1 /* 2 * Copyright 2018, Jérôme Duval, jerome.duval@gmail.com. 3 * Copyright 2005-2011, Ingo Weinhold, ingo_weinhold@gmx.de. 4 * Copyright 2002-2009, Axel Dörfler, axeld@pinc-software.de. 5 * Distributed under the terms of the MIT License. 6 * 7 * Copyright 2001-2002, Travis Geiselbrecht. All rights reserved. 8 * Distributed under the terms of the NewOS License. 9 */ 10 11 12 /*! Threading routines */ 13 14 15 #include <thread.h> 16 17 #include <errno.h> 18 #include <malloc.h> 19 #include <stdio.h> 20 #include <stdlib.h> 21 #include <string.h> 22 #include <sys/resource.h> 23 24 #include <algorithm> 25 26 #include <OS.h> 27 28 #include <util/AutoLock.h> 29 #include <util/ThreadAutoLock.h> 30 31 #include <arch/debug.h> 32 #include <boot/kernel_args.h> 33 #include <condition_variable.h> 34 #include <cpu.h> 35 #include <int.h> 36 #include <kimage.h> 37 #include <kscheduler.h> 38 #include <ksignal.h> 39 #include <Notifications.h> 40 #include <real_time_clock.h> 41 #include <slab/Slab.h> 42 #include <smp.h> 43 #include <syscalls.h> 44 #include <syscall_restart.h> 45 #include <team.h> 46 #include <tls.h> 47 #include <user_runtime.h> 48 #include <user_thread.h> 49 #include <vfs.h> 50 #include <vm/vm.h> 51 #include <vm/VMAddressSpace.h> 52 #include <wait_for_objects.h> 53 54 #include "TeamThreadTables.h" 55 56 57 //#define TRACE_THREAD 58 #ifdef TRACE_THREAD 59 # define TRACE(x) dprintf x 60 #else 61 # define TRACE(x) ; 62 #endif 63 64 65 #define THREAD_MAX_MESSAGE_SIZE 65536 66 67 68 // #pragma mark - ThreadHashTable 69 70 71 typedef BKernel::TeamThreadTable<Thread> ThreadHashTable; 72 73 74 // thread list 75 static Thread sIdleThreads[SMP_MAX_CPUS]; 76 static ThreadHashTable sThreadHash; 77 static rw_spinlock sThreadHashLock = B_RW_SPINLOCK_INITIALIZER; 78 static thread_id sNextThreadID = 2; 79 // ID 1 is allocated for the kernel by Team::Team() behind our back 80 81 // some arbitrarily chosen limits -- should probably depend on the available 82 // memory 83 static int32 sMaxThreads = 4096; 84 static int32 sUsedThreads = 0; 85 86 spinlock gThreadCreationLock = B_SPINLOCK_INITIALIZER; 87 88 89 struct UndertakerEntry : DoublyLinkedListLinkImpl<UndertakerEntry> { 90 Thread* thread; 91 team_id teamID; 92 93 UndertakerEntry(Thread* thread, team_id teamID) 94 : 95 thread(thread), 96 teamID(teamID) 97 { 98 } 99 }; 100 101 102 struct ThreadEntryArguments { 103 status_t (*kernelFunction)(void* argument); 104 void* argument; 105 bool enterUserland; 106 }; 107 108 struct UserThreadEntryArguments : ThreadEntryArguments { 109 addr_t userlandEntry; 110 void* userlandArgument1; 111 void* userlandArgument2; 112 pthread_t pthread; 113 arch_fork_arg* forkArgs; 114 uint32 flags; 115 }; 116 117 118 class ThreadNotificationService : public DefaultNotificationService { 119 public: 120 ThreadNotificationService() 121 : DefaultNotificationService("threads") 122 { 123 } 124 125 void Notify(uint32 eventCode, team_id teamID, thread_id threadID, 126 Thread* thread = NULL) 127 { 128 char eventBuffer[180]; 129 KMessage event; 130 event.SetTo(eventBuffer, sizeof(eventBuffer), THREAD_MONITOR); 131 event.AddInt32("event", eventCode); 132 event.AddInt32("team", teamID); 133 event.AddInt32("thread", threadID); 134 if (thread != NULL) 135 event.AddPointer("threadStruct", thread); 136 137 DefaultNotificationService::Notify(event, eventCode); 138 } 139 140 void Notify(uint32 eventCode, Thread* thread) 141 { 142 return Notify(eventCode, thread->id, thread->team->id, thread); 143 } 144 }; 145 146 147 static DoublyLinkedList<UndertakerEntry> sUndertakerEntries; 148 static spinlock sUndertakerLock = B_SPINLOCK_INITIALIZER; 149 static ConditionVariable sUndertakerCondition; 150 static ThreadNotificationService sNotificationService; 151 152 153 // object cache to allocate thread structures from 154 static object_cache* sThreadCache; 155 156 157 // #pragma mark - Thread 158 159 160 /*! Constructs a thread. 161 162 \param name The thread's name. 163 \param threadID The ID to be assigned to the new thread. If 164 \code < 0 \endcode a fresh one is allocated. 165 \param cpu The CPU the thread shall be assigned. 166 */ 167 Thread::Thread(const char* name, thread_id threadID, struct cpu_ent* cpu) 168 : 169 flags(0), 170 serial_number(-1), 171 hash_next(NULL), 172 team_next(NULL), 173 priority(-1), 174 io_priority(-1), 175 cpu(cpu), 176 previous_cpu(NULL), 177 pinned_to_cpu(0), 178 sig_block_mask(0), 179 sigsuspend_original_unblocked_mask(0), 180 user_signal_context(NULL), 181 signal_stack_base(0), 182 signal_stack_size(0), 183 signal_stack_enabled(false), 184 in_kernel(true), 185 has_yielded(false), 186 user_thread(NULL), 187 fault_handler(0), 188 page_faults_allowed(1), 189 team(NULL), 190 select_infos(NULL), 191 kernel_stack_area(-1), 192 kernel_stack_base(0), 193 user_stack_area(-1), 194 user_stack_base(0), 195 user_local_storage(0), 196 kernel_errno(0), 197 user_time(0), 198 kernel_time(0), 199 last_time(0), 200 cpu_clock_offset(0), 201 post_interrupt_callback(NULL), 202 post_interrupt_data(NULL) 203 { 204 id = threadID >= 0 ? threadID : allocate_thread_id(); 205 visible = false; 206 207 // init locks 208 char lockName[32]; 209 snprintf(lockName, sizeof(lockName), "Thread:%" B_PRId32, id); 210 mutex_init_etc(&fLock, lockName, MUTEX_FLAG_CLONE_NAME); 211 212 B_INITIALIZE_SPINLOCK(&time_lock); 213 B_INITIALIZE_SPINLOCK(&scheduler_lock); 214 B_INITIALIZE_RW_SPINLOCK(&team_lock); 215 216 // init name 217 if (name != NULL) 218 strlcpy(this->name, name, B_OS_NAME_LENGTH); 219 else 220 strcpy(this->name, "unnamed thread"); 221 222 exit.status = 0; 223 224 list_init(&exit.waiters); 225 226 exit.sem = -1; 227 msg.write_sem = -1; 228 msg.read_sem = -1; 229 230 // add to thread table -- yet invisible 231 InterruptsWriteSpinLocker threadHashLocker(sThreadHashLock); 232 sThreadHash.Insert(this); 233 } 234 235 236 Thread::~Thread() 237 { 238 // Delete resources that should actually be deleted by the thread itself, 239 // when it exited, but that might still exist, if the thread was never run. 240 241 if (user_stack_area >= 0) 242 delete_area(user_stack_area); 243 244 DeleteUserTimers(false); 245 246 // delete the resources, that may remain in either case 247 248 if (kernel_stack_area >= 0) 249 delete_area(kernel_stack_area); 250 251 fPendingSignals.Clear(); 252 253 if (exit.sem >= 0) 254 delete_sem(exit.sem); 255 if (msg.write_sem >= 0) 256 delete_sem(msg.write_sem); 257 if (msg.read_sem >= 0) 258 delete_sem(msg.read_sem); 259 260 scheduler_on_thread_destroy(this); 261 262 mutex_destroy(&fLock); 263 264 // remove from thread table 265 InterruptsWriteSpinLocker threadHashLocker(sThreadHashLock); 266 sThreadHash.Remove(this); 267 } 268 269 270 /*static*/ status_t 271 Thread::Create(const char* name, Thread*& _thread) 272 { 273 Thread* thread = new Thread(name, -1, NULL); 274 if (thread == NULL) 275 return B_NO_MEMORY; 276 277 status_t error = thread->Init(false); 278 if (error != B_OK) { 279 delete thread; 280 return error; 281 } 282 283 _thread = thread; 284 return B_OK; 285 } 286 287 288 /*static*/ Thread* 289 Thread::Get(thread_id id) 290 { 291 InterruptsReadSpinLocker threadHashLocker(sThreadHashLock); 292 Thread* thread = sThreadHash.Lookup(id); 293 if (thread != NULL) 294 thread->AcquireReference(); 295 return thread; 296 } 297 298 299 /*static*/ Thread* 300 Thread::GetAndLock(thread_id id) 301 { 302 // look it up and acquire a reference 303 InterruptsReadSpinLocker threadHashLocker(sThreadHashLock); 304 Thread* thread = sThreadHash.Lookup(id); 305 if (thread == NULL) 306 return NULL; 307 308 thread->AcquireReference(); 309 threadHashLocker.Unlock(); 310 311 // lock and check, if it is still in the hash table 312 thread->Lock(); 313 threadHashLocker.Lock(); 314 315 if (sThreadHash.Lookup(id) == thread) 316 return thread; 317 318 threadHashLocker.Unlock(); 319 320 // nope, the thread is no longer in the hash table 321 thread->UnlockAndReleaseReference(); 322 323 return NULL; 324 } 325 326 327 /*static*/ Thread* 328 Thread::GetDebug(thread_id id) 329 { 330 return sThreadHash.Lookup(id, false); 331 } 332 333 334 /*static*/ bool 335 Thread::IsAlive(thread_id id) 336 { 337 InterruptsReadSpinLocker threadHashLocker(sThreadHashLock); 338 return sThreadHash.Lookup(id) != NULL; 339 } 340 341 342 void* 343 Thread::operator new(size_t size) 344 { 345 return object_cache_alloc(sThreadCache, 0); 346 } 347 348 349 void* 350 Thread::operator new(size_t, void* pointer) 351 { 352 return pointer; 353 } 354 355 356 void 357 Thread::operator delete(void* pointer, size_t size) 358 { 359 object_cache_free(sThreadCache, pointer, 0); 360 } 361 362 363 status_t 364 Thread::Init(bool idleThread) 365 { 366 status_t error = scheduler_on_thread_create(this, idleThread); 367 if (error != B_OK) 368 return error; 369 370 char temp[64]; 371 snprintf(temp, sizeof(temp), "thread_%" B_PRId32 "_retcode_sem", id); 372 exit.sem = create_sem(0, temp); 373 if (exit.sem < 0) 374 return exit.sem; 375 376 snprintf(temp, sizeof(temp), "%s send", name); 377 msg.write_sem = create_sem(1, temp); 378 if (msg.write_sem < 0) 379 return msg.write_sem; 380 381 snprintf(temp, sizeof(temp), "%s receive", name); 382 msg.read_sem = create_sem(0, temp); 383 if (msg.read_sem < 0) 384 return msg.read_sem; 385 386 error = arch_thread_init_thread_struct(this); 387 if (error != B_OK) 388 return error; 389 390 return B_OK; 391 } 392 393 394 /*! Checks whether the thread is still in the thread hash table. 395 */ 396 bool 397 Thread::IsAlive() const 398 { 399 InterruptsReadSpinLocker threadHashLocker(sThreadHashLock); 400 401 return sThreadHash.Lookup(id) != NULL; 402 } 403 404 405 void 406 Thread::ResetSignalsOnExec() 407 { 408 // We are supposed keep the pending signals and the signal mask. Only the 409 // signal stack, if set, shall be unset. 410 411 sigsuspend_original_unblocked_mask = 0; 412 user_signal_context = NULL; 413 signal_stack_base = 0; 414 signal_stack_size = 0; 415 signal_stack_enabled = false; 416 } 417 418 419 /*! Adds the given user timer to the thread and, if user-defined, assigns it an 420 ID. 421 422 The caller must hold the thread's lock. 423 424 \param timer The timer to be added. If it doesn't have an ID yet, it is 425 considered user-defined and will be assigned an ID. 426 \return \c B_OK, if the timer was added successfully, another error code 427 otherwise. 428 */ 429 status_t 430 Thread::AddUserTimer(UserTimer* timer) 431 { 432 // If the timer is user-defined, check timer limit and increment 433 // user-defined count. 434 if (timer->ID() < 0 && !team->CheckAddUserDefinedTimer()) 435 return EAGAIN; 436 437 fUserTimers.AddTimer(timer); 438 439 return B_OK; 440 } 441 442 443 /*! Removes the given user timer from the thread. 444 445 The caller must hold the thread's lock. 446 447 \param timer The timer to be removed. 448 449 */ 450 void 451 Thread::RemoveUserTimer(UserTimer* timer) 452 { 453 fUserTimers.RemoveTimer(timer); 454 455 if (timer->ID() >= USER_TIMER_FIRST_USER_DEFINED_ID) 456 team->UserDefinedTimersRemoved(1); 457 } 458 459 460 /*! Deletes all (or all user-defined) user timers of the thread. 461 462 The caller must hold the thread's lock. 463 464 \param userDefinedOnly If \c true, only the user-defined timers are deleted, 465 otherwise all timers are deleted. 466 */ 467 void 468 Thread::DeleteUserTimers(bool userDefinedOnly) 469 { 470 int32 count = fUserTimers.DeleteTimers(userDefinedOnly); 471 if (count > 0) 472 team->UserDefinedTimersRemoved(count); 473 } 474 475 476 void 477 Thread::DeactivateCPUTimeUserTimers() 478 { 479 while (ThreadTimeUserTimer* timer = fCPUTimeUserTimers.Head()) 480 timer->Deactivate(); 481 } 482 483 484 // #pragma mark - ThreadListIterator 485 486 487 ThreadListIterator::ThreadListIterator() 488 { 489 // queue the entry 490 InterruptsWriteSpinLocker locker(sThreadHashLock); 491 sThreadHash.InsertIteratorEntry(&fEntry); 492 } 493 494 495 ThreadListIterator::~ThreadListIterator() 496 { 497 // remove the entry 498 InterruptsWriteSpinLocker locker(sThreadHashLock); 499 sThreadHash.RemoveIteratorEntry(&fEntry); 500 } 501 502 503 Thread* 504 ThreadListIterator::Next() 505 { 506 // get the next team -- if there is one, get reference for it 507 InterruptsWriteSpinLocker locker(sThreadHashLock); 508 Thread* thread = sThreadHash.NextElement(&fEntry); 509 if (thread != NULL) 510 thread->AcquireReference(); 511 512 return thread; 513 } 514 515 516 // #pragma mark - ThreadCreationAttributes 517 518 519 ThreadCreationAttributes::ThreadCreationAttributes(thread_func function, 520 const char* name, int32 priority, void* arg, team_id team, 521 Thread* thread) 522 { 523 this->entry = NULL; 524 this->name = name; 525 this->priority = priority; 526 this->args1 = NULL; 527 this->args2 = NULL; 528 this->stack_address = NULL; 529 this->stack_size = 0; 530 this->guard_size = 0; 531 this->pthread = NULL; 532 this->flags = 0; 533 this->team = team >= 0 ? team : team_get_kernel_team()->id; 534 this->thread = thread; 535 this->signal_mask = 0; 536 this->additional_stack_size = 0; 537 this->kernelEntry = function; 538 this->kernelArgument = arg; 539 this->forkArgs = NULL; 540 } 541 542 543 /*! Initializes the structure from a userland structure. 544 \param userAttributes The userland structure (must be a userland address). 545 \param nameBuffer A character array of at least size B_OS_NAME_LENGTH, 546 which will be used for the \c name field, if the userland structure has 547 a name. The buffer must remain valid as long as this structure is in 548 use afterwards (or until it is reinitialized). 549 \return \c B_OK, if the initialization went fine, another error code 550 otherwise. 