();
2096 
2097 			// Get a temporary reference to the team's process group
2098 			// -- team_remove_team() removes the team from the group, which
2099 			// might destroy it otherwise and we wouldn't be able to unlock it.
2100 			ProcessGroup* group = team->group;
2101 			group->AcquireReference();
2102 
2103 			pid_t foregroundGroupToSignal;
2104 			team_remove_team(team, foregroundGroupToSignal);
2105 
2106 			// unlock everything but the parent team
2107 			team->Unlock();
2108 			if (parent != kernelTeam)
2109 				kernelTeam->Unlock();
2110 			group->Unlock();
2111 			group->ReleaseReference();
2112 
2113 			// Send SIGCHLD to the parent as long as we still have its lock.
2114 			// This makes job control state change + signalling atomic.
2115 			Signal childSignal(SIGCHLD, team->exit.reason, B_OK, team->id);
2116 			if (team->exit.reason == CLD_EXITED) {
2117 				childSignal.SetStatus(team->exit.status);
2118 			} else {
2119 				childSignal.SetStatus(team->exit.signal);
2120 				childSignal.SetSendingUser(team->exit.signaling_user);
2121 			}
2122 			send_signal_to_team(parent, childSignal, B_DO_NOT_RESCHEDULE);
2123 
2124 			// also unlock the parent
2125 			parent->Unlock();
2126 
2127 			// If the team was a session leader with controlling TTY, we have
2128 			// to send SIGHUP to the foreground process group.
2129 			if (foregroundGroupToSignal >= 0) {
2130 				Signal groupSignal(SIGHUP, SI_USER, B_OK, team->id);
2131 				send_signal_to_process_group(foregroundGroupToSignal,
2132 					groupSignal, B_DO_NOT_RESCHEDULE);
2133 			}
2134 		} else {
2135 			// The thread is not the main thread. We store a thread death entry
2136 			// for it, unless someone is already waiting for it.
2137 			if (threadDeathEntry != NULL
2138 				&& list_is_empty(&thread->exit.waiters)) {
2139 				threadDeathEntry->thread = thread->id;
2140 				threadDeathEntry->status = thread->exit.status;
2141 
2142 				// add entry to dead thread list
2143 				list_add_item(&team->dead_threads, threadDeathEntry);
2144 			}
2145 
2146 			threadCreationLocker.Unlock();
2147 			restore_interrupts(state);
2148 
2149 			threadLocker.Unlock();
2150 			team->Unlock();
2151 			kernelTeam->Unlock();
2152 		}
2153 
2154 		TRACE(("thread_exit: thread %" B_PRId32 " now a kernel thread!\n",
2155 			thread->id));
2156 	}
2157 
2158 	// delete the team if we're its main thread
2159 	if (deleteTeam) {
2160 		team_delete_team(team, debuggerPort);
2161 
2162 		// we need to delete any death entry that made it to here
2163 		delete death;
2164 	}
2165 
2166 	ThreadLocker threadLocker(thread);
2167 
2168 	state = disable_interrupts();
2169 	SpinLocker threadCreationLocker(gThreadCreationLock);
2170 
2171 	// mark invisible in global hash/list, so it's no longer accessible
2172 	WriteSpinLocker threadHashLocker(sThreadHashLock);
2173 	thread->visible = false;
2174 	sUsedThreads--;
2175 	threadHashLocker.Unlock();
2176 
2177 	// Stop debugging for this thread
2178 	SpinLocker threadDebugInfoLocker(thread->debug_info.lock);
2179 	debugInfo = thread->debug_info;
2180 	clear_thread_debug_info(&thread->debug_info, true);
2181 	threadDebugInfoLocker.Unlock();
2182 
2183 	// Remove the select infos. We notify them a little later.
2184 	select_info* selectInfos = thread->select_infos;
2185 	thread->select_infos = NULL;
2186 
2187 	threadCreationLocker.Unlock();
2188 	restore_interrupts(state);
2189 
2190 	threadLocker.Unlock();
2191 
2192 	destroy_thread_debug_info(&debugInfo);
2193 
2194 	// notify select infos
2195 	select_info* info = selectInfos;
2196 	while (info != NULL) {
2197 		select_sync* sync = info->sync;
2198 
2199 		notify_select_events(info, B_EVENT_INVALID);
2200 		info = info->next;
2201 		put_select_sync(sync);
2202 	}
2203 
2204 	// notify listeners
2205 	sNotificationService.Notify(THREAD_REMOVED, thread);
2206 
2207 	// shutdown the thread messaging
2208 
2209 	status = acquire_sem_etc(thread->msg.write_sem, 1, B_RELATIVE_TIMEOUT, 0);
2210 	if (status == B_WOULD_BLOCK) {
2211 		// there is data waiting for us, so let us eat it
2212 		thread_id sender;
2213 
2214 		delete_sem(thread->msg.write_sem);
2215 			// first, let's remove all possibly waiting writers
2216 		receive_data_etc(&sender, NULL, 0, B_RELATIVE_TIMEOUT);
2217 	} else {
2218 		// we probably own the semaphore here, and we're the last to do so
2219 		delete_sem(thread->msg.write_sem);
2220 	}
2221 	// now we can safely remove the msg.read_sem
2222 	delete_sem(thread->msg.read_sem);
2223 
2224 	// fill all death entries and delete the sem that others will use to wait
2225 	// for us
2226 	{
2227 		sem_id cachedExitSem = thread->exit.sem;
2228 
2229 		ThreadLocker threadLocker(thread);
2230 
2231 		// make sure no one will grab this semaphore again
2232 		thread->exit.sem = -1;
2233 
2234 		// fill all death entries
2235 		thread_death_entry* entry = NULL;
2236 		while ((entry = (thread_death_entry*)list_get_next_item(
2237 				&thread->exit.waiters, entry)) != NULL) {
2238 			entry->status = thread->exit.status;
2239 		}
2240 
2241 		threadLocker.Unlock();
2242 
2243 		delete_sem(cachedExitSem);
2244 	}
2245 
2246 	// delete the user stack, if this was a user thread
2247 	if (!deleteTeam && userStackArea >= 0) {
2248 		// We postponed deleting the user stack until now, since this way all
2249 		// notifications for the thread's death are out already and all other
2250 		// threads waiting for this thread's death and some object on its stack
2251 		// will wake up before we (try to) delete the stack area. Of most
2252 		// relevance is probably the case where this is the main thread and
2253 		// other threads use objects on its stack -- so we want them terminated
2254 		// first.
2255 		// When the team is deleted, all areas are deleted anyway, so we don't
2256 		// need to do that explicitly in that case.
2257 		vm_delete_area(teamID, userStackArea, true);
2258 	}
2259 
2260 	// notify the debugger
2261 	if (teamID != kernelTeam->id)
2262 		user_debug_thread_deleted(teamID, thread->id);
2263 
2264 	// enqueue in the undertaker list and reschedule for the last time
2265 	UndertakerEntry undertakerEntry(thread, teamID);
2266 
2267 	disable_interrupts();
2268 
2269 	SpinLocker schedulerLocker(thread->scheduler_lock);
2270 
2271 	SpinLocker undertakerLocker(sUndertakerLock);
2272 	sUndertakerEntries.Add(&undertakerEntry);
2273 	sUndertakerCondition.NotifyOne();
2274 	undertakerLocker.Unlock();
2275 
2276 	scheduler_reschedule(THREAD_STATE_FREE_ON_RESCHED);
2277 
2278 	panic("never can get here\n");
2279 }
2280 
2281 
2282 /*!	Called in the interrupt handler code when a thread enters
2283 	the kernel for any reason.
