1 /* 2 * Copyright 2014, Paweł Dziepak, pdziepak@quarnos.org. 3 * Copyright 2008-2016, Ingo Weinhold, ingo_weinhold@gmx.de. 4 * Copyright 2002-2010, Axel Dörfler, axeld@pinc-software.de. 5 * Distributed under the terms of the MIT License. 6 * 7 * Copyright 2001-2002, Travis Geiselbrecht. All rights reserved. 8 * Distributed under the terms of the NewOS License. 9 */ 10 11 12 /*! Team functions */ 13 14 15 #include <team.h> 16 17 #include <errno.h> 18 #include <stdio.h> 19 #include <stdlib.h> 20 #include <string.h> 21 #include <sys/wait.h> 22 23 #include <OS.h> 24 25 #include <AutoDeleter.h> 26 #include <FindDirectory.h> 27 28 #include <extended_system_info_defs.h> 29 30 #include <commpage.h> 31 #include <boot_device.h> 32 #include <elf.h> 33 #include <file_cache.h> 34 #include <find_directory_private.h> 35 #include <fs/KPath.h> 36 #include <heap.h> 37 #include <int.h> 38 #include <kernel.h> 39 #include <kimage.h> 40 #include <kscheduler.h> 41 #include <ksignal.h> 42 #include <Notifications.h> 43 #include <port.h> 44 #include <posix/realtime_sem.h> 45 #include <posix/xsi_semaphore.h> 46 #include <sem.h> 47 #include <syscall_process_info.h> 48 #include <syscall_restart.h> 49 #include <syscalls.h> 50 #include <tls.h> 51 #include <tracing.h> 52 #include <user_runtime.h> 53 #include <user_thread.h> 54 #include <usergroup.h> 55 #include <vfs.h> 56 #include <vm/vm.h> 57 #include <vm/VMAddressSpace.h> 58 #include <util/AutoLock.h> 59 60 #include "TeamThreadTables.h" 61 62 63 //#define TRACE_TEAM 64 #ifdef TRACE_TEAM 65 # define TRACE(x) dprintf x 66 #else 67 # define TRACE(x) ; 68 #endif 69 70 71 struct team_key { 72 team_id id; 73 }; 74 75 struct team_arg { 76 char *path; 77 char **flat_args; 78 size_t flat_args_size; 79 uint32 arg_count; 80 uint32 env_count; 81 mode_t umask; 82 uint32 flags; 83 port_id error_port; 84 uint32 error_token; 85 }; 86 87 #define TEAM_ARGS_FLAG_NO_ASLR 0x01 88 89 90 namespace { 91 92 93 class TeamNotificationService : public DefaultNotificationService { 94 public: 95 TeamNotificationService(); 96 97 void Notify(uint32 eventCode, Team* team); 98 }; 99 100 101 // #pragma mark - TeamTable 102 103 104 typedef BKernel::TeamThreadTable<Team> TeamTable; 105 106 107 // #pragma mark - ProcessGroupHashDefinition 108 109 110 struct ProcessGroupHashDefinition { 111 typedef pid_t KeyType; 112 typedef ProcessGroup ValueType; 113 114 size_t HashKey(pid_t key) const 115 { 116 return key; 117 } 118 119 size_t Hash(ProcessGroup* value) const 120 { 121 return HashKey(value->id); 122 } 123 124 bool Compare(pid_t key, ProcessGroup* value) const 125 { 126 return value->id == key; 127 } 128 129 ProcessGroup*& GetLink(ProcessGroup* value) const 130 { 131 return value->next; 132 } 133 }; 134 135 typedef BOpenHashTable<ProcessGroupHashDefinition> ProcessGroupHashTable; 136 137 138 } // unnamed namespace 139 140 141 // #pragma mark - 142 143 144 // the team_id -> Team hash table and the lock protecting it 145 static TeamTable sTeamHash; 146 static spinlock sTeamHashLock = B_SPINLOCK_INITIALIZER; 147 148 // the pid_t -> ProcessGroup hash table and the lock protecting it 149 static ProcessGroupHashTable sGroupHash; 150 static spinlock sGroupHashLock = B_SPINLOCK_INITIALIZER; 151 152 static Team* sKernelTeam = NULL; 153 154 // A list of process groups of children of dying session leaders that need to 155 // be signalled, if they have become orphaned and contain stopped processes. 