xref: /haiku/src/system/kernel/thread.cpp (revision 21258e2674226d6aa732321b6f8494841895af5f)
1 /*
2  * Copyright 2018, Jérôme Duval, jerome.duval@gmail.com.
3  * Copyright 2005-2011, Ingo Weinhold, ingo_weinhold@gmx.de.
4  * Copyright 2002-2009, Axel Dörfler, axeld@pinc-software.de.
5  * Distributed under the terms of the MIT License.
6  *
7  * Copyright 2001-2002, Travis Geiselbrecht. All rights reserved.
8  * Distributed under the terms of the NewOS License.
9  */
10 
11 
12 /*! Threading routines */
13 
14 
15 #include <thread.h>
16 
17 #include <errno.h>
18 #include <malloc.h>
19 #include <stdio.h>
20 #include <stdlib.h>
21 #include <string.h>
22 #include <sys/resource.h>
23 
24 #include <algorithm>
25 
26 #include <OS.h>
27 
28 #include <util/AutoLock.h>
29 
30 #include <arch/debug.h>
31 #include <boot/kernel_args.h>
32 #include <condition_variable.h>
33 #include <cpu.h>
34 #include <int.h>
35 #include <kimage.h>
36 #include <kscheduler.h>
37 #include <ksignal.h>
38 #include <Notifications.h>
39 #include <real_time_clock.h>
40 #include <slab/Slab.h>
41 #include <smp.h>
42 #include <syscalls.h>
43 #include <syscall_restart.h>
44 #include <team.h>
45 #include <tls.h>
46 #include <user_runtime.h>
47 #include <user_thread.h>
48 #include <vfs.h>
49 #include <vm/vm.h>
50 #include <vm/VMAddressSpace.h>
51 #include <wait_for_objects.h>
52 
53 #include "TeamThreadTables.h"
54 
55 
56 //#define TRACE_THREAD
57 #ifdef TRACE_THREAD
58 #	define TRACE(x) dprintf x
59 #else
60 #	define TRACE(x) ;
61 #endif
62 
63 
64 #define THREAD_MAX_MESSAGE_SIZE		65536
65 
66 
67 // #pragma mark - ThreadHashTable
68 
69 
70 typedef BKernel::TeamThreadTable<Thread> ThreadHashTable;
71 
72 
73 // thread list
74 static Thread sIdleThreads[SMP_MAX_CPUS];
75 static ThreadHashTable sThreadHash;
76 static rw_spinlock sThreadHashLock = B_RW_SPINLOCK_INITIALIZER;
77 static thread_id sNextThreadID = 2;
78 	// ID 1 is allocated for the kernel by Team::Team() behind our back
79 
80 // some arbitrarily chosen limits -- should probably depend on the available
81 // memory
82 static int32 sMaxThreads = 4096;
83 static int32 sUsedThreads = 0;
84 
85 spinlock gThreadCreationLock = B_SPINLOCK_INITIALIZER;
86 
87 
88 struct UndertakerEntry : DoublyLinkedListLinkImpl<UndertakerEntry> {
89 	Thread*	thread;
90 	team_id	teamID;
91 
92 	UndertakerEntry(Thread* thread, team_id teamID)
93 		:
94 		thread(thread),
95 		teamID(teamID)
96 	{
97 	}
98 };
99 
100 
101 struct ThreadEntryArguments {
102 	status_t	(*kernelFunction)(void* argument);
103 	void*		argument;
104 	bool		enterUserland;
105 };
106 
107 struct UserThreadEntryArguments : ThreadEntryArguments {
108 	addr_t			userlandEntry;
109 	void*			userlandArgument1;
110 	void*			userlandArgument2;
111 	pthread_t		pthread;
112 	arch_fork_arg*	forkArgs;
113 	uint32			flags;
114 };
115 
116 
117 class ThreadNotificationService : public DefaultNotificationService {
118 public:
119 	ThreadNotificationService()
120 		: DefaultNotificationService("threads")
121 	{
122 	}
123 
124 	void Notify(uint32 eventCode, team_id teamID, thread_id threadID,
125 		Thread* thread = NULL)
126 	{
127 		char eventBuffer[180];
128 		KMessage event;
129 		event.SetTo(eventBuffer, sizeof(eventBuffer), THREAD_MONITOR);
130 		event.AddInt32("event", eventCode);
131 		event.AddInt32("team", teamID);
132 		event.AddInt32("thread", threadID);
133 		if (thread != NULL)
134 			event.AddPointer("threadStruct", thread);
135 
136 		DefaultNotificationService::Notify(event, eventCode);
137 	}
138 
139 	void Notify(uint32 eventCode, Thread* thread)
140 	{
141 		return Notify(eventCode, thread->id, thread->team->id, thread);
142 	}
143 };
144 
145 
146 static DoublyLinkedList<UndertakerEntry> sUndertakerEntries;
147 static spinlock sUndertakerLock = B_SPINLOCK_INITIALIZER;
148 static ConditionVariable sUndertakerCondition;
149 static ThreadNotificationService sNotificationService;
150 
151 
152 // object cache to allocate thread structures from
153 static object_cache* sThreadCache;
154 
155 
156 // #pragma mark - Thread
157 
158 
159 /*!	Constructs a thread.
160 
161 	\param name The thread's name.
162 	\param threadID The ID to be assigned to the new thread. If
163 		  \code < 0 \endcode a fresh one is allocated.
164 	\param cpu The CPU the thread shall be assigned.
165 */
166 Thread::Thread(const char* name, thread_id threadID, struct cpu_ent* cpu)
167 	:
168 	flags(0),
169 	serial_number(-1),
170 	hash_next(NULL),
171 	team_next(NULL),
172 	priority(-1),
173 	io_priority(-1),
174 	cpu(cpu),
175 	previous_cpu(NULL),
176 	pinned_to_cpu(0),
177 	sig_block_mask(0),
178 	sigsuspend_original_unblocked_mask(0),
179 	user_signal_context(NULL),
180 	signal_stack_base(0),
181 	signal_stack_size(0),
182 	signal_stack_enabled(false),
183 	in_kernel(true),
184 	has_yielded(false),
185 	user_thread(NULL),
186 	fault_handler(0),
187 	page_faults_allowed(1),
188 	team(NULL),
189 	select_infos(NULL),
190 	kernel_stack_area(-1),
191 	kernel_stack_base(0),
192 	user_stack_area(-1),
193 	user_stack_base(0),
194 	user_local_storage(0),
195 	kernel_errno(0),
196 	user_time(0),
197 	kernel_time(0),
198 	last_time(0),
199 	cpu_clock_offset(0),
200 	post_interrupt_callback(NULL),
201 	post_interrupt_data(NULL)
202 {
203 	id = threadID >= 0 ? threadID : allocate_thread_id();
204 	visible = false;
205 
206 	// init locks
207 	char lockName[32];
208 	snprintf(lockName, sizeof(lockName), "Thread:%" B_PRId32, id);
209 	mutex_init_etc(&fLock, lockName, MUTEX_FLAG_CLONE_NAME);
210 
211 	B_INITIALIZE_SPINLOCK(&time_lock);
212 	B_INITIALIZE_SPINLOCK(&scheduler_lock);
213 	B_INITIALIZE_RW_SPINLOCK(&team_lock);
214 
215 	// init name
216 	if (name != NULL)
217 		strlcpy(this->name, name, B_OS_NAME_LENGTH);
218 	else
219 		strcpy(this->name, "unnamed thread");
220 
221 	exit.status = 0;
222 
223 	list_init(&exit.waiters);
224 
225 	exit.sem = -1;
226 	msg.write_sem = -1;
227 	msg.read_sem = -1;
228 
229 	// add to thread table -- yet invisible
230 	InterruptsWriteSpinLocker threadHashLocker(sThreadHashLock);
231 	sThreadHash.Insert(this);
232 }
233 
234 
235 Thread::~Thread()
236 {
237 	// Delete resources that should actually be deleted by the thread itself,
238 	// when it exited, but that might still exist, if the thread was never run.
239 
240 	if (user_stack_area >= 0)
241 		delete_area(user_stack_area);
242 
243 	DeleteUserTimers(false);
244 
245 	// delete the resources, that may remain in either case
246 
247 	if (kernel_stack_area >= 0)
248 		delete_area(kernel_stack_area);
249 
250 	fPendingSignals.Clear();
251 
252 	if (exit.sem >= 0)
253 		delete_sem(exit.sem);
254 	if (msg.write_sem >= 0)
255 		delete_sem(msg.write_sem);
256 	if (msg.read_sem >= 0)
257 		delete_sem(msg.read_sem);
258 
259 	scheduler_on_thread_destroy(this);
260 
261 	mutex_destroy(&fLock);
262 
263 	// remove from thread table
264 	InterruptsWriteSpinLocker threadHashLocker(sThreadHashLock);
265 	sThreadHash.Remove(this);
266 }
267 
268 
269 /*static*/ status_t
270 Thread::Create(const char* name, Thread*& _thread)
271 {
272 	Thread* thread = new Thread(name, -1, NULL);
273 	if (thread == NULL)
274 		return B_NO_MEMORY;
275 
276 	status_t error = thread->Init(false);
277 	if (error != B_OK) {
278 		delete thread;
279 		return error;
280 	}
281 
282 	_thread = thread;
283 	return B_OK;
284 }
285 
286 
287 /*static*/ Thread*
288 Thread::Get(thread_id id)
289 {
290 	InterruptsReadSpinLocker threadHashLocker(sThreadHashLock);
291 	Thread* thread = sThreadHash.Lookup(id);
292 	if (thread != NULL)
293 		thread->AcquireReference();
294 	return thread;
295 }
296 
297 
298 /*static*/ Thread*
299 Thread::GetAndLock(thread_id id)
300 {
301 	// look it up and acquire a reference
302 	InterruptsReadSpinLocker threadHashLocker(sThreadHashLock);
303 	Thread* thread = sThreadHash.Lookup(id);
304 	if (thread == NULL)
305 		return NULL;
306 
307 	thread->AcquireReference();
308 	threadHashLocker.Unlock();
309 
310 	// lock and check, if it is still in the hash table
311 	thread->Lock();
312 	threadHashLocker.Lock();
313 
314 	if (sThreadHash.Lookup(id) == thread)
315 		return thread;
316 
317 	threadHashLocker.Unlock();
318 
319 	// nope, the thread is no longer in the hash table
320 	thread->UnlockAndReleaseReference();
321 
322 	return NULL;
323 }
324 
325 
326 /*static*/ Thread*
327 Thread::GetDebug(thread_id id)
328 {
329 	return sThreadHash.Lookup(id, false);
330 }
331 
332 
333 /*static*/ bool
334 Thread::IsAlive(thread_id id)
335 {
336 	InterruptsReadSpinLocker threadHashLocker(sThreadHashLock);
337 	return sThreadHash.Lookup(id) != NULL;
338 }
339 
340 
341 void*
342 Thread::operator new(size_t size)
343 {
344 	return object_cache_alloc(sThreadCache, 0);
345 }
346 
347 
348 void*
349 Thread::operator new(size_t, void* pointer)
350 {
351 	return pointer;
352 }
353 
354 
355 void
356 Thread::operator delete(void* pointer, size_t size)
357 {
358 	object_cache_free(sThreadCache, pointer, 0);
359 }
360 
361 
362 status_t
363 Thread::Init(bool idleThread)
364 {
365 	status_t error = scheduler_on_thread_create(this, idleThread);
366 	if (error != B_OK)
367 		return error;
368 
369 	char temp[64];
370 	snprintf(temp, sizeof(temp), "thread_%" B_PRId32 "_retcode_sem", id);
371 	exit.sem = create_sem(0, temp);
372 	if (exit.sem < 0)
373 		return exit.sem;
374 
375 	snprintf(temp, sizeof(temp), "%s send", name);
376 	msg.write_sem = create_sem(1, temp);
377 	if (msg.write_sem < 0)
378 		return msg.write_sem;
379 
380 	snprintf(temp, sizeof(temp), "%s receive", name);
381 	msg.read_sem = create_sem(0, temp);
382 	if (msg.read_sem < 0)
383 		return msg.read_sem;
384 
385 	error = arch_thread_init_thread_struct(this);
386 	if (error != B_OK)
387 		return error;
388 
389 	return B_OK;
390 }
391 
392 
393 /*!	Checks whether the thread is still in the thread hash table.
394 */
395 bool
396 Thread::IsAlive() const
397 {
398 	InterruptsReadSpinLocker threadHashLocker(sThreadHashLock);
399 
400 	return sThreadHash.Lookup(id) != NULL;
401 }
402 
403 
404 void
405 Thread::ResetSignalsOnExec()
406 {
407 	// We are supposed keep the pending signals and the signal mask. Only the
408 	// signal stack, if set, shall be unset.
409 
410 	sigsuspend_original_unblocked_mask = 0;
411 	user_signal_context = NULL;
412 	signal_stack_base = 0;
413 	signal_stack_size = 0;
414 	signal_stack_enabled = false;
415 }
416 
417 
418 /*!	Adds the given user timer to the thread and, if user-defined, assigns it an
419 	ID.
420 
421 	The caller must hold the thread's lock.
422 
423 	\param timer The timer to be added. If it doesn't have an ID yet, it is
424 		considered user-defined and will be assigned an ID.
425 	\return \c B_OK, if the timer was added successfully, another error code
426 		otherwise.
427 */
428 status_t
429 Thread::AddUserTimer(UserTimer* timer)
430 {
431 	// If the timer is user-defined, check timer limit and increment
432 	// user-defined count.
433 	if (timer->ID() < 0 && !team->CheckAddUserDefinedTimer())
434 		return EAGAIN;
435 
436 	fUserTimers.AddTimer(timer);
437 
438 	return B_OK;
439 }
440 
441 
442 /*!	Removes the given user timer from the thread.
443 
444 	The caller must hold the thread's lock.
445 
446 	\param timer The timer to be removed.
447 
448 */
449 void
450 Thread::RemoveUserTimer(UserTimer* timer)
451 {
452 	fUserTimers.RemoveTimer(timer);
453 
454 	if (timer->ID() >= USER_TIMER_FIRST_USER_DEFINED_ID)
455 		team->UserDefinedTimersRemoved(1);
456 }
457 
458 
459 /*!	Deletes all (or all user-defined) user timers of the thread.
460 
461 	The caller must hold the thread's lock.
462 
463 	\param userDefinedOnly If \c true, only the user-defined timers are deleted,
464 		otherwise all timers are deleted.
465 */
466 void
467 Thread::DeleteUserTimers(bool userDefinedOnly)
468 {
469 	int32 count = fUserTimers.DeleteTimers(userDefinedOnly);
470 	if (count > 0)
471 		team->UserDefinedTimersRemoved(count);
472 }
473 
474 
475 void
476 Thread::DeactivateCPUTimeUserTimers()
477 {
478 	while (ThreadTimeUserTimer* timer = fCPUTimeUserTimers.Head())
479 		timer->Deactivate();
480 }
481 
482 
483 // #pragma mark - ThreadListIterator
484 
485 
486 ThreadListIterator::ThreadListIterator()
487 {
488 	// queue the entry
489 	InterruptsWriteSpinLocker locker(sThreadHashLock);
490 	sThreadHash.InsertIteratorEntry(&fEntry);
491 }
492 
493 
494 ThreadListIterator::~ThreadListIterator()
495 {
496 	// remove the entry
497 	InterruptsWriteSpinLocker locker(sThreadHashLock);
498 	sThreadHash.RemoveIteratorEntry(&fEntry);
499 }
500 
501 
502 Thread*
503 ThreadListIterator::Next()
504 {
505 	// get the next team -- if there is one, get reference for it
506 	InterruptsWriteSpinLocker locker(sThreadHashLock);
507 	Thread* thread = sThreadHash.NextElement(&fEntry);
508 	if (thread != NULL)
509 		thread->AcquireReference();
510 
511 	return thread;
512 }
513 
514 
515 // #pragma mark - ThreadCreationAttributes
516 
517 
518 ThreadCreationAttributes::ThreadCreationAttributes(thread_func function,
519 	const char* name, int32 priority, void* arg, team_id team,
520 	Thread* thread)
521 {
522 	this->entry = NULL;
523 	this->name = name;
524 	this->priority = priority;
525 	this->args1 = NULL;
526 	this->args2 = NULL;
527 	this->stack_address = NULL;
528 	this->stack_size = 0;
529 	this->guard_size = 0;
530 	this->pthread = NULL;
531 	this->flags = 0;
532 	this->team = team >= 0 ? team : team_get_kernel_team()->id;
533 	this->thread = thread;
534 	this->signal_mask = 0;
535 	this->additional_stack_size = 0;
536 	this->kernelEntry = function;
537 	this->kernelArgument = arg;
538 	this->forkArgs = NULL;
539 }
540 
541 
542 /*!	Initializes the structure from a userland structure.
543 	\param userAttributes The userland structure (must be a userland address).
544 	\param nameBuffer A character array of at least size B_OS_NAME_LENGTH,
545 		which will be used for the \c name field, if the userland structure has
546 		a name. The buffer must remain valid as long as this structure is in
547 		use afterwards (or until it is reinitialized).
548 	\return \c B_OK, if the initialization went fine, another error code
549 		otherwise.