2284 	Only tracks time for now.
2285 	Interrupts are disabled.
2286 */
2287 void
2288 thread_at_kernel_entry(bigtime_t now)
2289 {
2290 	Thread *thread = thread_get_current_thread();
2291 
2292 	TRACE(("thread_at_kernel_entry: entry thread %" B_PRId32 "\n", thread->id));
2293 
2294 	// track user time
2295 	SpinLocker threadTimeLocker(thread->time_lock);
2296 	thread->user_time += now - thread->last_time;
2297 	thread->last_time = now;
2298 	thread->in_kernel = true;
2299 	threadTimeLocker.Unlock();
2300 }
2301 
2302 
2303 /*!	Called whenever a thread exits kernel space to user space.
2304 	Tracks time, handles signals, ...
2305 	Interrupts must be enabled. When the function returns, interrupts will be
2306 	disabled.
2307 	The function may not return. This e.g. happens when the thread has received
2308 	a deadly signal.
2309 */
2310 void
2311 thread_at_kernel_exit(void)
2312 {
2313 	Thread *thread = thread_get_current_thread();
2314 
2315 	TRACE(("thread_at_kernel_exit: exit thread %" B_PRId32 "\n", thread->id));
2316 
2317 	handle_signals(thread);
2318 
2319 	disable_interrupts();
2320 
2321 	// track kernel time
2322 	bigtime_t now = system_time();
2323 	SpinLocker threadTimeLocker(thread->time_lock);
2324 	thread->in_kernel = false;
2325 	thread->kernel_time += now - thread->last_time;
2326 	thread->last_time = now;
2327 }
2328 
2329 
2330 /*!	The quick version of thread_kernel_exit(), in case no signals are pending
2331 	and no debugging shall be done.
2332 	Interrupts must be disabled.
2333 */
2334 void
2335 thread_at_kernel_exit_no_signals(void)
2336 {
2337 	Thread *thread = thread_get_current_thread();
2338 
2339 	TRACE(("thread_at_kernel_exit_no_signals: exit thread %" B_PRId32 "\n",
2340 		thread->id));
2341 
2342 	// track kernel time
2343 	bigtime_t now = system_time();
2344 	SpinLocker threadTimeLocker(thread->time_lock);
2345 	thread->in_kernel = false;
2346 	thread->kernel_time += now - thread->last_time;
2347 	thread->last_time = now;
2348 }
2349 
2350 
2351 void
2352 thread_reset_for_exec(void)
2353 {
2354 	Thread* thread = thread_get_current_thread();
2355 
2356 	ThreadLocker threadLocker(thread);
2357 
2358 	// delete user-defined timers
2359 	thread->DeleteUserTimers(true);
2360 
2361 	// cancel pre-defined timer
2362 	if (UserTimer* timer = thread->UserTimerFor(USER_TIMER_REAL_TIME_ID))
2363 		timer->Cancel();
2364 
2365 	// reset user_thread and user stack
2366 	thread->user_thread = NULL;
2367 	thread->user_stack_area = -1;
2368 	thread->user_stack_base = 0;
2369 	thread->user_stack_size = 0;
2370 
2371 	// reset signals
2372 	thread->ResetSignalsOnExec();
2373 
2374 	// reset thread CPU time clock
2375 	InterruptsSpinLocker timeLocker(thread->time_lock);
2376 	thread->cpu_clock_offset = -thread->CPUTime(false);
2377 }
2378 
2379 
2380 thread_id
2381 allocate_thread_id()
2382 {
2383 	InterruptsWriteSpinLocker threadHashLocker(sThreadHashLock);
2384 
2385 	// find the next unused ID
2386 	thread_id id;
2387 	do {
2388 		id = sNextThreadID++;
2389 
2390 		// deal with integer overflow
2391 		if (sNextThreadID < 0)
2392 			sNextThreadID = 2;
2393 
2394 		// check whether the ID is already in use
2395 	} while (sThreadHash.Lookup(id, false) != NULL);
2396 
2397 	return id;
2398 }
2399 
2400 
2401 thread_id
2402 peek_next_thread_id()
2403 {
2404 	InterruptsReadSpinLocker threadHashLocker(sThreadHashLock);
2405 	return sNextThreadID;
2406 }
2407 
2408 
2409 /*!	Yield the CPU to other threads.
2410 	Thread will continue to run, if there's no other thread in ready
2411 	state, and if it has a higher priority than the other ready threads, it
2412 	still has a good chance to continue.
2413 */
2414 void
2415 thread_yield(void)
2416 {
2417 	Thread *thread = thread_get_current_thread();
2418 	if (thread == NULL)
2419 		return;
2420 
2421 	InterruptsSpinLocker _(thread->scheduler_lock);
2422 
2423 	thread->has_yielded = true;
2424 	scheduler_reschedule(B_THREAD_READY);
2425 }
2426 
2427 
2428 void
2429 thread_map(void (*function)(Thread* thread, void* data), void* data)
2430 {
2431 	InterruptsWriteSpinLocker threadHashLocker(sThreadHashLock);
2432 
2433 	for (ThreadHashTable::Iterator it = sThreadHash.GetIterator();
2434 		Thread* thread = it.Next();) {
2435 		function(thread, data);
2436 	}
2437 }
2438 
2439 
2440 /*!	Kernel private thread creation function.
2441 */
2442 thread_id
2443 spawn_kernel_thread_etc(thread_func function, const char *name, int32 priority,
2444 	void *arg, team_id team)
2445 {
2446 	return thread_create_thread(
2447 		ThreadCreationAttributes(function, name, priority, arg, team),
2448 		true);
2449 }
2450 
2451 
2452 status_t
2453 wait_for_thread_etc(thread_id id, uint32 flags, bigtime_t timeout,
2454 	status_t *_returnCode)
2455 {
2456 	if (id < 0)
2457 		return B_BAD_THREAD_ID;
2458 
2459 	// get the thread, queue our death entry, and fetch the semaphore we have to
2460 	// wait on
2461 	sem_id exitSem = B_BAD_THREAD_ID;
2462 	struct thread_death_entry death;
2463 
2464 	Thread* thread = Thread::GetAndLock(id);
2465 	if (thread != NULL) {
2466 		// remember the semaphore we have to wait on and place our death entry
2467 		exitSem = thread->exit.sem;
2468 		if (exitSem >= 0)
2469 			list_add_link_to_head(&thread->exit.waiters, &death);
2470 
2471 		thread->UnlockAndReleaseReference();
2472 
2473 		if (exitSem < 0)
2474 			return B_BAD_THREAD_ID;
2475 	} else {
2476 		// we couldn't find this thread -- maybe it's already gone, and we'll
2477 		// find its death entry in our team
2478 		Team* team = thread_get_current_thread()->team;
2479 		TeamLocker teamLocker(team);
2480 
2481 		// check the child death entries first (i.e. main threads of child
2482 		// teams)
2483 		bool deleteEntry;
2484 		job_control_entry* freeDeath
2485 			= team_get_death_entry(team, id, &deleteEntry);
2486 		if (freeDeath != NULL) {
2487 			death.status = freeDeath->status;
2488 			if (deleteEntry)
2489 				delete freeDeath;
2490 		} else {
2491 			// check the thread death entries of the team (non-main threads)
2492 			thread_death_entry* threadDeathEntry = NULL;
2493 			while ((threadDeathEntry = (thread_death_entry*)list_get_next_item(
2494 					&team->dead_threads, threadDeathEntry)) != NULL) {
2495 				if (threadDeathEntry->thread == id) {
2496 					list_remove_item(&team->dead_threads, threadDeathEntry);
2497 					death.status = threadDeathEntry->status;
2498 					free(threadDeathEntry);
2499 					break;
2500 				}
2501 			}
2502 
2503 			if (threadDeathEntry == NULL)
2504 				return B_BAD_THREAD_ID;
2505 		}
2506 
2507 		// we found the thread's death entry in our team
2508 		if (_returnCode)
2509 			*_returnCode = death.status;
2510 
2511 		return B_OK;
2512 	}
2513 
2514 	// we need to wait for the death of the thread
2515 
2516 	resume_thread(id);
2517 		// make sure we don't wait forever on a suspended thread
2518 
2519 	status_t status = acquire_sem_etc(exitSem, 1, flags, timeout);
2520 
2521 	if (status == B_OK) {
2522 		// this should never happen as the thread deletes the semaphore on exit
2523 		panic("could acquire exit_sem for thread %" B_PRId32 "\n", id);
2524 	} else if (status == B_BAD_SEM_ID) {
2525 		// this is the way the thread normally exits
2526 		status = B_OK;
2527 	} else {
2528 		// We were probably interrupted or the timeout occurred; we need to
2529 		// remove our death entry now.