156 static ProcessGroupList sOrphanedCheckProcessGroups; 157 static mutex sOrphanedCheckLock 158 = MUTEX_INITIALIZER("orphaned process group check"); 159 160 // some arbitrarily chosen limits -- should probably depend on the available 161 // memory (the limit is not yet enforced) 162 static int32 sMaxTeams = 2048; 163 static int32 sUsedTeams = 1; 164 165 static TeamNotificationService sNotificationService; 166 167 static const size_t kTeamUserDataReservedSize = 128 * B_PAGE_SIZE; 168 static const size_t kTeamUserDataInitialSize = 4 * B_PAGE_SIZE; 169 170 171 // #pragma mark - TeamListIterator 172 173 174 TeamListIterator::TeamListIterator() 175 { 176 // queue the entry 177 InterruptsSpinLocker locker(sTeamHashLock); 178 sTeamHash.InsertIteratorEntry(&fEntry); 179 } 180 181 182 TeamListIterator::~TeamListIterator() 183 { 184 // remove the entry 185 InterruptsSpinLocker locker(sTeamHashLock); 186 sTeamHash.RemoveIteratorEntry(&fEntry); 187 } 188 189 190 Team* 191 TeamListIterator::Next() 192 { 193 // get the next team -- if there is one, get reference for it 194 InterruptsSpinLocker locker(sTeamHashLock); 195 Team* team = sTeamHash.NextElement(&fEntry); 196 if (team != NULL) 197 team->AcquireReference(); 198 199 return team; 200 } 201 202 203 // #pragma mark - Tracing 204 205 206 #if TEAM_TRACING 207 namespace TeamTracing { 208 209 class TeamForked : public AbstractTraceEntry { 210 public: 211 TeamForked(thread_id forkedThread) 212 : 213 fForkedThread(forkedThread) 214 { 215 Initialized(); 216 } 217 218 virtual void AddDump(TraceOutput& out) 219 { 220 out.Print("team forked, new thread %" B_PRId32, fForkedThread); 221 } 222 223 private: 224 thread_id fForkedThread; 225 }; 226 227 228 class ExecTeam : public AbstractTraceEntry { 229 public: 230 ExecTeam(const char* path, int32 argCount, const char* const* args, 231 int32 envCount, const char* const* env) 232 : 233 fArgCount(argCount), 234 fArgs(NULL) 235 { 236 fPath = alloc_tracing_buffer_strcpy(path, B_PATH_NAME_LENGTH, 237 false); 238 239 // determine the buffer size we need for the args 240 size_t argBufferSize = 0; 241 for (int32 i = 0; i < argCount; i++) 242 argBufferSize += strlen(args[i]) + 1; 243 244 // allocate a buffer 245 fArgs = (char*)alloc_tracing_buffer(argBufferSize); 246 if (fArgs) { 247 char* buffer = fArgs; 248 for (int32 i = 0; i < argCount; i++) { 249 size_t argSize = strlen(args[i]) + 1; 250 memcpy(buffer, args[i], argSize); 251 buffer += argSize; 252 } 253 } 254 255 // ignore env for the time being 256 (void)envCount; 257 (void)env; 258 259 Initialized(); 260 } 261 262 virtual void AddDump(TraceOutput& out) 263 { 264 out.Print("team exec, \"%p\", args:", fPath); 265 266 if (fArgs != NULL) { 267 char* args = fArgs; 268 for (int32 i = 0; !out.IsFull() && i < fArgCount; i++) { 269 out.Print(" \"%s\"", args); 270 args += strlen(args) + 1; 271 } 272 } else 273 out.Print(" <too long>"); 274 } 275 276 private: 277 char* fPath; 278 int32 fArgCount; 279 char* fArgs; 280 }; 281 282 283 static const char* 284 job_control_state_name(job_control_state state) 285 { 286 switch (state) { 287 case JOB_CONTROL_STATE_NONE: 288 return "none"; 289 case JOB_CONTROL_STATE_STOPPED: 290 return "stopped"; 291 case JOB_CONTROL_STATE_CONTINUED: 292 return "continued"; 293 case JOB_CONTROL_STATE_DEAD: 294 return "dead"; 295 default: 296 return "invalid"; 297 } 298 } 299 300 301 class SetJobControlState : public AbstractTraceEntry { 302 public: 303 SetJobControlState(team_id team, job_control_state newState, Signal* signal) 304 : 305 fTeam(team), 306 fNewState(newState), 307 fSignal(signal != NULL ? signal->Number() : 0) 308 { 309 Initialized(); 310 } 311 312 virtual void AddDump(TraceOutput& out) 313 { 314 out.Print("team set job control state, team %" B_PRId32 ", " 315 "new state: %s, signal: %d", 316 fTeam, job_control_state_name(fNewState), fSignal); 317 } 318 319 private: 320 team_id fTeam; 321 job_control_state fNewState; 322 int fSignal; 323 }; 324 325 326 class WaitForChild : public AbstractTraceEntry { 327 public: 328 WaitForChild(pid_t child, uint32 flags) 329 : 330 fChild(child), 331 fFlags(flags) 332 { 333 Initialized(); 334 } 335 336 virtual void AddDump(TraceOutput& out) 337 { 338 out.Print("team wait for child, child: %" B_PRId32 ", " 339 "flags: %#" B_PRIx32, fChild, fFlags); 340 } 341 342 private: 343 pid_t fChild; 344 uint32 fFlags; 345 }; 346 347 348 