550 */
551 status_t
552 ThreadCreationAttributes::InitFromUserAttributes(
553 	const thread_creation_attributes* userAttributes, char* nameBuffer)
554 {
555 	if (userAttributes == NULL || !IS_USER_ADDRESS(userAttributes)
556 		|| user_memcpy((thread_creation_attributes*)this, userAttributes,
557 				sizeof(thread_creation_attributes)) != B_OK) {
558 		return B_BAD_ADDRESS;
559 	}
560 
561 	if (stack_size != 0
562 		&& (stack_size < MIN_USER_STACK_SIZE
563 			|| stack_size > MAX_USER_STACK_SIZE)) {
564 		return B_BAD_VALUE;
565 	}
566 
567 	if (entry == NULL || !IS_USER_ADDRESS(entry)
568 		|| (stack_address != NULL && !IS_USER_ADDRESS(stack_address))
569 		|| (name != NULL && (!IS_USER_ADDRESS(name)
570 			|| user_strlcpy(nameBuffer, name, B_OS_NAME_LENGTH) < 0))) {
571 		return B_BAD_ADDRESS;
572 	}
573 
574 	name = name != NULL ? nameBuffer : "user thread";
575 
576 	// kernel only attributes (not in thread_creation_attributes):
577 	Thread* currentThread = thread_get_current_thread();
578 	team = currentThread->team->id;
579 	thread = NULL;
580 	signal_mask = currentThread->sig_block_mask;
581 		// inherit the current thread's signal mask
582 	additional_stack_size = 0;
583 	kernelEntry = NULL;
584 	kernelArgument = NULL;
585 	forkArgs = NULL;
586 
587 	return B_OK;
588 }
589 
590 
591 // #pragma mark - private functions
592 
593 
594 /*!	Inserts a thread into a team.
595 	The caller must hold the team's lock, the thread's lock, and the scheduler
596 	lock.
597 */
598 static void
599 insert_thread_into_team(Team *team, Thread *thread)
600 {
601 	thread->team_next = team->thread_list;
602 	team->thread_list = thread;
603 	team->num_threads++;
604 
605 	if (team->num_threads == 1) {
606 		// this was the first thread
607 		team->main_thread = thread;
608 	}
609 	thread->team = team;
610 }
611 
612 
613 /*!	Removes a thread from a team.
614 	The caller must hold the team's lock, the thread's lock, and the scheduler
615 	lock.
616 */
617 static void
618 remove_thread_from_team(Team *team, Thread *thread)
619 {
620 	Thread *temp, *last = NULL;
621 
622 	for (temp = team->thread_list; temp != NULL; temp = temp->team_next) {
623 		if (temp == thread) {
624 			if (last == NULL)
625 				team->thread_list = temp->team_next;
626 			else
627 				last->team_next = temp->team_next;
628 
629 			team->num_threads--;
630 			break;
631 		}
632 		last = temp;
633 	}
634 }
635 
636 
637 static status_t
638 enter_userspace(Thread* thread, UserThreadEntryArguments* args)
639 {
640 	status_t error = arch_thread_init_tls(thread);
641 	if (error != B_OK) {
642 		dprintf("Failed to init TLS for new userland thread \"%s\" (%" B_PRId32
643 			")\n", thread->name, thread->id);
644 		free(args->forkArgs);
645 		return error;
646 	}
647 
648 	user_debug_update_new_thread_flags(thread);
649 
650 	// init the thread's user_thread
651 	user_thread* userThread = thread->user_thread;
652 	set_ac();
653 	userThread->pthread = args->pthread;
654 	userThread->flags = 0;
655 	userThread->wait_status = B_OK;
656 	userThread->defer_signals
657 		= (args->flags & THREAD_CREATION_FLAG_DEFER_SIGNALS) != 0 ? 1 : 0;
658 	userThread->pending_signals = 0;
659 	clear_ac();
660 
661 	if (args->forkArgs != NULL) {
662 		// This is a fork()ed thread. Copy the fork args onto the stack and
663 		// free them.
664 		arch_fork_arg archArgs = *args->forkArgs;
665 		free(args->forkArgs);
666 
667 		arch_restore_fork_frame(&archArgs);
668 			// this one won't return here
669 		return B_ERROR;
670 	}
671 
672 	// Jump to the entry point in user space. Only returns, if something fails.
673 	return arch_thread_enter_userspace(thread, args->userlandEntry,
674 		args->userlandArgument1, args->userlandArgument2);
675 }
676 
677 
678 status_t
679 thread_enter_userspace_new_team(Thread* thread, addr_t entryFunction,
680 	void* argument1, void* argument2)
681 {
682 	UserThreadEntryArguments entryArgs;
683 	entryArgs.kernelFunction = NULL;
684 	entryArgs.argument = NULL;
685 	entryArgs.enterUserland = true;
686 	entryArgs.userlandEntry = (addr_t)entryFunction;
687 	entryArgs.userlandArgument1 = argument1;
688 	entryArgs.userlandArgument2 = argument2;
689 	entryArgs.pthread = NULL;
690 	entryArgs.forkArgs = NULL;
691 	entryArgs.flags = 0;
692 
693 	return enter_userspace(thread, &entryArgs);
694 }
695 
696 
697 static void
698 common_thread_entry(void* _args)
699 {
700 	Thread* thread = thread_get_current_thread();
701 
702 	// The thread is new and has been scheduled the first time.
703 
704 	scheduler_new_thread_entry(thread);
705 
706 	// unlock the scheduler lock and enable interrupts
707 	release_spinlock(&thread->scheduler_lock);
708 	enable_interrupts();
709 
710 	// call the kernel function, if any
711 	ThreadEntryArguments* args = (ThreadEntryArguments*)_args;
712 	if (args->kernelFunction != NULL)
713 		args->kernelFunction(args->argument);
714 
715 	// If requested, enter userland, now.
716 	if (args->enterUserland) {
717 		enter_userspace(thread, (UserThreadEntryArguments*)args);
718 			// only returns or error
719 
720 		// If that's the team's main thread, init the team exit info.
721 		if (thread == thread->team->main_thread)
722 			team_init_exit_info_on_error(thread->team);
723 	}
724 
725 	// we're done
726 	thread_exit();
727 }
728 
729 
730 /*!	Prepares the given thread's kernel stack for executing its entry function.
731 
732 	The data pointed to by \a data of size \a dataSize are copied to the
733 	thread's kernel stack. A pointer to the copy's data is passed to the entry
734 	function. The entry function is common_thread_entry().
735 
736 	\param thread The thread.
737 	\param data Pointer to data to be copied to the thread's stack and passed
738 		to the entry function.
739 	\param dataSize The size of \a data.
740  */
741 static void
742 init_thread_kernel_stack(Thread* thread, const void* data, size_t dataSize)
743 {
744 	uint8* stack = (uint8*)thread->kernel_stack_base;
745 	uint8* stackTop = (uint8*)thread->kernel_stack_top;
746 
747 	// clear (or rather invalidate) the kernel stack contents, if compiled with
748 	// debugging
749 #if KDEBUG > 0
750 #	if defined(DEBUG_KERNEL_STACKS) && defined(STACK_GROWS_DOWNWARDS)
751 	memset((void*)(stack + KERNEL_STACK_GUARD_PAGES * B_PAGE_SIZE), 0xcc,
752 		KERNEL_STACK_SIZE);
753 #	else
754 	memset(stack, 0xcc, KERNEL_STACK_SIZE);
755 #	endif
756 #endif
757 
758 	// copy the data onto the stack, with 16-byte alignment to be on the safe
759 	// side
760 	void* clonedData;
761 #ifdef STACK_GROWS_DOWNWARDS
762 	clonedData = (void*)ROUNDDOWN((addr_t)stackTop - dataSize, 16);
763 	stackTop = (uint8*)clonedData;
764 #else
765 	clonedData = (void*)ROUNDUP((addr_t)stack, 16);
766 	stack = (uint8*)clonedData + ROUNDUP(dataSize, 16);
767 #endif
768 
769 	memcpy(clonedData, data, dataSize);
770 
771 	arch_thread_init_kthread_stack(thread, stack, stackTop,
772 		&common_thread_entry, clonedData);
773 }
774 
775 
776 static status_t
777 create_thread_user_stack(Team* team, Thread* thread, void* _stackBase,
778 	size_t stackSize, size_t additionalSize, size_t guardSize,
779 	char* nameBuffer)
780 {
781 	area_id stackArea = -1;
782 	uint8* stackBase = (uint8*)_stackBase;
783 
784 	if (stackBase != NULL) {
785 		// A stack has been specified. It must be large enough to hold the
786 		// TLS space at least. Guard pages are ignored for existing stacks.
787 		STATIC_ASSERT(TLS_SIZE < MIN_USER_STACK_SIZE);
788 		if (stackSize < MIN_USER_STACK_SIZE)
789 			return B_BAD_VALUE;
790 
791 		stackSize -= TLS_SIZE;
792 	} else {
793 		// No user-defined stack -- allocate one. For non-main threads the stack
794 		// will be between USER_STACK_REGION and the main thread stack area. For
795 		// a main thread the position is fixed.
796 
797 		guardSize = PAGE_ALIGN(guardSize);
798 
799 		if (stackSize == 0) {
800 			// Use the default size (a different one for a main thread).
801 			stackSize = thread->id == team->id
802 				? USER_MAIN_THREAD_STACK_SIZE : USER_STACK_SIZE;
803 		} else {
804 			// Verify that the given stack size is large enough.
805 			if (stackSize < MIN_USER_STACK_SIZE)
806 				return B_BAD_VALUE;
807 
808 			stackSize = PAGE_ALIGN(stackSize);
809 		}
810 
811 		size_t areaSize = PAGE_ALIGN(guardSize + stackSize + TLS_SIZE
812 			+ additionalSize);
813 
814 		snprintf(nameBuffer, B_OS_NAME_LENGTH, "%s_%" B_PRId32 "_stack",
815 			thread->name, thread->id);
816 
817 		stackBase = (uint8*)USER_STACK_REGION;
818 
819 		virtual_address_restrictions virtualRestrictions = {};
820 		virtualRestrictions.address_specification = B_RANDOMIZED_BASE_ADDRESS;
821 		virtualRestrictions.address = (void*)stackBase;
822 
823 		physical_address_restrictions physicalRestrictions = {};
824 
825 		stackArea = create_area_etc(team->id, nameBuffer,
826 			areaSize, B_NO_LOCK, B_READ_AREA | B_WRITE_AREA | B_STACK_AREA,
827 			0, guardSize, &virtualRestrictions, &physicalRestrictions,
828 			(void**)&stackBase);
829 		if (stackArea < 0)
830 			return stackArea;
831 	}
832 
833 	// set the stack
834 	ThreadLocker threadLocker(thread);
835 #ifdef STACK_GROWS_DOWNWARDS
836 	thread->user_stack_base = (addr_t)stackBase + guardSize;
837 #else
838 	thread->user_stack_base = (addr_t)stackBase;
839 #endif
840 	thread->user_stack_size = stackSize;
841 	thread->user_stack_area = stackArea;
842 
843 	return B_OK;
844 }
845 
846 
847 status_t
848 thread_create_user_stack(Team* team, Thread* thread, void* stackBase,
849 	size_t stackSize, size_t additionalSize)
850 {
851 	char nameBuffer[B_OS_NAME_LENGTH];
852 	return create_thread_user_stack(team, thread, stackBase, stackSize,
853 		additionalSize, USER_STACK_GUARD_SIZE, nameBuffer);
854 }
855 
856 
857 /*!	Creates a new thread.
858 
859 	\param attributes The thread creation attributes, specifying the team in
860 		which to create the thread, as well as a whole bunch of other arguments.
861 	\param kernel \c true, if a kernel-only thread shall be created, \c false,
862 		if the thread shall also be able to run in userland.
863 	\return The ID of the newly created thread (>= 0) or an error code on
864 		failure.
865 */
866 thread_id
867 thread_create_thread(const ThreadCreationAttributes& attributes, bool kernel)
868 {
869 	status_t status = B_OK;
870 
871 	TRACE(("thread_create_thread(%s, thread = %p, %s)\n", attributes.name,
872 		attributes.thread, kernel ? "kernel" : "user"));
873 
874 	// get the team
875 	Team* team = Team::Get(attributes.team);
876 	if (team == NULL)
877 		return B_BAD_TEAM_ID;
878 	BReference<Team> teamReference(team, true);
879 
880 	// If a thread object is given, acquire a reference to it, otherwise create
881 	// a new thread object with the given attributes.
882 	Thread* thread = attributes.thread;
883 	if (thread != NULL) {
884 		thread->AcquireReference();
885 	} else {
886 		status = Thread::Create(attributes.name, thread);
887 		if (status != B_OK)
888 			return status;
889 	}
890 	BReference<Thread> threadReference(thread, true);
891 
892 	thread->team = team;
893 		// set already, so, if something goes wrong, the team pointer is
894 		// available for deinitialization
895 	thread->priority = attributes.priority == -1
896 		? B_NORMAL_PRIORITY : attributes.priority;
897 	thread->priority = std::max(thread->priority,
898 			(int32)THREAD_MIN_SET_PRIORITY);
899 	thread->priority = std::min(thread->priority,
900 			(int32)THREAD_MAX_SET_PRIORITY);
901 	thread->state = B_THREAD_SUSPENDED;
902 
903 	thread->sig_block_mask = attributes.signal_mask;
904 
905 	// init debug structure
906 	init_thread_debug_info(&thread->debug_info);
907 
908 	// create the kernel stack
909 	char stackName[B_OS_NAME_LENGTH];
910 	snprintf(stackName, B_OS_NAME_LENGTH, "%s_%" B_PRId32 "_kstack",
911 		thread->name, thread->id);
912 	virtual_address_restrictions virtualRestrictions = {};
913 	virtualRestrictions.address_specification = B_ANY_KERNEL_ADDRESS;
914 	physical_address_restrictions physicalRestrictions = {};
915 
916 	thread->kernel_stack_area = create_area_etc(B_SYSTEM_TEAM, stackName,
917 		KERNEL_STACK_SIZE + KERNEL_STACK_GUARD_PAGES * B_PAGE_SIZE,
918 		B_FULL_LOCK, B_KERNEL_READ_AREA | B_KERNEL_WRITE_AREA
919 			| B_KERNEL_STACK_AREA, 0, KERNEL_STACK_GUARD_PAGES * B_PAGE_SIZE,
920 		&virtualRestrictions, &physicalRestrictions,
921 		(void**)&thread->kernel_stack_base);
922 
923 	if (thread->kernel_stack_area < 0) {
924 		// we're not yet part of a team, so we can just bail out
925 		status = thread->kernel_stack_area;
926 
927 		dprintf("create_thread: error creating kernel stack: %s!\n",
928 			strerror(status));
929 
930 		return status;
931 	}
932 
933 	thread->kernel_stack_top = thread->kernel_stack_base + KERNEL_STACK_SIZE
934 		+ KERNEL_STACK_GUARD_PAGES * B_PAGE_SIZE;
935 
936 	if (kernel) {
937 		// Init the thread's kernel stack. It will start executing
938 		// common_thread_entry() with the arguments we prepare here.
939 		ThreadEntryArguments entryArgs;
940 		entryArgs.kernelFunction = attributes.kernelEntry;
941 		entryArgs.argument = attributes.kernelArgument;
942 		entryArgs.enterUserland = false;
943 
944 		init_thread_kernel_stack(thread, &entryArgs, sizeof(entryArgs));
945 	} else {
946 		// create the userland stack, if the thread doesn't have one yet
947 		if (thread->user_stack_base == 0) {
948 			status = create_thread_user_stack(team, thread,
949 				attributes.stack_address, attributes.stack_size,
950 				attributes.additional_stack_size, attributes.guard_size,
951 				stackName);
952 			if (status != B_OK)
953 				return status;
954 		}
955 
956 		// Init the thread's kernel stack. It will start executing
957 		// common_thread_entry() with the arguments we prepare here.
958 		UserThreadEntryArguments entryArgs;
959 		entryArgs.kernelFunction = attributes.kernelEntry;
960 		entryArgs.argument = attributes.kernelArgument;
961 		entryArgs.enterUserland = true;
962 		entryArgs.userlandEntry = (addr_t)attributes.entry;
963 		entryArgs.userlandArgument1 = attributes.args1;
964 		entryArgs.userlandArgument2 = attributes.args2;
965 		entryArgs.pthread = attributes.pthread;
966 		entryArgs.forkArgs = attributes.forkArgs;
967 		entryArgs.flags = attributes.flags;
968 
969 		init_thread_kernel_stack(thread, &entryArgs, sizeof(entryArgs));
970 
971 		// create the pre-defined thread timers
972 		status = user_timer_create_thread_timers(team, thread);
973 		if (status != B_OK)
974 			return status;
975 	}
976 
977 	// lock the team and see, if it is still alive
978 	TeamLocker teamLocker(team);
979 	if (team->state >= TEAM_STATE_SHUTDOWN)
980 		return B_BAD_TEAM_ID;
981 
982 	bool debugNewThread = false;
983 	if (!kernel) {
984 		// allocate the user_thread structure, if not already allocated
985 		if (thread->user_thread == NULL) {
986 			thread->user_thread = team_allocate_user_thread(team);
987 			if (thread->user_thread == NULL)
988 				return B_NO_MEMORY;
989 		}
990 
991 		// If the new thread belongs to the same team as the current thread, it
992 		// may inherit some of the thread debug flags.
993 		Thread* currentThread = thread_get_current_thread();
994 		if (currentThread != NULL && currentThread->team == team) {
995 			// inherit all user flags...