2530 		thread = Thread::GetAndLock(id);
2531 		if (thread != NULL) {
2532 			list_remove_link(&death);
2533 			thread->UnlockAndReleaseReference();
2534 		} else {
2535 			// The thread is already gone, so we need to wait uninterruptibly
2536 			// for its exit semaphore to make sure our death entry stays valid.
2537 			// It won't take long, since the thread is apparently already in the
2538 			// middle of the cleanup.
2539 			acquire_sem(exitSem);
2540 			status = B_OK;
2541 		}
2542 	}
2543 
2544 	if (status == B_OK && _returnCode != NULL)
2545 		*_returnCode = death.status;
2546 
2547 	return status;
2548 }
2549 
2550 
2551 status_t
2552 select_thread(int32 id, struct select_info* info, bool kernel)
2553 {
2554 	// get and lock the thread
2555 	Thread* thread = Thread::GetAndLock(id);
2556 	if (thread == NULL)
2557 		return B_BAD_THREAD_ID;
2558 	BReference<Thread> threadReference(thread, true);
2559 	ThreadLocker threadLocker(thread, true);
2560 
2561 	// We support only B_EVENT_INVALID at the moment.
2562 	info->selected_events &= B_EVENT_INVALID;
2563 
2564 	// add info to list
2565 	if (info->selected_events != 0) {
2566 		info->next = thread->select_infos;
2567 		thread->select_infos = info;
2568 
2569 		// we need a sync reference
2570 		atomic_add(&info->sync->ref_count, 1);
2571 	}
2572 
2573 	return B_OK;
2574 }
2575 
2576 
2577 status_t
2578 deselect_thread(int32 id, struct select_info* info, bool kernel)
2579 {
2580 	// get and lock the thread
2581 	Thread* thread = Thread::GetAndLock(id);
2582 	if (thread == NULL)
2583 		return B_BAD_THREAD_ID;
2584 	BReference<Thread> threadReference(thread, true);
2585 	ThreadLocker threadLocker(thread, true);
2586 
2587 	// remove info from list
2588 	select_info** infoLocation = &thread->select_infos;
2589 	while (*infoLocation != NULL && *infoLocation != info)
2590 		infoLocation = &(*infoLocation)->next;
2591 
2592 	if (*infoLocation != info)
2593 		return B_OK;
2594 
2595 	*infoLocation = info->next;
2596 
2597 	threadLocker.Unlock();
2598 
2599 	// surrender sync reference
2600 	put_select_sync(info->sync);
2601 
2602 	return B_OK;
2603 }
2604 
2605 
2606 int32
2607 thread_max_threads(void)
2608 {
2609 	return sMaxThreads;
2610 }
2611 
2612 
2613 int32
2614 thread_used_threads(void)
2615 {
2616 	InterruptsReadSpinLocker threadHashLocker(sThreadHashLock);
2617 	return sUsedThreads;
2618 }
2619 
2620 
2621 /*!	Returns a user-readable string for a thread state.
2622 	Only for use in the kernel debugger.
2623 */
2624 const char*
2625 thread_state_to_text(Thread* thread, int32 state)
2626 {
2627 	return state_to_text(thread, state);
2628 }
2629 
2630 
2631 int32
2632 thread_get_io_priority(thread_id id)
2633 {
2634 	Thread* thread = Thread::GetAndLock(id);
2635 	if (thread == NULL)
2636 		return B_BAD_THREAD_ID;
2637 	BReference<Thread> threadReference(thread, true);
2638 	ThreadLocker threadLocker(thread, true);
2639 
2640 	int32 priority = thread->io_priority;
2641 	if (priority < 0) {
2642 		// negative I/O priority means using the (CPU) priority
2643 		priority = thread->priority;
2644 	}
2645 
2646 	return priority;
2647 }
2648 
2649 
2650 void
2651 thread_set_io_priority(int32 priority)
2652 {
2653 	Thread* thread = thread_get_current_thread();
2654 	ThreadLocker threadLocker(thread);
2655 
2656 	thread->io_priority = priority;
2657 }
2658 
2659 
2660 status_t
2661 thread_init(kernel_args *args)
2662 {
2663 	TRACE(("thread_init: entry\n"));
2664 
2665 	// create the thread hash table
2666 	new(&sThreadHash) ThreadHashTable();
2667 	if (sThreadHash.Init(128) != B_OK)
2668 		panic("thread_init(): failed to init thread hash table!");
2669 
2670 	// create the thread structure object cache
2671 	sThreadCache = create_object_cache("threads", sizeof(Thread), 64, NULL,
2672 		NULL, NULL);
2673 		// Note: The x86 port requires 64 byte alignment of thread structures.
2674 	if (sThreadCache == NULL)
2675 		panic("thread_init(): failed to allocate thread object cache!");
2676 
2677 	if (arch_thread_init(args) < B_OK)
2678 		panic("arch_thread_init() failed!\n");
2679 
2680 	// skip all thread IDs including B_SYSTEM_TEAM, which is reserved
2681 	sNextThreadID = B_SYSTEM_TEAM + 1;
2682 
2683 	// create an idle thread for each cpu
2684 	for (uint32 i = 0; i < args->num_cpus; i++) {
2685 		Thread *thread;
2686 		area_info info;
2687 		char name[64];
2688 
2689 		sprintf(name, "idle thread %" B_PRIu32, i + 1);
2690 		thread = new(&sIdleThreads[i]) Thread(name,
2691 			i == 0 ? team_get_kernel_team_id() : -1, &gCPU[i]);
2692 		if (thread == NULL || thread->Init(true) != B_OK) {
2693 			panic("error creating idle thread struct\n");
2694 			return B_NO_MEMORY;
2695 		}
2696 
2697 		gCPU[i].running_thread = thread;
2698 
2699 		thread->team = team_get_kernel_team();
2700 		thread->priority = B_IDLE_PRIORITY;
2701 		thread->state = B_THREAD_RUNNING;
2702 		sprintf(name, "idle thread %" B_PRIu32 " kstack", i + 1);
2703 		thread->kernel_stack_area = find_area(name);
2704 
2705 		if (get_area_info(thread->kernel_stack_area, &info) != B_OK)
2706 			panic("error finding idle kstack area\n");
2707 
2708 		thread->kernel_stack_base = (addr_t)info.address;
2709 		thread->kernel_stack_top = thread->kernel_stack_base + info.size;
2710 
2711 		thread->visible = true;
2712 		insert_thread_into_team(thread->team, thread);
2713 
2714 		scheduler_on_thread_init(thread);
2715 	}
2716 	sUsedThreads = args->num_cpus;
2717 
2718 	// init the notification service
2719 	new(&sNotificationService) ThreadNotificationService();
2720 
2721 	sNotificationService.Register();
2722 
2723 	// start the undertaker thread
2724 	new(&sUndertakerEntries) DoublyLinkedList<UndertakerEntry>();
2725 	sUndertakerCondition.Init(&sUndertakerEntries, "undertaker entries");
2726 
2727 	thread_id undertakerThread = spawn_kernel_thread(&undertaker, "undertaker",
2728 		B_DISPLAY_PRIORITY, NULL);
2729 	if (undertakerThread < 0)
2730 		panic("Failed to create undertaker thread!");
2731 	resume_thread(undertakerThread);
2732 
2733 	// set up some debugger commands
2734 	add_debugger_command_etc("threads", &dump_thread_list, "List all threads",
2735 		"[ <team> ]\n"
2736 		"Prints a list of all existing threads, or, if a team ID is given,\n"
2737 		"all threads of the specified team.\n"
2738 		"  <team>  - The ID of the team whose threads shall be listed.\n", 0);
2739 	add_debugger_command_etc("ready", &dump_thread_list,
2740 		"List all ready threads",
2741 		"\n"
2742 		"Prints a list of all threads in ready state.\n", 0);
2743 	add_debugger_command_etc("running", &dump_thread_list,
2744 		"List all running threads",
2745 		"\n"
2746 		"Prints a list of all threads in running state.\n", 0);
2747 	add_debugger_command_etc("waiting", &dump_thread_list,
2748 		"List all waiting threads (optionally for a specific semaphore)",