551 */ 552 status_t 553 ThreadCreationAttributes::InitFromUserAttributes( 554 const thread_creation_attributes* userAttributes, char* nameBuffer) 555 { 556 if (userAttributes == NULL || !IS_USER_ADDRESS(userAttributes) 557 || user_memcpy((thread_creation_attributes*)this, userAttributes, 558 sizeof(thread_creation_attributes)) != B_OK) { 559 return B_BAD_ADDRESS; 560 } 561 562 if (stack_size != 0 563 && (stack_size < MIN_USER_STACK_SIZE 564 || stack_size > MAX_USER_STACK_SIZE)) { 565 return B_BAD_VALUE; 566 } 567 568 if (entry == NULL || !IS_USER_ADDRESS(entry) 569 || (stack_address != NULL && !IS_USER_ADDRESS(stack_address)) 570 || (name != NULL && (!IS_USER_ADDRESS(name) 571 || user_strlcpy(nameBuffer, name, B_OS_NAME_LENGTH) < 0))) { 572 return B_BAD_ADDRESS; 573 } 574 575 name = name != NULL ? nameBuffer : "user thread"; 576 577 // kernel only attributes (not in thread_creation_attributes): 578 Thread* currentThread = thread_get_current_thread(); 579 team = currentThread->team->id; 580 thread = NULL; 581 signal_mask = currentThread->sig_block_mask; 582 // inherit the current thread's signal mask 583 additional_stack_size = 0; 584 kernelEntry = NULL; 585 kernelArgument = NULL; 586 forkArgs = NULL; 587 588 return B_OK; 589 } 590 591 592 // #pragma mark - private functions 593 594 595 /*! Inserts a thread into a team. 596 The caller must hold the team's lock, the thread's lock, and the scheduler 597 lock. 598 */ 599 static void 600 insert_thread_into_team(Team *team, Thread *thread) 601 { 602 thread->team_next = team->thread_list; 603 team->thread_list = thread; 604 team->num_threads++; 605 606 if (team->num_threads == 1) { 607 // this was the first thread 608 team->main_thread = thread; 609 } 610 thread->team = team; 611 } 612 613 614 /*! Removes a thread from a team. 615 The caller must hold the team's lock, the thread's lock, and the scheduler 616 lock. 617 */ 618 static void 619 remove_thread_from_team(Team *team, Thread *thread) 620 { 621 Thread *temp, *last = NULL; 622 623 for (temp = team->thread_list; temp != NULL; temp = temp->team_next) { 624 if (temp == thread) { 625 if (last == NULL) 626 team->thread_list = temp->team_next; 627 else 628 last->team_next = temp->team_next; 629 630 team->num_threads--; 631 break; 632 } 633 last = temp; 634 } 635 } 636 637 638 static status_t 639 enter_userspace(Thread* thread, UserThreadEntryArguments* args) 640 { 641 status_t error = arch_thread_init_tls(thread); 642 if (error != B_OK) { 643 dprintf("Failed to init TLS for new userland thread \"%s\" (%" B_PRId32 644 ")\n", thread->name, thread->id); 645 free(args->forkArgs); 646 return error; 647 } 648 649 user_debug_update_new_thread_flags(thread); 650 651 // init the thread's user_thread 652 user_thread* userThread = thread->user_thread; 653 set_ac(); 654 userThread->pthread = args->pthread; 655 userThread->flags = 0; 656 userThread->wait_status = B_OK; 657 userThread->defer_signals 658 = (args->flags & THREAD_CREATION_FLAG_DEFER_SIGNALS) != 0 ? 1 : 0; 659 userThread->pending_signals = 0; 660 clear_ac(); 661 662 // initialize default TLS fields 663 addr_t tls[TLS_FIRST_FREE_SLOT]; 664 memset(tls, 0, sizeof(tls)); 665 tls[TLS_BASE_ADDRESS_SLOT] = thread->user_local_storage; 666 tls[TLS_THREAD_ID_SLOT] = thread->id; 667 tls[TLS_USER_THREAD_SLOT] = (addr_t)thread->user_thread; 668 669 if (args->forkArgs == NULL) { 670 if (user_memcpy((void*)thread->user_local_storage, tls, sizeof(tls)) != B_OK) 671 return B_BAD_ADDRESS; 672 } else { 673 // This is a fork()ed thread. 674 675 // Update select TLS values, do not clear the whole array. 676 set_ac(); 677 addr_t* userTls = (addr_t*)thread->user_local_storage; 678 ASSERT(userTls[TLS_BASE_ADDRESS_SLOT] == thread->user_local_storage); 679 userTls[TLS_THREAD_ID_SLOT] = tls[TLS_THREAD_ID_SLOT]; 680 userTls[TLS_USER_THREAD_SLOT] = tls[TLS_USER_THREAD_SLOT]; 681 clear_ac(); 682 683 // Copy the fork args onto the stack and free them. 684 arch_fork_arg archArgs = *args->forkArgs; 685 free(args->forkArgs); 686 687 arch_restore_fork_frame(&archArgs); 688 // this one won't return here 689 return B_ERROR; 690 } 691 692 // Jump to the entry point in user space. Only returns, if something fails. 693 return arch_thread_enter_userspace(thread, args->userlandEntry, 694 args->userlandArgument1, args->userlandArgument2); 695 } 696 697 698 status_t 699 thread_enter_userspace_new_team(Thread* thread, addr_t entryFunction, 700 void* argument1, void* argument2) 701 { 702 UserThreadEntryArguments entryArgs; 703 entryArgs.kernelFunction = NULL; 704 entryArgs.argument = NULL; 705 entryArgs.enterUserland = true; 706 entryArgs.userlandEntry = (addr_t)entryFunction; 707 entryArgs.userlandArgument1 = argument1; 708 entryArgs.userlandArgument2 = argument2; 709 entryArgs.pthread = NULL; 710 entryArgs.forkArgs = NULL; 711 entryArgs.flags = 0; 712 713 return enter_userspace(thread, &entryArgs); 714 } 715 716 717 static void 718 common_thread_entry(void* _args) 719 { 720 Thread* thread = thread_get_current_thread(); 721 722 // The thread is new and has been scheduled the first time. 723 724 scheduler_new_thread_entry(thread); 725 726 // unlock the scheduler lock and enable interrupts 727 release_spinlock(&thread->scheduler_lock); 728 enable_interrupts(); 729 730 // call the kernel function, if any 731 ThreadEntryArguments* args = (ThreadEntryArguments*)_args; 732 if (args->kernelFunction != NULL) 733 args->kernelFunction(args->argument); 734 735 // If requested, enter userland, now. 736 if (args->enterUserland) { 737 enter_userspace(thread, (UserThreadEntryArguments*)args); 738 // only returns or error 739 740 // If that's the team's main thread, init the team exit info. 741 if (thread == thread->team->main_thread) 742 team_init_exit_info_on_error(thread->team); 743 } 744 745 // we're done 746 thread_exit(); 747 } 748 749 750 /*! Prepares the given thread's kernel stack for executing its entry function. 751 752 The data pointed to by \a data of size \a dataSize are copied to the 753 thread's kernel stack. A pointer to the copy's data is passed to the entry 754 function. The entry function is common_thread_entry(). 755 756 \param thread The thread. 757 \param data Pointer to data to be copied to the thread's stack and passed 758 to the entry function. 759 \param dataSize The size of \a data. 760 */ 761 static void 762 init_thread_kernel_stack(Thread* thread, const void* data, size_t dataSize) 763 { 764 uint8* stack = (uint8*)thread->kernel_stack_base; 765 uint8* stackTop = (uint8*)thread->kernel_stack_top; 766 767 // clear (or rather invalidate) the kernel stack contents, if compiled with 768 // debugging 769 #if KDEBUG > 0 770 # if defined(DEBUG_KERNEL_STACKS) && defined(STACK_GROWS_DOWNWARDS) 771 memset((void*)(stack + KERNEL_STACK_GUARD_PAGES * B_PAGE_SIZE), 0xcc, 772 KERNEL_STACK_SIZE); 773 # else 774 memset(stack, 0xcc, KERNEL_STACK_SIZE); 775 # endif 776 #endif 777 778 // copy the data onto the stack, with 16-byte alignment to be on the safe 779 // side 780 void* clonedData; 781 #ifdef STACK_GROWS_DOWNWARDS 782 clonedData = (void*)ROUNDDOWN((addr_t)stackTop - dataSize, 16); 783 stackTop = (uint8*)clonedData; 784 #else 785 clonedData = (void*)ROUNDUP((addr_t)stack, 16); 786 stack = (uint8*)clonedData + ROUNDUP(dataSize, 16); 787 #endif 788 789 memcpy(clonedData, data, dataSize); 790 791 arch_thread_init_kthread_stack(thread, stack, stackTop, 792 &common_thread_entry, clonedData); 793 } 794 795 796 static status_t 797 create_thread_user_stack(Team* team, Thread* thread, void* _stackBase, 798 size_t stackSize, size_t additionalSize, size_t guardSize, 799 char* nameBuffer) 800 { 801 area_id stackArea = -1; 802 uint8* stackBase = (uint8*)_stackBase; 803 804 if (stackBase != NULL) { 805 // A stack has been specified. It must be large enough to hold the 806 // TLS space at least. Guard pages are ignored for existing stacks. 807 STATIC_ASSERT(TLS_SIZE < MIN_USER_STACK_SIZE); 808 if (stackSize < MIN_USER_STACK_SIZE) 809 return B_BAD_VALUE; 810 811 stackSize -= TLS_SIZE; 812 } else { 813 // No user-defined stack -- allocate one. For non-main threads the stack 814 // will be between USER_STACK_REGION and the main thread stack area. For 815 // a main thread the position is fixed. 816 817 guardSize = PAGE_ALIGN(guardSize); 818 819 if (stackSize == 0) { 820 // Use the default size (a different one for a main thread). 821 stackSize = thread->id == team->id 822 ? USER_MAIN_THREAD_STACK_SIZE : USER_STACK_SIZE; 823 } else { 824 // Verify that the given stack size is large enough. 825 if (stackSize < MIN_USER_STACK_SIZE) 826 return B_BAD_VALUE; 827 828 stackSize = PAGE_ALIGN(stackSize); 829 } 830 831 size_t areaSize = PAGE_ALIGN(guardSize + stackSize + TLS_SIZE 832 + additionalSize); 833 834 snprintf(nameBuffer, B_OS_NAME_LENGTH, "%s_%" B_PRId32 "_stack", 835 thread->name, thread->id); 836 837 stackBase = (uint8*)USER_STACK_REGION; 838 839 virtual_address_restrictions virtualRestrictions = {}; 840 virtualRestrictions.address_specification = B_RANDOMIZED_BASE_ADDRESS; 841 virtualRestrictions.address = (void*)stackBase; 842 843 physical_address_restrictions physicalRestrictions = {}; 844 845 stackArea = create_area_etc(team->id, nameBuffer, 846 areaSize, B_NO_LOCK, B_READ_AREA | B_WRITE_AREA | B_STACK_AREA, 847 0, guardSize, &virtualRestrictions, &physicalRestrictions, 848 (void**)&stackBase); 849 if (stackArea < 0) 850 return stackArea; 851 } 852 853 // set the stack 854 ThreadLocker threadLocker(thread); 855 #ifdef STACK_GROWS_DOWNWARDS 856 thread->user_stack_base = (addr_t)stackBase + guardSize; 857 #else 858 thread->user_stack_base = (addr_t)stackBase; 859 #endif 860 thread->user_stack_size = stackSize; 861 thread->user_stack_area = stackArea; 862 863 return B_OK; 864 } 865 866 867 status_t 868 thread_create_user_stack(Team* team, Thread* thread, void* stackBase, 869 size_t stackSize, size_t additionalSize) 870 { 871 char nameBuffer[B_OS_NAME_LENGTH]; 872 return create_thread_user_stack(team, thread, stackBase, stackSize, 873 additionalSize, USER_STACK_GUARD_SIZE, nameBuffer); 874 } 875 876 877 /*! Creates a new thread. 878 879 \param attributes The thread creation attributes, specifying the team in 880 which to create the thread, as well as a whole bunch of other arguments. 881 \param kernel \c true, if a kernel-only thread shall be created, \c false, 882 if the thread shall also be able to run in userland. 883 \return The ID of the newly created thread (>= 0) or an error code on 884 failure. 885 */ 886 thread_id 887 thread_create_thread(const ThreadCreationAttributes& attributes, bool kernel) 888 { 889 status_t status = B_OK; 890 891 TRACE(("thread_create_thread(%s, thread = %p, %s)\n", attributes.name, 892 attributes.thread, kernel ? "kernel" : "user")); 893 894 // get the team 895 Team* team = Team::Get(attributes.team); 896 if (team == NULL) 897 return B_BAD_TEAM_ID; 898 BReference<Team> teamReference(team, true); 899 900 // If a thread object is given, acquire a reference to it, otherwise create 901 // a new thread object with the given attributes. 902 Thread* thread = attributes.thread; 903 if (thread != NULL) { 904 thread->AcquireReference(); 905 } else { 906 status = Thread::Create(attributes.name, thread); 907 if (status != B_OK) 908 return status; 909 } 910 BReference<Thread> threadReference(thread, true); 911 912 thread->team = team; 913 // set already, so, if something goes wrong, the team pointer is 914 // available for deinitialization 915 thread->priority = attributes.priority == -1 916 ? B_NORMAL_PRIORITY : attributes.priority; 917 thread->priority = std::max(thread->priority, 918 (int32)THREAD_MIN_SET_PRIORITY); 919 thread->priority = std::min(thread->priority, 920 (int32)THREAD_MAX_SET_PRIORITY); 921 thread->state = B_THREAD_SUSPENDED; 922 923 thread->sig_block_mask = attributes.signal_mask; 924 925 // init debug structure 926 init_thread_debug_info(&thread->debug_info); 927 928 // create the kernel stack 929 char stackName[B_OS_NAME_LENGTH]; 930 snprintf(stackName, B_OS_NAME_LENGTH, "%s_%" B_PRId32 "_kstack", 931 thread->name, thread->id); 932 virtual_address_restrictions virtualRestrictions = {}; 933 virtualRestrictions.address_specification = B_ANY_KERNEL_ADDRESS; 934 physical_address_restrictions physicalRestrictions = {}; 935 936 thread->kernel_stack_area = create_area_etc(B_SYSTEM_TEAM, stackName, 937 KERNEL_STACK_SIZE + KERNEL_STACK_GUARD_PAGES * B_PAGE_SIZE, 938 B_FULL_LOCK, B_KERNEL_READ_AREA | B_KERNEL_WRITE_AREA 939 | B_KERNEL_STACK_AREA, 0, KERNEL_STACK_GUARD_PAGES * B_PAGE_SIZE, 940 &virtualRestrictions, &physicalRestrictions, 941 (void**)&thread->kernel_stack_base); 942 943 if (thread->kernel_stack_area < 0) { 944 // we're not yet part of a team, so we can just bail out 945 status = thread->kernel_stack_area; 946 947 dprintf("create_thread: error creating kernel stack: %s!\n", 948 strerror(status)); 949 950 return status; 951 } 952 953 thread->kernel_stack_top = thread->kernel_stack_base + KERNEL_STACK_SIZE 954 + KERNEL_STACK_GUARD_PAGES * B_PAGE_SIZE; 955 956 if (kernel) { 957 // Init the thread's kernel stack. It will start executing 958 // common_thread_entry() with the arguments we prepare here. 959 ThreadEntryArguments entryArgs; 960 entryArgs.kernelFunction = attributes.kernelEntry; 961 entryArgs.argument = attributes.kernelArgument; 962 entryArgs.enterUserland = false; 963 964 init_thread_kernel_stack(thread, &entryArgs, sizeof(entryArgs)); 965 } else { 966 // create the userland stack, if the thread doesn't have one yet 967 if (thread->user_stack_base == 0) { 968 status = create_thread_user_stack(team, thread, 969 attributes.stack_address, attributes.stack_size, 970 attributes.additional_stack_size, attributes.guard_size, 971 stackName); 972 if (status != B_OK) 973 return status; 974 } 975 976 // Init the thread's kernel stack. It will start executing 977 // common_thread_entry() with the arguments we prepare here. 978 UserThreadEntryArguments entryArgs; 979 entryArgs.kernelFunction = attributes.kernelEntry; 980 entryArgs.argument = attributes.kernelArgument; 981 entryArgs.enterUserland = true; 982 entryArgs.userlandEntry = (addr_t)attributes.entry; 983 entryArgs.userlandArgument1 = attributes.args1; 984 entryArgs.userlandArgument2 = attributes.args2; 985 entryArgs.pthread = attributes.pthread; 986 entryArgs.forkArgs = attributes.forkArgs; 987 entryArgs.flags = attributes.flags; 988 989 init_thread_kernel_stack(thread, &entryArgs, sizeof(entryArgs)); 990 991 // create the pre-defined thread timers 992 status = user_timer_create_thread_timers(team, thread); 993 if (status != B_OK) 994 return status; 995 } 996 997 // lock the team and see, if it is still alive 998 TeamLocker teamLocker(team); 999 if (team->state >= TEAM_STATE_SHUTDOWN) 1000 return B_BAD_TEAM_ID; 1001 1002 bool debugNewThread = false; 1003 if (!kernel) { 1004 // allocate the user_thread structure, if not already allocated 1005 if (thread->user_thread == NULL) { 1006 thread->user_thread = team_allocate_user_thread(team); 1007 if (thread->user_thread == NULL) 1008 return B_NO_MEMORY; 1009 } 1010 1011 // If the new thread belongs to the same team as the current thread, it 1012 // may inherit some of the thread debug flags. 