996 			int32 debugFlags = atomic_get(&currentThread->debug_info.flags)
997 				& B_THREAD_DEBUG_USER_FLAG_MASK;
998 
999 			// ... save the syscall tracing flags, unless explicitely specified
1000 			if (!(debugFlags & B_THREAD_DEBUG_SYSCALL_TRACE_CHILD_THREADS)) {
1001 				debugFlags &= ~(B_THREAD_DEBUG_PRE_SYSCALL
1002 					| B_THREAD_DEBUG_POST_SYSCALL);
1003 			}
1004 
1005 			thread->debug_info.flags = debugFlags;
1006 
1007 			// stop the new thread, if desired
1008 			debugNewThread = debugFlags & B_THREAD_DEBUG_STOP_CHILD_THREADS;
1009 		}
1010 	}
1011 
1012 	// We're going to make the thread live, now. The thread itself will take
1013 	// over a reference to its Thread object. We'll acquire another reference
1014 	// for our own use (and threadReference remains armed).
1015 
1016 	ThreadLocker threadLocker(thread);
1017 
1018 	InterruptsSpinLocker threadCreationLocker(gThreadCreationLock);
1019 	WriteSpinLocker threadHashLocker(sThreadHashLock);
1020 
1021 	// check the thread limit
1022 	if (sUsedThreads >= sMaxThreads) {
1023 		// Clean up the user_thread structure. It's a bit unfortunate that the
1024 		// Thread destructor cannot do that, so we have to do that explicitly.
1025 		threadHashLocker.Unlock();
1026 		threadCreationLocker.Unlock();
1027 
1028 		user_thread* userThread = thread->user_thread;
1029 		thread->user_thread = NULL;
1030 
1031 		threadLocker.Unlock();
1032 		teamLocker.Unlock();
1033 
1034 		if (userThread != NULL)
1035 			team_free_user_thread(team, userThread);
1036 
1037 		return B_NO_MORE_THREADS;
1038 	}
1039 
1040 	// make thread visible in global hash/list
1041 	thread->visible = true;
1042 	sUsedThreads++;
1043 
1044 	scheduler_on_thread_init(thread);
1045 
1046 	thread->AcquireReference();
1047 
1048 	// Debug the new thread, if the parent thread required that (see above),
1049 	// or the respective global team debug flag is set. But only, if a
1050 	// debugger is installed for the team.
1051 	if (!kernel) {
1052 		int32 teamDebugFlags = atomic_get(&team->debug_info.flags);
1053 		debugNewThread |= (teamDebugFlags & B_TEAM_DEBUG_STOP_NEW_THREADS) != 0;
1054 		if (debugNewThread
1055 			&& (teamDebugFlags & B_TEAM_DEBUG_DEBUGGER_INSTALLED) != 0) {
1056 			thread->debug_info.flags |= B_THREAD_DEBUG_STOP;
1057 		}
1058 	}
1059 
1060 	{
1061 		SpinLocker signalLocker(team->signal_lock);
1062 		SpinLocker timeLocker(team->time_lock);
1063 
1064 		// insert thread into team
1065 		insert_thread_into_team(team, thread);
1066 	}
1067 
1068 	threadHashLocker.Unlock();
1069 	threadCreationLocker.Unlock();
1070 	threadLocker.Unlock();
1071 	teamLocker.Unlock();
1072 
1073 	// notify listeners
1074 	sNotificationService.Notify(THREAD_ADDED, thread);
1075 
1076 	return thread->id;
1077 }
1078 
1079 
1080 static status_t
1081 undertaker(void* /*args*/)
1082 {
1083 	while (true) {
1084 		// wait for a thread to bury
1085 		InterruptsSpinLocker locker(sUndertakerLock);
1086 
1087 		while (sUndertakerEntries.IsEmpty()) {
1088 			ConditionVariableEntry conditionEntry;
1089 			sUndertakerCondition.Add(&conditionEntry);
1090 			locker.Unlock();
1091 
1092 			conditionEntry.Wait();
1093 
1094 			locker.Lock();
1095 		}
1096 
1097 		UndertakerEntry* _entry = sUndertakerEntries.RemoveHead();
1098 		locker.Unlock();
1099 
1100 		UndertakerEntry entry = *_entry;
1101 			// we need a copy, since the original entry is on the thread's stack
1102 
1103 		// we've got an entry
1104 		Thread* thread = entry.thread;
1105 
1106 		// make sure the thread isn't running anymore
1107 		InterruptsSpinLocker schedulerLocker(thread->scheduler_lock);
1108 		ASSERT(thread->state == THREAD_STATE_FREE_ON_RESCHED);
1109 		schedulerLocker.Unlock();
1110 
1111 		// remove this thread from from the kernel team -- this makes it
1112 		// unaccessible
1113 		Team* kernelTeam = team_get_kernel_team();
1114 		TeamLocker kernelTeamLocker(kernelTeam);
1115 		thread->Lock();
1116 
1117 		InterruptsSpinLocker threadCreationLocker(gThreadCreationLock);
1118 		SpinLocker signalLocker(kernelTeam->signal_lock);
1119 		SpinLocker timeLocker(kernelTeam->time_lock);
1120 
1121 		remove_thread_from_team(kernelTeam, thread);
1122 
1123 		timeLocker.Unlock();
1124 		signalLocker.Unlock();
1125 		threadCreationLocker.Unlock();
1126 
1127 		kernelTeamLocker.Unlock();
1128 
1129 		// free the thread structure
1130 		thread->UnlockAndReleaseReference();
1131 	}
1132 
1133 	// can never get here
1134 	return B_OK;
1135 }
1136 
1137 
1138 /*!	Returns the semaphore the thread is currently waiting on.
1139 
1140 	The return value is purely informative.
1141 	The caller must hold the scheduler lock.
1142 
1143 	\param thread The thread.
1144 	\return The ID of the semaphore the thread is currently waiting on or \c -1,
1145 		if it isn't waiting on a semaphore.
1146 */
1147 static sem_id
1148 get_thread_wait_sem(Thread* thread)
1149 {
1150 	if (thread->state == B_THREAD_WAITING
1151 		&& thread->wait.type == THREAD_BLOCK_TYPE_SEMAPHORE) {
1152 		return (sem_id)(addr_t)thread->wait.object;
1153 	}
1154 	return -1;
1155 }
1156 
1157 
1158 /*!	Fills the thread_info structure with information from the specified thread.
1159 	The caller must hold the thread's lock and the scheduler lock.
1160 */
1161 static void
1162 fill_thread_info(Thread *thread, thread_info *info, size_t size)
1163 {
1164 	info->thread = thread->id;
1165 	info->team = thread->team->id;
1166 
1167 	strlcpy(info->name, thread->name, B_OS_NAME_LENGTH);
1168 
1169 	info->sem = -1;
1170 
1171 	if (thread->state == B_THREAD_WAITING) {
1172 		info->state = B_THREAD_WAITING;
1173 
1174 		switch (thread->wait.type) {
1175 			case THREAD_BLOCK_TYPE_SNOOZE:
1176 				info->state = B_THREAD_ASLEEP;
1177 				break;
1178 
1179 			case THREAD_BLOCK_TYPE_SEMAPHORE:
1180 			{
1181 				sem_id sem = (sem_id)(addr_t)thread->wait.object;
1182 				if (sem == thread->msg.read_sem)
1183 					info->state = B_THREAD_RECEIVING;
1184 				else
1185 					info->sem = sem;
1186 				break;
1187 			}
1188 
1189 			case THREAD_BLOCK_TYPE_CONDITION_VARIABLE:
1190 			default:
1191 				break;
1192 		}
1193 	} else
1194 		info->state = (thread_state)thread->state;
1195 
1196 	info->priority = thread->priority;
1197 	info->stack_base = (void *)thread->user_stack_base;
1198 	info->stack_end = (void *)(thread->user_stack_base
1199 		+ thread->user_stack_size);
1200 
1201 	InterruptsSpinLocker threadTimeLocker(thread->time_lock);
1202 	info->user_time = thread->user_time;
1203 	info->kernel_time = thread->kernel_time;
1204 }
1205 
1206 
1207 static status_t
1208 send_data_etc(thread_id id, int32 code, const void *buffer, size_t bufferSize,
1209 	int32 flags)
1210 {
1211 	// get the thread
1212 	Thread *target = Thread::Get(id);
1213 	if (target == NULL)
1214 		return B_BAD_THREAD_ID;
1215 	BReference<Thread> targetReference(target, true);
1216 
1217 	// get the write semaphore
1218 	ThreadLocker targetLocker(target);
1219 	sem_id cachedSem = target->msg.write_sem;
1220 	targetLocker.Unlock();
1221 
1222 	if (bufferSize > THREAD_MAX_MESSAGE_SIZE)
1223 		return B_NO_MEMORY;
1224 
1225 	status_t status = acquire_sem_etc(cachedSem, 1, flags, 0);
1226 	if (status == B_INTERRUPTED) {
1227 		// we got interrupted by a signal
1228 		return status;
1229 	}
1230 	if (status != B_OK) {
1231 		// Any other acquisition problems may be due to thread deletion
1232 		return B_BAD_THREAD_ID;
1233 	}
1234 
1235 	void* data;
1236 	if (bufferSize > 0) {
1237 		data = malloc(bufferSize);
1238 		if (data == NULL)
1239 			return B_NO_MEMORY;
1240 		if (user_memcpy(data, buffer, bufferSize) != B_OK) {
1241 			free(data);
1242 			return B_BAD_DATA;
1243 		}
1244 	} else
1245 		data = NULL;
1246 
1247 	targetLocker.Lock();
1248 
1249 	// The target thread could have been deleted at this point.
1250 	if (!target->IsAlive()) {
1251 		targetLocker.Unlock();
1252 		free(data);
1253 		return B_BAD_THREAD_ID;
1254 	}
1255 
1256 	// Save message informations
1257 	target->msg.sender = thread_get_current_thread()->id;
1258 	target->msg.code = code;
1259 	target->msg.size = bufferSize;
1260 	target->msg.buffer = data;
1261 	cachedSem = target->msg.read_sem;
1262 
1263 	targetLocker.Unlock();
1264 
1265 	release_sem(cachedSem);
1266 	return B_OK;
1267 }
1268 
1269 
1270 static int32
1271 receive_data_etc(thread_id *_sender, void *buffer, size_t bufferSize,
1272 	int32 flags)
1273 {
1274 	Thread *thread = thread_get_current_thread();
1275 	size_t size;
1276 	int32 code;
1277 
1278 	status_t status = acquire_sem_etc(thread->msg.read_sem, 1, flags, 0);
1279 	if (status != B_OK) {
1280 		// Actually, we're not supposed to return error codes
1281 		// but since the only reason this can fail is that we
1282 		// were killed, it's probably okay to do so (but also
1283 		// meaningless).
1284 		return status;
1285 	}
1286 
1287 	if (buffer != NULL && bufferSize != 0 && thread->msg.buffer != NULL) {
1288 		size = min_c(bufferSize, thread->msg.size);
1289 		status = user_memcpy(buffer, thread->msg.buffer, size);
1290 		if (status != B_OK) {
1291 			free(thread->msg.buffer);
1292 			release_sem(thread->msg.write_sem);
1293 			return status;
1294 		}
1295 	}
1296 
1297 	*_sender = thread->msg.sender;
1298 	code = thread->msg.code;
1299 
1300 	free(thread->msg.buffer);
1301 	release_sem(thread->msg.write_sem);
1302 
1303 	return code;
1304 }
1305 
1306 
1307 static status_t
1308 common_getrlimit(int resource, struct rlimit * rlp)
1309 {
1310 	if (!rlp)
1311 		return B_BAD_ADDRESS;
1312 
1313 	switch (resource) {
1314 		case RLIMIT_AS:
1315 			rlp->rlim_cur = __HAIKU_ADDR_MAX;
1316 			rlp->rlim_max = __HAIKU_ADDR_MAX;
1317 			return B_OK;
1318 
1319 		case RLIMIT_CORE:
1320 			rlp->rlim_cur = 0;
1321 			rlp->rlim_max = 0;
1322 			return B_OK;
1323 
1324 		case RLIMIT_DATA:
1325 			rlp->rlim_cur = RLIM_INFINITY;
1326 			rlp->rlim_max = RLIM_INFINITY;
1327 			return B_OK;
1328 
1329 		case RLIMIT_NOFILE:
1330 		case RLIMIT_NOVMON:
1331 			return vfs_getrlimit(resource, rlp);
1332 
1333 		case RLIMIT_STACK:
1334 		{
1335 			rlp->rlim_cur = USER_MAIN_THREAD_STACK_SIZE;
1336 			rlp->rlim_max = USER_MAIN_THREAD_STACK_SIZE;
1337 			return B_OK;
1338 		}
1339 
1340 		default:
1341 			return EINVAL;
1342 	}
1343 
1344 	return B_OK;
1345 }
1346 
1347 
1348 static status_t
1349 common_setrlimit(int resource, const struct rlimit * rlp)
1350 {
1351 	if (!rlp)
1352 		return B_BAD_ADDRESS;
1353 
1354 	switch (resource) {
1355 		case RLIMIT_CORE:
1356 			// We don't support core file, so allow settings to 0/0 only.
1357 			if (rlp->rlim_cur != 0 || rlp->rlim_max != 0)
1358 				return EINVAL;
1359 			return B_OK;
1360 
1361 		case RLIMIT_NOFILE:
1362 		case RLIMIT_NOVMON:
1363 			return vfs_setrlimit(resource, rlp);
1364 
1365 		default:
1366 			return EINVAL;
1367 	}
1368 
1369 	return B_OK;
1370 }
1371 
1372 
1373 static status_t
1374 common_snooze_etc(bigtime_t timeout, clockid_t clockID, uint32 flags,
1375 	bigtime_t* _remainingTime)
1376 {
1377 #if KDEBUG
1378 	if (!are_interrupts_enabled()) {
1379 		panic("common_snooze_etc(): called with interrupts disabled, timeout "
1380 			"%" B_PRIdBIGTIME, timeout);
1381 	}
1382 #endif
1383 
1384 	switch (clockID) {
1385 		case CLOCK_REALTIME:
1386 			// make sure the B_TIMEOUT_REAL_TIME_BASE flag is set and fall
1387 			// through
1388 			flags |= B_TIMEOUT_REAL_TIME_BASE;
1389 		case CLOCK_MONOTONIC:
1390 		{
1391 			// Store the start time, for the case that we get interrupted and
1392 			// need to return the remaining time. For absolute timeouts we can
1393 			// still get he time later, if needed.
1394 			bigtime_t startTime
1395 				= _remainingTime != NULL && (flags & B_RELATIVE_TIMEOUT) != 0
1396 					? system_time() : 0;
1397 
1398 			Thread* thread = thread_get_current_thread();
1399 
1400 			thread_prepare_to_block(thread, flags, THREAD_BLOCK_TYPE_SNOOZE,
1401 				NULL);
1402 			status_t status = thread_block_with_timeout(flags, timeout);
1403 
1404 			if (status == B_TIMED_OUT || status == B_WOULD_BLOCK)
1405 				return B_OK;
1406 
1407 			// If interrupted, compute the remaining time, if requested.
1408 			if (status == B_INTERRUPTED && _remainingTime != NULL) {
1409 				if ((flags & B_RELATIVE_TIMEOUT) != 0) {
1410 					*_remainingTime = std::max(
1411 						startTime + timeout - system_time(), (bigtime_t)0);
1412 				} else {
1413 					bigtime_t now = (flags & B_TIMEOUT_REAL_TIME_BASE) != 0
1414 						? real_time_clock_usecs() : system_time();
1415 					*_remainingTime = std::max(timeout - now, (bigtime_t)0);
1416 				}
1417 			}
1418 
1419 			return status;
1420 		}
1421 
1422 		case CLOCK_THREAD_CPUTIME_ID:
1423 			// Waiting for ourselves to do something isn't particularly
1424 			// productive.
1425 			return B_BAD_VALUE;
1426 
1427 		case CLOCK_PROCESS_CPUTIME_ID:
1428 		default:
1429 			// We don't have to support those, but we are allowed to. Could be
1430 			// done be creating a UserTimer on the fly with a custom UserEvent
1431 			// that would just wake us up.