2749 		"[ <sem> ]\n"
2750 		"Prints a list of all threads in waiting state. If a semaphore is\n"
2751 		"specified, only the threads waiting on that semaphore are listed.\n"
2752 		"  <sem>  - ID of the semaphore.\n", 0);
2753 	add_debugger_command_etc("realtime", &dump_thread_list,
2754 		"List all realtime threads",
2755 		"\n"
2756 		"Prints a list of all threads with realtime priority.\n", 0);
2757 	add_debugger_command_etc("thread", &dump_thread_info,
2758 		"Dump info about a particular thread",
2759 		"[ -s ] ( <id> | <address> | <name> )*\n"
2760 		"Prints information about the specified thread. If no argument is\n"
2761 		"given the current thread is selected.\n"
2762 		"  -s         - Print info in compact table form (like \"threads\").\n"
2763 		"  <id>       - The ID of the thread.\n"
2764 		"  <address>  - The address of the thread structure.\n"
2765 		"  <name>     - The thread's name.\n", 0);
2766 	add_debugger_command_etc("calling", &dump_thread_list,
2767 		"Show all threads that have a specific address in their call chain",
2768 		"{ <symbol-pattern> | <start> <end> }\n", 0);
2769 	add_debugger_command_etc("unreal", &make_thread_unreal,
2770 		"Set realtime priority threads to normal priority",
2771 		"[ <id> ]\n"
2772 		"Sets the priority of all realtime threads or, if given, the one\n"
2773 		"with the specified ID to \"normal\" priority.\n"
2774 		"  <id>  - The ID of the thread.\n", 0);
2775 	add_debugger_command_etc("suspend", &make_thread_suspended,
2776 		"Suspend a thread",
2777 		"[ <id> ]\n"
2778 		"Suspends the thread with the given ID. If no ID argument is given\n"
2779 		"the current thread is selected.\n"
2780 		"  <id>  - The ID of the thread.\n", 0);
2781 	add_debugger_command_etc("resume", &make_thread_resumed, "Resume a thread",
2782 		"<id>\n"
2783 		"Resumes the specified thread, if it is currently suspended.\n"
2784 		"  <id>  - The ID of the thread.\n", 0);
2785 	add_debugger_command_etc("drop", &drop_into_debugger,
2786 		"Drop a thread into the userland debugger",
2787 		"<id>\n"
2788 		"Drops the specified (userland) thread into the userland debugger\n"
2789 		"after leaving the kernel debugger.\n"
2790 		"  <id>  - The ID of the thread.\n", 0);
2791 	add_debugger_command_etc("priority", &set_thread_prio,
2792 		"Set a thread's priority",
2793 		"<priority> [ <id> ]\n"
2794 		"Sets the priority of the thread with the specified ID to the given\n"
2795 		"priority. If no thread ID is given, the current thread is selected.\n"
2796 		"  <priority>  - The thread's new priority (0 - 120)\n"
2797 		"  <id>        - The ID of the thread.\n", 0);
2798 
2799 	return B_OK;
2800 }
2801 
2802 
2803 status_t
2804 thread_preboot_init_percpu(struct kernel_args *args, int32 cpuNum)
2805 {
2806 	// set up the cpu pointer in the not yet initialized per-cpu idle thread
2807 	// so that get_current_cpu and friends will work, which is crucial for
2808 	// a lot of low level routines
2809 	sIdleThreads[cpuNum].cpu = &gCPU[cpuNum];
2810 	arch_thread_set_current_thread(&sIdleThreads[cpuNum]);
2811 	return B_OK;
2812 }
2813 
2814 
2815 //	#pragma mark - thread blocking API
2816 
2817 
2818 static status_t
2819 thread_block_timeout(timer* timer)
2820 {
2821 	Thread* thread = (Thread*)timer->user_data;
2822 	thread_unblock(thread, B_TIMED_OUT);
2823 
2824 	return B_HANDLED_INTERRUPT;
2825 }
2826 
2827 
2828 /*!	Blocks the current thread.
2829 
2830 	The thread is blocked until someone else unblock it. Must be called after a
2831 	call to thread_prepare_to_block(). If the thread has already been unblocked
2832 	after the previous call to thread_prepare_to_block(), this function will
2833 	return immediately. Cf. the documentation of thread_prepare_to_block() for
2834 	more details.
2835 
2836 	The caller must hold the scheduler lock.
2837 
2838 	\param thread The current thread.
2839 	\return The error code passed to the unblocking function. thread_interrupt()
2840 		uses \c B_INTERRUPTED. By convention \c B_OK means that the wait was
2841 		successful while another error code indicates a failure (what that means
2842 		depends on the client code).
2843 */
2844 static inline status_t
2845 thread_block_locked(Thread* thread)
2846 {
2847 	if (thread->wait.status == 1) {
2848 		// check for signals, if interruptible
2849 		if (thread_is_interrupted(thread, thread->wait.flags)) {
2850 			thread->wait.status = B_INTERRUPTED;
2851 		} else
2852 			scheduler_reschedule(B_THREAD_WAITING);
2853 	}
2854 
2855 	return thread->wait.status;
2856 }
2857 
2858 
2859 /*!	Blocks the current thread.
2860 
2861 	The function acquires the scheduler lock and calls thread_block_locked().
2862 	See there for more information.
2863 */
2864 status_t
2865 thread_block()
2866 {
2867 	InterruptsSpinLocker _(thread_get_current_thread()->scheduler_lock);
2868 	return thread_block_locked(thread_get_current_thread());
2869 }
2870 
2871 
2872 /*!	Blocks the current thread with a timeout.
2873 
2874 	The current thread is blocked until someone else unblock it or the specified
2875 	timeout occurs. Must be called after a call to thread_prepare_to_block(). If
2876 	the thread has already been unblocked after the previous call to
2877 	thread_prepare_to_block(), this function will return immediately. See
2878 	thread_prepare_to_block() for more details.
2879 
2880 	The caller must not hold the scheduler lock.
2881 
2882 	\param timeoutFlags The standard timeout flags:
2883 		- \c B_RELATIVE_TIMEOUT: \a timeout specifies the time to wait.
2884 		- \c B_ABSOLUTE_TIMEOUT: \a timeout specifies the absolute end time when
2885 			the timeout shall occur.
2886 		- \c B_TIMEOUT_REAL_TIME_BASE: Only relevant when \c B_ABSOLUTE_TIMEOUT
2887 			is specified, too. Specifies that \a timeout is a real time, not a
2888 			system time.
2889 		If neither \c B_RELATIVE_TIMEOUT nor \c B_ABSOLUTE_TIMEOUT are
2890 		specified, an infinite timeout is implied and the function behaves like
2891 		thread_block_locked().
2892 	\return The error code passed to the unblocking function. thread_interrupt()
2893 		uses \c B_INTERRUPTED. When the timeout occurred, \c B_TIMED_OUT is
2894 		returned. By convention \c B_OK means that the wait was successful while
2895 		another error code indicates a failure (what that means depends on the
2896 		client code).
2897 */
2898 status_t
2899 thread_block_with_timeout(uint32 timeoutFlags, bigtime_t timeout)
2900 {
2901 	Thread* thread = thread_get_current_thread();
2902 
2903 	InterruptsSpinLocker locker(thread->scheduler_lock);
2904 
2905 	if (thread->wait.status != 1)
2906 		return thread->wait.status;
2907 
2908 	bool useTimer = (timeoutFlags & (B_RELATIVE_TIMEOUT | B_ABSOLUTE_TIMEOUT))
2909 		&& timeout != B_INFINITE_TIMEOUT;
2910 
2911 	if (useTimer) {
2912 		// Timer flags: absolute/relative.