class WaitForChildDone : public AbstractTraceEntry { 349 public: 350 WaitForChildDone(const job_control_entry& entry) 351 : 352 fState(entry.state), 353 fTeam(entry.thread), 354 fStatus(entry.status), 355 fReason(entry.reason), 356 fSignal(entry.signal) 357 { 358 Initialized(); 359 } 360 361 WaitForChildDone(status_t error) 362 : 363 fTeam(error) 364 { 365 Initialized(); 366 } 367 368 virtual void AddDump(TraceOutput& out) 369 { 370 if (fTeam >= 0) { 371 out.Print("team wait for child done, team: %" B_PRId32 ", " 372 "state: %s, status: %#" B_PRIx32 ", reason: %#x, signal: %d\n", 373 fTeam, job_control_state_name(fState), fStatus, fReason, 374 fSignal); 375 } else { 376 out.Print("team wait for child failed, error: " 377 "%#" B_PRIx32 ", ", fTeam); 378 } 379 } 380 381 private: 382 job_control_state fState; 383 team_id fTeam; 384 status_t fStatus; 385 uint16 fReason; 386 uint16 fSignal; 387 }; 388 389 } // namespace TeamTracing 390 391 # define T(x) new(std::nothrow) TeamTracing::x; 392 #else 393 # define T(x) ; 394 #endif 395 396 397 // #pragma mark - TeamNotificationService 398 399 400 TeamNotificationService::TeamNotificationService() 401 : DefaultNotificationService("teams") 402 { 403 } 404 405 406 void 407 TeamNotificationService::Notify(uint32 eventCode, Team* team) 408 { 409 char eventBuffer[128]; 410 KMessage event; 411 event.SetTo(eventBuffer, sizeof(eventBuffer), TEAM_MONITOR); 412 event.AddInt32("event", eventCode); 413 event.AddInt32("team", team->id); 414 event.AddPointer("teamStruct", team); 415 416 DefaultNotificationService::Notify(event, eventCode); 417 } 418 419 420 // #pragma mark - Team 421 422 423 Team::Team(team_id id, bool kernel) 424 { 425 // allocate an ID 426 this->id = id; 427 visible = true; 428 serial_number = -1; 429 430 // init mutex 431 if (kernel) { 432 mutex_init(&fLock, "Team:kernel"); 433 } else { 434 char lockName[16]; 435 snprintf(lockName, sizeof(lockName), "Team:%" B_PRId32, id); 436 mutex_init_etc(&fLock, lockName, MUTEX_FLAG_CLONE_NAME); 437 } 438 439 hash_next = siblings_next = children = parent = NULL; 440 fName[0] = '\0'; 441 fArgs[0] = '\0'; 442 num_threads = 0; 443 io_context = NULL; 444 address_space = NULL; 445 realtime_sem_context = NULL; 446 xsi_sem_context = NULL; 447 thread_list = NULL; 448 main_thread = NULL; 449 loading_info = NULL; 450 state = TEAM_STATE_BIRTH; 451 flags = 0; 452 death_entry = NULL; 453 user_data_area = -1; 454 user_data = 0; 455 used_user_data = 0; 456 user_data_size = 0; 457 free_user_threads = NULL; 458 459 commpage_address = NULL; 460 461 supplementary_groups = NULL; 462 supplementary_group_count = 0; 463 464 dead_threads_kernel_time = 0; 465 dead_threads_user_time = 0; 466 cpu_clock_offset = 0; 467 468 // dead threads 469 list_init(&dead_threads); 470 dead_threads_count = 0; 471 472 // dead children 473 dead_children.count = 0; 474 dead_children.kernel_time = 0; 475 dead_children.user_time = 0; 476 477 // job control entry 478 job_control_entry = new(nothrow) ::job_control_entry; 479 if (job_control_entry != NULL) { 480 job_control_entry->state = JOB_CONTROL_STATE_NONE; 481 job_control_entry->thread = id; 482 job_control_entry->team = this; 483 } 484 485 // exit status -- setting initialized to false suffices 486 exit.initialized = false; 487 488 list_init(&sem_list); 489 list_init_etc(&port_list, port_team_link_offset()); 490 list_init(&image_list); 491 list_init(&watcher_list); 492 493 clear_team_debug_info(&debug_info, true); 494 495 // init dead/stopped/continued children condition vars 496 dead_children.condition_variable.Init(&dead_children, "team children"); 497 498 B_INITIALIZE_SPINLOCK(&time_lock); 499 B_INITIALIZE_SPINLOCK(&signal_lock); 500 501 fQueuedSignalsCounter = new(std::nothrow) BKernel::QueuedSignalsCounter( 502 kernel ? -1 : MAX_QUEUED_SIGNALS); 503 memset(fSignalActions, 0, sizeof(fSignalActions)); 504 505 fUserDefinedTimerCount = 0; 506 507 