1432 			return ENOTSUP;
1433 	}
1434 }
1435 
1436 
1437 //	#pragma mark - debugger calls
1438 
1439 
1440 static int
1441 make_thread_unreal(int argc, char **argv)
1442 {
1443 	int32 id = -1;
1444 
1445 	if (argc > 2) {
1446 		print_debugger_command_usage(argv[0]);
1447 		return 0;
1448 	}
1449 
1450 	if (argc > 1)
1451 		id = strtoul(argv[1], NULL, 0);
1452 
1453 	for (ThreadHashTable::Iterator it = sThreadHash.GetIterator();
1454 			Thread* thread = it.Next();) {
1455 		if (id != -1 && thread->id != id)
1456 			continue;
1457 
1458 		if (thread->priority > B_DISPLAY_PRIORITY) {
1459 			scheduler_set_thread_priority(thread, B_NORMAL_PRIORITY);
1460 			kprintf("thread %" B_PRId32 " made unreal\n", thread->id);
1461 		}
1462 	}
1463 
1464 	return 0;
1465 }
1466 
1467 
1468 static int
1469 set_thread_prio(int argc, char **argv)
1470 {
1471 	int32 id;
1472 	int32 prio;
1473 
1474 	if (argc > 3 || argc < 2) {
1475 		print_debugger_command_usage(argv[0]);
1476 		return 0;
1477 	}
1478 
1479 	prio = strtoul(argv[1], NULL, 0);
1480 	if (prio > THREAD_MAX_SET_PRIORITY)
1481 		prio = THREAD_MAX_SET_PRIORITY;
1482 	if (prio < THREAD_MIN_SET_PRIORITY)
1483 		prio = THREAD_MIN_SET_PRIORITY;
1484 
1485 	if (argc > 2)
1486 		id = strtoul(argv[2], NULL, 0);
1487 	else
1488 		id = thread_get_current_thread()->id;
1489 
1490 	bool found = false;
1491 	for (ThreadHashTable::Iterator it = sThreadHash.GetIterator();
1492 			Thread* thread = it.Next();) {
1493 		if (thread->id != id)
1494 			continue;
1495 		scheduler_set_thread_priority(thread, prio);
1496 		kprintf("thread %" B_PRId32 " set to priority %" B_PRId32 "\n", id, prio);
1497 		found = true;
1498 		break;
1499 	}
1500 	if (!found)
1501 		kprintf("thread %" B_PRId32 " (%#" B_PRIx32 ") not found\n", id, id);
1502 
1503 	return 0;
1504 }
1505 
1506 
1507 static int
1508 make_thread_suspended(int argc, char **argv)
1509 {
1510 	int32 id;
1511 
1512 	if (argc > 2) {
1513 		print_debugger_command_usage(argv[0]);
1514 		return 0;
1515 	}
1516 
1517 	if (argc == 1)
1518 		id = thread_get_current_thread()->id;
1519 	else
1520 		id = strtoul(argv[1], NULL, 0);
1521 
1522 	bool found = false;
1523 	for (ThreadHashTable::Iterator it = sThreadHash.GetIterator();
1524 			Thread* thread = it.Next();) {
1525 		if (thread->id != id)
1526 			continue;
1527 
1528 		Signal signal(SIGSTOP, SI_USER, B_OK, team_get_kernel_team()->id);
1529 		send_signal_to_thread(thread, signal, B_DO_NOT_RESCHEDULE);
1530 
1531 		kprintf("thread %" B_PRId32 " suspended\n", id);
1532 		found = true;
1533 		break;
1534 	}
1535 	if (!found)
1536 		kprintf("thread %" B_PRId32 " (%#" B_PRIx32 ") not found\n", id, id);
1537 
1538 	return 0;
1539 }
1540 
1541 
1542 static int
1543 make_thread_resumed(int argc, char **argv)
1544 {
1545 	int32 id;
1546 
1547 	if (argc != 2) {
1548 		print_debugger_command_usage(argv[0]);
1549 		return 0;
1550 	}
1551 
1552 	// force user to enter a thread id, as using
1553 	// the current thread is usually not intended
1554 	id = strtoul(argv[1], NULL, 0);
1555 
1556 	bool found = false;
1557 	for (ThreadHashTable::Iterator it = sThreadHash.GetIterator();
1558 			Thread* thread = it.Next();) {
1559 		if (thread->id != id)
1560 			continue;
1561 
1562 		if (thread->state == B_THREAD_SUSPENDED || thread->state == B_THREAD_ASLEEP
1563 				|| thread->state == B_THREAD_WAITING) {
1564 			scheduler_enqueue_in_run_queue(thread);
1565 			kprintf("thread %" B_PRId32 " resumed\n", thread->id);
1566 		} else
1567 			kprintf("thread %" B_PRId32 " is already running\n", thread->id);
1568 		found = true;
1569 		break;
1570 	}
1571 	if (!found)
1572 		kprintf("thread %" B_PRId32 " (%#" B_PRIx32 ") not found\n", id, id);
1573 
1574 	return 0;
1575 }
1576 
1577 
1578 static int
1579 drop_into_debugger(int argc, char **argv)
1580 {
1581 	status_t err;
1582 	int32 id;
1583 
1584 	if (argc > 2) {
1585 		print_debugger_command_usage(argv[0]);
1586 		return 0;
1587 	}
1588 
1589 	if (argc == 1)
1590 		id = thread_get_current_thread()->id;
1591 	else
1592 		id = strtoul(argv[1], NULL, 0);
1593 
1594 	err = _user_debug_thread(id);
1595 		// TODO: This is a non-trivial syscall doing some locking, so this is
1596 		// really nasty and may go seriously wrong.
1597 	if (err)
1598 		kprintf("drop failed\n");
1599 	else
1600 		kprintf("thread %" B_PRId32 " dropped into user debugger\n", id);
1601 
1602 	return 0;
1603 }
1604 
1605 
1606 /*!	Returns a user-readable string for a thread state.
1607 	Only for use in the kernel debugger.
1608 */
1609 static const char *
1610 state_to_text(Thread *thread, int32 state)
1611 {
1612 	switch (state) {
1613 		case B_THREAD_READY:
1614 			return "ready";
1615 
1616 		case B_THREAD_RUNNING:
1617 			return "running";
1618 
1619 		case B_THREAD_WAITING:
1620 		{
1621 			if (thread != NULL) {
1622 				switch (thread->wait.type) {
1623 					case THREAD_BLOCK_TYPE_SNOOZE:
1624 						return "zzz";
1625 
1626 					case THREAD_BLOCK_TYPE_SEMAPHORE:
1627 					{
1628 						sem_id sem = (sem_id)(addr_t)thread->wait.object;
1629 						if (sem == thread->msg.read_sem)
1630 							return "receive";
1631 						break;
1632 					}
1633 				}
1634 			}
1635 
1636 			return "waiting";
1637 		}
1638 
1639 		case B_THREAD_SUSPENDED:
1640 			return "suspended";
1641 
1642 		case THREAD_STATE_FREE_ON_RESCHED:
1643 			return "death";
1644 
1645 		default:
1646 			return "UNKNOWN";
1647 	}
1648 }
1649 
1650 
1651 static void
1652 print_thread_list_table_head()
1653 {
1654 	kprintf("%-*s       id  state     wait for  %-*s    cpu pri  %-*s   team  "
1655 		"name\n",
1656 		B_PRINTF_POINTER_WIDTH, "thread", B_PRINTF_POINTER_WIDTH, "object",
1657 		B_PRINTF_POINTER_WIDTH, "stack");
1658 }
1659 
1660 
1661 static void
1662 _dump_thread_info(Thread *thread, bool shortInfo)
1663 {
1664 	if (shortInfo) {
1665 		kprintf("%p %6" B_PRId32 "  %-10s", thread, thread->id,
1666 			state_to_text(thread, thread->state));
1667 
1668 		// does it block on a semaphore or a condition variable?
1669 		if (thread->state == B_THREAD_WAITING) {
1670 			switch (thread->wait.type) {
1671 				case THREAD_BLOCK_TYPE_SEMAPHORE:
1672 				{
1673 					sem_id sem = (sem_id)(addr_t)thread->wait.object;
1674 					if (sem == thread->msg.read_sem)
1675 						kprintf("%*s", B_PRINTF_POINTER_WIDTH + 15, "");
1676 					else {
1677 						kprintf("sem       %-*" B_PRId32,
1678 							B_PRINTF_POINTER_WIDTH + 5, sem);
1679 					}
1680 					break;
1681 				}
1682 
1683 				case THREAD_BLOCK_TYPE_CONDITION_VARIABLE:
1684 					kprintf("cvar      %p   ", thread->wait.object);
1685 					break;
1686 
1687 				case THREAD_BLOCK_TYPE_SNOOZE:
1688 					kprintf("%*s", B_PRINTF_POINTER_WIDTH + 15, "");
1689 					break;
1690 
1691 				case THREAD_BLOCK_TYPE_SIGNAL:
1692 					kprintf("signal%*s", B_PRINTF_POINTER_WIDTH + 9, "");
1693 					break;
1694 
1695 				case THREAD_BLOCK_TYPE_MUTEX:
1696 					kprintf("mutex     %p   ", thread->wait.object);
1697 					break;
1698 
1699 				case THREAD_BLOCK_TYPE_RW_LOCK:
1700 					kprintf("rwlock    %p   ", thread->wait.object);
1701 					break;
1702 
1703 				case THREAD_BLOCK_TYPE_USER:
1704 					kprintf("user%*s", B_PRINTF_POINTER_WIDTH + 11, "");
1705 					break;
1706 
1707 				case THREAD_BLOCK_TYPE_OTHER:
1708 					kprintf("other%*s", B_PRINTF_POINTER_WIDTH + 10, "");
1709 					break;
1710 
1711 				default:
1712 					kprintf("???       %p   ", thread->wait.object);
1713 					break;
1714 			}
1715 		} else
1716 			kprintf("-%*s", B_PRINTF_POINTER_WIDTH + 14, "");
1717 
1718 		// on which CPU does it run?
1719 		if (thread->cpu)
1720 			kprintf("%2d", thread->cpu->cpu_num);
1721 		else
1722 			kprintf(" -");
1723 
1724 		kprintf("%4" B_PRId32 "  %p%5" B_PRId32 "  %s\n", thread->priority,
1725 			(void *)thread->kernel_stack_base, thread->team->id, thread->name);
1726 
1727 		return;
1728 	}
1729 
1730 	// print the long info
1731 
1732 	struct thread_death_entry *death = NULL;
1733 
1734 	kprintf("THREAD: %p\n", thread);
1735 	kprintf("id:                 %" B_PRId32 " (%#" B_PRIx32 ")\n", thread->id,
1736 		thread->id);
1737 	kprintf("serial_number:      %" B_PRId64 "\n", thread->serial_number);
1738 	kprintf("name:               \"%s\"\n", thread->name);
1739 	kprintf("hash_next:          %p\nteam_next:          %p\n",
1740 		thread->hash_next, thread->team_next);
1741 	kprintf("priority:           %" B_PRId32 " (I/O: %" B_PRId32 ")\n",
1742 		thread->priority, thread->io_priority);
1743 	kprintf("state:              %s\n", state_to_text(thread, thread->state));
1744 	kprintf("cpu:                %p ", thread->cpu);
1745 	if (thread->cpu)
1746 		kprintf("(%d)\n", thread->cpu->cpu_num);
1747 	else
1748 		kprintf("\n");
1749 	kprintf("sig_pending:        %#" B_PRIx64 " (blocked: %#" B_PRIx64
1750 		", before sigsuspend(): %#" B_PRIx64 ")\n",
1751 		(int64)thread->ThreadPendingSignals(),
1752 		(int64)thread->sig_block_mask,
1753 		(int64)thread->sigsuspend_original_unblocked_mask);
1754 	kprintf("in_kernel:          %d\n", thread->in_kernel);
1755 
1756 	if (thread->state == B_THREAD_WAITING) {
1757 		kprintf("waiting for:        ");
1758 
1759 		switch (thread->wait.type) {
1760 			case THREAD_BLOCK_TYPE_SEMAPHORE:
1761 			{
1762 				sem_id sem = (sem_id)(addr_t)thread->wait.object;
1763 				if (sem == thread->msg.read_sem)
1764 					kprintf("data\n");
1765 				else
1766 					kprintf("semaphore %" B_PRId32 "\n", sem);
1767 				break;
1768 			}
1769 
1770 			case THREAD_BLOCK_TYPE_CONDITION_VARIABLE:
1771 				kprintf("condition variable %p\n", thread->wait.object);
1772 				break;
1773 
1774 			case THREAD_BLOCK_TYPE_SNOOZE:
1775 				kprintf("snooze()\n");
1776 				break;
1777 
1778 			case THREAD_BLOCK_TYPE_SIGNAL:
1779 				kprintf("signal\n");
1780 				break;
1781 
1782 			case THREAD_BLOCK_TYPE_MUTEX:
1783 				kprintf("mutex %p\n", thread->wait.object);
1784 				break;
1785 
1786 			case THREAD_BLOCK_TYPE_RW_LOCK:
1787 				kprintf("rwlock %p\n", thread->wait.object);
1788 				break;
1789 
1790 			case THREAD_BLOCK_TYPE_USER:
1791 				kprintf("user\n");
1792 				break;
1793 
1794 			case THREAD_BLOCK_TYPE_OTHER:
1795 				kprintf("other (%s)\n", (char*)thread->wait.object);
1796 				break;
1797 
1798 			default:
1799 				kprintf("unknown (%p)\n", thread->wait.object);
1800 				break;
1801 		}
1802 	}
1803 
1804 	kprintf("fault_handler:      %p\n", (void *)thread->fault_handler);
1805 	kprintf("team:               %p, \"%s\"\n", thread->team,
1806 		thread->team->Name());
1807 	kprintf("  exit.sem:         %" B_PRId32 "\n", thread->exit.sem);
1808 	kprintf("  exit.status:      %#" B_PRIx32 " (%s)\n", thread->exit.status,
1809 		strerror(thread->exit.status));
1810 	kprintf("  exit.waiters:\n");
1811 	while ((death = (struct thread_death_entry*)list_get_next_item(
1812 			&thread->exit.waiters, death)) != NULL) {
1813 		kprintf("\t%p (thread %" B_PRId32 ")\n", death, death->thread);
1814 	}
1815 
1816 	kprintf("kernel_stack_area:  %" B_PRId32 "\n", thread->kernel_stack_area);
1817 	kprintf("kernel_stack_base:  %p\n", (void *)thread->kernel_stack_base);
1818 	kprintf("user_stack_area:    %" B_PRId32 "\n", thread->user_stack_area);
1819 	kprintf("user_stack_base:    %p\n", (void *)thread->user_stack_base);
1820 	kprintf("user_local_storage: %p\n", (void *)thread->user_local_storage);
1821 	kprintf("user_thread:        %p\n", (void *)thread->user_thread);
1822 	kprintf("kernel_errno:       %#x (%s)\n", thread->kernel_errno,
1823 		strerror(thread->kernel_errno));
1824 	kprintf("kernel_time:        %" B_PRId64 "\n", thread->kernel_time);
1825 	kprintf("user_time:          %" B_PRId64 "\n", thread->user_time);
1826 	kprintf("flags:              0x%" B_PRIx32 "\n", thread->flags);
1827 	kprintf("architecture dependant section:\n");
1828 	arch_thread_dump_info(&thread->arch_info);
1829 	kprintf("scheduler data:\n");
1830 	scheduler_dump_thread_data(thread);
1831 }
1832 
1833 
1834 static int
1835 dump_thread_info(int argc, char **argv)
1836 {
1837 	bool shortInfo = false;
1838 	int argi = 1;
1839 	if (argi < argc && strcmp(argv[argi], "-s") == 0) {
1840 		shortInfo = true;
1841 		print_thread_list_table_head();
1842 		argi++;
1843 	}
1844 
1845 	if (argi == argc) {
1846 		_dump_thread_info(thread_get_current_thread(), shortInfo);
1847 		return 0;
1848 	}
1849 
1850 	for (; argi < argc; argi++) {
1851 		const char *name = argv[argi];
1852 		ulong arg = strtoul(name, NULL, 0);
1853 
1854 		if (IS_KERNEL_ADDRESS(arg)) {
1855 			// semi-hack
1856 			_dump_thread_info((Thread *)arg, shortInfo);
1857 			continue;
1858 		}
1859 
1860 		// walk through the thread list, trying to match name or id
1861 		bool found = false;
1862 		for (ThreadHashTable::Iterator it = sThreadHash.GetIterator();
1863 				Thread* thread = it.Next();) {
1864 			if (!strcmp(name, thread->name) || thread->id == (thread_id)arg) {
1865 				_dump_thread_info(thread, shortInfo);
1866 				found = true;
1867 				break;
1868 			}
1869 		}
1870 
1871 		if (!found)
1872 			kprintf("thread \"%s\" (%" B_PRId32 ") doesn't exist!\n", name, (thread_id)arg);
1873 	}
1874 
1875 	return 0;
1876 }
1877 
1878 
1879 static int
1880 dump_thread_list(int argc, char **argv)
1881 {
1882 	bool realTimeOnly = false;
1883 	bool calling = false;
1884 	const char *callSymbol = NULL;
1885 	addr_t callStart = 0;
1886 	addr_t callEnd = 0;
1887 	int32 requiredState = 0;
1888 	team_id team = -1;
1889 	sem_id sem = -1;
1890 
1891 	if (!strcmp(argv[0], "realtime"))
1892 		realTimeOnly = true;
1893 	else if (!strcmp(argv[0], "ready"))
1894 		requiredState = B_THREAD_READY;
1895 	else if (!strcmp(argv[0], "running"))
1896 		requiredState = B_THREAD_RUNNING;
1897 	else if (!strcmp(argv[0], "waiting")) {
1898 		requiredState = B_THREAD_WAITING;
1899 
1900 		if (argc > 1) {
1901 			sem = strtoul(argv[1], NULL, 0);
1902 			if (sem == 0)
1903 				kprintf("ignoring invalid semaphore argument.\n");
1904 		}
1905 	} else if (!strcmp(argv[0], "calling")) {
1906 		if (argc < 2) {
1907 			kprintf("Need to give a symbol name or start and end arguments.\n");
1908 			return 0;
1909 		} else if (argc == 3) {
1910 			callStart = parse_expression(argv[1]);
1911 			callEnd = parse_expression(argv[2]);
1912 		} else
1913 			callSymbol = argv[1];
1914 
1915 		calling = true;
1916 	} else if (argc > 1) {
1917 		team = strtoul(argv[1], NULL, 0);
1918 		if (team == 0)
1919 			kprintf("ignoring invalid team argument.\n");
1920 	}
1921 
1922 	print_thread_list_table_head();
1923 
1924 	for (ThreadHashTable::Iterator it = sThreadHash.GetIterator();
1925 			Thread* thread = it.Next();) {
1926 		// filter out threads not matching the search criteria
1927 		if ((requiredState && thread->state != requiredState)
1928 			|| (calling && !arch_debug_contains_call(thread, callSymbol,
1929 					callStart, callEnd))
1930 			|| (sem > 0 && get_thread_wait_sem(thread) != sem)
1931 			|| (team > 0 && thread->team->id != team)
1932 			|| (realTimeOnly && thread->priority < B_REAL_TIME_DISPLAY_PRIORITY))
1933 			continue;
1934 
1935 		_dump_thread_info(thread, true);
1936 	}
1937 	return 0;
1938 }
1939 
1940 
1941 //	#pragma mark - private kernel API
1942 
1943 
1944 void
1945 thread_exit(void)
1946 {
1947 	cpu_status state;
1948 	Thread* thread = thread_get_current_thread();
1949 	Team* team = thread->team;
1950 	Team* kernelTeam = team_get_kernel_team();
1951 	status_t status;
1952 	struct thread_debug_info debugInfo;
1953 	team_id teamID = team->id;
1954 
1955 	TRACE(("thread %" B_PRId32 " exiting w/return code %#" B_PRIx32 "\n",
1956 		thread->id, thread->exit.status));
1957 
1958 	if (!are_interrupts_enabled())
1959 		panic("thread_exit() called with interrupts disabled!\n");
1960 
1961 	// boost our priority to get this over with
1962 	scheduler_set_thread_priority(thread, B_URGENT_DISPLAY_PRIORITY);
1963 
1964 	if (team != kernelTeam) {
1965 		// Delete all user timers associated with the thread.