1013 Thread* currentThread = thread_get_current_thread(); 1014 if (currentThread != NULL && currentThread->team == team) { 1015 // inherit all user flags... 1016 int32 debugFlags = atomic_get(¤tThread->debug_info.flags) 1017 & B_THREAD_DEBUG_USER_FLAG_MASK; 1018 1019 // ... save the syscall tracing flags, unless explicitely specified 1020 if (!(debugFlags & B_THREAD_DEBUG_SYSCALL_TRACE_CHILD_THREADS)) { 1021 debugFlags &= ~(B_THREAD_DEBUG_PRE_SYSCALL 1022 | B_THREAD_DEBUG_POST_SYSCALL); 1023 } 1024 1025 thread->debug_info.flags = debugFlags; 1026 1027 // stop the new thread, if desired 1028 debugNewThread = debugFlags & B_THREAD_DEBUG_STOP_CHILD_THREADS; 1029 } 1030 } 1031 1032 // We're going to make the thread live, now. The thread itself will take 1033 // over a reference to its Thread object. We'll acquire another reference 1034 // for our own use (and threadReference remains armed). 1035 1036 ThreadLocker threadLocker(thread); 1037 1038 InterruptsSpinLocker threadCreationLocker(gThreadCreationLock); 1039 WriteSpinLocker threadHashLocker(sThreadHashLock); 1040 1041 // check the thread limit 1042 if (sUsedThreads >= sMaxThreads) { 1043 // Clean up the user_thread structure. It's a bit unfortunate that the 1044 // Thread destructor cannot do that, so we have to do that explicitly. 1045 threadHashLocker.Unlock(); 1046 threadCreationLocker.Unlock(); 1047 1048 user_thread* userThread = thread->user_thread; 1049 thread->user_thread = NULL; 1050 1051 threadLocker.Unlock(); 1052 teamLocker.Unlock(); 1053 1054 if (userThread != NULL) 1055 team_free_user_thread(team, userThread); 1056 1057 return B_NO_MORE_THREADS; 1058 } 1059 1060 // make thread visible in global hash/list 1061 thread->visible = true; 1062 sUsedThreads++; 1063 1064 scheduler_on_thread_init(thread); 1065 1066 thread->AcquireReference(); 1067 1068 // Debug the new thread, if the parent thread required that (see above), 1069 // or the respective global team debug flag is set. But only, if a 1070 // debugger is installed for the team. 1071 if (!kernel) { 1072 int32 teamDebugFlags = atomic_get(&team->debug_info.flags); 1073 debugNewThread |= (teamDebugFlags & B_TEAM_DEBUG_STOP_NEW_THREADS) != 0; 1074 if (debugNewThread 1075 && (teamDebugFlags & B_TEAM_DEBUG_DEBUGGER_INSTALLED) != 0) { 1076 thread->debug_info.flags |= B_THREAD_DEBUG_STOP; 1077 } 1078 } 1079 1080 { 1081 SpinLocker signalLocker(team->signal_lock); 1082 SpinLocker timeLocker(team->time_lock); 1083 1084 // insert thread into team 1085 insert_thread_into_team(team, thread); 1086 } 1087 1088 threadHashLocker.Unlock(); 1089 threadCreationLocker.Unlock(); 1090 threadLocker.Unlock(); 1091 teamLocker.Unlock(); 1092 1093 // notify listeners 1094 sNotificationService.Notify(THREAD_ADDED, thread); 1095 1096 return thread->id; 1097 } 1098 1099 1100 static status_t 1101 undertaker(void* /*args*/) 1102 { 1103 while (true) { 1104 // wait for a thread to bury 1105 InterruptsSpinLocker locker(sUndertakerLock); 1106 1107 while (sUndertakerEntries.IsEmpty()) { 1108 ConditionVariableEntry conditionEntry; 1109 sUndertakerCondition.Add(&conditionEntry); 1110 locker.Unlock(); 1111 1112 conditionEntry.Wait(); 1113 1114 locker.Lock(); 1115 } 1116 1117 UndertakerEntry* _entry = sUndertakerEntries.RemoveHead(); 1118 locker.Unlock(); 1119 1120 UndertakerEntry entry = *_entry; 1121 // we need a copy, since the original entry is on the thread's stack 1122 1123 // we've got an entry 1124 Thread* thread = entry.thread; 1125 1126 // make sure the thread isn't running anymore 1127 InterruptsSpinLocker schedulerLocker(thread->scheduler_lock); 1128 ASSERT(thread->state == THREAD_STATE_FREE_ON_RESCHED); 1129 schedulerLocker.Unlock(); 1130 1131 // remove this thread from from the kernel team -- this makes it 1132 // unaccessible 1133 Team* kernelTeam = team_get_kernel_team(); 1134 TeamLocker kernelTeamLocker(kernelTeam); 1135 thread->Lock(); 1136 1137 InterruptsSpinLocker threadCreationLocker(gThreadCreationLock); 1138 SpinLocker signalLocker(kernelTeam->signal_lock); 1139 SpinLocker timeLocker(kernelTeam->time_lock); 1140 1141 remove_thread_from_team(kernelTeam, thread); 1142 1143 timeLocker.Unlock(); 1144 signalLocker.Unlock(); 1145 threadCreationLocker.Unlock(); 1146 1147 kernelTeamLocker.Unlock(); 1148 1149 // free the thread structure 1150 thread->UnlockAndReleaseReference(); 1151 } 1152 1153 // can never get here 1154 return B_OK; 1155 } 1156 1157 1158 /*! Returns the semaphore the thread is currently waiting on. 1159 1160 The return value is purely informative. 1161 The caller must hold the scheduler lock. 1162 1163 \param thread The thread. 1164 \return The ID of the semaphore the thread is currently waiting on or \c -1, 1165 if it isn't waiting on a semaphore. 1166 */ 1167 static sem_id 1168 get_thread_wait_sem(Thread* thread) 1169 { 1170 if (thread->state == B_THREAD_WAITING 1171 && thread->wait.type == THREAD_BLOCK_TYPE_SEMAPHORE) { 1172 return (sem_id)(addr_t)thread->wait.object; 1173 } 1174 return -1; 1175 } 1176 1177 1178 /*! Fills the thread_info structure with information from the specified thread. 1179 The caller must hold the thread's lock and the scheduler lock. 1180 */ 1181 static void 1182 fill_thread_info(Thread *thread, thread_info *info, size_t size) 1183 { 1184 info->thread = thread->id; 1185 info->team = thread->team->id; 1186 1187 strlcpy(info->name, thread->name, B_OS_NAME_LENGTH); 1188 1189 info->sem = -1; 1190 1191 if (thread->state == B_THREAD_WAITING) { 1192 info->state = B_THREAD_WAITING; 1193 1194 switch (thread->wait.type) { 1195 case THREAD_BLOCK_TYPE_SNOOZE: 1196 info->state = B_THREAD_ASLEEP; 1197 break; 1198 1199 case THREAD_BLOCK_TYPE_SEMAPHORE: 1200 { 1201 sem_id sem = (sem_id)(addr_t)thread->wait.object; 1202 if (sem == thread->msg.read_sem) 1203 info->state = B_THREAD_RECEIVING; 1204 else 1205 info->sem = sem; 1206 break; 1207 } 1208 1209 case THREAD_BLOCK_TYPE_CONDITION_VARIABLE: 1210 default: 1211 break; 1212 } 1213 } else 1214 info->state = (thread_state)thread->state; 1215 1216 info->priority = thread->priority; 1217 info->stack_base = (void *)thread->user_stack_base; 1218 info->stack_end = (void *)(thread->user_stack_base 1219 + thread->user_stack_size); 1220 1221 InterruptsSpinLocker threadTimeLocker(thread->time_lock); 1222 info->user_time = thread->user_time; 1223 info->kernel_time = thread->kernel_time; 1224 } 1225 1226 1227 static status_t 1228 send_data_etc(thread_id id, int32 code, const void *buffer, size_t bufferSize, 1229 int32 flags) 1230 { 1231 // get the thread 1232 Thread *target = Thread::Get(id); 1233 if (target == NULL) 1234 return B_BAD_THREAD_ID; 1235 BReference<Thread> targetReference(target, true); 1236 1237 // get the write semaphore 1238 ThreadLocker targetLocker(target); 1239 sem_id cachedSem = target->msg.write_sem; 1240 targetLocker.Unlock(); 1241 1242 if (bufferSize > THREAD_MAX_MESSAGE_SIZE) 1243 return B_NO_MEMORY; 1244 1245 status_t status = acquire_sem_etc(cachedSem, 1, flags, 0); 1246 if (status == B_INTERRUPTED) { 1247 // we got interrupted by a signal 1248 return status; 1249 } 1250 if (status != B_OK) { 1251 // Any other acquisition problems may be due to thread deletion 1252 return B_BAD_THREAD_ID; 1253 } 1254 1255 void* data; 1256 if (bufferSize > 0) { 1257 data = malloc(bufferSize); 1258 if (data == NULL) 1259 return B_NO_MEMORY; 1260 if (user_memcpy(data, buffer, bufferSize) != B_OK) { 1261 free(data); 1262 return B_BAD_DATA; 1263 } 1264 } else 1265 data = NULL; 1266 1267 targetLocker.Lock(); 1268 1269 // The target thread could have been deleted at this point. 1270 if (!target->IsAlive()) { 1271 targetLocker.Unlock(); 1272 free(data); 1273 return B_BAD_THREAD_ID; 1274 } 1275 1276 // Save message informations 1277 target->msg.sender = thread_get_current_thread()->id; 1278 target->msg.code = code; 1279 target->msg.size = bufferSize; 1280 target->msg.buffer = data; 1281 cachedSem = target->msg.read_sem; 1282 1283 targetLocker.Unlock(); 1284 1285 release_sem(cachedSem); 1286 return B_OK; 1287 } 1288 1289 1290 static int32 1291 receive_data_etc(thread_id *_sender, void *buffer, size_t bufferSize, 1292 int32 flags) 1293 { 1294 Thread *thread = thread_get_current_thread(); 1295 size_t size; 1296 int32 code; 1297 1298 status_t status = acquire_sem_etc(thread->msg.read_sem, 1, flags, 0); 1299 if (status != B_OK) { 1300 // Actually, we're not supposed to return error codes 1301 // but since the only reason this can fail is that we 1302 // were killed, it's probably okay to do so (but also 1303 // meaningless). 1304 return status; 1305 } 1306 1307 if (buffer != NULL && bufferSize != 0 && thread->msg.buffer != NULL) { 1308 size = min_c(bufferSize, thread->msg.size); 1309 status = user_memcpy(buffer, thread->msg.buffer, size); 1310 if (status != B_OK) { 1311 free(thread->msg.buffer); 1312 release_sem(thread->msg.write_sem); 1313 return status; 1314 } 1315 } 1316 1317 *_sender = thread->msg.sender; 1318 code = thread->msg.code; 1319 1320 free(thread->msg.buffer); 1321 release_sem(thread->msg.write_sem); 1322 1323 return code; 1324 } 1325 1326 1327 static status_t 1328 common_getrlimit(int resource, struct rlimit * rlp) 1329 { 1330 if (!rlp) 1331 return B_BAD_ADDRESS; 1332 1333 switch (resource) { 1334 case RLIMIT_AS: 1335 rlp->rlim_cur = __HAIKU_ADDR_MAX; 1336 rlp->rlim_max = __HAIKU_ADDR_MAX; 1337 return B_OK; 1338 1339 case RLIMIT_CORE: 1340 rlp->rlim_cur = 0; 1341 rlp->rlim_max = 0; 1342 return B_OK; 1343 1344 case RLIMIT_DATA: 1345 rlp->rlim_cur = RLIM_INFINITY; 1346 rlp->rlim_max = RLIM_INFINITY; 1347 return B_OK; 1348 1349 case RLIMIT_NOFILE: 1350 case RLIMIT_NOVMON: 1351 return vfs_getrlimit(resource, rlp); 1352 1353 case RLIMIT_STACK: 1354 { 1355 rlp->rlim_cur = USER_MAIN_THREAD_STACK_SIZE; 1356 rlp->rlim_max = USER_MAIN_THREAD_STACK_SIZE; 1357 return B_OK; 1358 } 1359 1360 default: 1361 return EINVAL; 1362 } 1363 1364 return B_OK; 1365 } 1366 1367 1368 static status_t 1369 common_setrlimit(int resource, const struct rlimit * rlp) 1370 { 1371 if (!rlp) 1372 return B_BAD_ADDRESS; 1373 1374 switch (resource) { 1375 case RLIMIT_CORE: 1376 // We don't support core file, so allow settings to 0/0 only. 1377 if (rlp->rlim_cur != 0 || rlp->rlim_max != 0) 1378 return EINVAL; 1379 return B_OK; 1380 1381 case RLIMIT_NOFILE: 1382 case RLIMIT_NOVMON: 1383 return vfs_setrlimit(resource, rlp); 1384 1385 default: 1386 return EINVAL; 1387 } 1388 1389 return B_OK; 1390 } 1391 1392 1393 static status_t 1394 common_snooze_etc(bigtime_t timeout, clockid_t clockID, uint32 flags, 1395 bigtime_t* _remainingTime) 1396 { 1397 #if KDEBUG 1398 if (!are_interrupts_enabled()) { 1399 panic("common_snooze_etc(): called with interrupts disabled, timeout " 1400 "%" B_PRIdBIGTIME, timeout); 1401 } 1402 #endif 1403 1404 switch (clockID) { 1405 case CLOCK_REALTIME: 1406 // make sure the B_TIMEOUT_REAL_TIME_BASE flag is set and fall 1407 // through 1408 flags |= B_TIMEOUT_REAL_TIME_BASE; 1409 case CLOCK_MONOTONIC: 1410 { 1411 // Store the start time, for the case that we get interrupted and 1412 // need to return the remaining time. For absolute timeouts we can 1413 // still get he time later, if needed. 1414 bigtime_t startTime 1415 = _remainingTime != NULL && (flags & B_RELATIVE_TIMEOUT) != 0 1416 ? system_time() : 0; 1417 1418 Thread* thread = thread_get_current_thread(); 1419 1420 thread_prepare_to_block(thread, flags, THREAD_BLOCK_TYPE_SNOOZE, 1421 NULL); 1422 status_t status = thread_block_with_timeout(flags, timeout); 1423 1424 if (status == B_TIMED_OUT || status == B_WOULD_BLOCK) 1425 return B_OK; 1426 1427 // If interrupted, compute the remaining time, if requested. 1428 if (status == B_INTERRUPTED && _remainingTime != NULL) { 1429 if ((flags & B_RELATIVE_TIMEOUT) != 0) { 1430 *_remainingTime = std::max( 1431 startTime + timeout - system_time(), (bigtime_t)0); 1432 } else { 1433 bigtime_t now = (flags & B_TIMEOUT_REAL_TIME_BASE) != 0 1434 ? real_time_clock_usecs() : system_time(); 1435 *_remainingTime = std::max(timeout - now, (bigtime_t)0); 1436 } 1437 } 1438 1439 return status; 1440 } 1441 1442 case CLOCK_THREAD_CPUTIME_ID: 1443 // Waiting for ourselves to do something isn't particularly 1444 // productive. 