2913 		uint32 timerFlags;
2914 		if ((timeoutFlags & B_RELATIVE_TIMEOUT) != 0) {
2915 			timerFlags = B_ONE_SHOT_RELATIVE_TIMER;
2916 		} else {
2917 			timerFlags = B_ONE_SHOT_ABSOLUTE_TIMER;
2918 			if ((timeoutFlags & B_TIMEOUT_REAL_TIME_BASE) != 0)
2919 				timerFlags |= B_TIMER_REAL_TIME_BASE;
2920 		}
2921 
2922 		// install the timer
2923 		thread->wait.unblock_timer.user_data = thread;
2924 		add_timer(&thread->wait.unblock_timer, &thread_block_timeout, timeout,
2925 			timerFlags);
2926 	}
2927 
2928 	// block
2929 	status_t error = thread_block_locked(thread);
2930 
2931 	locker.Unlock();
2932 
2933 	// cancel timer, if it didn't fire
2934 	if (error != B_TIMED_OUT && useTimer)
2935 		cancel_timer(&thread->wait.unblock_timer);
2936 
2937 	return error;
2938 }
2939 
2940 
2941 /*!	Unblocks a thread.
2942 
2943 	Acquires the scheduler lock and calls thread_unblock_locked().
2944 	See there for more information.
2945 */
2946 void
2947 thread_unblock(Thread* thread, status_t status)
2948 {
2949 	InterruptsSpinLocker locker(thread->scheduler_lock);
2950 	thread_unblock_locked(thread, status);
2951 }
2952 
2953 
2954 /*!	Unblocks a userland-blocked thread.
2955 	The caller must not hold any locks.
2956 */
2957 static status_t
2958 user_unblock_thread(thread_id threadID, status_t status)
2959 {
2960 	// get the thread
2961 	Thread* thread = Thread::GetAndLock(threadID);
2962 	if (thread == NULL)
2963 		return B_BAD_THREAD_ID;
2964 	BReference<Thread> threadReference(thread, true);
2965 	ThreadLocker threadLocker(thread, true);
2966 
2967 	if (thread->user_thread == NULL)
2968 		return B_NOT_ALLOWED;
2969 
2970 	InterruptsSpinLocker locker(thread->scheduler_lock);
2971 
2972 	set_ac();
2973 	if (thread->user_thread->wait_status > 0) {
2974 		thread->user_thread->wait_status = status;
2975 		clear_ac();
2976 
2977 		// Even if the user_thread->wait_status was > 0, it may be the
2978 		// case that this thread is actually blocked on something else.
2979 		if (thread->wait.status > 0
2980 				&& thread->wait.type == THREAD_BLOCK_TYPE_USER) {
2981 			thread_unblock_locked(thread, status);
2982 		}
2983 	} else
2984 		clear_ac();
2985 
2986 	return B_OK;
2987 }
2988 
2989 
2990 static bool
2991 thread_check_permissions(const Thread* currentThread, const Thread* thread,
2992 	bool kernel)
2993 {
2994 	if (kernel)
2995 		return true;
2996 
2997 	if (thread->team->id == team_get_kernel_team_id())
2998 		return false;
2999 
3000 	if (thread->team == currentThread->team
3001 			|| currentThread->team->effective_uid == 0
3002 			|| thread->team->real_uid == currentThread->team->real_uid)
3003 		return true;
3004 
3005 	return false;
3006 }
3007 
3008 
3009 static status_t
3010 thread_send_signal(thread_id id, uint32 number, int32 signalCode,
3011 	int32 errorCode, bool kernel)
3012 {
3013 	if (id <= 0)
3014 		return B_BAD_VALUE;
3015 
3016 	Thread* currentThread = thread_get_current_thread();
3017 	Thread* thread = Thread::Get(id);
3018 	if (thread == NULL)
3019 		return B_BAD_THREAD_ID;
3020 	BReference<Thread> threadReference(thread, true);
3021 
3022 	// check whether sending the signal is allowed
3023 	if (!thread_check_permissions(currentThread, thread, kernel))
3024 		return B_NOT_ALLOWED;
3025 
3026 	Signal signal(number, signalCode, errorCode, currentThread->team->id);
3027 	return send_signal_to_thread(thread, signal, 0);
3028 }
3029 
3030 
3031 //	#pragma mark - public kernel API
3032 
3033 
3034 void
3035 exit_thread(status_t returnValue)
3036 {
3037 	Thread *thread = thread_get_current_thread();
3038 	Team* team = thread->team;
3039 
3040 	thread->exit.status = returnValue;
3041 
3042 	// if called from a kernel thread, we don't deliver the signal,
3043 	// we just exit directly to keep the user space behaviour of
3044 	// this function
3045 	if (team != team_get_kernel_team()) {
3046 		// If this is its main thread, set the team's exit status.
3047 		if (thread == team->main_thread) {
3048 			TeamLocker teamLocker(team);
3049 
3050 			if (!team->exit.initialized) {
3051 				team->exit.reason = CLD_EXITED;
3052 				team->exit.signal = 0;
3053 				team->exit.signaling_user = 0;
3054 				team->exit.status = returnValue;
3055 				team->exit.initialized = true;
3056 			}
3057 
3058 			teamLocker.Unlock();
3059 		}
3060 
3061 		Signal signal(SIGKILLTHR, SI_USER, B_OK, team->id);
3062 		send_signal_to_thread(thread, signal, B_DO_NOT_RESCHEDULE);
3063 	} else
3064 		thread_exit();
3065 }
3066 
3067 
3068 static status_t
3069 thread_kill_thread(thread_id id, bool kernel)
3070 {
3071 	return thread_send_signal(id, SIGKILLTHR, SI_USER, B_OK, kernel);
3072 }
3073 
3074 
3075 status_t
3076 kill_thread(thread_id id)
3077 {
3078 	return thread_kill_thread(id, true);
3079 }
3080 
3081 
3082 status_t
3083 send_data(thread_id thread, int32 code, const void *buffer, size_t bufferSize)
3084 {
3085 	return send_data_etc(thread, code, buffer, bufferSize, 0);
3086 }
3087 
3088 
3089 int32
3090 receive_data(thread_id *sender, void *buffer, size_t bufferSize)
3091 {
3092 	return receive_data_etc(sender, buffer, bufferSize, 0);
3093 }
3094 
3095 
3096 static bool
3097 thread_has_data(thread_id id, bool kernel)
3098 {
3099 	Thread* currentThread = thread_get_current_thread();
3100 	Thread* thread;
3101 	BReference<Thread> threadReference;
3102 	if (id == currentThread->id) {
3103 		thread = currentThread;
3104 	} else {
3105 		thread = Thread::Get(id);
3106 		if (thread == NULL)
3107 			return false;
3108 
3109 		threadReference.SetTo(thread, true);
3110 	}
3111 
3112 	if (!kernel && thread->team != currentThread->team)
3113 		return false;
3114 
3115 	int32 count;
3116 	if (get_sem_count(thread->msg.read_sem, &count) != B_OK)
3117 		return false;
3118 
3119 	return count == 0 ? false : true;
3120 }
3121 
3122 
3123 bool
3124 has_data(thread_id thread)
3125 {
3126 	return thread_has_data(thread, true);
3127 }
3128 
3129 
3130 status_t
3131 _get_thread_info(thread_id id, thread_info *info, size_t size)
3132 {
3133 	if (info == NULL || size != sizeof(thread_info) || id < B_OK)
3134 		return B_BAD_VALUE;
3135 
3136 	// get the thread
3137 	Thread* thread = Thread::GetAndLock(id);
3138 	if (thread == NULL)
3139 		return B_BAD_THREAD_ID;
3140 	BReference<Thread> threadReference(thread, true);
3141 	ThreadLocker threadLocker(thread, true);
3142 
3143 	// fill the info -- also requires the scheduler lock to be held
3144 	InterruptsSpinLocker locker(thread->scheduler_lock);
3145 
3146 	fill_thread_info(thread, info, size);
3147 
3148 	return B_OK;
3149 }
3150 
3151 
3152 status_t
3153 _get_next_thread_info(team_id teamID, int32 *_cookie, thread_info *info,
3154 	size_t size)
3155 {
3156 	if (info == NULL || size != sizeof(thread_info) || teamID < 0)
3157 		return B_BAD_VALUE;
3158 
3159 	int32 lastID = *_cookie;
3160 
3161 	// get the team
3162 	Team* team = Team::GetAndLock(teamID);
3163 	if (team == NULL)
3164 		return B_BAD_VALUE;
3165 	BReference<Team> teamReference(team, true);
3166 	TeamLocker teamLocker(team, true);
3167 
3168 	Thread* thread = NULL;
3169 
3170 	if (lastID == 0) {
3171 		// We start with the main thread
3172 		thread = team->main_thread;
3173 	} else {
3174 		// Find the one thread with an ID greater than ours (as long as the IDs
3175 		// don't wrap they are always sorted from highest to lowest).