1966 		ThreadLocker threadLocker(thread);
1967 		thread->DeleteUserTimers(false);
1968 
1969 		// detach the thread's user thread
1970 		user_thread* userThread = thread->user_thread;
1971 		thread->user_thread = NULL;
1972 
1973 		threadLocker.Unlock();
1974 
1975 		// Delete the thread's user thread, if it's not the main thread. If it
1976 		// is, we can save the work, since it will be deleted with the team's
1977 		// address space.
1978 		if (thread != team->main_thread)
1979 			team_free_user_thread(team, userThread);
1980 	}
1981 
1982 	// remember the user stack area -- we will delete it below
1983 	area_id userStackArea = -1;
1984 	if (team->address_space != NULL && thread->user_stack_area >= 0) {
1985 		userStackArea = thread->user_stack_area;
1986 		thread->user_stack_area = -1;
1987 	}
1988 
1989 	struct job_control_entry *death = NULL;
1990 	struct thread_death_entry* threadDeathEntry = NULL;
1991 	bool deleteTeam = false;
1992 	port_id debuggerPort = -1;
1993 
1994 	if (team != kernelTeam) {
1995 		user_debug_thread_exiting(thread);
1996 
1997 		if (team->main_thread == thread) {
1998 			// The main thread is exiting. Shut down the whole team.
1999 			deleteTeam = true;
2000 
2001 			// kill off all other threads and the user debugger facilities
2002 			debuggerPort = team_shutdown_team(team);
2003 
2004 			// acquire necessary locks, which are: process group lock, kernel
2005 			// team lock, parent team lock, and the team lock
2006 			team->LockProcessGroup();
2007 			kernelTeam->Lock();
2008 			team->LockTeamAndParent(true);
2009 		} else {
2010 			threadDeathEntry
2011 				= (thread_death_entry*)malloc(sizeof(thread_death_entry));
2012 
2013 			// acquire necessary locks, which are: kernel team lock and the team
2014 			// lock
2015 			kernelTeam->Lock();
2016 			team->Lock();
2017 		}
2018 
2019 		ThreadLocker threadLocker(thread);
2020 
2021 		state = disable_interrupts();
2022 
2023 		// swap address spaces, to make sure we're running on the kernel's pgdir
2024 		vm_swap_address_space(team->address_space, VMAddressSpace::Kernel());
2025 
2026 		WriteSpinLocker teamLocker(thread->team_lock);
2027 		SpinLocker threadCreationLocker(gThreadCreationLock);
2028 			// removing the thread and putting its death entry to the parent
2029 			// team needs to be an atomic operation
2030 
2031 		// remember how long this thread lasted
2032 		bigtime_t now = system_time();
2033 
2034 		InterruptsSpinLocker signalLocker(kernelTeam->signal_lock);
2035 		SpinLocker teamTimeLocker(kernelTeam->time_lock);
2036 		SpinLocker threadTimeLocker(thread->time_lock);
2037 
2038 		thread->kernel_time += now - thread->last_time;
2039 		thread->last_time = now;
2040 
2041 		team->dead_threads_kernel_time += thread->kernel_time;
2042 		team->dead_threads_user_time += thread->user_time;
2043 
2044 		// stop/update thread/team CPU time user timers
2045 		if (thread->HasActiveCPUTimeUserTimers()
2046 			|| team->HasActiveCPUTimeUserTimers()) {
2047 			user_timer_stop_cpu_timers(thread, NULL);
2048 		}
2049 
2050 		// deactivate CPU time user timers for the thread
2051 		if (thread->HasActiveCPUTimeUserTimers())
2052 			thread->DeactivateCPUTimeUserTimers();
2053 
2054 		threadTimeLocker.Unlock();
2055 
2056 		// put the thread into the kernel team until it dies
2057 		remove_thread_from_team(team, thread);
2058 		insert_thread_into_team(kernelTeam, thread);
2059 
2060 		teamTimeLocker.Unlock();
2061 		signalLocker.Unlock();
2062 
2063 		teamLocker.Unlock();
2064 
2065 		if (team->death_entry != NULL) {
2066 			if (--team->death_entry->remaining_threads == 0)
2067 				team->death_entry->condition.NotifyOne();
2068 		}
2069 
2070 		if (deleteTeam) {
2071 			Team* parent = team->parent;
2072 
2073 			// Set the team job control state to "dead" and detach the job
2074 			// control entry from our team struct.
2075 			team_set_job_control_state(team, JOB_CONTROL_STATE_DEAD, NULL);
2076 			death = team->job_control_entry;
2077 			team->job_control_entry = NULL;
2078 
2079 			if (death != NULL) {
2080 				death->InitDeadState();
2081 
2082 				// team_set_job_control_state() already moved our entry
2083 				// into the parent's list. We just check the soft limit of
2084 				// death entries.
2085 				if (parent->dead_children.count > MAX_DEAD_CHILDREN) {
2086 					death = parent->dead_children.entries.RemoveHead();
2087 					parent->dead_children.count--;
2088 				} else
2089 					death = NULL;
2090 			}
2091 
2092 			threadCreationLocker.Unlock();
2093 			restore_interrupts(state);
2094 
2095 			threadLocker.Unlock();
2096 
2097 			// Get a temporary reference to the team's process group
2098 			// -- team_remove_team() removes the team from the group, which
2099 			// might destroy it otherwise and we wouldn't be able to unlock it.
2100 			ProcessGroup* group = team->group;
2101 			group->AcquireReference();
2102 
2103 			pid_t foregroundGroupToSignal;
2104 			team_remove_team(team, foregroundGroupToSignal);
2105 
2106 			// unlock everything but the parent team
2107 			team->Unlock();
2108 			if (parent != kernelTeam)
2109 				kernelTeam->Unlock();
2110 			group->Unlock();
2111 			group->ReleaseReference();
2112 
2113 			// Send SIGCHLD to the parent as long as we still have its lock.
2114 			// This makes job control state change + signalling atomic.
2115 			Signal childSignal(SIGCHLD, team->exit.reason, B_OK, team->id);
2116 			if (team->exit.reason == CLD_EXITED) {
2117 				childSignal.SetStatus(team->exit.status);
2118 			} else {
2119 				childSignal.SetStatus(team->exit.signal);
2120 				childSignal.SetSendingUser(team->exit.signaling_user);
2121 			}
2122 			send_signal_to_team(parent, childSignal, B_DO_NOT_RESCHEDULE);
2123 
2124 			// also unlock the parent
2125 			parent->Unlock();
2126 
2127 			// If the team was a session leader with controlling TTY, we have
2128 			// to send SIGHUP to the foreground process group.
2129 			if (foregroundGroupToSignal >= 0) {
2130 				Signal groupSignal(SIGHUP, SI_USER, B_OK, team->id);
2131 				send_signal_to_process_group(foregroundGroupToSignal,
2132 					groupSignal, B_DO_NOT_RESCHEDULE);
2133 			}
2134 		} else {
2135 			// The thread is not the main thread. We store a thread death entry
2136 			// for it, unless someone is already waiting for it.
2137 			if (threadDeathEntry != NULL
2138 				&& list_is_empty(&thread->exit.waiters)) {
2139 				threadDeathEntry->thread = thread->id;
2140 				threadDeathEntry->status = thread->exit.status;
2141 
2142 				// add entry -- remove an old one, if we hit the limit
2143 				list_add_item(&team->dead_threads, threadDeathEntry);
2144 				team->dead_threads_count++;
2145 				threadDeathEntry = NULL;
2146 
2147 				if (team->dead_threads_count > MAX_DEAD_THREADS) {
2148 					threadDeathEntry
2149 						= (thread_death_entry*)list_remove_head_item(
2150 							&team->dead_threads);
2151 					team->dead_threads_count--;
2152 				}
2153 			}
2154 
2155 			threadCreationLocker.Unlock();
2156 			restore_interrupts(state);
2157 
2158 			threadLocker.Unlock();
2159 			team->Unlock();
2160 			kernelTeam->Unlock();
2161 		}
2162 
2163 		TRACE(("thread_exit: thread %" B_PRId32 " now a kernel thread!\n",
2164 			thread->id));
2165 	}
2166 
2167 	free(threadDeathEntry);
2168 
2169 	// delete the team if we're its main thread
2170 	if (deleteTeam) {
2171 		team_delete_team(team, debuggerPort);
2172 
2173 		// we need to delete any death entry that made it to here
2174 		delete death;
2175 	}
2176 
2177 	ThreadLocker threadLocker(thread);
2178 
2179 	state = disable_interrupts();
2180 	SpinLocker threadCreationLocker(gThreadCreationLock);
2181 
2182 	// mark invisible in global hash/list, so it's no longer accessible
2183 	WriteSpinLocker threadHashLocker(sThreadHashLock);
2184 	thread->visible = false;
2185 	sUsedThreads--;
2186 	threadHashLocker.Unlock();
2187 
2188 	// Stop debugging for this thread
2189 	SpinLocker threadDebugInfoLocker(thread->debug_info.lock);
2190 	debugInfo = thread->debug_info;
2191 	clear_thread_debug_info(&thread->debug_info, true);
2192 	threadDebugInfoLocker.Unlock();
2193 
2194 	// Remove the select infos. We notify them a little later.
2195 	select_info* selectInfos = thread->select_infos;
2196 	thread->select_infos = NULL;
2197 
2198 	threadCreationLocker.Unlock();
2199 	restore_interrupts(state);
2200 
2201 	threadLocker.Unlock();
2202 
2203 	destroy_thread_debug_info(&debugInfo);
2204 
2205 	// notify select infos
2206 	select_info* info = selectInfos;
2207 	while (info != NULL) {
2208 		select_sync* sync = info->sync;
2209 
2210 		notify_select_events(info, B_EVENT_INVALID);
2211 		info = info->next;
2212 		put_select_sync(sync);
2213 	}
2214 
2215 	// notify listeners
2216 	sNotificationService.Notify(THREAD_REMOVED, thread);
2217 
2218 	// shutdown the thread messaging
2219 
2220 	status = acquire_sem_etc(thread->msg.write_sem, 1, B_RELATIVE_TIMEOUT, 0);
2221 	if (status == B_WOULD_BLOCK) {
2222 		// there is data waiting for us, so let us eat it
2223 		thread_id sender;
2224 
2225 		delete_sem(thread->msg.write_sem);
2226 			// first, let's remove all possibly waiting writers
2227 		receive_data_etc(&sender, NULL, 0, B_RELATIVE_TIMEOUT);
2228 	} else {
2229 		// we probably own the semaphore here, and we're the last to do so
2230 		delete_sem(thread->msg.write_sem);
2231 	}
2232 	// now we can safely remove the msg.read_sem
2233 	delete_sem(thread->msg.read_sem);
2234 
2235 	// fill all death entries and delete the sem that others will use to wait
2236 	// for us
2237 	{
2238 		sem_id cachedExitSem = thread->exit.sem;
2239 
2240 		ThreadLocker threadLocker(thread);
2241 
2242 		// make sure no one will grab this semaphore again
2243 		thread->exit.sem = -1;
2244 
2245 		// fill all death entries
2246 		thread_death_entry* entry = NULL;
2247 		while ((entry = (thread_death_entry*)list_get_next_item(
2248 				&thread->exit.waiters, entry)) != NULL) {
2249 			entry->status = thread->exit.status;
2250 		}
2251 
2252 		threadLocker.Unlock();
2253 
2254 		delete_sem(cachedExitSem);
2255 	}
2256 
2257 	// delete the user stack, if this was a user thread
2258 	if (!deleteTeam && userStackArea >= 0) {
2259 		// We postponed deleting the user stack until now, since this way all
2260 		// notifications for the thread's death are out already and all other
2261 		// threads waiting for this thread's death and some object on its stack
2262 		// will wake up before we (try to) delete the stack area. Of most
2263 		// relevance is probably the case where this is the main thread and
2264 		// other threads use objects on its stack -- so we want them terminated
2265 		// first.
2266 		// When the team is deleted, all areas are deleted anyway, so we don't
2267 		// need to do that explicitly in that case.
2268 		vm_delete_area(teamID, userStackArea, true);
2269 	}
2270 
2271 	// notify the debugger
2272 	if (teamID != kernelTeam->id)
2273 		user_debug_thread_deleted(teamID, thread->id);
2274 
2275 	// enqueue in the undertaker list and reschedule for the last time
2276 	UndertakerEntry undertakerEntry(thread, teamID);
2277 
2278 	disable_interrupts();
2279 
2280 	SpinLocker schedulerLocker(thread->scheduler_lock);
2281 
2282 	SpinLocker undertakerLocker(sUndertakerLock);
2283 	sUndertakerEntries.Add(&undertakerEntry);
2284 	sUndertakerCondition.NotifyOne();
2285 	undertakerLocker.Unlock();
2286 
2287 	scheduler_reschedule(THREAD_STATE_FREE_ON_RESCHED);
2288 
2289 	panic("never can get here\n");
2290 }
2291 
2292 
2293 /*!	Called in the interrupt handler code when a thread enters
2294 	the kernel for any reason.
2295 	Only tracks time for now.
2296 	Interrupts are disabled.
2297 */
2298 void
2299 thread_at_kernel_entry(bigtime_t now)
2300 {
2301 	Thread *thread = thread_get_current_thread();
2302 
2303 	TRACE(("thread_at_kernel_entry: entry thread %" B_PRId32 "\n", thread->id));
2304 
2305 	// track user time
2306 	SpinLocker threadTimeLocker(thread->time_lock);
2307 	thread->user_time += now - thread->last_time;
2308 	thread->last_time = now;
2309 	thread->in_kernel = true;
2310 	threadTimeLocker.Unlock();
2311 }
2312 
2313 
2314 /*!	Called whenever a thread exits kernel space to user space.
2315 	Tracks time, handles signals, ...
2316 	Interrupts must be enabled. When the function returns, interrupts will be
2317 	disabled.
2318 	The function may not return. This e.g. happens when the thread has received
2319 	a deadly signal.
2320 */
2321 void
2322 thread_at_kernel_exit(void)
2323 {
2324 	Thread *thread = thread_get_current_thread();
2325 
2326 	TRACE(("thread_at_kernel_exit: exit thread %" B_PRId32 "\n", thread->id));
2327 
2328 	handle_signals(thread);
2329 
2330 	disable_interrupts();
2331 
2332 	// track kernel time
2333 	bigtime_t now = system_time();
2334 	SpinLocker threadTimeLocker(thread->time_lock);
2335 	thread->in_kernel = false;
2336 	thread->kernel_time += now - thread->last_time;
2337 	thread->last_time = now;
2338 }
2339 
2340 
2341 /*!	The quick version of thread_kernel_exit(), in case no signals are pending
2342 	and no debugging shall be done.