1445 return B_BAD_VALUE; 1446 1447 case CLOCK_PROCESS_CPUTIME_ID: 1448 default: 1449 // We don't have to support those, but we are allowed to. Could be 1450 // done be creating a UserTimer on the fly with a custom UserEvent 1451 // that would just wake us up. 1452 return ENOTSUP; 1453 } 1454 } 1455 1456 1457 // #pragma mark - debugger calls 1458 1459 1460 static int 1461 make_thread_unreal(int argc, char **argv) 1462 { 1463 int32 id = -1; 1464 1465 if (argc > 2) { 1466 print_debugger_command_usage(argv[0]); 1467 return 0; 1468 } 1469 1470 if (argc > 1) 1471 id = strtoul(argv[1], NULL, 0); 1472 1473 for (ThreadHashTable::Iterator it = sThreadHash.GetIterator(); 1474 Thread* thread = it.Next();) { 1475 if (id != -1 && thread->id != id) 1476 continue; 1477 1478 if (thread->priority > B_DISPLAY_PRIORITY) { 1479 scheduler_set_thread_priority(thread, B_NORMAL_PRIORITY); 1480 kprintf("thread %" B_PRId32 " made unreal\n", thread->id); 1481 } 1482 } 1483 1484 return 0; 1485 } 1486 1487 1488 static int 1489 set_thread_prio(int argc, char **argv) 1490 { 1491 int32 id; 1492 int32 prio; 1493 1494 if (argc > 3 || argc < 2) { 1495 print_debugger_command_usage(argv[0]); 1496 return 0; 1497 } 1498 1499 prio = strtoul(argv[1], NULL, 0); 1500 if (prio > THREAD_MAX_SET_PRIORITY) 1501 prio = THREAD_MAX_SET_PRIORITY; 1502 if (prio < THREAD_MIN_SET_PRIORITY) 1503 prio = THREAD_MIN_SET_PRIORITY; 1504 1505 if (argc > 2) 1506 id = strtoul(argv[2], NULL, 0); 1507 else 1508 id = thread_get_current_thread()->id; 1509 1510 bool found = false; 1511 for (ThreadHashTable::Iterator it = sThreadHash.GetIterator(); 1512 Thread* thread = it.Next();) { 1513 if (thread->id != id) 1514 continue; 1515 scheduler_set_thread_priority(thread, prio); 1516 kprintf("thread %" B_PRId32 " set to priority %" B_PRId32 "\n", id, prio); 1517 found = true; 1518 break; 1519 } 1520 if (!found) 1521 kprintf("thread %" B_PRId32 " (%#" B_PRIx32 ") not found\n", id, id); 1522 1523 return 0; 1524 } 1525 1526 1527 static int 1528 make_thread_suspended(int argc, char **argv) 1529 { 1530 int32 id; 1531 1532 if (argc > 2) { 1533 print_debugger_command_usage(argv[0]); 1534 return 0; 1535 } 1536 1537 if (argc == 1) 1538 id = thread_get_current_thread()->id; 1539 else 1540 id = strtoul(argv[1], NULL, 0); 1541 1542 bool found = false; 1543 for (ThreadHashTable::Iterator it = sThreadHash.GetIterator(); 1544 Thread* thread = it.Next();) { 1545 if (thread->id != id) 1546 continue; 1547 1548 Signal signal(SIGSTOP, SI_USER, B_OK, team_get_kernel_team()->id); 1549 send_signal_to_thread(thread, signal, B_DO_NOT_RESCHEDULE); 1550 1551 kprintf("thread %" B_PRId32 " suspended\n", id); 1552 found = true; 1553 break; 1554 } 1555 if (!found) 1556 kprintf("thread %" B_PRId32 " (%#" B_PRIx32 ") not found\n", id, id); 1557 1558 return 0; 1559 } 1560 1561 1562 static int 1563 make_thread_resumed(int argc, char **argv) 1564 { 1565 int32 id; 1566 1567 if (argc != 2) { 1568 print_debugger_command_usage(argv[0]); 1569 return 0; 1570 } 1571 1572 // force user to enter a thread id, as using 1573 // the current thread is usually not intended 1574 id = strtoul(argv[1], NULL, 0); 1575 1576 bool found = false; 1577 for (ThreadHashTable::Iterator it = sThreadHash.GetIterator(); 1578 Thread* thread = it.Next();) { 1579 if (thread->id != id) 1580 continue; 1581 1582 if (thread->state == B_THREAD_SUSPENDED || thread->state == B_THREAD_ASLEEP 1583 || thread->state == B_THREAD_WAITING) { 1584 scheduler_enqueue_in_run_queue(thread); 1585 kprintf("thread %" B_PRId32 " resumed\n", thread->id); 1586 } else 1587 kprintf("thread %" B_PRId32 " is already running\n", thread->id); 1588 found = true; 1589 break; 1590 } 1591 if (!found) 1592 kprintf("thread %" B_PRId32 " (%#" B_PRIx32 ") not found\n", id, id); 1593 1594 return 0; 1595 } 1596 1597 1598 static int 1599 drop_into_debugger(int argc, char **argv) 1600 { 1601 status_t err; 1602 int32 id; 1603 1604 if (argc > 2) { 1605 print_debugger_command_usage(argv[0]); 1606 return 0; 1607 } 1608 1609 if (argc == 1) 1610 id = thread_get_current_thread()->id; 1611 else 1612 id = strtoul(argv[1], NULL, 0); 1613 1614 err = _user_debug_thread(id); 1615 // TODO: This is a non-trivial syscall doing some locking, so this is 1616 // really nasty and may go seriously wrong. 1617 if (err) 1618 kprintf("drop failed\n"); 1619 else 1620 kprintf("thread %" B_PRId32 " dropped into user debugger\n", id); 1621 1622 return 0; 1623 } 1624 1625 1626 /*! Returns a user-readable string for a thread state. 1627 Only for use in the kernel debugger. 1628 */ 1629 static const char * 1630 state_to_text(Thread *thread, int32 state) 1631 { 1632 switch (state) { 1633 case B_THREAD_READY: 1634 return "ready"; 1635 1636 case B_THREAD_RUNNING: 1637 return "running"; 1638 1639 case B_THREAD_WAITING: 1640 { 1641 if (thread != NULL) { 1642 switch (thread->wait.type) { 1643 case THREAD_BLOCK_TYPE_SNOOZE: 1644 return "zzz"; 1645 1646 case THREAD_BLOCK_TYPE_SEMAPHORE: 1647 { 1648 sem_id sem = (sem_id)(addr_t)thread->wait.object; 1649 if (sem == thread->msg.read_sem) 1650 return "receive"; 1651 break; 1652 } 1653 } 1654 } 1655 1656 return "waiting"; 1657 } 1658 1659 case B_THREAD_SUSPENDED: 1660 return "suspended"; 1661 1662 case THREAD_STATE_FREE_ON_RESCHED: 1663 return "death"; 1664 1665 default: 1666 return "UNKNOWN"; 1667 } 1668 } 1669 1670 1671 static void 1672 print_thread_list_table_head() 1673 { 1674 kprintf("%-*s id state wait for %-*s cpu pri %-*s team " 1675 "name\n", 1676 B_PRINTF_POINTER_WIDTH, "thread", B_PRINTF_POINTER_WIDTH, "object", 1677 B_PRINTF_POINTER_WIDTH, "stack"); 1678 } 1679 1680 1681 static void 1682 _dump_thread_info(Thread *thread, bool shortInfo) 1683 { 1684 if (shortInfo) { 1685 kprintf("%p %6" B_PRId32 " %-10s", thread, thread->id, 1686 state_to_text(thread, thread->state)); 1687 1688 // does it block on a semaphore or a condition variable? 1689 if (thread->state == B_THREAD_WAITING) { 1690 switch (thread->wait.type) { 1691 case THREAD_BLOCK_TYPE_SEMAPHORE: 1692 { 1693 sem_id sem = (sem_id)(addr_t)thread->wait.object; 1694 if (sem == thread->msg.read_sem) 1695 kprintf("%*s", B_PRINTF_POINTER_WIDTH + 15, ""); 1696 else { 1697 kprintf("sem %-*" B_PRId32, 1698 B_PRINTF_POINTER_WIDTH + 5, sem); 1699 } 1700 break; 1701 } 1702 1703 case THREAD_BLOCK_TYPE_CONDITION_VARIABLE: 1704 { 1705 char name[5]; 1706 ssize_t length = debug_condition_variable_type_strlcpy( 1707 (ConditionVariable*)thread->wait.object, name, sizeof(name)); 1708 if (length > 0) 1709 kprintf("cvar:%*s %p ", 4, name, thread->wait.object); 1710 else 1711 kprintf("cvar %p ", thread->wait.object); 1712 break; 1713 } 1714 1715 case THREAD_BLOCK_TYPE_SNOOZE: 1716 kprintf("%*s", B_PRINTF_POINTER_WIDTH + 15, ""); 1717 break; 1718 1719 case THREAD_BLOCK_TYPE_SIGNAL: 1720 kprintf("signal%*s", B_PRINTF_POINTER_WIDTH + 9, ""); 1721 break; 1722 1723 case THREAD_BLOCK_TYPE_MUTEX: 1724 kprintf("mutex %p ", thread->wait.object); 1725 break; 1726 1727 case THREAD_BLOCK_TYPE_RW_LOCK: 1728 kprintf("rwlock %p ", thread->wait.object); 1729 break; 1730 1731 case THREAD_BLOCK_TYPE_USER: 1732 kprintf("user%*s", B_PRINTF_POINTER_WIDTH + 11, ""); 1733 break; 1734 1735 case THREAD_BLOCK_TYPE_OTHER: 1736 kprintf("other%*s", B_PRINTF_POINTER_WIDTH + 10, ""); 1737 break; 1738 1739 case THREAD_BLOCK_TYPE_OTHER_OBJECT: 1740 kprintf("other %p ", thread->wait.object); 1741 break; 1742 1743 default: 1744 kprintf("??? %p ", thread->wait.object); 1745 break; 1746 } 1747 } else 1748 kprintf("-%*s", B_PRINTF_POINTER_WIDTH + 14, ""); 1749 1750 // on which CPU does it run? 1751 if (thread->cpu) 1752 kprintf("%2d", thread->cpu->cpu_num); 1753 else 1754 kprintf(" -"); 1755 1756 kprintf("%4" B_PRId32 " %p%5" B_PRId32 " %s\n", thread->priority, 1757 (void *)thread->kernel_stack_base, thread->team->id, thread->name); 1758 1759 return; 1760 } 1761 1762 // print the long info 1763 1764 struct thread_death_entry *death = NULL; 1765 1766 kprintf("THREAD: %p\n", thread); 1767 kprintf("id: %" B_PRId32 " (%#" B_PRIx32 ")\n", thread->id, 1768 thread->id); 1769 kprintf("serial_number: %" B_PRId64 "\n", thread->serial_number); 1770 kprintf("name: \"%s\"\n", thread->name); 1771 kprintf("hash_next: %p\nteam_next: %p\n", 1772 thread->hash_next, thread->team_next); 1773 kprintf("priority: %" B_PRId32 " (I/O: %" B_PRId32 ")\n", 1774 thread->priority, thread->io_priority); 1775 kprintf("state: %s\n", state_to_text(thread, thread->state)); 1776 kprintf("cpu: %p ", thread->cpu); 1777 if (thread->cpu) 1778 kprintf("(%d)\n", thread->cpu->cpu_num); 1779 else 1780 kprintf("\n"); 1781 kprintf("sig_pending: %#" B_PRIx64 " (blocked: %#" B_PRIx64 1782 ", before sigsuspend(): %#" B_PRIx64 ")\n", 1783 (int64)thread->ThreadPendingSignals(), 1784 (int64)thread->sig_block_mask, 1785 (int64)thread->sigsuspend_original_unblocked_mask); 1786 kprintf("in_kernel: %d\n", thread->in_kernel); 1787 1788 if (thread->state == B_THREAD_WAITING) { 1789 kprintf("waiting for: "); 1790 1791 switch (thread->wait.type) { 1792 case THREAD_BLOCK_TYPE_SEMAPHORE: 1793 { 1794 sem_id sem = (sem_id)(addr_t)thread->wait.object; 1795 if (sem == thread->msg.read_sem) 1796 kprintf("data\n"); 1797 else 1798 kprintf("semaphore %" B_PRId32 "\n", sem); 1799 break; 1800 } 1801 1802 case THREAD_BLOCK_TYPE_CONDITION_VARIABLE: 1803 kprintf("condition variable %p\n", thread->wait.object); 1804 break; 1805 1806 case THREAD_BLOCK_TYPE_SNOOZE: 1807 kprintf("snooze()\n"); 1808 break; 1809 1810 case THREAD_BLOCK_TYPE_SIGNAL: 1811 kprintf("signal\n"); 1812 break; 1813 1814 case THREAD_BLOCK_TYPE_MUTEX: 1815 kprintf("mutex %p\n", thread->wait.object); 1816 break; 1817 1818 case THREAD_BLOCK_TYPE_RW_LOCK: 1819 kprintf("rwlock %p\n", thread->wait.object); 1820 break; 1821 1822 case THREAD_BLOCK_TYPE_USER: 1823 kprintf("user\n"); 1824 break; 1825 1826 case THREAD_BLOCK_TYPE_OTHER: 1827 kprintf("other (%s)\n", (char*)thread->wait.object); 1828 break; 1829 1830 case THREAD_BLOCK_TYPE_OTHER_OBJECT: 1831 kprintf("other (%p)\n", thread->wait.object); 1832 break; 1833 1834 default: 1835 kprintf("unknown (%p)\n", thread->wait.object); 1836 break; 1837 } 1838 } 1839 1840 kprintf("fault_handler: %p\n", (void *)thread->fault_handler); 1841 kprintf("team: %p, \"%s\"\n", thread->team, 1842 thread->team->Name()); 1843 kprintf(" exit.sem: %" B_PRId32 "\n", thread->exit.sem); 1844 kprintf(" exit.status: %#" B_PRIx32 " (%s)\n", thread->exit.status, 1845 strerror(thread->exit.status)); 1846 kprintf(" exit.waiters:\n"); 1847 while ((death = (struct thread_death_entry*)list_get_next_item( 1848 &thread->exit.waiters, death)) != NULL) { 1849 kprintf("\t%p (thread %" B_PRId32 ")\n", death, death->thread); 1850 } 1851 1852 kprintf("kernel_stack_area: %" B_PRId32 "\n", thread->kernel_stack_area); 1853 kprintf("kernel_stack_base: %p\n", (void *)thread->kernel_stack_base); 1854 kprintf("user_stack_area: %" B_PRId32 "\n", thread->user_stack_area); 1855 kprintf("user_stack_base: %p\n", (void *)thread->user_stack_base); 1856 kprintf("user_local_storage: %p\n", (void *)thread->user_local_storage); 1857 kprintf("user_thread: %p\n", (void *)thread->user_thread); 1858 kprintf("kernel_errno: %#x (%s)\n", thread->kernel_errno, 1859 strerror(thread->kernel_errno)); 1860 kprintf("kernel_time: %" B_PRId64 "\n", thread->kernel_time); 1861 kprintf("user_time: %" B_PRId64 "\n", thread->user_time); 1862 kprintf("flags: 0x%" B_PRIx32 "\n", thread->flags); 1863 kprintf("architecture dependant section:\n"); 1864 arch_thread_dump_info(&thread->arch_info); 1865 kprintf("scheduler data:\n"); 1866 scheduler_dump_thread_data(thread); 1867 } 1868 1869 1870 static int 1871 dump_thread_info(int argc, char **argv) 1872 { 1873 bool shortInfo = false; 1874 int argi = 1; 1875 if (argi < argc && strcmp(argv[argi], "-s") == 0) { 1876 shortInfo = true; 1877 print_thread_list_table_head(); 1878 argi++; 1879 } 1880 1881 if (argi == argc) { 1882 _dump_thread_info(thread_get_current_thread(), shortInfo); 1883 return 0; 1884 } 1885 1886 for (; argi < argc; argi++) { 1887 const char *name = argv[argi]; 1888 ulong arg = strtoul(name, NULL, 0); 1889 1890 if (IS_KERNEL_ADDRESS(arg)) { 1891 // semi-hack 1892 _dump_thread_info((Thread *)arg, shortInfo); 1893 continue; 1894 } 1895 1896 // walk through the thread list, trying to match name or id 1897 bool found = false; 1898 for (ThreadHashTable::Iterator it = sThreadHash.GetIterator(); 1899 Thread* thread = it.Next();) { 1900 if (!strcmp(name, thread->name) || thread->id == (thread_id)arg) { 1901 _dump_thread_info(thread, shortInfo); 1902 found = true; 1903 break; 1904 } 1905 } 1906 1907 if (!found) 1908 kprintf("thread \"%s\" (%" B_PRId32 ") doesn't exist!\n", name, (thread_id)arg); 1909 } 1910 1911 return 0; 1912 } 1913 1914 1915 static int 1916 dump_thread_list(int argc, char **argv) 1917 { 1918 bool realTimeOnly = false; 1919 bool calling = false; 1920 const char *callSymbol = NULL; 1921 addr_t callStart = 0; 1922 addr_t callEnd = 0; 1923 int32 requiredState = 0; 1924 team_id team = -1; 1925 sem_id sem = -1; 1926 1927 if (!strcmp(argv[0], "realtime")) 1928 realTimeOnly = true; 1929 else if (!strcmp(argv[0], "ready")) 1930 requiredState = B_THREAD_READY; 1931 else if (!strcmp(argv[0], "running")) 1932 requiredState = B_THREAD_RUNNING; 1933 else if (!strcmp(argv[0], "waiting")) { 1934 requiredState = B_THREAD_WAITING; 1935 1936 if (argc > 1) { 1937 sem = strtoul(argv[1], NULL, 0); 1938 if (sem == 0) 1939 kprintf("ignoring invalid semaphore argument.\n"); 1940 } 1941 } else if (!strcmp(argv[0], "calling")) { 1942 if (argc < 2) { 1943 kprintf("Need to give a symbol name or start and end arguments.\n"); 1944 return 0; 1945 } else if (argc == 3) { 1946 callStart = parse_expression(argv[1]); 1947 callEnd = parse_expression(argv[2]); 1948 } else 1949 callSymbol = argv[1]; 1950 1951 calling = true; 1952 } else if (argc > 1) { 1953 team = strtoul(argv[1], NULL, 0); 1954 if (team == 0) 1955 kprintf("ignoring invalid team argument.\n"); 1956 } 1957 1958 print_thread_list_table_head(); 1959 1960 for (ThreadHashTable::Iterator it = sThreadHash.GetIterator(); 1961 Thread* thread = it.Next();) { 1962 // filter out threads not matching the search criteria 1963 if ((requiredState && thread->state != requiredState) 1964 || (calling && !arch_debug_contains_call(thread, callSymbol, 1965 callStart, callEnd)) 1966 || (sem > 0 && get_thread_wait_sem(thread) != sem) 1967 || (team > 0 && thread->team->id != team) 1968 || (realTimeOnly && thread->priority < B_REAL_TIME_DISPLAY_PRIORITY)) 1969 continue; 1970 1971 _dump_thread_info(thread, true); 1972 } 1973 return 0; 1974 } 1975 1976 1977 static void 1978 update_thread_sigmask_on_exit(Thread* thread) 1979 { 1980 if ((thread->flags & THREAD_FLAGS_OLD_SIGMASK) != 0) { 1981 thread->flags &= ~THREAD_FLAGS_OLD_SIGMASK; 1982 sigprocmask(SIG_SETMASK, &thread->old_sig_block_mask, NULL); 1983 } 1984 } 1985 1986 1987 // #pragma mark - private kernel API 1988 1989 1990 void 1991 thread_exit(void) 1992 { 1993 cpu_status state; 1994 Thread* thread = thread_get_current_thread(); 1995 Team* team = thread->team; 1996 Team* kernelTeam = team_get_kernel_team(); 1997 status_t status; 1998 struct thread_debug_info debugInfo; 1999 team_id teamID = team->id; 2000 2001 TRACE(("thread %" B_PRId32 " exiting w/return code %#" B_PRIx32 "\n", 2002 thread->id, thread->exit.status)); 2003 2004 if (!are_interrupts_enabled()) 2005 panic("thread_exit() called with interrupts disabled!