3176 		// TODO: That is broken not only when the IDs wrap, but also for the
3177 		// kernel team, to which threads are added when they are dying.
3178 		for (Thread* next = team->thread_list; next != NULL;
3179 				next = next->team_next) {
3180 			if (next->id <= lastID)
3181 				break;
3182 
3183 			thread = next;
3184 		}
3185 	}
3186 
3187 	if (thread == NULL)
3188 		return B_BAD_VALUE;
3189 
3190 	lastID = thread->id;
3191 	*_cookie = lastID;
3192 
3193 	ThreadLocker threadLocker(thread);
3194 	InterruptsSpinLocker locker(thread->scheduler_lock);
3195 
3196 	fill_thread_info(thread, info, size);
3197 
3198 	return B_OK;
3199 }
3200 
3201 
3202 thread_id
3203 find_thread(const char* name)
3204 {
3205 	if (name == NULL)
3206 		return thread_get_current_thread_id();
3207 
3208 	InterruptsReadSpinLocker threadHashLocker(sThreadHashLock);
3209 
3210 	// Scanning the whole hash with the thread hash lock held isn't exactly
3211 	// cheap, but since this function is probably used very rarely, and we
3212 	// only need a read lock, it's probably acceptable.
3213 
3214 	for (ThreadHashTable::Iterator it = sThreadHash.GetIterator();
3215 			Thread* thread = it.Next();) {
3216 		if (!thread->visible)
3217 			continue;
3218 
3219 		if (strcmp(thread->name, name) == 0)
3220 			return thread->id;
3221 	}
3222 
3223 	return B_NAME_NOT_FOUND;
3224 }
3225 
3226 
3227 status_t
3228 rename_thread(thread_id id, const char* name)
3229 {
3230 	if (name == NULL)
3231 		return B_BAD_VALUE;
3232 
3233 	// get the thread
3234 	Thread* thread = Thread::GetAndLock(id);
3235 	if (thread == NULL)
3236 		return B_BAD_THREAD_ID;
3237 	BReference<Thread> threadReference(thread, true);
3238 	ThreadLocker threadLocker(thread, true);
3239 
3240 	// check whether the operation is allowed
3241 	if (thread->team != thread_get_current_thread()->team)
3242 		return B_NOT_ALLOWED;
3243 
3244 	strlcpy(thread->name, name, B_OS_NAME_LENGTH);
3245 
3246 	team_id teamID = thread->team->id;
3247 
3248 	threadLocker.Unlock();
3249 
3250 	// notify listeners
3251 	sNotificationService.Notify(THREAD_NAME_CHANGED, teamID, id);
3252 		// don't pass the thread structure, as it's unsafe, if it isn't ours
3253 
3254 	return B_OK;
3255 }
3256 
3257 
3258 static status_t
3259 thread_set_thread_priority(thread_id id, int32 priority, bool kernel)
3260 {
3261 	// make sure the passed in priority is within bounds
3262 	if (priority > THREAD_MAX_SET_PRIORITY)
3263 		priority = THREAD_MAX_SET_PRIORITY;
3264 	if (priority < THREAD_MIN_SET_PRIORITY)
3265 		priority = THREAD_MIN_SET_PRIORITY;
3266 
3267 	// get the thread
3268 	Thread* thread = Thread::GetAndLock(id);
3269 	if (thread == NULL)
3270 		return B_BAD_THREAD_ID;
3271 	BReference<Thread> threadReference(thread, true);
3272 	ThreadLocker threadLocker(thread, true);
3273 
3274 	// check whether the change is allowed
3275 	if (thread_is_idle_thread(thread) || !thread_check_permissions(
3276 			thread_get_current_thread(), thread, kernel))
3277 		return B_NOT_ALLOWED;
3278 
3279 	return scheduler_set_thread_priority(thread, priority);
3280 }
3281 
3282 
3283 status_t
3284 set_thread_priority(thread_id id, int32 priority)
3285 {
3286 	return thread_set_thread_priority(id, priority, true);
3287 }
3288 
3289 
3290 status_t
3291 snooze_etc(bigtime_t timeout, int timebase, uint32 flags)
3292 {
3293 	return common_snooze_etc(timeout, timebase, flags, NULL);
3294 }
3295 
3296 
3297 /*!	snooze() for internal kernel use only; doesn't interrupt on signals. */
3298 status_t
3299 snooze(bigtime_t timeout)
3300 {
3301 	return snooze_etc(timeout, B_SYSTEM_TIMEBASE, B_RELATIVE_TIMEOUT);
3302 }
3303 
3304 
3305 /*!	snooze_until() for internal kernel use only; doesn't interrupt on
3306 	signals.
3307 */
3308 status_t
3309 snooze_until(bigtime_t timeout, int timebase)
3310 {
3311 	return snooze_etc(timeout, timebase, B_ABSOLUTE_TIMEOUT);
3312 }
3313 
3314 
3315 status_t
3316 wait_for_thread(thread_id thread, status_t *_returnCode)
3317 {
3318 	return wait_for_thread_etc(thread, 0, 0, _returnCode);
3319 }
3320 
3321 
3322 static status_t
3323 thread_suspend_thread(thread_id id, bool kernel)
3324 {
3325 	return thread_send_signal(id, SIGSTOP, SI_USER, B_OK, kernel);
3326 }
3327 
3328 
3329 status_t
3330 suspend_thread(thread_id id)
3331 {
3332 	return thread_suspend_thread(id, true);
3333 }
3334 
3335 
3336 static status_t
3337 thread_resume_thread(thread_id id, bool kernel)
3338 {
3339 	// Using the kernel internal SIGNAL_CONTINUE_THREAD signal retains
3340 	// compatibility to BeOS which documents the combination of suspend_thread()
3341 	// and resume_thread() to interrupt threads waiting on semaphores.