2343 	Interrupts must be disabled.
2344 */
2345 void
2346 thread_at_kernel_exit_no_signals(void)
2347 {
2348 	Thread *thread = thread_get_current_thread();
2349 
2350 	TRACE(("thread_at_kernel_exit_no_signals: exit thread %" B_PRId32 "\n",
2351 		thread->id));
2352 
2353 	// track kernel time
2354 	bigtime_t now = system_time();
2355 	SpinLocker threadTimeLocker(thread->time_lock);
2356 	thread->in_kernel = false;
2357 	thread->kernel_time += now - thread->last_time;
2358 	thread->last_time = now;
2359 }
2360 
2361 
2362 void
2363 thread_reset_for_exec(void)
2364 {
2365 	Thread* thread = thread_get_current_thread();
2366 
2367 	ThreadLocker threadLocker(thread);
2368 
2369 	// delete user-defined timers
2370 	thread->DeleteUserTimers(true);
2371 
2372 	// cancel pre-defined timer
2373 	if (UserTimer* timer = thread->UserTimerFor(USER_TIMER_REAL_TIME_ID))
2374 		timer->Cancel();
2375 
2376 	// reset user_thread and user stack
2377 	thread->user_thread = NULL;
2378 	thread->user_stack_area = -1;
2379 	thread->user_stack_base = 0;
2380 	thread->user_stack_size = 0;
2381 
2382 	// reset signals
2383 	thread->ResetSignalsOnExec();
2384 
2385 	// reset thread CPU time clock
2386 	InterruptsSpinLocker timeLocker(thread->time_lock);
2387 	thread->cpu_clock_offset = -thread->CPUTime(false);
2388 }
2389 
2390 
2391 thread_id
2392 allocate_thread_id()
2393 {
2394 	InterruptsWriteSpinLocker threadHashLocker(sThreadHashLock);
2395 
2396 	// find the next unused ID
2397 	thread_id id;
2398 	do {
2399 		id = sNextThreadID++;
2400 
2401 		// deal with integer overflow
2402 		if (sNextThreadID < 0)
2403 			sNextThreadID = 2;
2404 
2405 		// check whether the ID is already in use
2406 	} while (sThreadHash.Lookup(id, false) != NULL);
2407 
2408 	return id;
2409 }
2410 
2411 
2412 thread_id
2413 peek_next_thread_id()
2414 {
2415 	InterruptsReadSpinLocker threadHashLocker(sThreadHashLock);
2416 	return sNextThreadID;
2417 }
2418 
2419 
2420 /*!	Yield the CPU to other threads.
2421 	Thread will continue to run, if there's no other thread in ready
2422 	state, and if it has a higher priority than the other ready threads, it
2423 	still has a good chance to continue.
2424 */
2425 void
2426 thread_yield(void)
2427 {
2428 	Thread *thread = thread_get_current_thread();
2429 	if (thread == NULL)
2430 		return;
2431 
2432 	InterruptsSpinLocker _(thread->scheduler_lock);
2433 
2434 	thread->has_yielded = true;
2435 	scheduler_reschedule(B_THREAD_READY);
2436 }
2437 
2438 
2439 void
2440 thread_map(void (*function)(Thread* thread, void* data), void* data)
2441 {
2442 	InterruptsWriteSpinLocker threadHashLocker(sThreadHashLock);
2443 
2444 	for (ThreadHashTable::Iterator it = sThreadHash.GetIterator();
2445 		Thread* thread = it.Next();) {
2446 		function(thread, data);
2447 	}
2448 }
2449 
2450 
2451 /*!	Kernel private thread creation function.
2452 */
2453 thread_id
2454 spawn_kernel_thread_etc(thread_func function, const char *name, int32 priority,
2455 	void *arg, team_id team)
2456 {
2457 	return thread_create_thread(
2458 		ThreadCreationAttributes(function, name, priority, arg, team),
2459 		true);
2460 }
2461 
2462 
2463 status_t
2464 wait_for_thread_etc(thread_id id, uint32 flags, bigtime_t timeout,
2465 	status_t *_returnCode)
2466 {
2467 	if (id < 0)
2468 		return B_BAD_THREAD_ID;
2469 
2470 	// get the thread, queue our death entry, and fetch the semaphore we have to
2471 	// wait on
2472 	sem_id exitSem = B_BAD_THREAD_ID;
2473 	struct thread_death_entry death;
2474 
2475 	Thread* thread = Thread::GetAndLock(id);
2476 	if (thread != NULL) {
2477 		// remember the semaphore we have to wait on and place our death entry
2478 		exitSem = thread->exit.sem;
2479 		if (exitSem >= 0)
2480 			list_add_link_to_head(&thread->exit.waiters, &death);
2481 
2482 		thread->UnlockAndReleaseReference();
2483 
2484 		if (exitSem < 0)
2485 			return B_BAD_THREAD_ID;
2486 	} else {
2487 		// we couldn't find this thread -- maybe it's already gone, and we'll
2488 		// find its death entry in our team
2489 		Team* team = thread_get_current_thread()->team;
2490 		TeamLocker teamLocker(team);
2491 
2492 		// check the child death entries first (i.e. main threads of child
2493 		// teams)
2494 		bool deleteEntry;
2495 		job_control_entry* freeDeath
2496 			= team_get_death_entry(team, id, &deleteEntry);
2497 		if (freeDeath != NULL) {
2498 			death.status = freeDeath->status;
2499 			if (deleteEntry)
2500 				delete freeDeath;
2501 		} else {
2502 			// check the thread death entries of the team (non-main threads)
2503 			thread_death_entry* threadDeathEntry = NULL;
2504 			while ((threadDeathEntry = (thread_death_entry*)list_get_next_item(
2505 					&team->dead_threads, threadDeathEntry)) != NULL) {
2506 				if (threadDeathEntry->thread == id) {
2507 					list_remove_item(&team->dead_threads, threadDeathEntry);
2508 					team->dead_threads_count--;
2509 					death.status = threadDeathEntry->status;
2510 					free(threadDeathEntry);
2511 					break;
2512 				}
2513 			}
2514 
2515 			if (threadDeathEntry == NULL)
2516 				return B_BAD_THREAD_ID;
2517 		}
2518 
2519 		// we found the thread's death entry in our team
2520 		if (_returnCode)
2521 			*_returnCode = death.status;
2522 
2523 		return B_OK;
2524 	}
2525 
2526 	// we need to wait for the death of the thread
2527 
2528 	resume_thread(id);
2529 		// make sure we don't wait forever on a suspended thread
2530 
2531 	status_t status = acquire_sem_etc(exitSem, 1, flags, timeout);
2532 
2533 	if (status == B_OK) {
2534 		// this should never happen as the thread deletes the semaphore on exit
2535 		panic("could acquire exit_sem for thread %" B_PRId32 "\n", id);
2536 	} else if (status == B_BAD_SEM_ID) {
2537 		// this is the way the thread normally exits
2538 		status = B_OK;
2539 	} else {
2540 		// We were probably interrupted or the timeout occurred; we need to
2541 		// remove our death entry now.
2542 		thread = Thread::GetAndLock(id);
2543 		if (thread != NULL) {
2544 			list_remove_link(&death);
2545 			thread->UnlockAndReleaseReference();
2546 		} else {
2547 			// The thread is already gone, so we need to wait uninterruptibly
2548 			// for its exit semaphore to make sure our death entry stays valid.
2549 			// It won't take long, since the thread is apparently already in the
2550 			// middle of the cleanup.
2551 			acquire_sem(exitSem);
2552 			status = B_OK;
2553 		}
2554 	}
2555 
2556 	if (status == B_OK && _returnCode != NULL)
2557 		*_returnCode = death.status;
2558 
2559 	return status;
2560 }
2561 
2562 
2563 status_t
2564 select_thread(int32 id, struct select_info* info, bool kernel)
2565 {
2566 	// get and lock the thread
2567 	Thread* thread = Thread::GetAndLock(id);
2568 	if (thread == NULL)
2569 		return B_BAD_THREAD_ID;
2570 	BReference<Thread> threadReference(thread, true);
2571 	ThreadLocker threadLocker(thread, true);
2572 
2573 	// We support only B_EVENT_INVALID at the moment.
2574 	info->selected_events &= B_EVENT_INVALID;
2575 
2576 	// add info to list
2577 	if (info->selected_events != 0) {
2578 		info->next = thread->select_infos;
2579 		thread->select_infos = info;
2580 
2581 		// we need a sync reference
2582 		atomic_add(&info->sync->ref_count, 1);
2583 	}
2584 
2585 	return B_OK;
2586 }
2587 
2588 
2589 status_t
2590 deselect_thread(int32 id, struct select_info* info, bool kernel)
2591 {
2592 	// get and lock the thread
2593 	Thread* thread = Thread::GetAndLock(id);
2594 	if (thread == NULL)
2595 		return B_BAD_THREAD_ID;
2596 	BReference<Thread> threadReference(thread, true);
2597 	ThreadLocker threadLocker(thread, true);
2598 
2599 	// remove info from list
2600 	select_info** infoLocation = &thread->select_infos;
2601 	while (*infoLocation != NULL && *infoLocation != info)
2602 		infoLocation = &(*infoLocation)->next;
2603 
2604 	if (*infoLocation != info)
2605 		return B_OK;
2606 
2607 	*infoLocation = info->next;
2608 
2609 	threadLocker.Unlock();
2610 
2611 	// surrender sync reference
2612 	put_select_sync(info->sync);
2613 
2614 	return B_OK;
2615 }
2616 
2617 
2618 int32
2619 thread_max_threads(void)
2620 {
2621 	return sMaxThreads;
2622 }
2623 
2624 
2625 int32
2626 thread_used_threads(void)
2627 {
2628 	InterruptsReadSpinLocker threadHashLocker(sThreadHashLock);
2629 	return sUsedThreads;
2630 }
2631 
2632 
2633 /*!	Returns a user-readable string for a thread state.
2634 	Only for use in the kernel debugger.
2635 */
2636 const char*
2637 thread_state_to_text(Thread* thread, int32 state)
2638 {
2639 	return state_to_text(thread, state);
2640 }
2641 
2642 
2643 int32
2644 thread_get_io_priority(thread_id id)
2645 {
2646 	Thread* thread = Thread::GetAndLock(id);
2647 	if (thread == NULL)
2648 		return B_BAD_THREAD_ID;
2649 	BReference<Thread> threadReference(thread, true);
2650 	ThreadLocker threadLocker(thread, true);
2651 
2652 	int32 priority = thread->io_priority;
2653 	if (priority < 0) {
2654 		// negative I/O priority means using the (CPU) priority
2655 		priority = thread->priority;
2656 	}
2657 
2658 	return priority;
2659 }
2660 
2661 
2662 void
2663 thread_set_io_priority(int32 priority)
2664 {
2665 	Thread* thread = thread_get_current_thread();
2666 	ThreadLocker threadLocker(thread);
2667 
2668 	thread->io_priority = priority;
2669 }
2670 
2671 
2672 status_t
2673 thread_init(kernel_args *args)
2674 {
2675 	TRACE(("thread_init: entry\n"));
2676 
2677 	// create the thread hash table
2678 	new(&sThreadHash) ThreadHashTable();
2679 	if (sThreadHash.Init(128) != B_OK)
2680 		panic("thread_init(): failed to init thread hash table!");
2681 
2682 	// create the thread structure object cache
2683 	sThreadCache = create_object_cache("threads", sizeof(Thread), 64, NULL,
2684 		NULL, NULL);
2685 		// Note: The x86 port requires 64 byte alignment of thread structures.
2686 	if (sThreadCache == NULL)
2687 		panic("thread_init(): failed to allocate thread object cache!");
2688 
2689 	if (arch_thread_init(args) < B_OK)
2690 		panic("arch_thread_init() failed!\n");
2691 
2692 	// skip all thread IDs including B_SYSTEM_TEAM, which is reserved
2693 	sNextThreadID = B_SYSTEM_TEAM + 1;
2694 
2695 	// create an idle thread for each cpu
2696 	for (uint32 i = 0; i < args->num_cpus; i++) {
2697 		Thread *thread;
2698 		area_info info;
2699 		char name[64];
2700 
2701 		sprintf(name, "idle thread %" B_PRIu32, i + 1);
2702 		thread = new(&sIdleThreads[i]) Thread(name,
2703 			i == 0 ? team_get_kernel_team_id() : -1, &gCPU[i]);
2704 		if (thread == NULL || thread->Init(true) != B_OK) {
2705 			panic("error creating idle thread struct\n");
2706 			return B_NO_MEMORY;
2707 		}
2708 
2709 		gCPU[i].running_thread = thread;
2710 
2711 		thread->team = team_get_kernel_team();
2712 		thread->priority = B_IDLE_PRIORITY;
2713 		thread->state = B_THREAD_RUNNING;
2714 		sprintf(name, "idle thread %" B_PRIu32 " kstack", i + 1);
2715 		thread->kernel_stack_area = find_area(name);
2716 
2717 		if (get_area_info(thread->kernel_stack_area, &info) != B_OK)
2718 			panic("error finding idle kstack area\n");
2719 
2720 		thread->kernel_stack_base = (addr_t)info.address;
2721 		thread->kernel_stack_top = thread->kernel_stack_base + info.size;
2722 
2723 		thread->visible = true;
2724 		insert_thread_into_team(thread->team, thread);
2725 
2726 		scheduler_on_thread_init(thread);
2727 	}
2728 	sUsedThreads = args->num_cpus;
2729 
2730 	// init the notification service
2731 	new(&sNotificationService) ThreadNotificationService();
2732 
2733 	sNotificationService.Register();
2734 
2735 	// start the undertaker thread
2736 	new(&sUndertakerEntries) DoublyLinkedList<UndertakerEntry>();
2737 	sUndertakerCondition.Init(&sUndertakerEntries, "undertaker entries");
2738 
2739 	thread_id undertakerThread = spawn_kernel_thread(&undertaker, "undertaker",
2740 		B_DISPLAY_PRIORITY, NULL);
2741 	if (undertakerThread < 0)
2742 		panic("Failed to create undertaker thread!");
2743 	resume_thread(undertakerThread);
2744 
2745 	// set up some debugger commands
2746 	add_debugger_command_etc("threads", &dump_thread_list, "List all threads",
2747 		"[ <team> ]\n"
2748 		"Prints a list of all existing threads, or, if a team ID is given,\n"
2749 		"all threads of the specified team.\n"
2750 		"  <team>  - The ID of the team whose threads shall be listed.\n", 0);
2751 	add_debugger_command_etc("ready", &dump_thread_list,
2752 		"List all ready threads",
2753 		"\n"
2754 		"Prints a list of all threads in ready state.\n", 0);
2755 	add_debugger_command_etc("running", &dump_thread_list,
2756 		"List all running threads",
2757 		"\n"
2758 		"Prints a list of all threads in running state.\n", 0);
2759 	add_debugger_command_etc("waiting", &dump_thread_list,
2760 		"List all waiting threads (optionally for a specific semaphore)",
2761 		"[ <sem> ]\n"
2762 		"Prints a list of all threads in waiting state. If a semaphore is\n"
2763 		"specified, only the threads waiting on that semaphore are listed.\n"
2764 		"  <sem>  - ID of the semaphore.\n", 0);
2765 	add_debugger_command_etc("realtime", &dump_thread_list,
2766 		"List all realtime threads",
2767 		"\n"
2768 		"Prints a list of all threads with realtime priority.\n", 0);
2769 	add_debugger_command_etc("thread", &dump_thread_info,
2770 		"Dump info about a particular thread",
2771 		"[ -s ] ( <id> | <address> | <name> )*\n"
2772 		"Prints information about the specified thread. If no argument is\n"
2773 		"given the current thread is selected.\n"
2774 		"  -s         - Print info in compact table form (like \"threads\").\n"
2775 		"  <id>       - The ID of the thread.\n"
2776 		"  <address>  - The address of the thread structure.\n"
2777 		"  <name>     - The thread's name.\n", 0);
2778 	add_debugger_command_etc("calling", &dump_thread_list,
2779 		"Show all threads that have a specific address in their call chain",
2780 		"{ <symbol-pattern> | <start> <end> }\n", 0);
2781 	add_debugger_command_etc("unreal", &make_thread_unreal,
2782 		"Set realtime priority threads to normal priority",
2783 		"[ <id> ]\n"
2784 		"Sets the priority of all realtime threads or, if given, the one\n"
2785 		"with the specified ID to \"normal\" priority.\n"
2786 		"  <id>  - The ID of the thread.\n", 0);
2787 	add_debugger_command_etc("suspend", &make_thread_suspended,
2788 		"Suspend a thread",
2789 		"[ <id> ]\n"
2790 		"Suspends the thread with the given ID. If no ID argument is given\n"
2791 		"the current thread is selected.\n"
2792 		"  <id>  - The ID of the thread.\n", 0);
2793 	add_debugger_command_etc("resume", &make_thread_resumed, "Resume a thread",
2794 		"<id>\n"
2795 		"Resumes the specified thread, if it is currently suspended.\n"
2796 		"  <id>  - The ID of the thread.\n", 0);
2797 	add_debugger_command_etc("drop", &drop_into_debugger,
2798 		"Drop a thread into the userland debugger",
2799 		"<id>\n"
2800 		"Drops the specified (userland) thread into the userland debugger\n"
2801 		"after leaving the kernel debugger.\n"
2802 		"  <id>  - The ID of the thread.\n", 0);
2803 	add_debugger_command_etc("priority", &set_thread_prio,
2804 		"Set a thread's priority",
2805 		"<priority> [ <id> ]\n"
2806 		"Sets the priority of the thread with the specified ID to the given\n"
2807 		"priority. If no thread ID is given, the current thread is selected.\n"
2808 		"  <priority>  - The thread's new priority (0 - 120)\n"
2809 		"  <id>        - The ID of the thread.\n", 0);
2810 
2811 	return B_OK;
2812 }
2813 
2814 
2815 status_t
2816 thread_preboot_init_percpu(struct kernel_args *args, int32 cpuNum)
2817 {
2818 	// set up the cpu pointer in the not yet initialized per-cpu idle thread
2819 	// so that get_current_cpu and friends will work, which is crucial for
2820 	// a lot of low level routines
2821 	sIdleThreads[cpuNum].cpu = &gCPU[cpuNum];
2822 	arch_thread_set_current_thread(&sIdleThreads[cpuNum]);
2823 	return B_OK;
2824 }
2825 
2826 
2827 //	#pragma mark - thread blocking API
2828 
2829 
2830 static status_t
2831 thread_block_timeout(timer* timer)
2832 {
2833 	Thread* thread = (Thread*)timer->user_data;
2834 	thread_unblock(thread, B_TIMED_OUT);
2835 
2836 	return B_HANDLED_INTERRUPT;
2837 }
2838 
2839 
2840 /*!	Blocks the current thread.