\n"); 2006 2007 // boost our priority to get this over with 2008 scheduler_set_thread_priority(thread, B_URGENT_DISPLAY_PRIORITY); 2009 2010 if (team != kernelTeam) { 2011 // Delete all user timers associated with the thread. 2012 ThreadLocker threadLocker(thread); 2013 thread->DeleteUserTimers(false); 2014 2015 // detach the thread's user thread 2016 user_thread* userThread = thread->user_thread; 2017 thread->user_thread = NULL; 2018 2019 threadLocker.Unlock(); 2020 2021 // Delete the thread's user thread, if it's not the main thread. If it 2022 // is, we can save the work, since it will be deleted with the team's 2023 // address space. 2024 if (thread != team->main_thread) 2025 team_free_user_thread(team, userThread); 2026 } 2027 2028 // remember the user stack area -- we will delete it below 2029 area_id userStackArea = -1; 2030 if (team->address_space != NULL && thread->user_stack_area >= 0) { 2031 userStackArea = thread->user_stack_area; 2032 thread->user_stack_area = -1; 2033 } 2034 2035 struct job_control_entry *death = NULL; 2036 struct thread_death_entry* threadDeathEntry = NULL; 2037 bool deleteTeam = false; 2038 port_id debuggerPort = -1; 2039 2040 if (team != kernelTeam) { 2041 user_debug_thread_exiting(thread); 2042 2043 if (team->main_thread == thread) { 2044 // The main thread is exiting. Shut down the whole team. 2045 deleteTeam = true; 2046 2047 // kill off all other threads and the user debugger facilities 2048 debuggerPort = team_shutdown_team(team); 2049 2050 // acquire necessary locks, which are: process group lock, kernel 2051 // team lock, parent team lock, and the team lock 2052 team->LockProcessGroup(); 2053 kernelTeam->Lock(); 2054 team->LockTeamAndParent(true); 2055 } else { 2056 threadDeathEntry 2057 = (thread_death_entry*)malloc(sizeof(thread_death_entry)); 2058 2059 // acquire necessary locks, which are: kernel team lock and the team 2060 // lock 2061 kernelTeam->Lock(); 2062 team->Lock(); 2063 } 2064 2065 ThreadLocker threadLocker(thread); 2066 2067 state = disable_interrupts(); 2068 2069 // swap address spaces, to make sure we're running on the kernel's pgdir 2070 vm_swap_address_space(team->address_space, VMAddressSpace::Kernel()); 2071 2072 WriteSpinLocker teamLocker(thread->team_lock); 2073 SpinLocker threadCreationLocker(gThreadCreationLock); 2074 // removing the thread and putting its death entry to the parent 2075 // team needs to be an atomic operation 2076 2077 // remember how long this thread lasted 2078 bigtime_t now = system_time(); 2079 2080 InterruptsSpinLocker signalLocker(kernelTeam->signal_lock); 2081 SpinLocker teamTimeLocker(kernelTeam->time_lock); 2082 SpinLocker threadTimeLocker(thread->time_lock); 2083 2084 thread->kernel_time += now - thread->last_time; 2085 thread->last_time = now; 2086 2087 team->dead_threads_kernel_time += thread->kernel_time; 2088 team->dead_threads_user_time += thread->user_time; 2089 2090 // stop/update thread/team CPU time user timers 2091 if (thread->HasActiveCPUTimeUserTimers() 2092 || team->HasActiveCPUTimeUserTimers()) { 2093 user_timer_stop_cpu_timers(thread, NULL); 2094 } 2095 2096 // deactivate CPU time user timers for the thread 2097 if (thread->HasActiveCPUTimeUserTimers()) 2098 thread->DeactivateCPUTimeUserTimers(); 2099 2100 threadTimeLocker.Unlock(); 2101 2102 // put the thread into the kernel team until it dies 2103 remove_thread_from_team(team, thread); 2104 insert_thread_into_team(kernelTeam, thread); 2105 2106 teamTimeLocker.Unlock(); 2107 signalLocker.Unlock(); 2108 2109 teamLocker.Unlock(); 2110 2111 if (team->death_entry != NULL) { 2112 if (--team->death_entry->remaining_threads == 0) 2113 team->death_entry->condition.NotifyOne(); 2114 } 2115 2116 if (deleteTeam) { 2117 Team* parent = team->parent; 2118 2119 // Set the team job control state to "dead" and detach the job 2120 // control entry from our team struct. 2121 team_set_job_control_state(team, JOB_CONTROL_STATE_DEAD, NULL); 2122 death = team->job_control_entry; 2123 team->job_control_entry = NULL; 2124 2125 if (death != NULL) { 2126 death->InitDeadState(); 2127 2128 // team_set_job_control_state() already moved our entry 2129 // into the parent's list. We just check the soft limit of 2130 // death entries. 2131 if (parent->dead_children.count > MAX_DEAD_CHILDREN) { 2132 death = parent->dead_children.entries.RemoveHead(); 2133 parent->dead_children.count--; 2134 } else 2135 death = NULL; 2136 } 2137 2138 threadCreationLocker.Unlock(); 2139 restore_interrupts(state); 2140 2141 threadLocker.Unlock(); 2142 2143 // Get a temporary reference to the team's process group 2144 // -- team_remove_team() removes the team from the group, which 2145 // might destroy it otherwise and we wouldn't be able to unlock it. 2146 ProcessGroup* group = team->group; 2147 group->AcquireReference(); 2148 2149 pid_t foregroundGroupToSignal; 2150 team_remove_team(team, foregroundGroupToSignal); 2151 2152 // unlock everything but the parent team 2153 team->Unlock(); 2154 if (parent != kernelTeam) 2155 kernelTeam->Unlock(); 2156 group->Unlock(); 2157 group->ReleaseReference(); 2158 2159 // Send SIGCHLD to the parent as long as we still have its lock. 2160 // This makes job control state change + signalling atomic. 2161 Signal childSignal(SIGCHLD, team->exit.reason, B_OK, team->id); 2162 if (team->exit.reason == CLD_EXITED) { 2163 childSignal.SetStatus(team->exit.status); 2164 } else { 2165 childSignal.SetStatus(team->exit.signal); 2166 childSignal.SetSendingUser(team->exit.signaling_user); 2167 } 2168 send_signal_to_team(parent, childSignal, B_DO_NOT_RESCHEDULE); 2169 2170 // also unlock the parent 2171 parent->Unlock(); 2172 2173 // If the team was a session leader with controlling TTY, we have 2174 // to send SIGHUP to the foreground process group. 2175 if (foregroundGroupToSignal >= 0) { 2176 Signal groupSignal(SIGHUP, SI_USER, B_OK, team->id); 2177 send_signal_to_process_group(foregroundGroupToSignal, 2178 groupSignal, B_DO_NOT_RESCHEDULE); 2179 } 2180 } else { 2181 // The thread is not the main thread. We store a thread death entry 2182 // for it, unless someone is already waiting for it. 2183 if (threadDeathEntry != NULL 2184 && list_is_empty(&thread->exit.waiters)) { 2185 threadDeathEntry->thread = thread->id; 2186 threadDeathEntry->status = thread->exit.status; 2187 2188 // add entry to dead thread list 2189 list_add_item(&team->dead_threads, threadDeathEntry); 2190 } 2191 2192 threadCreationLocker.Unlock(); 2193 restore_interrupts(state); 2194 2195 threadLocker.Unlock(); 2196 team->Unlock(); 2197 kernelTeam->Unlock(); 2198 } 2199 2200 TRACE(("thread_exit: thread %" B_PRId32 " now a kernel thread!\n", 2201 thread->id)); 2202 } 2203 2204 // delete the team if we're its main thread 2205 if (deleteTeam) { 2206 team_delete_team(team, debuggerPort); 2207 2208 // we need to delete any death entry that made it to here 2209 delete death; 2210 } 2211 2212 ThreadLocker threadLocker(thread); 2213 2214 state = disable_interrupts(); 2215 SpinLocker threadCreationLocker(gThreadCreationLock); 2216 2217 // mark invisible in global hash/list, so it's no longer accessible 2218 WriteSpinLocker threadHashLocker(sThreadHashLock); 2219 thread->visible = false; 2220 sUsedThreads--; 2221 threadHashLocker.Unlock(); 2222 2223 // Stop debugging for this thread 2224 SpinLocker threadDebugInfoLocker(thread->debug_info.lock); 2225 debugInfo = thread->debug_info; 2226 clear_thread_debug_info(&thread->debug_info, true); 2227 threadDebugInfoLocker.Unlock(); 2228 2229 // Remove the select infos. We notify them a little later. 2230 select_info* selectInfos = thread->select_infos; 2231 thread->select_infos = NULL; 2232 2233 threadCreationLocker.Unlock(); 2234 restore_interrupts(state); 2235 2236 threadLocker.Unlock(); 2237 2238 destroy_thread_debug_info(&debugInfo); 2239 2240 // notify select infos 2241 select_info* info = selectInfos; 2242 while (info != NULL) { 2243 select_sync* sync = info->sync; 2244 2245 notify_select_events(info, B_EVENT_INVALID); 2246 info = info->next; 2247 put_select_sync(sync); 2248 } 2249 2250 // notify listeners 2251 sNotificationService.Notify(THREAD_REMOVED, thread); 2252 2253 // shutdown the thread messaging 2254 2255 status = acquire_sem_etc(thread->msg.write_sem, 1, B_RELATIVE_TIMEOUT, 0); 2256 if (status == B_WOULD_BLOCK) { 2257 // there is data waiting for us, so let us eat it 2258 thread_id sender; 2259 2260 delete_sem(thread->msg.write_sem); 2261 // first, let's remove all possibly waiting writers 2262 receive_data_etc(&sender, NULL, 0, B_RELATIVE_TIMEOUT); 2263 } else { 2264 // we probably own the semaphore here, and we're the last to do so 2265 delete_sem(thread->msg.write_sem); 2266 } 2267 // now we can safely remove the msg.read_sem 2268 delete_sem(thread->msg.read_sem); 2269 2270 // fill all death entries and delete the sem that others will use to wait 2271 // for us 2272 { 2273 sem_id cachedExitSem = thread->exit.sem; 2274 2275 ThreadLocker threadLocker(thread); 2276 2277 // make sure no one will grab this semaphore again 2278 thread->exit.sem = -1; 2279 2280 // fill all death entries 2281 thread_death_entry* entry = NULL; 2282 while ((entry = (thread_death_entry*)list_get_next_item( 2283 &thread->exit.waiters, entry)) != NULL) { 2284 entry->status = thread->exit.status; 2285 } 2286 2287 threadLocker.Unlock(); 2288 2289 delete_sem(cachedExitSem); 2290 } 2291 2292 // delete the user stack, if this was a user thread 2293 if (!deleteTeam && userStackArea >= 0) { 2294 // We postponed deleting the user stack until now, since this way all 2295 // notifications for the thread's death are out already and all other 2296 // threads waiting for this thread's death and some object on its stack 2297 // will wake up before we (try to) delete the stack area. Of most 2298 // relevance is probably the case where this is the main thread and 2299 // other threads use objects on its stack -- so we want them terminated 2300 // first. 2301 // When the team is deleted, all areas are deleted anyway, so we don't 2302 // need to do that explicitly in that case. 2303 vm_delete_area(teamID, userStackArea, true); 2304 } 2305 2306 // notify the debugger 2307 if (teamID != kernelTeam->id) 2308 user_debug_thread_deleted(teamID, thread->id); 2309 2310 // enqueue in the undertaker list and reschedule for the last time 2311 UndertakerEntry undertakerEntry(thread, teamID); 2312 2313 disable_interrupts(); 2314 2315 SpinLocker schedulerLocker(thread->scheduler_lock); 2316 2317 SpinLocker undertakerLocker(sUndertakerLock); 2318 sUndertakerEntries.Add(&undertakerEntry); 2319 sUndertakerCondition.NotifyOne(); 2320 undertakerLocker.Unlock(); 2321 2322 scheduler_reschedule(THREAD_STATE_FREE_ON_RESCHED); 2323 2324 panic("never can get here\n"); 2325 } 2326 2327 2328 /*! Called in the interrupt handler code when a thread enters 2329 the kernel for any reason. 2330 Only tracks time for now. 2331 Interrupts are disabled. 2332 */ 2333 void 2334 thread_at_kernel_entry(bigtime_t now) 2335 { 2336 Thread *thread = thread_get_current_thread(); 2337 2338 TRACE(("thread_at_kernel_entry: entry thread %" B_PRId32 "\n", thread->id)); 2339 2340 // track user time 2341 SpinLocker threadTimeLocker(thread->time_lock); 2342 thread->user_time += now - thread->last_time; 2343 thread->last_time = now; 2344 thread->in_kernel = true; 2345 threadTimeLocker.Unlock(); 2346 } 2347 2348 2349 /*! Called whenever a thread exits kernel space to user space. 2350 Tracks time, handles signals, ... 2351 Interrupts must be enabled. When the function returns, interrupts will be 2352 disabled. 2353 The function may not return. This e.g. happens when the thread has received 2354 a deadly signal. 2355 */ 2356 void 2357 thread_at_kernel_exit(void) 2358 { 2359 Thread *thread = thread_get_current_thread(); 2360 2361 TRACE(("thread_at_kernel_exit: exit thread %" B_PRId32 "\n", thread->id)); 2362 2363 handle_signals(thread); 2364 2365 disable_interrupts(); 2366 2367 update_thread_sigmask_on_exit(thread); 2368 2369 // track kernel time 2370 bigtime_t now = system_time(); 2371 SpinLocker threadTimeLocker(thread->time_lock); 2372 thread->in_kernel = false; 2373 thread->kernel_time += now - thread->last_time; 2374 thread->last_time = now; 2375 } 2376 2377 2378 /*! The quick version of thread_kernel_exit(), in case no signals are pending 2379 and no debugging shall be done. 2380 Interrupts must be disabled. 2381 */ 2382 void 2383 thread_at_kernel_exit_no_signals(void) 2384 { 2385 Thread *thread = thread_get_current_thread(); 2386 2387 TRACE(("thread_at_kernel_exit_no_signals: exit thread %" B_PRId32 "\n", 2388 thread->id)); 2389 2390 update_thread_sigmask_on_exit(thread); 2391 2392 // track kernel time 2393 bigtime_t now = system_time(); 2394 SpinLocker threadTimeLocker(thread->time_lock); 2395 thread->in_kernel = false; 2396 thread->kernel_time += now - thread->last_time; 2397 thread->last_time = now; 2398 } 2399 2400 2401 void 2402 thread_reset_for_exec(void) 2403 { 2404 Thread* thread = thread_get_current_thread(); 2405 2406 ThreadLocker threadLocker(thread); 2407 2408 // delete user-defined timers 2409 thread->DeleteUserTimers(true); 2410 2411 // cancel pre-defined timer 2412 if (UserTimer* timer = thread->UserTimerFor(USER_TIMER_REAL_TIME_ID)) 2413 timer->Cancel(); 2414 2415 // reset user_thread and user stack 2416 thread->user_thread = NULL; 2417 thread->user_stack_area = -1; 2418 thread->user_stack_base = 0; 2419 thread->user_stack_size = 0; 2420 2421 // reset signals 2422 thread->ResetSignalsOnExec(); 2423 2424 // reset thread CPU time clock 2425 InterruptsSpinLocker timeLocker(thread->time_lock); 2426 thread->cpu_clock_offset = -thread->CPUTime(false); 2427 } 2428 2429 2430 thread_id 2431 allocate_thread_id() 2432 { 2433 InterruptsWriteSpinLocker threadHashLocker(sThreadHashLock); 2434 2435 // find the next unused ID 2436 thread_id id; 2437 do { 2438 id = sNextThreadID++; 2439 2440 // deal with integer overflow 2441 if (sNextThreadID < 0) 2442 sNextThreadID = 2; 2443 2444 // check whether the ID is already in use 2445 } while (sThreadHash.Lookup(id, false) != NULL); 2446 2447 return id; 2448 } 2449 2450 2451 thread_id 2452 peek_next_thread_id() 2453 { 2454 InterruptsReadSpinLocker threadHashLocker(sThreadHashLock); 2455 return sNextThreadID; 2456 } 2457 2458 2459 /*! Yield the CPU to other threads. 