3342 	return thread_send_signal(id, SIGNAL_CONTINUE_THREAD, SI_USER, B_OK, kernel);
3343 }
3344 
3345 
3346 status_t
3347 resume_thread(thread_id id)
3348 {
3349 	return thread_resume_thread(id, true);
3350 }
3351 
3352 
3353 thread_id
3354 spawn_kernel_thread(thread_func function, const char *name, int32 priority,
3355 	void *arg)
3356 {
3357 	return thread_create_thread(
3358 		ThreadCreationAttributes(function, name, priority, arg),
3359 		true);
3360 }
3361 
3362 
3363 int
3364 getrlimit(int resource, struct rlimit * rlp)
3365 {
3366 	status_t error = common_getrlimit(resource, rlp);
3367 	if (error != B_OK) {
3368 		errno = error;
3369 		return -1;
3370 	}
3371 
3372 	return 0;
3373 }
3374 
3375 
3376 int
3377 setrlimit(int resource, const struct rlimit * rlp)
3378 {
3379 	status_t error = common_setrlimit(resource, rlp);
3380 	if (error != B_OK) {
3381 		errno = error;
3382 		return -1;
3383 	}
3384 
3385 	return 0;
3386 }
3387 
3388 
3389 //	#pragma mark - syscalls
3390 
3391 
3392 void
3393 _user_exit_thread(status_t returnValue)
3394 {
3395 	exit_thread(returnValue);
3396 }
3397 
3398 
3399 status_t
3400 _user_kill_thread(thread_id thread)
3401 {
3402 	return thread_kill_thread(thread, false);
3403 }
3404 
3405 
3406 status_t
3407 _user_cancel_thread(thread_id threadID, void (*cancelFunction)(int))
3408 {
3409 	// check the cancel function
3410 	if (cancelFunction == NULL || !IS_USER_ADDRESS(cancelFunction))
3411 		return B_BAD_VALUE;
3412 
3413 	// get and lock the thread
3414 	Thread* thread = Thread::GetAndLock(threadID);
3415 	if (thread == NULL)
3416 		return B_BAD_THREAD_ID;
3417 	BReference<Thread> threadReference(thread, true);
3418 	ThreadLocker threadLocker(thread, true);
3419 
3420 	// only threads of the same team can be canceled
3421 	if (thread->team != thread_get_current_thread()->team)
3422 		return B_NOT_ALLOWED;
3423 
3424 	// set the cancel function
3425 	thread->cancel_function = cancelFunction;
3426 
3427 	// send the cancellation signal to the thread
3428 	InterruptsReadSpinLocker teamLocker(thread->team_lock);
3429 	SpinLocker locker(thread->team->signal_lock);
3430 	return send_signal_to_thread_locked(thread, SIGNAL_CANCEL_THREAD, NULL, 0);
3431 }
3432 
3433 
3434 status_t
3435 _user_resume_thread(thread_id thread)
3436 {
3437 	return thread_resume_thread(thread, false);
3438 }
3439 
3440 
3441 status_t
3442 _user_suspend_thread(thread_id thread)
3443 {
3444 	return thread_suspend_thread(thread, false);
3445 }
3446 
3447 
3448 status_t
3449 _user_rename_thread(thread_id thread, const char *userName)
3450 {
3451 	char name[B_OS_NAME_LENGTH];
3452 
3453 	if (!IS_USER_ADDRESS(userName)
3454 		|| userName == NULL
3455 		|| user_strlcpy(name, userName, B_OS_NAME_LENGTH) < B_OK)
3456 		return B_BAD_ADDRESS;
3457 
3458 	// rename_thread() forbids thread renames across teams, so we don't
3459 	// need a "kernel" flag here.
3460 	return rename_thread(thread, name);
3461 }
3462 
3463 
3464 int32
3465 _user_set_thread_priority(thread_id thread, int32 newPriority)
3466 {
3467 	return thread_set_thread_priority(thread, newPriority, false);
3468 }
3469 
3470 
3471 thread_id
3472 _user_spawn_thread(thread_creation_attributes* userAttributes)
3473 {
3474 	// copy the userland structure to the kernel
3475 	char nameBuffer[B_OS_NAME_LENGTH];
3476 	ThreadCreationAttributes attributes;
3477 	status_t error = attributes.InitFromUserAttributes(userAttributes,
3478 		nameBuffer);
3479 	if (error != B_OK)
3480 		return error;
3481 
3482 	// create the thread
3483 	thread_id threadID = thread_create_thread(attributes, false);
3484 
3485 	if (threadID >= 0)
3486 		user_debug_thread_created(threadID);
3487 
3488 	return threadID;
3489 }
3490 
3491 
3492 status_t
3493 _user_snooze_etc(bigtime_t timeout, int timebase, uint32 flags,
3494 	bigtime_t* userRemainingTime)
3495 {
3496 	// We need to store more syscall restart parameters than usual and need a
3497 	// somewhat different handling. Hence we can't use
3498 	// syscall_restart_handle_timeout_pre() but do the job ourselves.
3499 	struct restart_parameters {
3500 		bigtime_t	timeout;
3501 		clockid_t	timebase;
3502 		uint32		flags;
3503 	};
3504 
3505 	Thread* thread = thread_get_current_thread();
3506 
3507 	if ((thread->flags & THREAD_FLAGS_SYSCALL_RESTARTED) != 0) {
3508 		// The syscall was restarted. Fetch the parameters from the stored
3509 		// restart parameters.
3510 		restart_parameters* restartParameters
3511 			= (restart_parameters*)thread->syscall_restart.parameters;
3512 		timeout = restartParameters->timeout;
3513 		timebase = restartParameters->timebase;
3514 		flags = restartParameters->flags;
3515 	} else {
3516 		// convert relative timeouts to absolute ones
3517 		if ((flags & B_RELATIVE_TIMEOUT) != 0) {
3518 			// not restarted yet and the flags indicate a relative timeout
3519 
3520 			// Make sure we use the system time base, so real-time clock changes
3521 			// won't affect our wait.
3522 			flags &= ~(uint32)B_TIMEOUT_REAL_TIME_BASE;
3523 			if (timebase == CLOCK_REALTIME)
3524 				timebase = CLOCK_MONOTONIC;
3525 
3526 			// get the current time and make the timeout absolute
3527 			bigtime_t now;
3528 			status_t error = user_timer_get_clock(timebase, now);
3529 			if (error != B_OK)
3530 				return error;
3531 
3532 			timeout += now;
3533 
3534 			// deal with overflow
3535 			if (timeout < 0)
3536 				timeout = B_INFINITE_TIMEOUT;
3537 
3538 			flags = (flags & ~B_RELATIVE_TIMEOUT) | B_ABSOLUTE_TIMEOUT;
3539 		} else
3540 			flags |= B_ABSOLUTE_TIMEOUT;
3541 	}
3542 
3543 	// snooze
3544 	bigtime_t remainingTime;
3545 	status_t error = common_snooze_etc(timeout, timebase,
3546 		flags | B_CAN_INTERRUPT | B_CHECK_PERMISSION,
3547 		userRemainingTime != NULL ? &remainingTime : NULL);
3548 
3549 	// If interrupted, copy the remaining time back to userland and prepare the
3550 	// syscall restart.