2841 
2842 	The thread is blocked until someone else unblock it. Must be called after a
2843 	call to thread_prepare_to_block(). If the thread has already been unblocked
2844 	after the previous call to thread_prepare_to_block(), this function will
2845 	return immediately. Cf. the documentation of thread_prepare_to_block() for
2846 	more details.
2847 
2848 	The caller must hold the scheduler lock.
2849 
2850 	\param thread The current thread.
2851 	\return The error code passed to the unblocking function. thread_interrupt()
2852 		uses \c B_INTERRUPTED. By convention \c B_OK means that the wait was
2853 		successful while another error code indicates a failure (what that means
2854 		depends on the client code).
2855 */
2856 static inline status_t
2857 thread_block_locked(Thread* thread)
2858 {
2859 	if (thread->wait.status == 1) {
2860 		// check for signals, if interruptible
2861 		if (thread_is_interrupted(thread, thread->wait.flags)) {
2862 			thread->wait.status = B_INTERRUPTED;
2863 		} else
2864 			scheduler_reschedule(B_THREAD_WAITING);
2865 	}
2866 
2867 	return thread->wait.status;
2868 }
2869 
2870 
2871 /*!	Blocks the current thread.
2872 
2873 	The function acquires the scheduler lock and calls thread_block_locked().
2874 	See there for more information.
2875 */
2876 status_t
2877 thread_block()
2878 {
2879 	InterruptsSpinLocker _(thread_get_current_thread()->scheduler_lock);
2880 	return thread_block_locked(thread_get_current_thread());
2881 }
2882 
2883 
2884 /*!	Blocks the current thread with a timeout.
2885 
2886 	The current thread is blocked until someone else unblock it or the specified
2887 	timeout occurs. Must be called after a call to thread_prepare_to_block(). If
2888 	the thread has already been unblocked after the previous call to
2889 	thread_prepare_to_block(), this function will return immediately. See
2890 	thread_prepare_to_block() for more details.
2891 
2892 	The caller must not hold the scheduler lock.
2893 
2894 	\param timeoutFlags The standard timeout flags:
2895 		- \c B_RELATIVE_TIMEOUT: \a timeout specifies the time to wait.
2896 		- \c B_ABSOLUTE_TIMEOUT: \a timeout specifies the absolute end time when
2897 			the timeout shall occur.
2898 		- \c B_TIMEOUT_REAL_TIME_BASE: Only relevant when \c B_ABSOLUTE_TIMEOUT
2899 			is specified, too. Specifies that \a timeout is a real time, not a
2900 			system time.
2901 		If neither \c B_RELATIVE_TIMEOUT nor \c B_ABSOLUTE_TIMEOUT are
2902 		specified, an infinite timeout is implied and the function behaves like
2903 		thread_block_locked().
2904 	\return The error code passed to the unblocking function. thread_interrupt()
2905 		uses \c B_INTERRUPTED. When the timeout occurred, \c B_TIMED_OUT is
2906 		returned. By convention \c B_OK means that the wait was successful while
2907 		another error code indicates a failure (what that means depends on the
2908 		client code).
2909 */
2910 status_t
2911 thread_block_with_timeout(uint32 timeoutFlags, bigtime_t timeout)
2912 {
2913 	Thread* thread = thread_get_current_thread();
2914 
2915 	InterruptsSpinLocker locker(thread->scheduler_lock);
2916 
2917 	if (thread->wait.status != 1)
2918 		return thread->wait.status;
2919 
2920 	bool useTimer = (timeoutFlags & (B_RELATIVE_TIMEOUT | B_ABSOLUTE_TIMEOUT))
2921 		&& timeout != B_INFINITE_TIMEOUT;
2922 
2923 	if (useTimer) {
2924 		// Timer flags: absolute/relative.
2925 		uint32 timerFlags;
2926 		if ((timeoutFlags & B_RELATIVE_TIMEOUT) != 0) {
2927 			timerFlags = B_ONE_SHOT_RELATIVE_TIMER;
2928 		} else {
2929 			timerFlags = B_ONE_SHOT_ABSOLUTE_TIMER;
2930 			if ((timeoutFlags & B_TIMEOUT_REAL_TIME_BASE) != 0)
2931 				timerFlags |= B_TIMER_REAL_TIME_BASE;
2932 		}
2933 
2934 		// install the timer
2935 		thread->wait.unblock_timer.user_data = thread;
2936 		add_timer(&thread->wait.unblock_timer, &thread_block_timeout, timeout,
2937 			timerFlags);
2938 	}
2939 
2940 	// block
2941 	status_t error = thread_block_locked(thread);
2942 
2943 	locker.Unlock();
2944 
2945 	// cancel timer, if it didn't fire
2946 	if (error != B_TIMED_OUT && useTimer)
2947 		cancel_timer(&thread->wait.unblock_timer);
2948 
2949 	return error;
2950 }
2951 
2952 
2953 /*!	Unblocks a thread.
2954 
2955 	Acquires the scheduler lock and calls thread_unblock_locked().
2956 	See there for more information.
2957 */
2958 void
2959 thread_unblock(Thread* thread, status_t status)
2960 {
2961 	InterruptsSpinLocker locker(thread->scheduler_lock);
2962 	thread_unblock_locked(thread, status);
2963 }
2964 
2965 
2966 /*!	Unblocks a userland-blocked thread.
2967 	The caller must not hold any locks.
2968 */
2969 static status_t
2970 user_unblock_thread(thread_id threadID, status_t status)
2971 {
2972 	// get the thread
2973 	Thread* thread = Thread::GetAndLock(threadID);
2974 	if (thread == NULL)
2975 		return B_BAD_THREAD_ID;
2976 	BReference<Thread> threadReference(thread, true);
2977 	ThreadLocker threadLocker(thread, true);
2978 
2979 	if (thread->user_thread == NULL)
2980 		return B_NOT_ALLOWED;
2981 
2982 	InterruptsSpinLocker locker(thread->scheduler_lock);
2983 
2984 	set_ac();
2985 	if (thread->user_thread->wait_status > 0) {
2986 		thread->user_thread->wait_status = status;
2987 		clear_ac();
2988 
2989 		// Even if the user_thread->wait_status was > 0, it may be the
2990 		// case that this thread is actually blocked on something else.
2991 		if (thread->wait.status > 0
2992 				&& thread->wait.type == THREAD_BLOCK_TYPE_USER) {
2993 			thread_unblock_locked(thread, status);
2994 		}
2995 	} else
2996 		clear_ac();
2997 
2998 	return B_OK;
2999 }
3000 
3001 
3002 static bool
3003 thread_check_permissions(const Thread* currentThread, const Thread* thread,
3004 	bool kernel)
3005 {
3006 	if (kernel)
3007 		return true;
3008 
3009 	if (thread->team->id == team_get_kernel_team_id())
3010 		return false;
3011 
3012 	if (thread->team == currentThread->team
3013 			|| currentThread->team->effective_uid == 0
3014 			|| thread->team->real_uid == currentThread->team->real_uid)
3015 		return true;
3016 
3017 	return false;
3018 }
3019 
3020 
3021 static status_t
3022 thread_send_signal(thread_id id, uint32 number, int32 signalCode,
3023 	int32 errorCode, bool kernel)
3024 {
3025 	if (id <= 0)
3026 		return B_BAD_VALUE;
3027 
3028 	Thread* currentThread = thread_get_current_thread();
3029 	Thread* thread = Thread::Get(id);
3030 	if (thread == NULL)
3031 		return B_BAD_THREAD_ID;
3032 	BReference<Thread> threadReference(thread, true);
3033 
3034 	// check whether sending the signal is allowed
3035 	if (!thread_check_permissions(currentThread, thread, kernel))
3036 		return B_NOT_ALLOWED;
3037 
3038 	Signal signal(number, signalCode, errorCode, currentThread->team->id);
3039 	return send_signal_to_thread(thread, signal, 0);
3040 }
3041 
3042 
3043 //	#pragma mark - public kernel API
3044 
3045 
3046 void
3047 exit_thread(status_t returnValue)
3048 {
3049 	Thread *thread = thread_get_current_thread();
3050 	Team* team = thread->team;
3051 
3052 	thread->exit.status = returnValue;
3053 
3054 	// if called from a kernel thread, we don't deliver the signal,
3055 	// we just exit directly to keep the user space behaviour of
3056 	// this function
3057 	if (team != team_get_kernel_team()) {
3058 		// If this is its main thread, set the team's exit status.
3059 		if (thread == team->main_thread) {
3060 			TeamLocker teamLocker(team);
3061 
3062 			if (!team->exit.initialized) {
3063 				team->exit.reason = CLD_EXITED;
3064 				team->exit.signal = 0;
3065 				team->exit.signaling_user = 0;
3066 				team->exit.status = returnValue;
3067 				team->exit.initialized = true;
3068 			}
3069 
3070 			teamLocker.Unlock();
3071 		}
3072 
3073 		Signal signal(SIGKILLTHR, SI_USER, B_OK, team->id);
3074 		send_signal_to_thread(thread, signal, B_DO_NOT_RESCHEDULE);
3075 	} else
3076 		thread_exit();
3077 }
3078 
3079 
3080 static status_t
3081 thread_kill_thread(thread_id id, bool kernel)
3082 {
3083 	return thread_send_signal(id, SIGKILLTHR, SI_USER, B_OK, kernel);
3084 }
3085 
3086 
3087 status_t
3088 kill_thread(thread_id id)
3089 {
3090 	return thread_kill_thread(id, true);
3091 }
3092 
3093 
3094 status_t
3095 send_data(thread_id thread, int32 code, const void *buffer, size_t bufferSize)
3096 {
3097 	return send_data_etc(thread, code, buffer, bufferSize, 0);
3098 }
3099 
3100 
3101 int32
3102 receive_data(thread_id *sender, void *buffer, size_t bufferSize)
3103 {
3104 	return receive_data_etc(sender, buffer, bufferSize, 0);
3105 }
3106 
3107 
3108 static bool
3109 thread_has_data(thread_id id, bool kernel)
3110 {
3111 	Thread* currentThread = thread_get_current_thread();
3112 	Thread* thread;
3113 	BReference<Thread> threadReference;
3114 	if (id == currentThread->id) {
3115 		thread = currentThread;
3116 	} else {
3117 		thread = Thread::Get(id);
3118 		if (thread == NULL)
3119 			return false;
3120 
3121 		threadReference.SetTo(thread, true);
3122 	}
3123 
3124 	if (!kernel && thread->team != currentThread->team)
3125 		return false;
3126 
3127 	int32 count;
3128 	if (get_sem_count(thread->msg.read_sem, &count) != B_OK)
3129 		return false;
3130 
3131 	return count == 0 ? false : true;
3132 }
3133 
3134 
3135 bool
3136 has_data(thread_id thread)
3137 {
3138 	return thread_has_data(thread, true);
3139 }
3140 
3141 
3142 status_t
3143 _get_thread_info(thread_id id, thread_info *info, size_t size)
3144 {
3145 	if (info == NULL || size != sizeof(thread_info) || id < B_OK)
3146 		return B_BAD_VALUE;
3147 
3148 	// get the thread
3149 	Thread* thread = Thread::GetAndLock(id);
3150 	if (thread == NULL)
3151 		return B_BAD_THREAD_ID;
3152 	BReference<Thread> threadReference(thread, true);
3153 	ThreadLocker threadLocker(thread, true);
3154 
3155 	// fill the info -- also requires the scheduler lock to be held
3156 	InterruptsSpinLocker locker(thread->scheduler_lock);
3157 
3158 	fill_thread_info(thread, info, size);
3159 
3160 	return B_OK;
3161 }
3162 
3163 
3164 status_t
3165 _get_next_thread_info(team_id teamID, int32 *_cookie, thread_info *info,
3166 	size_t size)
3167 {
3168 	if (info == NULL || size != sizeof(thread_info) || teamID < 0)
3169 		return B_BAD_VALUE;
3170 
3171 	int32 lastID = *_cookie;
3172 
3173 	// get the team
3174 	Team* team = Team::GetAndLock(teamID);
3175 	if (team == NULL)
3176 		return B_BAD_VALUE;
3177 	BReference<Team> teamReference(team, true);
3178 	TeamLocker teamLocker(team, true);
3179 
3180 	Thread* thread = NULL;
3181 
3182 	if (lastID == 0) {
3183 		// We start with the main thread
3184 		thread = team->main_thread;
3185 	} else {
3186 		// Find the one thread with an ID greater than ours (as long as the IDs
3187 		// don't wrap they are always sorted from highest to lowest).
3188 		// TODO: That is broken not only when the IDs wrap, but also for the
3189 		// kernel team, to which threads are added when they are dying.
3190 		for (Thread* next = team->thread_list; next != NULL;
3191 				next = next->team_next) {
3192 			if (next->id <= lastID)
3193 				break;
3194 
3195 			thread = next;
3196 		}
3197 	}
3198 
3199 	if (thread == NULL)
3200 		return B_BAD_VALUE;
3201 
3202 	lastID = thread->id;
3203 	*_cookie = lastID;
3204 
3205 	ThreadLocker threadLocker(thread);
3206 	InterruptsSpinLocker locker(thread->scheduler_lock);
3207 
3208 	fill_thread_info(thread, info, size);
3209 
3210 	return B_OK;
3211 }
3212 
3213 
3214 thread_id
3215 find_thread(const char* name)
3216 {
3217 	if (name == NULL)
3218 		return thread_get_current_thread_id();
3219 
3220 	InterruptsReadSpinLocker threadHashLocker(sThreadHashLock);
3221 
3222 	// Scanning the whole hash with the thread hash lock held isn't exactly
3223 	// cheap, but since this function is probably used very rarely, and we
3224 	// only need a read lock, it's probably acceptable.
3225 
3226 	for (ThreadHashTable::Iterator it = sThreadHash.GetIterator();
3227 			Thread* thread = it.Next();) {
3228 		if (!thread->visible)
3229 			continue;
3230 
3231 		if (strcmp(thread->name, name) == 0)
3232 			return thread->id;
3233 	}
3234 
3235 	return B_NAME_NOT_FOUND;
3236 }
3237 
3238 
3239 status_t
3240 rename_thread(thread_id id, const char* name)
3241 {
3242 	if (name == NULL)
3243 		return B_BAD_VALUE;
3244 
3245 	// get the thread
3246 	Thread* thread = Thread::GetAndLock(id);
3247 	if (thread == NULL)
3248 		return B_BAD_THREAD_ID;
3249 	BReference<Thread> threadReference(thread, true);
3250 	ThreadLocker threadLocker(thread, true);
3251 
3252 	// check whether the operation is allowed
3253 	if (thread->team != thread_get_current_thread()->team)
3254 		return B_NOT_ALLOWED;
3255 
3256 	strlcpy(thread->name, name, B_OS_NAME_LENGTH);
3257 
3258 	team_id teamID = thread->team->id;
3259 
3260 	threadLocker.Unlock();
3261 
3262 	// notify listeners
3263 	sNotificationService.Notify(THREAD_NAME_CHANGED, teamID, id);
3264 		// don't pass the thread structure, as it's unsafe, if it isn't ours
3265 
3266 	return B_OK;
3267 }
3268 
3269 
3270 static status_t
3271 thread_set_thread_priority(thread_id id, int32 priority, bool kernel)
3272 {
3273 	// make sure the passed in priority is within bounds
3274 	if (priority > THREAD_MAX_SET_PRIORITY)
3275 		priority = THREAD_MAX_SET_PRIORITY;
3276 	if (priority < THREAD_MIN_SET_PRIORITY)
3277 		priority = THREAD_MIN_SET_PRIORITY;
3278 
3279 	// get the thread
3280 	Thread* thread = Thread::GetAndLock(id);
3281 	if (thread == NULL)
3282 		return B_BAD_THREAD_ID;
3283 	BReference<Thread> threadReference(thread, true);
3284 	ThreadLocker threadLocker(thread, true);
3285 
3286 	// check whether the change is allowed
3287 	if (thread_is_idle_thread(thread) || !thread_check_permissions(
3288 			thread_get_current_thread(), thread, kernel))
3289 		return B_NOT_ALLOWED;
3290 
3291 	return scheduler_set_thread_priority(thread, priority);
3292 }
3293 
3294 
3295 status_t
3296 set_thread_priority(thread_id id, int32 priority)
3297 {
3298 	return thread_set_thread_priority(id, priority, true);
3299 }
3300 
3301 
3302 status_t
3303 snooze_etc(bigtime_t timeout, int timebase, uint32 flags)
3304 {
3305 	return common_snooze_etc(timeout, timebase, flags, NULL);
3306 }
3307 
3308 
3309 /*!	snooze() for internal kernel use only; doesn't interrupt on signals. */
3310 status_t
3311 snooze(bigtime_t timeout)
3312 {
3313 	return snooze_etc(timeout, B_SYSTEM_TIMEBASE, B_RELATIVE_TIMEOUT);
3314 }
3315 
3316 
3317 /*!	snooze_until() for internal kernel use only; doesn't interrupt on
3318 	signals.