2460 Thread will continue to run, if there's no other thread in ready 2461 state, and if it has a higher priority than the other ready threads, it 2462 still has a good chance to continue. 2463 */ 2464 void 2465 thread_yield(void) 2466 { 2467 Thread *thread = thread_get_current_thread(); 2468 if (thread == NULL) 2469 return; 2470 2471 InterruptsSpinLocker _(thread->scheduler_lock); 2472 2473 thread->has_yielded = true; 2474 scheduler_reschedule(B_THREAD_READY); 2475 } 2476 2477 2478 void 2479 thread_map(void (*function)(Thread* thread, void* data), void* data) 2480 { 2481 InterruptsWriteSpinLocker threadHashLocker(sThreadHashLock); 2482 2483 for (ThreadHashTable::Iterator it = sThreadHash.GetIterator(); 2484 Thread* thread = it.Next();) { 2485 function(thread, data); 2486 } 2487 } 2488 2489 2490 /*! Kernel private thread creation function. 2491 */ 2492 thread_id 2493 spawn_kernel_thread_etc(thread_func function, const char *name, int32 priority, 2494 void *arg, team_id team) 2495 { 2496 return thread_create_thread( 2497 ThreadCreationAttributes(function, name, priority, arg, team), 2498 true); 2499 } 2500 2501 2502 status_t 2503 wait_for_thread_etc(thread_id id, uint32 flags, bigtime_t timeout, 2504 status_t *_returnCode) 2505 { 2506 if (id < 0) 2507 return B_BAD_THREAD_ID; 2508 if (id == thread_get_current_thread_id()) 2509 return EDEADLK; 2510 2511 // get the thread, queue our death entry, and fetch the semaphore we have to 2512 // wait on 2513 sem_id exitSem = B_BAD_THREAD_ID; 2514 struct thread_death_entry death; 2515 2516 Thread* thread = Thread::GetAndLock(id); 2517 if (thread != NULL) { 2518 // remember the semaphore we have to wait on and place our death entry 2519 exitSem = thread->exit.sem; 2520 if (exitSem >= 0) 2521 list_add_link_to_head(&thread->exit.waiters, &death); 2522 2523 thread->UnlockAndReleaseReference(); 2524 2525 if (exitSem < 0) 2526 return B_BAD_THREAD_ID; 2527 } else { 2528 // we couldn't find this thread -- maybe it's already gone, and we'll 2529 // find its death entry in our team 2530 Team* team = thread_get_current_thread()->team; 2531 TeamLocker teamLocker(team); 2532 2533 // check the child death entries first (i.e. main threads of child 2534 // teams) 2535 bool deleteEntry; 2536 job_control_entry* freeDeath 2537 = team_get_death_entry(team, id, &deleteEntry); 2538 if (freeDeath != NULL) { 2539 death.status = freeDeath->status; 2540 if (deleteEntry) 2541 delete freeDeath; 2542 } else { 2543 // check the thread death entries of the team (non-main threads) 2544 thread_death_entry* threadDeathEntry = NULL; 2545 while ((threadDeathEntry = (thread_death_entry*)list_get_next_item( 2546 &team->dead_threads, threadDeathEntry)) != NULL) { 2547 if (threadDeathEntry->thread == id) { 2548 list_remove_item(&team->dead_threads, threadDeathEntry); 2549 death.status = threadDeathEntry->status; 2550 free(threadDeathEntry); 2551 break; 2552 } 2553 } 2554 2555 if (threadDeathEntry == NULL) 2556 return B_BAD_THREAD_ID; 2557 } 2558 2559 // we found the thread's death entry in our team 2560 if (_returnCode) 2561 *_returnCode = death.status; 2562 2563 return B_OK; 2564 } 2565 2566 // we need to wait for the death of the thread 2567 2568 resume_thread(id); 2569 // make sure we don't wait forever on a suspended thread 2570 2571 status_t status = acquire_sem_etc(exitSem, 1, flags, timeout); 2572 2573 if (status == B_OK) { 2574 // this should never happen as the thread deletes the semaphore on exit 2575 panic("could acquire exit_sem for thread %" B_PRId32 "\n", id); 2576 } else if (status == B_BAD_SEM_ID) { 2577 // this is the way the thread normally exits 2578 status = B_OK; 2579 } else { 2580 // We were probably interrupted or the timeout occurred; we need to 2581 // remove our death entry now. 2582 thread = Thread::GetAndLock(id); 2583 if (thread != NULL) { 2584 list_remove_link(&death); 2585 thread->UnlockAndReleaseReference(); 2586 } else { 2587 // The thread is already gone, so we need to wait uninterruptibly 2588 // for its exit semaphore to make sure our death entry stays valid. 2589 // It won't take long, since the thread is apparently already in the 2590 // middle of the cleanup. 2591 acquire_sem(exitSem); 2592 status = B_OK; 2593 } 2594 } 2595 2596 if (status == B_OK && _returnCode != NULL) 2597 *_returnCode = death.status; 2598 2599 return status; 2600 } 2601 2602 2603 status_t 2604 select_thread(int32 id, struct select_info* info, bool kernel) 2605 { 2606 // get and lock the thread 2607 Thread* thread = Thread::GetAndLock(id); 2608 if (thread == NULL) 2609 return B_BAD_THREAD_ID; 2610 BReference<Thread> threadReference(thread, true); 2611 ThreadLocker threadLocker(thread, true); 2612 2613 // We support only B_EVENT_INVALID at the moment. 2614 info->selected_events &= B_EVENT_INVALID; 2615 2616 // add info to list 2617 if (info->selected_events != 0) { 2618 info->next = thread->select_infos; 2619 thread->select_infos = info; 2620 2621 // we need a sync reference 2622 atomic_add(&info->sync->ref_count, 1); 2623 } 2624 2625 return B_OK; 2626 } 2627 2628 2629 status_t 2630 deselect_thread(int32 id, struct select_info* info, bool kernel) 2631 { 2632 // get and lock the thread 2633 Thread* thread = Thread::GetAndLock(id); 2634 if (thread == NULL) 2635 return B_BAD_THREAD_ID; 2636 BReference<Thread> threadReference(thread, true); 2637 ThreadLocker threadLocker(thread, true); 2638 2639 // remove info from list 2640 select_info** infoLocation = &thread->select_infos; 2641 while (*infoLocation != NULL && *infoLocation != info) 2642 infoLocation = &(*infoLocation)->next; 2643 2644 if (*infoLocation != info) 2645 return B_OK; 2646 2647 *infoLocation = info->next; 2648 2649 threadLocker.Unlock(); 2650 2651 // surrender sync reference 2652 put_select_sync(info->sync); 2653 2654 return B_OK; 2655 } 2656 2657 2658 int32 2659 thread_max_threads(void) 2660 { 2661 return sMaxThreads; 2662 } 2663 2664 2665 int32 2666 thread_used_threads(void) 2667 { 2668 InterruptsReadSpinLocker threadHashLocker(sThreadHashLock); 2669 return sUsedThreads; 2670 } 2671 2672 2673 /*! Returns a user-readable string for a thread state. 2674 Only for use in the kernel debugger. 2675 */ 2676 const char* 2677 thread_state_to_text(Thread* thread, int32 state) 2678 { 2679 return state_to_text(thread, state); 2680 } 2681 2682 2683 int32 2684 thread_get_io_priority(thread_id id) 2685 { 2686 Thread* thread = Thread::GetAndLock(id); 2687 if (thread == NULL) 2688 return B_BAD_THREAD_ID; 2689 BReference<Thread> threadReference(thread, true); 2690 ThreadLocker threadLocker(thread, true); 2691 2692 int32 priority = thread->io_priority; 2693 if (priority < 0) { 2694 // negative I/O priority means using the (CPU) priority 2695 priority = thread->priority; 2696 } 2697 2698 return priority; 2699 } 2700 2701 2702 void 2703 thread_set_io_priority(int32 priority) 2704 { 2705 Thread* thread = thread_get_current_thread(); 2706 ThreadLocker threadLocker(thread); 2707 2708 thread->io_priority = priority; 2709 } 2710 2711 2712 status_t 2713 thread_init(kernel_args *args) 2714 { 2715 TRACE(("thread_init: entry\n")); 2716 2717 // create the thread hash table 2718 new(&sThreadHash) ThreadHashTable(); 2719 if (sThreadHash.Init(128) != B_OK) 2720 panic("thread_init(): failed to init thread hash table!"); 2721 2722 // create the thread structure object cache 2723 sThreadCache = create_object_cache("threads", sizeof(Thread), 64, NULL, 2724 NULL, NULL); 2725 // Note: The x86 port requires 64 byte alignment of thread structures. 2726 if (sThreadCache == NULL) 2727 panic("thread_init(): failed to allocate thread object cache!"); 2728 2729 if (arch_thread_init(args) < B_OK) 2730 panic("arch_thread_init() failed!\n"); 2731 2732 // skip all thread IDs including B_SYSTEM_TEAM, which is reserved 2733 sNextThreadID = B_SYSTEM_TEAM + 1; 2734 2735 // create an idle thread for each cpu 2736 for (uint32 i = 0; i < args->num_cpus; i++) { 2737 Thread *thread; 2738 area_info info; 2739 char name[64]; 2740 2741 sprintf(name, "idle thread %" B_PRIu32, i + 1); 2742 thread = new(&sIdleThreads[i]) Thread(name, 2743 i == 0 ? team_get_kernel_team_id() : -1, &gCPU[i]); 2744 if (thread == NULL || thread->Init(true) != B_OK) { 2745 panic("error creating idle thread struct\n"); 2746 return B_NO_MEMORY; 2747 } 2748 2749 gCPU[i].running_thread = thread; 2750 2751 thread->team = team_get_kernel_team(); 2752 thread->priority = B_IDLE_PRIORITY; 2753 thread->state = B_THREAD_RUNNING; 2754 sprintf(name, "idle thread %" B_PRIu32 " kstack", i + 1); 2755 thread->kernel_stack_area = find_area(name); 2756 2757 if (get_area_info(thread->kernel_stack_area, &info) != B_OK) 2758 panic("error finding idle kstack area\n"); 2759 2760 thread->kernel_stack_base = (addr_t)info.address; 2761 thread->kernel_stack_top = thread->kernel_stack_base + info.size; 2762 2763 thread->visible = true; 2764 insert_thread_into_team(thread->team, thread); 2765 2766 scheduler_on_thread_init(thread); 2767 } 2768 sUsedThreads = args->num_cpus; 2769 2770 // init the notification service 2771 new(&sNotificationService) ThreadNotificationService(); 2772 2773 sNotificationService.Register(); 2774 2775 // start the undertaker thread 2776 new(&sUndertakerEntries) DoublyLinkedList<UndertakerEntry>(); 2777 sUndertakerCondition.Init(&sUndertakerEntries, "undertaker entries"); 2778 2779 thread_id undertakerThread = spawn_kernel_thread(&undertaker, "undertaker", 2780 B_DISPLAY_PRIORITY, NULL); 2781 if (undertakerThread < 0) 2782 panic("Failed to create undertaker thread!"); 2783 resume_thread(undertakerThread); 2784 2785 // set up some debugger commands 2786 add_debugger_command_etc("threads", &dump_thread_list, "List all threads", 2787 "[ <team> ]\n" 2788 "Prints a list of all existing threads, or, if a team ID is given,\n" 2789 "all threads of the specified team.\n" 2790 " <team> - The ID of the team whose threads shall be listed.\n", 0); 2791 add_debugger_command_etc("ready", &dump_thread_list, 2792 "List all ready threads", 2793 "\n" 2794 "Prints a list of all threads in ready state.\n", 0); 2795 add_debugger_command_etc("running", &dump_thread_list, 2796 "List all running threads", 2797 "\n" 2798 "Prints a list of all threads in running state.\n", 0); 2799 add_debugger_command_etc("waiting", &dump_thread_list, 2800 "List all waiting threads (optionally for a specific semaphore)", 2801 "[ <sem> ]\n" 2802 "Prints a list of all threads in waiting state. If a semaphore is\n" 2803 "specified, only the threads waiting on that semaphore are listed.\n" 2804 " <sem> - ID of the semaphore.\n", 0); 2805 add_debugger_command_etc("realtime", &dump_thread_list, 2806 "List all realtime threads", 2807 "\n" 2808 "Prints a list of all threads with realtime priority.\n", 0); 2809 add_debugger_command_etc("thread", &dump_thread_info, 2810 "Dump info about a particular thread", 2811 "[ -s ] ( <id> | <address> | <name> )*\n" 2812 "Prints information about the specified thread. If no argument is\n" 2813 "given the current thread is selected.\n" 2814 " -s - Print info in compact table form (like \"threads\").\n" 2815 " <id> - The ID of the thread.\n" 2816 " <address> - The address of the thread structure.\n" 2817 " <name> - The thread's name.\n", 0); 2818 add_debugger_command_etc("calling", &dump_thread_list, 2819 "Show all threads that have a specific address in their call chain", 2820 "{ <symbol-pattern> | <start> <end> }\n", 0); 2821 add_debugger_command_etc("unreal", &make_thread_unreal, 2822 "Set realtime priority threads to normal priority", 2823 "[ <id> ]\n" 2824 "Sets the priority of all realtime threads or, if given, the one\n" 2825 "with the specified ID to \"normal\" priority.\n" 2826 " <id> - The ID of the thread.\n", 0); 2827 add_debugger_command_etc("suspend", &make_thread_suspended, 2828 "Suspend a thread", 2829 "[ <id> ]\n" 2830 "Suspends the thread with the given ID. If no ID argument is given\n" 2831 "the current thread is selected.\n" 2832 " <id> - The ID of the thread.\n", 0); 2833 add_debugger_command_etc("resume", &make_thread_resumed, "Resume a thread", 2834 "<id>\n" 2835 "Resumes the specified thread, if it is currently suspended.\n" 2836 " <id> - The ID of the thread.\n", 0); 2837 add_debugger_command_etc("drop", &drop_into_debugger, 2838 "Drop a thread into the userland debugger", 2839 "<id>\n" 2840 "Drops the specified (userland) thread into the userland debugger\n" 2841 "after leaving the kernel debugger.\n" 2842 " <id> - The ID of the thread.\n", 0); 2843 add_debugger_command_etc("priority", &set_thread_prio, 2844 "Set a thread's priority", 2845 "<priority> [ <id> ]\n" 2846 "Sets the priority of the thread with the specified ID to the given\n" 2847 "priority. If no thread ID is given, the current thread is selected.\n" 2848 " <priority> - The thread's new priority (0 - 120)\n" 2849 " <id> - The ID of the thread.\n", 0); 2850 2851 return B_OK; 2852 } 2853 2854 2855 status_t 2856 thread_preboot_init_percpu(struct kernel_args *args, int32 cpuNum) 2857 { 2858 // set up the cpu pointer in the not yet initialized per-cpu idle thread 2859 // so that get_current_cpu and friends will work, which is crucial for 2860 // a lot of low level routines 2861 sIdleThreads[cpuNum].cpu = &gCPU[cpuNum]; 2862 arch_thread_set_current_thread(&sIdleThreads[cpuNum]); 2863 return B_OK; 2864 } 2865 2866 2867 // #pragma mark - thread blocking API 2868 2869 2870 static status_t 2871 thread_block_timeout(timer* timer) 2872 { 2873 Thread* thread = (Thread*)timer->user_data; 2874 thread_unblock(thread, B_TIMED_OUT); 2875 2876 return B_HANDLED_INTERRUPT; 2877 } 2878 2879 2880 /*! Blocks the current thread. 2881 2882 The thread is blocked until someone else unblock it. Must be called after a 2883 call to thread_prepare_to_block(). If the thread has already been unblocked 2884 after the previous call to thread_prepare_to_block(), this function will 2885 return immediately. Cf. the documentation of thread_prepare_to_block() for 2886 more details. 