3551 	if (error == B_INTERRUPTED) {
3552 		if (userRemainingTime != NULL
3553 			&& (!IS_USER_ADDRESS(userRemainingTime)
3554 				|| user_memcpy(userRemainingTime, &remainingTime,
3555 					sizeof(remainingTime)) != B_OK)) {
3556 			return B_BAD_ADDRESS;
3557 		}
3558 
3559 		// store the normalized values in the restart parameters
3560 		restart_parameters* restartParameters
3561 			= (restart_parameters*)thread->syscall_restart.parameters;
3562 		restartParameters->timeout = timeout;
3563 		restartParameters->timebase = timebase;
3564 		restartParameters->flags = flags;
3565 
3566 		// restart the syscall, if possible
3567 		atomic_or(&thread->flags, THREAD_FLAGS_RESTART_SYSCALL);
3568 	}
3569 
3570 	return error;
3571 }
3572 
3573 
3574 void
3575 _user_thread_yield(void)
3576 {
3577 	thread_yield();
3578 }
3579 
3580 
3581 status_t
3582 _user_get_thread_info(thread_id id, thread_info *userInfo)
3583 {
3584 	thread_info info;
3585 	status_t status;
3586 
3587 	if (!IS_USER_ADDRESS(userInfo))
3588 		return B_BAD_ADDRESS;
3589 
3590 	status = _get_thread_info(id, &info, sizeof(thread_info));
3591 
3592 	if (status >= B_OK
3593 		&& user_memcpy(userInfo, &info, sizeof(thread_info)) < B_OK)
3594 		return B_BAD_ADDRESS;
3595 
3596 	return status;
3597 }
3598 
3599 
3600 status_t
3601 _user_get_next_thread_info(team_id team, int32 *userCookie,
3602 	thread_info *userInfo)
3603 {
3604 	status_t status;
3605 	thread_info info;
3606 	int32 cookie;
3607 
3608 	if (!IS_USER_ADDRESS(userCookie) || !IS_USER_ADDRESS(userInfo)
3609 		|| user_memcpy(&cookie, userCookie, sizeof(int32)) < B_OK)
3610 		return B_BAD_ADDRESS;
3611 
3612 	status = _get_next_thread_info(team, &cookie, &info, sizeof(thread_info));
3613 	if (status < B_OK)
3614 		return status;
3615 
3616 	if (user_memcpy(userCookie, &cookie, sizeof(int32)) < B_OK
3617 		|| user_memcpy(userInfo, &info, sizeof(thread_info)) < B_OK)
3618 		return B_BAD_ADDRESS;
3619 
3620 	return status;
3621 }
3622 
3623 
3624 thread_id
3625 _user_find_thread(const char *userName)
3626 {
3627 	char name[B_OS_NAME_LENGTH];
3628 
3629 	if (userName == NULL)
3630 		return find_thread(NULL);
3631 
3632 	if (!IS_USER_ADDRESS(userName)
3633 		|| user_strlcpy(name, userName, sizeof(name)) < B_OK)
3634 		return B_BAD_ADDRESS;
3635 
3636 	return find_thread(name);
3637 }
3638 
3639 
3640 status_t
3641 _user_wait_for_thread(thread_id id, status_t *userReturnCode)
3642 {
3643 	status_t returnCode;
3644 	status_t status;
3645 
3646 	if (userReturnCode != NULL && !IS_USER_ADDRESS(userReturnCode))
3647 		return B_BAD_ADDRESS;
3648 
3649 	status = wait_for_thread_etc(id, B_CAN_INTERRUPT, 0, &returnCode);
3650 
3651 	if (status == B_OK && userReturnCode != NULL
3652 		&& user_memcpy(userReturnCode, &returnCode, sizeof(status_t)) < B_OK) {
3653 		return B_BAD_ADDRESS;
3654 	}
3655 
3656 	return syscall_restart_handle_post(status);
3657 }
3658 
3659 
3660 bool
3661 _user_has_data(thread_id thread)
3662 {
3663 	return thread_has_data(thread, false);
3664 }
3665 
3666 
3667 status_t
3668 _user_send_data(thread_id thread, int32 code, const void *buffer,
3669 	size_t bufferSize)
3670 {
3671 	if (buffer != NULL && !IS_USER_ADDRESS(buffer))
3672 		return B_BAD_ADDRESS;
3673 
3674 	return send_data_etc(thread, code, buffer, bufferSize,
3675 		B_KILL_CAN_INTERRUPT);
3676 		// supports userland buffers
3677 }
3678 
3679 
3680 status_t
3681 _user_receive_data(thread_id *_userSender, void *buffer, size_t bufferSize)
3682 {
3683 	thread_id sender;
3684 	status_t code;
3685 
3686 	if ((!IS_USER_ADDRESS(_userSender) && _userSender != NULL)
3687 		|| (!IS_USER_ADDRESS(buffer) && buffer != NULL)) {
3688 		return B_BAD_ADDRESS;
3689 	}
3690 
3691 	code = receive_data_etc(&sender, buffer, bufferSize, B_KILL_CAN_INTERRUPT);
3692 		// supports userland buffers
3693 
3694 	if (_userSender != NULL)
3695 		if (user_memcpy(_userSender, &sender, sizeof(thread_id)) < B_OK)
3696 			return B_BAD_ADDRESS;
3697 
3698 	return code;
3699 }
3700 
3701 
3702 status_t
3703 _user_block_thread(uint32 flags, bigtime_t timeout)
3704 {
3705 	syscall_restart_handle_timeout_pre(flags, timeout);
3706 	flags |= B_CAN_INTERRUPT;
3707 
3708 	Thread* thread = thread_get_current_thread();
3709 	ThreadLocker threadLocker(thread);
3710 
3711 	// check, if already done
3712 	set_ac();
3713 	if (thread->user_thread->wait_status <= 0) {
3714 		status_t status = thread->user_thread->wait_status;
3715 		clear_ac();
3716 		return status;
3717 	}
3718 	clear_ac();
3719 
3720 	// nope, so wait
3721 	thread_prepare_to_block(thread, flags, THREAD_BLOCK_TYPE_USER, NULL);
3722 
3723 	threadLocker.Unlock();
3724 
3725 	status_t status = thread_block_with_timeout(flags, timeout);
3726 
3727 	threadLocker.Lock();
3728 
3729 	// Interruptions or timeouts can race with other threads unblocking us.
3730 	// Favor a wake-up by another thread, i.e. if someone changed the wait
3731 	// status, use that.
3732 	set_ac();
3733 	status_t oldStatus = thread->user_thread->wait_status;
3734 	if (oldStatus > 0) {
3735 		thread->user_thread->wait_status = status;
3736 		clear_ac();
3737 	} else {
3738 		clear_ac();
3739 		status = oldStatus;
3740 	}
3741 
3742 	threadLocker.Unlock();
3743 
3744 	return syscall_restart_handle_timeout_post(status, timeout);
3745 }
3746 
3747 
3748 status_t
3749 _user_unblock_thread(thread_id threadID, status_t status)
3750 {
3751 	status_t error = user_unblock_thread(threadID, status);
3752 
3753 	if (error == B_OK)
3754 		scheduler_reschedule_if_necessary();
3755 
3756 	return error;
3757 }
3758 
3759 
3760 status_t
3761 _user_unblock_threads(thread_id* userThreads, uint32 count, status_t status)
3762 {
3763 	enum {
3764 		MAX_USER_THREADS_TO_UNBLOCK	= 128
3765 	};
3766 
3767 	if (userThreads == NULL || !IS_USER_ADDRESS(userThreads))
3768 		return B_BAD_ADDRESS;
3769 	if (count > MAX_USER_THREADS_TO_UNBLOCK)
3770 		return B_BAD_VALUE;
3771 
3772 	thread_id threads[MAX_USER_THREADS_TO_UNBLOCK];
3773 	if (user_memcpy(threads, userThreads, count * sizeof(thread_id)) != B_OK)
3774 		return B_BAD_ADDRESS;
3775 
3776 	for (uint32 i = 0; i < count; i++)
3777 		user_unblock_thread(threads[i], status);
3778 
3779 	scheduler_reschedule_if_necessary();
3780 
3781 	return B_OK;
3782 }
3783 
3784 
3785 // TODO: the following two functions don't belong here
3786 
3787 
3788 int
3789 _user_getrlimit(int resource, struct rlimit *urlp)
3790 {
3791 	struct rlimit rl;
3792 	int ret;
3793 
3794 	if (urlp == NULL)
3795 		return EINVAL;
3796 
3797 	if (!IS_USER_ADDRESS(urlp))
3798 		return B_BAD_ADDRESS;
3799 
3800 	ret = common_getrlimit(resource, &rl);
3801 
3802 	if (ret == 0) {
3803 		ret = user_memcpy(urlp, &rl, sizeof(struct rlimit));
3804 		if (ret < 0)
3805 			return ret;
3806 
3807 		return 0;
3808 	}
3809 
3810 	return ret;
3811 }
3812 
3813 
3814 int
3815 _user_setrlimit(int resource, const struct rlimit *userResourceLimit)
3816 {
3817 	struct rlimit resourceLimit;
3818 
3819 	if (userResourceLimit == NULL)
3820 		return EINVAL;
3821 
3822 	if (!IS_USER_ADDRESS(userResourceLimit)
3823 		|| user_memcpy(&resourceLimit, userResourceLimit,
3824 			sizeof(struct rlimit)) < B_OK)
3825 		return B_BAD_ADDRESS;
3826 
3827 	return common_setrlimit(resource, &resourceLimit);
3828 }
3829