3319 */
3320 status_t
3321 snooze_until(bigtime_t timeout, int timebase)
3322 {
3323 	return snooze_etc(timeout, timebase, B_ABSOLUTE_TIMEOUT);
3324 }
3325 
3326 
3327 status_t
3328 wait_for_thread(thread_id thread, status_t *_returnCode)
3329 {
3330 	return wait_for_thread_etc(thread, 0, 0, _returnCode);
3331 }
3332 
3333 
3334 static status_t
3335 thread_suspend_thread(thread_id id, bool kernel)
3336 {
3337 	return thread_send_signal(id, SIGSTOP, SI_USER, B_OK, kernel);
3338 }
3339 
3340 
3341 status_t
3342 suspend_thread(thread_id id)
3343 {
3344 	return thread_suspend_thread(id, true);
3345 }
3346 
3347 
3348 static status_t
3349 thread_resume_thread(thread_id id, bool kernel)
3350 {
3351 	// Using the kernel internal SIGNAL_CONTINUE_THREAD signal retains
3352 	// compatibility to BeOS which documents the combination of suspend_thread()
3353 	// and resume_thread() to interrupt threads waiting on semaphores.
3354 	return thread_send_signal(id, SIGNAL_CONTINUE_THREAD, SI_USER, B_OK, kernel);
3355 }
3356 
3357 
3358 status_t
3359 resume_thread(thread_id id)
3360 {
3361 	return thread_resume_thread(id, true);
3362 }
3363 
3364 
3365 thread_id
3366 spawn_kernel_thread(thread_func function, const char *name, int32 priority,
3367 	void *arg)
3368 {
3369 	return thread_create_thread(
3370 		ThreadCreationAttributes(function, name, priority, arg),
3371 		true);
3372 }
3373 
3374 
3375 int
3376 getrlimit(int resource, struct rlimit * rlp)
3377 {
3378 	status_t error = common_getrlimit(resource, rlp);
3379 	if (error != B_OK) {
3380 		errno = error;
3381 		return -1;
3382 	}
3383 
3384 	return 0;
3385 }
3386 
3387 
3388 int
3389 setrlimit(int resource, const struct rlimit * rlp)
3390 {
3391 	status_t error = common_setrlimit(resource, rlp);
3392 	if (error != B_OK) {
3393 		errno = error;
3394 		return -1;
3395 	}
3396 
3397 	return 0;
3398 }
3399 
3400 
3401 //	#pragma mark - syscalls
3402 
3403 
3404 void
3405 _user_exit_thread(status_t returnValue)
3406 {
3407 	exit_thread(returnValue);
3408 }
3409 
3410 
3411 status_t
3412 _user_kill_thread(thread_id thread)
3413 {
3414 	return thread_kill_thread(thread, false);
3415 }
3416 
3417 
3418 status_t
3419 _user_cancel_thread(thread_id threadID, void (*cancelFunction)(int))
3420 {
3421 	// check the cancel function
3422 	if (cancelFunction == NULL || !IS_USER_ADDRESS(cancelFunction))
3423 		return B_BAD_VALUE;
3424 
3425 	// get and lock the thread
3426 	Thread* thread = Thread::GetAndLock(threadID);
3427 	if (thread == NULL)
3428 		return B_BAD_THREAD_ID;
3429 	BReference<Thread> threadReference(thread, true);
3430 	ThreadLocker threadLocker(thread, true);
3431 
3432 	// only threads of the same team can be canceled
3433 	if (thread->team != thread_get_current_thread()->team)
3434 		return B_NOT_ALLOWED;
3435 
3436 	// set the cancel function
3437 	thread->cancel_function = cancelFunction;
3438 
3439 	// send the cancellation signal to the thread
3440 	InterruptsReadSpinLocker teamLocker(thread->team_lock);
3441 	SpinLocker locker(thread->team->signal_lock);
3442 	return send_signal_to_thread_locked(thread, SIGNAL_CANCEL_THREAD, NULL, 0);
3443 }
3444 
3445 
3446 status_t
3447 _user_resume_thread(thread_id thread)
3448 {
3449 	return thread_resume_thread(thread, false);
3450 }
3451 
3452 
3453 status_t
3454 _user_suspend_thread(thread_id thread)
3455 {
3456 	return thread_suspend_thread(thread, false);
3457 }
3458 
3459 
3460 status_t
3461 _user_rename_thread(thread_id thread, const char *userName)
3462 {
3463 	char name[B_OS_NAME_LENGTH];
3464 
3465 	if (!IS_USER_ADDRESS(userName)
3466 		|| userName == NULL
3467 		|| user_strlcpy(name, userName, B_OS_NAME_LENGTH) < B_OK)
3468 		return B_BAD_ADDRESS;
3469 
3470 	// rename_thread() forbids thread renames across teams, so we don't
3471 	// need a "kernel" flag here.
3472 	return rename_thread(thread, name);
3473 }
3474 
3475 
3476 int32
3477 _user_set_thread_priority(thread_id thread, int32 newPriority)
3478 {
3479 	return thread_set_thread_priority(thread, newPriority, false);
3480 }
3481 
3482 
3483 thread_id
3484 _user_spawn_thread(thread_creation_attributes* userAttributes)
3485 {
3486 	// copy the userland structure to the kernel
3487 	char nameBuffer[B_OS_NAME_LENGTH];
3488 	ThreadCreationAttributes attributes;
3489 	status_t error = attributes.InitFromUserAttributes(userAttributes,
3490 		nameBuffer);
3491 	if (error != B_OK)
3492 		return error;
3493 
3494 	// create the thread
3495 	thread_id threadID = thread_create_thread(attributes, false);
3496 
3497 	if (threadID >= 0)
3498 		user_debug_thread_created(threadID);
3499 
3500 	return threadID;
3501 }
3502 
3503 
3504 status_t
3505 _user_snooze_etc(bigtime_t timeout, int timebase, uint32 flags,
3506 	bigtime_t* userRemainingTime)
3507 {
3508 	// We need to store more syscall restart parameters than usual and need a
3509 	// somewhat different handling. Hence we can't use
3510 	// syscall_restart_handle_timeout_pre() but do the job ourselves.
3511 	struct restart_parameters {
3512 		bigtime_t	timeout;
3513 		clockid_t	timebase;
3514 		uint32		flags;
3515 	};
3516 
3517 	Thread* thread = thread_get_current_thread();
3518 
3519 	if ((thread->flags & THREAD_FLAGS_SYSCALL_RESTARTED) != 0) {
3520 		// The syscall was restarted. Fetch the parameters from the stored
3521 		// restart parameters.
3522 		restart_parameters* restartParameters
3523 			= (restart_parameters*)thread->syscall_restart.parameters;
3524 		timeout = restartParameters->timeout;
3525 		timebase = restartParameters->timebase;
3526 		flags = restartParameters->flags;
3527 	} else {
3528 		// convert relative timeouts to absolute ones
3529 		if ((flags & B_RELATIVE_TIMEOUT) != 0) {
3530 			// not restarted yet and the flags indicate a relative timeout
3531 
3532 			// Make sure we use the system time base, so real-time clock changes
3533 			// won't affect our wait.
3534 			flags &= ~(uint32)B_TIMEOUT_REAL_TIME_BASE;
3535 			if (timebase == CLOCK_REALTIME)
3536 				timebase = CLOCK_MONOTONIC;
3537 
3538 			// get the current time and make the timeout absolute
3539 			bigtime_t now;
3540 			status_t error = user_timer_get_clock(timebase, now);
3541 			if (error != B_OK)
3542 				return error;
3543 
3544 			timeout += now;
3545 
3546 			// deal with overflow
3547 			if (timeout < 0)
3548 				timeout = B_INFINITE_TIMEOUT;
3549 
3550 			flags = (flags & ~B_RELATIVE_TIMEOUT) | B_ABSOLUTE_TIMEOUT;
3551 		} else
3552 			flags |= B_ABSOLUTE_TIMEOUT;
3553 	}
3554 
3555 	// snooze
3556 	bigtime_t remainingTime;
3557 	status_t error = common_snooze_etc(timeout, timebase,
3558 		flags | B_CAN_INTERRUPT | B_CHECK_PERMISSION,
3559 		userRemainingTime != NULL ? &remainingTime : NULL);
3560 
3561 	// If interrupted, copy the remaining time back to userland and prepare the
3562 	// syscall restart.
3563 	if (error == B_INTERRUPTED) {
3564 		if (userRemainingTime != NULL
3565 			&& (!IS_USER_ADDRESS(userRemainingTime)
3566 				|| user_memcpy(userRemainingTime, &remainingTime,
3567 					sizeof(remainingTime)) != B_OK)) {
3568 			return B_BAD_ADDRESS;
3569 		}
3570 
3571 		// store the normalized values in the restart parameters
3572 		restart_parameters* restartParameters
3573 			= (restart_parameters*)thread->syscall_restart.parameters;
3574 		restartParameters->timeout = timeout;
3575 		restartParameters->timebase = timebase;
3576 		restartParameters->flags = flags;
3577 
3578 		// restart the syscall, if possible
3579 		atomic_or(&thread->flags, THREAD_FLAGS_RESTART_SYSCALL);
3580 	}
3581 
3582 	return error;
3583 }
3584 
3585 
3586 void
3587 _user_thread_yield(void)
3588 {
3589 	thread_yield();
3590 }
3591 
3592 
3593 status_t
3594 _user_get_thread_info(thread_id id, thread_info *userInfo)
3595 {
3596 	thread_info info;
3597 	status_t status;
3598 
3599 	if (!IS_USER_ADDRESS(userInfo))
3600 		return B_BAD_ADDRESS;
3601 
3602 	status = _get_thread_info(id, &info, sizeof(thread_info));
3603 
3604 	if (status >= B_OK
3605 		&& user_memcpy(userInfo, &info, sizeof(thread_info)) < B_OK)
3606 		return B_BAD_ADDRESS;
3607 
3608 	return status;
3609 }
3610 
3611 
3612 status_t
3613 _user_get_next_thread_info(team_id team, int32 *userCookie,
3614 	thread_info *userInfo)
3615 {
3616 	status_t status;
3617 	thread_info info;
3618 	int32 cookie;
3619 
3620 	if (!IS_USER_ADDRESS(userCookie) || !IS_USER_ADDRESS(userInfo)
3621 		|| user_memcpy(&cookie, userCookie, sizeof(int32)) < B_OK)
3622 		return B_BAD_ADDRESS;
3623 
3624 	status = _get_next_thread_info(team, &cookie, &info, sizeof(thread_info));
3625 	if (status < B_OK)
3626 		return status;
3627 
3628 	if (user_memcpy(userCookie, &cookie, sizeof(int32)) < B_OK
3629 		|| user_memcpy(userInfo, &info, sizeof(thread_info)) < B_OK)
3630 		return B_BAD_ADDRESS;
3631 
3632 	return status;
3633 }
3634 
3635 
3636 thread_id
3637 _user_find_thread(const char *userName)
3638 {
3639 	char name[B_OS_NAME_LENGTH];
3640 
3641 	if (userName == NULL)
3642 		return find_thread(NULL);
3643 
3644 	if (!IS_USER_ADDRESS(userName)
3645 		|| user_strlcpy(name, userName, sizeof(name)) < B_OK)
3646 		return B_BAD_ADDRESS;
3647 
3648 	return find_thread(name);
3649 }
3650 
3651 
3652 status_t
3653 _user_wait_for_thread(thread_id id, status_t *userReturnCode)
3654 {
3655 	status_t returnCode;
3656 	status_t status;
3657 
3658 	if (userReturnCode != NULL && !IS_USER_ADDRESS(userReturnCode))
3659 		return B_BAD_ADDRESS;
3660 
3661 	status = wait_for_thread_etc(id, B_CAN_INTERRUPT, 0, &returnCode);
3662 
3663 	if (status == B_OK && userReturnCode != NULL
3664 		&& user_memcpy(userReturnCode, &returnCode, sizeof(status_t)) < B_OK) {
3665 		return B_BAD_ADDRESS;
3666 	}
3667 
3668 	return syscall_restart_handle_post(status);
3669 }
3670 
3671 
3672 bool
3673 _user_has_data(thread_id thread)
3674 {
3675 	return thread_has_data(thread, false);
3676 }
3677 
3678 
3679 status_t
3680 _user_send_data(thread_id thread, int32 code, const void *buffer,
3681 	size_t bufferSize)
3682 {
3683 	if (buffer != NULL && !IS_USER_ADDRESS(buffer))
3684 		return B_BAD_ADDRESS;
3685 
3686 	return send_data_etc(thread, code, buffer, bufferSize,
3687 		B_KILL_CAN_INTERRUPT);
3688 		// supports userland buffers
3689 }
3690 
3691 
3692 status_t
3693 _user_receive_data(thread_id *_userSender, void *buffer, size_t bufferSize)
3694 {
3695 	thread_id sender;
3696 	status_t code;
3697 
3698 	if ((!IS_USER_ADDRESS(_userSender) && _userSender != NULL)
3699 		|| (!IS_USER_ADDRESS(buffer) && buffer != NULL)) {
3700 		return B_BAD_ADDRESS;
3701 	}
3702 
3703 	code = receive_data_etc(&sender, buffer, bufferSize, B_KILL_CAN_INTERRUPT);
3704 		// supports userland buffers
3705 
3706 	if (_userSender != NULL)
3707 		if (user_memcpy(_userSender, &sender, sizeof(thread_id)) < B_OK)
3708 			return B_BAD_ADDRESS;
3709 
3710 	return code;
3711 }
3712 
3713 
3714 status_t
3715 _user_block_thread(uint32 flags, bigtime_t timeout)
3716 {
3717 	syscall_restart_handle_timeout_pre(flags, timeout);
3718 	flags |= B_CAN_INTERRUPT;
3719 
3720 	Thread* thread = thread_get_current_thread();
3721 	ThreadLocker threadLocker(thread);
3722 
3723 	// check, if already done
3724 	set_ac();
3725 	if (thread->user_thread->wait_status <= 0) {
3726 		status_t status = thread->user_thread->wait_status;
3727 		clear_ac();
3728 		return status;
3729 	}
3730 	clear_ac();
3731 
3732 	// nope, so wait
3733 	thread_prepare_to_block(thread, flags, THREAD_BLOCK_TYPE_USER, NULL);
3734 
3735 	threadLocker.Unlock();
3736 
3737 	status_t status = thread_block_with_timeout(flags, timeout);
3738 
3739 	threadLocker.Lock();
3740 
3741 	// Interruptions or timeouts can race with other threads unblocking us.
3742 	// Favor a wake-up by another thread, i.e. if someone changed the wait
3743 	// status, use that.
3744 	set_ac();
3745 	status_t oldStatus = thread->user_thread->wait_status;
3746 	if (oldStatus > 0) {
3747 		thread->user_thread->wait_status = status;
3748 		clear_ac();
3749 	} else {
3750 		clear_ac();
3751 		status = oldStatus;
3752 	}
3753 
3754 	threadLocker.Unlock();
3755 
3756 	return syscall_restart_handle_timeout_post(status, timeout);
3757 }
3758 
3759 
3760 status_t
3761 _user_unblock_thread(thread_id threadID, status_t status)
3762 {
3763 	status_t error = user_unblock_thread(threadID, status);
3764 
3765 	if (error == B_OK)
3766 		scheduler_reschedule_if_necessary();
3767 
3768 	return error;
3769 }
3770 
3771 
3772 status_t
3773 _user_unblock_threads(thread_id* userThreads, uint32 count, status_t status)
3774 {
3775 	enum {
3776 		MAX_USER_THREADS_TO_UNBLOCK	= 128
3777 	};
3778 
3779 	if (userThreads == NULL || !IS_USER_ADDRESS(userThreads))
3780 		return B_BAD_ADDRESS;
3781 	if (count > MAX_USER_THREADS_TO_UNBLOCK)
3782 		return B_BAD_VALUE;
3783 
3784 	thread_id threads[MAX_USER_THREADS_TO_UNBLOCK];
3785 	if (user_memcpy(threads, userThreads, count * sizeof(thread_id)) != B_OK)
3786 		return B_BAD_ADDRESS;
3787 
3788 	for (uint32 i = 0; i < count; i++)
3789 		user_unblock_thread(threads[i], status);
3790 
3791 	scheduler_reschedule_if_necessary();
3792 
3793 	return B_OK;
3794 }
3795 
3796 
3797 // TODO: the following two functions don't belong here
3798 
3799 
3800 int
3801 _user_getrlimit(int resource, struct rlimit *urlp)
3802 {
3803 	struct rlimit rl;
3804 	int ret;
3805 
3806 	if (urlp == NULL)
3807 		return EINVAL;
3808 
3809 	if (!IS_USER_ADDRESS(urlp))
3810 		return B_BAD_ADDRESS;
3811 
3812 	ret = common_getrlimit(resource, &rl);
3813 
3814 	if (ret == 0) {
3815 		ret = user_memcpy(urlp, &rl, sizeof(struct rlimit));
3816 		if (ret < 0)
3817 			return ret;
3818 
3819 		return 0;
3820 	}
3821 
3822 	return ret;
3823 }
3824 
3825 
3826 int
3827 _user_setrlimit(int resource, const struct rlimit *userResourceLimit)
3828 {
3829 	struct rlimit resourceLimit;
3830 
3831 	if (userResourceLimit == NULL)
3832 		return EINVAL;
3833 
3834 	if (!IS_USER_ADDRESS(userResourceLimit)
3835 		|| user_memcpy(&resourceLimit, userResourceLimit,
3836 			sizeof(struct rlimit)) < B_OK)
3837 		return B_BAD_ADDRESS;
3838 
3839 	return common_setrlimit(resource, &resourceLimit);
3840 }
3841