2887 2888 The caller must hold the scheduler lock. 2889 2890 \param thread The current thread. 2891 \return The error code passed to the unblocking function. thread_interrupt() 2892 uses \c B_INTERRUPTED. By convention \c B_OK means that the wait was 2893 successful while another error code indicates a failure (what that means 2894 depends on the client code). 2895 */ 2896 static inline status_t 2897 thread_block_locked(Thread* thread) 2898 { 2899 if (thread->wait.status == 1) { 2900 // check for signals, if interruptible 2901 if (thread_is_interrupted(thread, thread->wait.flags)) { 2902 thread->wait.status = B_INTERRUPTED; 2903 } else 2904 scheduler_reschedule(B_THREAD_WAITING); 2905 } 2906 2907 return thread->wait.status; 2908 } 2909 2910 2911 /*! Blocks the current thread. 2912 2913 The function acquires the scheduler lock and calls thread_block_locked(). 2914 See there for more information. 2915 */ 2916 status_t 2917 thread_block() 2918 { 2919 InterruptsSpinLocker _(thread_get_current_thread()->scheduler_lock); 2920 return thread_block_locked(thread_get_current_thread()); 2921 } 2922 2923 2924 /*! Blocks the current thread with a timeout. 2925 2926 The current thread is blocked until someone else unblock it or the specified 2927 timeout occurs. Must be called after a call to thread_prepare_to_block(). If 2928 the thread has already been unblocked after the previous call to 2929 thread_prepare_to_block(), this function will return immediately. See 2930 thread_prepare_to_block() for more details. 2931 2932 The caller must not hold the scheduler lock. 2933 2934 \param timeoutFlags The standard timeout flags: 2935 - \c B_RELATIVE_TIMEOUT: \a timeout specifies the time to wait. 2936 - \c B_ABSOLUTE_TIMEOUT: \a timeout specifies the absolute end time when 2937 the timeout shall occur. 2938 - \c B_TIMEOUT_REAL_TIME_BASE: Only relevant when \c B_ABSOLUTE_TIMEOUT 2939 is specified, too. Specifies that \a timeout is a real time, not a 2940 system time. 2941 If neither \c B_RELATIVE_TIMEOUT nor \c B_ABSOLUTE_TIMEOUT are 2942 specified, an infinite timeout is implied and the function behaves like 2943 thread_block_locked(). 2944 \return The error code passed to the unblocking function. thread_interrupt() 2945 uses \c B_INTERRUPTED. When the timeout occurred, \c B_TIMED_OUT is 2946 returned. By convention \c B_OK means that the wait was successful while 2947 another error code indicates a failure (what that means depends on the 2948 client code). 2949 */ 2950 status_t 2951 thread_block_with_timeout(uint32 timeoutFlags, bigtime_t timeout) 2952 { 2953 Thread* thread = thread_get_current_thread(); 2954 2955 InterruptsSpinLocker locker(thread->scheduler_lock); 2956 2957 if (thread->wait.status != 1) 2958 return thread->wait.status; 2959 2960 bool useTimer = (timeoutFlags & (B_RELATIVE_TIMEOUT | B_ABSOLUTE_TIMEOUT)) 2961 && timeout != B_INFINITE_TIMEOUT; 2962 2963 if (useTimer) { 2964 // Timer flags: absolute/relative. 2965 uint32 timerFlags; 2966 if ((timeoutFlags & B_RELATIVE_TIMEOUT) != 0) { 2967 timerFlags = B_ONE_SHOT_RELATIVE_TIMER; 2968 } else { 2969 timerFlags = B_ONE_SHOT_ABSOLUTE_TIMER; 2970 if ((timeoutFlags & B_TIMEOUT_REAL_TIME_BASE) != 0) 2971 timerFlags |= B_TIMER_REAL_TIME_BASE; 2972 } 2973 2974 // install the timer 2975 thread->wait.unblock_timer.user_data = thread; 2976 add_timer(&thread->wait.unblock_timer, &thread_block_timeout, timeout, 2977 timerFlags); 2978 } 2979 2980 // block 2981 status_t error = thread_block_locked(thread); 2982 2983 locker.Unlock(); 2984 2985 // cancel timer, if it didn't fire 2986 if (error != B_TIMED_OUT && useTimer) 2987 cancel_timer(&thread->wait.unblock_timer); 2988 2989 return error; 2990 } 2991 2992 2993 /*! Unblocks a thread. 2994 2995 Acquires the scheduler lock and calls thread_unblock_locked(). 2996 See there for more information. 2997 */ 2998 void 2999 thread_unblock(Thread* thread, status_t status) 3000 { 3001 InterruptsSpinLocker locker(thread->scheduler_lock); 3002 thread_unblock_locked(thread, status); 3003 } 3004 3005 3006 /*! Unblocks a userland-blocked thread. 3007 The caller must not hold any locks. 3008 */ 3009 static status_t 3010 user_unblock_thread(thread_id threadID, status_t status) 3011 { 3012 // get the thread 3013 Thread* thread = Thread::GetAndLock(threadID); 3014 if (thread == NULL) 3015 return B_BAD_THREAD_ID; 3016 BReference<Thread> threadReference(thread, true); 3017 ThreadLocker threadLocker(thread, true); 3018 3019 if (thread->user_thread == NULL) 3020 return B_NOT_ALLOWED; 3021 3022 InterruptsSpinLocker locker(thread->scheduler_lock); 3023 3024 status_t waitStatus; 3025 if (user_memcpy(&waitStatus, &thread->user_thread->wait_status, 3026 sizeof(waitStatus)) < B_OK) { 3027 return B_BAD_ADDRESS; 3028 } 3029 if (waitStatus > 0) { 3030 if (user_memcpy(&thread->user_thread->wait_status, &status, 3031 sizeof(status)) < B_OK) { 3032 return B_BAD_ADDRESS; 3033 } 3034 3035 // Even if the user_thread->wait_status was > 0, it may be the 3036 // case that this thread is actually blocked on something else. 3037 if (thread->wait.status > 0 3038 && thread->wait.type == THREAD_BLOCK_TYPE_USER) { 3039 thread_unblock_locked(thread, status); 3040 } 3041 } 3042 return B_OK; 3043 } 3044 3045 3046 static bool 3047 thread_check_permissions(const Thread* currentThread, const Thread* thread, 3048 bool kernel) 3049 { 3050 if (kernel) 3051 return true; 3052 3053 if (thread->team->id == team_get_kernel_team_id()) 3054 return false; 3055 3056 if (thread->team == currentThread->team 3057 || currentThread->team->effective_uid == 0 3058 || thread->team->real_uid == currentThread->team->real_uid) 3059 return true; 3060 3061 return false; 3062 } 3063 3064 3065 static status_t 3066 thread_send_signal(thread_id id, uint32 number, int32 signalCode, 3067 int32 errorCode, bool kernel) 3068 { 3069 if (id <= 0) 3070 return B_BAD_VALUE; 3071 3072 Thread* currentThread = thread_get_current_thread(); 3073 Thread* thread = Thread::Get(id); 3074 if (thread == NULL) 3075 return B_BAD_THREAD_ID; 3076 BReference<Thread> threadReference(thread, true); 3077 3078 // check whether sending the signal is allowed 3079 if (!thread_check_permissions(currentThread, thread, kernel)) 3080 return B_NOT_ALLOWED; 3081 3082 Signal signal(number, signalCode, errorCode, currentThread->team->id); 3083 return send_signal_to_thread(thread, signal, 0); 3084 } 3085 3086 3087 // #pragma mark - public kernel API 3088 3089 3090 void 3091 exit_thread(status_t returnValue) 3092 { 3093 Thread *thread = thread_get_current_thread(); 3094 Team* team = thread->team; 3095 3096 thread->exit.status = returnValue; 3097 3098 // if called from a kernel thread, we don't deliver the signal, 3099 // we just exit directly to keep the user space behaviour of 3100 // this function 3101 if (team != team_get_kernel_team()) { 3102 // If this is its main thread, set the team's exit status. 3103 if (thread == team->main_thread) { 3104 TeamLocker teamLocker(team); 3105 3106 if (!team->exit.initialized) { 3107 team->exit.reason = CLD_EXITED; 3108 team->exit.signal = 0; 3109 team->exit.signaling_user = 0; 3110 team->exit.status = returnValue; 3111 team->exit.initialized = true; 3112 } 3113 3114 teamLocker.Unlock(); 3115 } 3116 3117 Signal signal(SIGKILLTHR, SI_USER, B_OK, team->id); 3118 send_signal_to_thread(thread, signal, B_DO_NOT_RESCHEDULE); 3119 } else 3120 thread_exit(); 3121 } 3122 3123 3124 static status_t 3125 thread_kill_thread(thread_id id, bool kernel) 3126 { 3127 return thread_send_signal(id, SIGKILLTHR, SI_USER, B_OK, kernel); 3128 } 3129 3130 3131 status_t 3132 kill_thread(thread_id id) 3133 { 3134 return thread_kill_thread(id, true); 3135 } 3136 3137 3138 status_t 3139 send_data(thread_id thread, int32 code, const void *buffer, size_t bufferSize) 3140 { 3141 return send_data_etc(thread, code, buffer, bufferSize, 0); 3142 } 3143 3144 3145 int32 3146 receive_data(thread_id *sender, void *buffer, size_t bufferSize) 3147 { 3148 return receive_data_etc(sender, buffer, bufferSize, 0); 3149 } 3150 3151 3152 static bool 3153 thread_has_data(thread_id id, bool kernel) 3154 { 3155 Thread* currentThread = thread_get_current_thread(); 3156 Thread* thread; 3157 BReference<Thread> threadReference; 3158 if (id == currentThread->id) { 3159 thread = currentThread; 3160 } else { 3161 thread = Thread::Get(id); 3162 if (thread == NULL) 3163 return false; 3164 3165 threadReference.SetTo(thread, true); 3166 } 3167 3168 if (!kernel && thread->team != currentThread->team) 3169 return false; 3170 3171 int32 count; 3172 if (get_sem_count(thread->msg.read_sem, &count) != B_OK) 3173 return false; 3174 3175 return count == 0 ? false : true; 3176 } 3177 3178 3179 bool 3180 has_data(thread_id thread) 3181 { 3182 return thread_has_data(thread, true); 3183 } 3184 3185 3186 status_t 3187 _get_thread_info(thread_id id, thread_info *info, size_t size) 3188 { 3189 if (info == NULL || size != sizeof(thread_info) || id < B_OK) 3190 return B_BAD_VALUE; 3191 3192 // get the thread 3193 Thread* thread = Thread::GetAndLock(id); 3194 if (thread == NULL) 3195 return B_BAD_THREAD_ID; 3196 BReference<Thread> threadReference(thread, true); 3197 ThreadLocker threadLocker(thread, true); 3198 3199 // fill the info -- also requires the scheduler lock to be held 3200 InterruptsSpinLocker locker(thread->scheduler_lock); 3201 3202 fill_thread_info(thread, info, size); 3203 3204 return B_OK; 3205 } 3206 3207 3208 status_t 3209 _get_next_thread_info(team_id teamID, int32 *_cookie, thread_info *info, 3210 size_t size) 3211 { 3212 if (info == NULL || size != sizeof(thread_info) || teamID < 0) 3213 return B_BAD_VALUE; 3214 3215 int32 lastID = *_cookie; 3216 3217 // get the team 3218 Team* team = Team::GetAndLock(teamID); 3219 if (team == NULL) 3220 return B_BAD_VALUE; 3221 BReference<Team> teamReference(team, true); 3222 TeamLocker teamLocker(team, true); 3223 3224 Thread* thread = NULL; 3225 3226 if (lastID == 0) { 3227 // We start with the main thread 3228 thread = team->main_thread; 3229 } else { 3230 // Find the one thread with an ID greater than ours (as long as the IDs 3231 // don't wrap they are always sorted from highest to lowest). 3232 // TODO: That is broken not only when the IDs wrap, but also for the 3233 // kernel team, to which threads are added when they are dying. 3234 for (Thread* next = team->thread_list; next != NULL; 3235 next = next->team_next) { 3236 if (next->id <= lastID) 3237 break; 3238 3239 thread = next; 3240 } 3241 } 3242 3243 if (thread == NULL) 3244 return B_BAD_VALUE; 3245 3246 lastID = thread->id; 3247 *_cookie = lastID; 3248 3249 ThreadLocker threadLocker(thread); 3250 InterruptsSpinLocker locker(thread->scheduler_lock); 3251 3252 fill_thread_info(thread, info, size); 3253 3254 return B_OK; 3255 } 3256 3257 3258 thread_id 3259 find_thread(const char* name) 3260 { 3261 if (name == NULL) 3262 return thread_get_current_thread_id(); 3263 3264 InterruptsReadSpinLocker threadHashLocker(sThreadHashLock); 3265 3266 // Scanning the whole hash with the thread hash lock held isn't exactly 3267 // cheap, but since this function is probably used very rarely, and we 3268 // only need a read lock, it's probably acceptable. 3269 3270 for (ThreadHashTable::Iterator it = sThreadHash.GetIterator(); 3271 Thread* thread = it.Next();) { 3272 if (!thread->visible) 3273 continue; 3274 3275 if (strcmp(thread->name, name) == 0) 3276 return thread->id; 3277 } 3278 3279 return B_NAME_NOT_FOUND; 3280 } 3281 3282 3283 status_t 3284 rename_thread(thread_id id, const char* name) 3285 { 3286 if (name == NULL) 3287 return B_BAD_VALUE; 3288 3289 // get the thread 3290 Thread* thread = Thread::GetAndLock(id); 3291 if (thread == NULL) 3292 return B_BAD_THREAD_ID; 3293 BReference<Thread> threadReference(thread, true); 3294 ThreadLocker threadLocker(thread, true); 3295 3296 // check whether the operation is allowed 3297 if (thread->team != thread_get_current_thread()->team) 3298 return B_NOT_ALLOWED; 3299 3300 strlcpy(thread->name, name, B_OS_NAME_LENGTH); 3301 3302 team_id teamID = thread->team->id; 3303 3304 threadLocker.Unlock(); 3305 3306 // notify listeners 3307 sNotificationService.Notify(THREAD_NAME_CHANGED, teamID, id); 3308 // don't pass the thread structure, as it's unsafe, if it isn't ours 3309 3310 return B_OK; 3311 } 3312 3313 3314 static status_t 3315 thread_set_thread_priority(thread_id id, int32 priority, bool kernel) 3316 { 3317 // make sure the passed in priority is within bounds 3318 if (priority > THREAD_MAX_SET_PRIORITY) 3319 priority = THREAD_MAX_SET_PRIORITY; 3320 if (priority < THREAD_MIN_SET_PRIORITY) 3321 priority = THREAD_MIN_SET_PRIORITY; 3322 3323 // get the thread 3324 Thread* thread = Thread::GetAndLock(id); 3325 if (thread == NULL) 3326 return B_BAD_THREAD_ID; 3327 BReference<Thread> threadReference(thread, true); 3328 ThreadLocker threadLocker(thread, true); 3329 3330 // check whether the change is allowed 3331 if (thread_is_idle_thread(thread) || !thread_check_permissions( 3332 thread_get_current_thread(), thread, kernel)) 3333 return B_NOT_ALLOWED; 3334 3335 return scheduler_set_thread_priority(thread, priority); 3336 } 3337 3338 3339 status_t 3340 set_thread_priority(thread_id id, int32 priority) 3341 { 3342 return thread_set_thread_priority(id, priority, true); 3343 } 3344 3345 3346 status_t 3347 snooze_etc(bigtime_t timeout, int timebase, uint32 flags) 3348 { 3349 return common_snooze_etc(timeout, timebase, flags, NULL); 3350 } 3351 3352 3353 /*! snooze() for internal kernel use only; doesn't interrupt on signals. */ 3354 status_t 3355 snooze(bigtime_t timeout) 3356 { 3357 return snooze_etc(timeout, B_SYSTEM_TIMEBASE, B_RELATIVE_TIMEOUT); 3358 } 3359 3360 3361 /*! snooze_until() for internal kernel use only; doesn't interrupt on 3362 signals. 3363 */ 3364 status_t 3365 snooze_until(bigtime_t timeout, int timebase) 3366 { 3367 return snooze_etc(timeout, timebase, B_ABSOLUTE_TIMEOUT); 3368 } 3369 3370 3371 status_t 3372 wait_for_thread(thread_id thread, status_t *_returnCode) 3373 { 3374 return wait_for_thread_etc(thread, 0, 0, _returnCode); 3375 } 3376 3377 3378 static status_t 3379 thread_suspend_thread(thread_id id, bool kernel) 3380 { 3381 return thread_send_signal(id, SIGSTOP, SI_USER, B_OK, kernel); 3382 } 3383 3384 3385 status_t 3386 suspend_thread(thread_id id) 3387 { 3388 return thread_suspend_thread(id, true); 3389 } 3390 3391 3392 static status_t 3393 thread_resume_thread(thread_id id, bool kernel) 3394 { 3395 // Using the kernel internal SIGNAL_CONTINUE_THREAD signal retains 3396 // compatibility to BeOS which documents the combination of suspend_thread() 3397 // and resume_thread() to interrupt threads waiting on semaphores. 3398 return thread_send_signal(id, SIGNAL_CONTINUE_THREAD, SI_USER, B_OK, kernel); 3399 } 3400 3401 3402 status_t 3403 resume_thread(thread_id id) 3404 { 3405 return thread_resume_thread(id, true); 3406 } 3407 3408 3409 thread_id 3410 spawn_kernel_thread(thread_func function, const char *name, int32 priority, 3411 void *arg) 3412 { 3413 return thread_create_thread( 3414 ThreadCreationAttributes(function, name, priority, arg), 3415 true); 3416 } 3417 3418 3419 int 3420 getrlimit(int resource, struct rlimit * rlp) 3421 { 3422 status_t error = common_getrlimit(resource, rlp); 3423 if (error != B_OK) { 3424 errno = error; 3425 return -1; 3426 } 3427 3428 return 0; 3429 } 3430 3431 3432 int 3433 setrlimit(int resource, const struct rlimit * rlp) 3434 { 3435 status_t error = common_setrlimit(resource, rlp); 3436 if (error != B_OK) { 3437 errno = error; 3438 return -1; 3439 } 3440 3441 return 0; 3442 } 3443 3444 3445 // #pragma mark - syscalls 3446 3447 3448 void 3449 _user_exit_thread(status_t returnValue) 3450 { 3451 exit_thread(returnValue); 3452 } 3453 3454 3455 status_t 3456 _user_kill_thread(thread_id thread) 3457 { 3458 return thread_kill_thread(thread, false); 3459 } 3460 3461 3462 status_t 3463 _user_cancel_thread(thread_id threadID, void (*cancelFunction)(int)) 3464 { 3465 // check the cancel function 3466 if (cancelFunction == NULL || !IS_USER_ADDRESS(cancelFunction)) 3467 return B_BAD_VALUE; 3468 3469 // get and lock the thread 3470 Thread* thread = Thread::GetAndLock(threadID); 3471 if (thread == NULL) 3472 return B_BAD_THREAD_ID; 3473 BReference<Thread> threadReference(thread, true); 3474 ThreadLocker threadLocker(thread, true); 3475 3476 // only threads of the same team can be canceled 3477 if (thread->team != thread_get_current_thread()->team) 3478 return B_NOT_ALLOWED; 3479 3480 // set the cancel function 3481 thread->cancel_function = cancelFunction; 3482 3483 // send the cancellation signal to the thread 3484 InterruptsReadSpinLocker teamLocker(thread->team_lock); 3485 SpinLocker locker(thread->team->signal_lock); 3486 return send_signal_to_thread_locked(thread, SIGNAL_CANCEL_THREAD, NULL, 0); 3487 } 3488 3489 3490 status_t 3491 _user_resume_thread(thread_id thread) 3492 { 3493 return thread_resume_thread(thread, false); 3494 } 3495 3496 3497 status_t 3498 _user_suspend_thread(thread_id thread) 3499 { 3500 return thread_suspend_thread(thread, false); 3501 } 3502 3503 3504 status_t 3505 _user_rename_thread(thread_id thread, const char *userName) 3506 { 3507 char name[B_OS_NAME_LENGTH]; 3508 3509 if (!IS_USER_ADDRESS(userName) 3510 || userName == NULL 3511 || user_strlcpy(name, userName, B_OS_NAME_LENGTH) < B_OK) 3512 return B_BAD_ADDRESS; 3513 3514 // rename_thread() forbids thread renames across teams, so we don't 3515 // need a "kernel" flag here. 3516 return rename_thread(thread, name); 3517 } 3518 3519 3520 int32 3521 _user_set_thread_priority(thread_id thread, int32 newPriority) 3522 { 3523 return thread_set_thread_priority(thread, newPriority, false); 3524 } 3525 3526 3527 thread_id 3528 _user_spawn_thread(thread_creation_attributes* userAttributes) 3529 { 3530 // copy the userland structure to the kernel 3531 char nameBuffer[B_OS_NAME_LENGTH]; 3532 ThreadCreationAttributes attributes; 3533 status_t error = attributes.InitFromUserAttributes(userAttributes, 3534 nameBuffer); 3535 if (error != B_OK) 3536 return error; 3537 3538 // create the thread 3539 thread_id threadID = thread_create_thread(attributes, false); 3540 3541 if (threadID >= 0) 3542 user_debug_thread_created(threadID); 3543 3544 return threadID; 3545 } 3546 3547 3548 status_t 3549 _user_snooze_etc(bigtime_t timeout, int timebase, uint32 flags, 3550 bigtime_t* userRemainingTime) 3551 { 3552 // We need to store more syscall restart parameters than usual and need a 3553 // somewhat different handling. Hence we can't use 3554 // syscall_restart_handle_timeout_pre() but do the job ourselves. 3555 struct restart_parameters { 3556 bigtime_t timeout; 3557 clockid_t timebase; 3558 uint32 flags; 3559 }; 3560 3561 Thread* thread = thread_get_current_thread(); 3562 3563 if ((thread->flags & THREAD_FLAGS_SYSCALL_RESTARTED) != 0) { 3564 // The syscall was restarted. Fetch the parameters from the stored 3565 // restart parameters. 3566 restart_parameters* restartParameters 3567 = (restart_parameters*)thread->syscall_restart.parameters; 3568 timeout = restartParameters->timeout; 3569 timebase = restartParameters->timebase; 3570 flags = restartParameters->flags; 3571 } else { 3572 // convert relative timeouts to absolute ones 3573 if ((flags & B_RELATIVE_TIMEOUT) != 0) { 3574 // not restarted yet and the flags indicate a relative timeout 3575 3576 // Make sure we use the system time base, so real-time clock changes 3577 // won't affect our wait. 3578 flags &= ~(uint32)B_TIMEOUT_REAL_TIME_BASE; 3579 if (timebase == CLOCK_REALTIME) 3580 timebase = CLOCK_MONOTONIC; 3581 3582 // get the current time and make the timeout absolute 3583 bigtime_t now; 3584 status_t error = user_timer_get_clock(timebase, now); 3585 if (error != B_OK) 3586 return error; 3587 3588 timeout += now; 3589 3590 // deal with overflow 3591 if (timeout < 0) 3592 timeout = B_INFINITE_TIMEOUT; 3593 3594 flags = (flags & ~B_RELATIVE_TIMEOUT) | B_ABSOLUTE_TIMEOUT; 3595 } else 3596 flags |= B_ABSOLUTE_TIMEOUT; 3597 } 3598 3599 // snooze 3600 bigtime_t remainingTime; 3601 status_t error = common_snooze_etc(timeout, timebase, 3602 flags | B_CAN_INTERRUPT | B_CHECK_PERMISSION, 3603 userRemainingTime != NULL ? &remainingTime : NULL); 3604 3605 // If interrupted, copy the remaining time back to userland and prepare the 3606 // syscall restart. 3607 if (error == B_INTERRUPTED) { 3608 if (userRemainingTime != NULL 3609 && (!IS_USER_ADDRESS(userRemainingTime) 3610 || user_memcpy(userRemainingTime, &remainingTime, 3611 sizeof(remainingTime)) != B_OK)) { 3612 return B_BAD_ADDRESS; 3613 } 3614 3615 // store the normalized values in the restart parameters 3616 restart_parameters* restartParameters 3617 = (restart_parameters*)thread->syscall_restart.parameters; 3618 restartParameters->timeout = timeout; 3619 restartParameters->timebase = timebase; 3620 restartParameters->flags = flags; 3621 3622 // restart the syscall, if possible 3623 atomic_or(&thread->flags, THREAD_FLAGS_RESTART_SYSCALL); 3624 } 3625 3626 return error; 3627 } 3628 3629 3630 void 3631 _user_thread_yield(void) 3632 { 3633 thread_yield(); 3634 } 3635 3636 3637 status_t 3638 _user_get_thread_info(thread_id id, thread_info *userInfo) 3639 { 3640 thread_info info; 3641 status_t status; 3642 3643 if (!IS_USER_ADDRESS(userInfo)) 3644 return B_BAD_ADDRESS; 3645 3646 status = _get_thread_info(id, &info, sizeof(thread_info)); 3647 3648 if (status >= B_OK 3649 && user_memcpy(userInfo, &info, sizeof(thread_info)) < B_OK) 3650 return B_BAD_ADDRESS; 3651 3652 return status; 3653 } 3654 3655 3656 status_t 3657 _user_get_next_thread_info(team_id team, int32 *userCookie, 3658 thread_info *userInfo) 3659 { 3660 status_t status; 3661 thread_info info; 3662 int32 cookie; 3663 3664 if (!IS_USER_ADDRESS(userCookie) || !IS_USER_ADDRESS(userInfo) 3665 || user_memcpy(&cookie, userCookie, sizeof(int32)) < B_OK) 3666 return B_BAD_ADDRESS; 3667 3668 status = _get_next_thread_info(team, &cookie, &info, sizeof(thread_info)); 3669 if (status < B_OK) 3670 return status; 3671 3672 if (user_memcpy(userCookie, &cookie, sizeof(int32)) < B_OK 3673 || user_memcpy(userInfo, &info, sizeof(thread_info)) < B_OK) 3674 return B_BAD_ADDRESS; 3675 3676 return status; 3677 } 3678 3679 3680 thread_id 3681 _user_find_thread(const char *userName) 3682 { 3683 char name[B_OS_NAME_LENGTH]; 3684 3685 if (userName == NULL) 3686 return find_thread(NULL); 3687 3688 if (!IS_USER_ADDRESS(userName) 3689 || user_strlcpy(name, userName, sizeof(name)) < B_OK) 3690 return B_BAD_ADDRESS; 3691 3692 return find_thread(name); 3693 } 3694 3695 3696 status_t 3697 _user_wait_for_thread(thread_id id, status_t *userReturnCode) 3698 { 3699 status_t returnCode; 3700 status_t status; 3701 3702 if (userReturnCode != NULL && !IS_USER_ADDRESS(userReturnCode)) 3703 return B_BAD_ADDRESS; 3704 3705 status = wait_for_thread_etc(id, B_CAN_INTERRUPT, 0, &returnCode); 3706 3707 if (status == B_OK && userReturnCode != NULL 3708 && user_memcpy(userReturnCode, &returnCode, sizeof(status_t)) < B_OK) { 3709 return B_BAD_ADDRESS; 3710 } 3711 3712 return syscall_restart_handle_post(status); 3713 } 3714 3715 3716 status_t 3717 _user_wait_for_thread_etc(thread_id id, uint32 flags, bigtime_t timeout, status_t *userReturnCode) 3718 { 3719 status_t returnCode; 3720 status_t status; 3721 3722 if (userReturnCode != NULL && !IS_USER_ADDRESS(userReturnCode)) 3723 return B_BAD_ADDRESS; 3724 3725 syscall_restart_handle_timeout_pre(flags, timeout); 3726 3727 status = wait_for_thread_etc(id, flags | B_CAN_INTERRUPT, timeout, &returnCode); 3728 3729 if (status == B_OK && userReturnCode != NULL 3730 && user_memcpy(userReturnCode, &returnCode, sizeof(status_t)) < B_OK) { 3731 return B_BAD_ADDRESS; 3732 } 3733 3734 return syscall_restart_handle_timeout_post(status, timeout); 3735 } 3736 3737 3738 bool 3739 _user_has_data(thread_id thread) 3740 { 3741 return thread_has_data(thread, false); 3742 } 3743 3744 3745 status_t 3746 _user_send_data(thread_id thread, int32 code, const void *buffer, 3747 size_t bufferSize) 3748 { 3749 if (buffer != NULL && !IS_USER_ADDRESS(buffer)) 3750 return B_BAD_ADDRESS; 3751 3752 return send_data_etc(thread, code, buffer, bufferSize, 3753 B_KILL_CAN_INTERRUPT); 3754 // supports userland buffers 3755 } 3756 3757 3758 status_t 3759 _user_receive_data(thread_id *_userSender, void *buffer, size_t bufferSize) 3760 { 3761 thread_id sender; 3762 status_t code; 3763 3764 if ((!IS_USER_ADDRESS(_userSender) && _userSender != NULL) 3765 || (!IS_USER_ADDRESS(buffer) && buffer != NULL)) { 3766 return B_BAD_ADDRESS; 3767 } 3768 3769 code = receive_data_etc(&sender, buffer, bufferSize, B_KILL_CAN_INTERRUPT); 3770 // supports userland buffers 3771 3772 if (_userSender != NULL) 3773 if (user_memcpy(_userSender, &sender, sizeof(thread_id)) < B_OK) 3774 return B_BAD_ADDRESS; 3775 3776 return code; 3777 } 3778 3779 3780 status_t 3781 _user_block_thread(uint32 flags, bigtime_t timeout) 3782 { 3783 syscall_restart_handle_timeout_pre(flags, timeout); 3784 flags |= B_CAN_INTERRUPT; 3785 3786 Thread* thread = thread_get_current_thread(); 3787 ThreadLocker threadLocker(thread); 3788 3789 // check, if already done 3790 status_t waitStatus; 3791 if (user_memcpy(&waitStatus, &thread->user_thread->wait_status, 3792 sizeof(waitStatus)) < B_OK) { 3793 return B_BAD_ADDRESS; 3794 } 3795 if (waitStatus <= 0) 3796 return waitStatus; 3797 3798 // nope, so wait 3799 thread_prepare_to_block(thread, flags, THREAD_BLOCK_TYPE_USER, NULL); 3800 3801 threadLocker.Unlock(); 3802 3803 status_t status = thread_block_with_timeout(flags, timeout); 3804 3805 threadLocker.Lock(); 3806 3807 // Interruptions or timeouts can race with other threads unblocking us. 3808 // Favor a wake-up by another thread, i.e. if someone changed the wait 3809 // status, use that. 3810 status_t oldStatus; 3811 if (user_memcpy(&oldStatus, &thread->user_thread->wait_status, 3812 sizeof(oldStatus)) < B_OK) { 3813 return B_BAD_ADDRESS; 3814 } 3815 if (oldStatus > 0) { 3816 if (user_memcpy(&thread->user_thread->wait_status, &status, 3817 sizeof(status)) < B_OK) { 3818 return B_BAD_ADDRESS; 3819 } 3820 } else { 3821 status = oldStatus; 3822 } 3823 3824 threadLocker.Unlock(); 3825 3826 return syscall_restart_handle_timeout_post(status, timeout); 3827 } 3828 3829 3830 status_t 3831 _user_unblock_thread(thread_id threadID, status_t status) 3832 { 3833 status_t error = user_unblock_thread(threadID, status); 3834 3835 if (error == B_OK) 3836 scheduler_reschedule_if_necessary(); 3837 3838 return error; 3839 } 3840 3841 3842 status_t 3843 _user_unblock_threads(thread_id* userThreads, uint32 count, status_t status) 3844 { 3845 enum { 3846 MAX_USER_THREADS_TO_UNBLOCK = 128 3847 }; 3848 3849 if (userThreads == NULL || !IS_USER_ADDRESS(userThreads)) 3850 return B_BAD_ADDRESS; 3851 if (count > MAX_USER_THREADS_TO_UNBLOCK) 3852 return B_BAD_VALUE; 3853 3854 thread_id threads[MAX_USER_THREADS_TO_UNBLOCK]; 3855 if (user_memcpy(threads, userThreads, count * sizeof(thread_id)) != B_OK) 3856 return B_BAD_ADDRESS; 3857 3858 for (uint32 i = 0; i < count; i++) 3859 user_unblock_thread(threads[i], status); 3860 3861 scheduler_reschedule_if_necessary(); 3862 3863 return B_OK; 3864 } 3865 3866 3867 // TODO: the following two functions don't belong here 3868 3869 3870 int 3871 _user_getrlimit(int resource, struct rlimit *urlp) 3872 { 3873 struct rlimit rl; 3874 int ret; 3875 3876 if (urlp == NULL) 3877 return EINVAL; 3878 3879 if (!IS_USER_ADDRESS(urlp)) 3880 return B_BAD_ADDRESS; 3881 3882 ret = common_getrlimit(resource, &rl); 3883 3884 if (ret == 0) { 3885 ret = user_memcpy(urlp, &rl, sizeof(struct rlimit)); 3886 if (ret < 0) 3887 return ret; 3888 3889 return 0; 3890 } 3891 3892 return ret; 3893 } 3894 3895 3896 int 3897 _user_setrlimit(int resource, const struct rlimit *userResourceLimit) 3898 { 3899 struct rlimit resourceLimit; 3900 3901 if (userResourceLimit == NULL) 3902 return EINVAL; 3903 3904 if (!IS_USER_ADDRESS(userResourceLimit) 3905 || user_memcpy(&resourceLimit, userResourceLimit, 3906 sizeof(struct rlimit)) < B_OK) 3907 return B_BAD_ADDRESS; 3908 3909 return common_setrlimit(resource, &resourceLimit); 3910 } 3911