fCoreDumpCondition = NULL; 508 } 509 510 511 Team::~Team() 512 { 513 // get rid of all associated data 514 PrepareForDeletion(); 515 516 if (io_context != NULL) 517 vfs_put_io_context(io_context); 518 delete_owned_ports(this); 519 sem_delete_owned_sems(this); 520 521 DeleteUserTimers(false); 522 523 fPendingSignals.Clear(); 524 525 if (fQueuedSignalsCounter != NULL) 526 fQueuedSignalsCounter->ReleaseReference(); 527 528 while (thread_death_entry* threadDeathEntry 529 = (thread_death_entry*)list_remove_head_item(&dead_threads)) { 530 free(threadDeathEntry); 531 } 532 533 while (::job_control_entry* entry = dead_children.entries.RemoveHead()) 534 delete entry; 535 536 while (free_user_thread* entry = free_user_threads) { 537 free_user_threads = entry->next; 538 free(entry); 539 } 540 541 malloc_referenced_release(supplementary_groups); 542 543 delete job_control_entry; 544 // usually already NULL and transferred to the parent 545 546 mutex_destroy(&fLock); 547 } 548 549 550 /*static*/ Team* 551 Team::Create(team_id id, const char* name, bool kernel) 552 { 553 // create the team object 554 Team* team = new(std::nothrow) Team(id, kernel); 555 if (team == NULL) 556 return NULL; 557 ObjectDeleter<Team> teamDeleter(team); 558 559 if (name != NULL) 560 team->SetName(name); 561 562 // check initialization 563 if (team->job_control_entry == NULL || team->fQueuedSignalsCounter == NULL) 564 return NULL; 565 566 // finish initialization (arch specifics) 567 if (arch_team_init_team_struct(team, kernel) != B_OK) 568 return NULL; 569 570 if (!kernel) { 571 status_t error = user_timer_create_team_timers(team); 572 if (error != B_OK) 573 return NULL; 574 } 575 576 // everything went fine 577 return teamDeleter.Detach(); 578 } 579 580 581 /*! \brief Returns the team with the given ID. 582 Returns a reference to the team. 583 Team and thread spinlock must not be held. 584 */ 585 /*static*/ Team* 586 Team::Get(team_id id) 587 { 588 if (id == B_CURRENT_TEAM) { 589 Team* team = thread_get_current_thread()->team; 590 team->AcquireReference(); 591 return team; 592 } 593 594 InterruptsSpinLocker locker(sTeamHashLock); 595 Team* team = sTeamHash.Lookup(id); 596 if (team != NULL) 597 team->AcquireReference(); 598 return team; 599 } 600 601 602 /*! \brief Returns the team with the given ID in a locked state. 603 Returns a reference to the team. 604 Team and thread spinlock must not be held. 605 */ 606 /*static*/ Team* 607 Team::GetAndLock(team_id id) 608 { 609 // get the team 610 Team* team = Get(id); 611 if (team == NULL) 612 return NULL; 613 614 // lock it 615 team->Lock(); 616 617 // only return the team, when it isn't already dying 618 if (team->state >= TEAM_STATE_SHUTDOWN) { 619 team->Unlock(); 620 team->ReleaseReference(); 621 return NULL; 622 } 623 624 return team; 625 } 626 627 628 /*! Locks the team and its parent team (if any). 629 The caller must hold a reference to the team or otherwise make sure that 630 it won't be deleted. 631 If the team doesn't have a parent, only the team itself is locked. If the 632 team's parent is the kernel team and \a dontLockParentIfKernel is \c true, 633 only the team itself is locked. 634 635 \param dontLockParentIfKernel If \c true, the team's parent team is only 636 locked, if it is not the kernel team. 637 */ 638 void 639 Team::LockTeamAndParent(bool dontLockParentIfKernel) 640 { 641 // The locking order is parent -> child. Since the parent can change as long 642 // as we don't lock the team, we need to do a trial and error loop. 643 Lock(); 644 645 while (true) { 646 // If the team doesn't have a parent, we're done. Otherwise try to lock 647 // the parent.This will succeed in most cases, simplifying things. 648 Team* parent = this->parent; 649 if (parent == NULL || (dontLockParentIfKernel && parent == sKernelTeam) 650 || parent->TryLock()) { 651 return; 652 } 653 654 // get a temporary reference to the parent, unlock this team, lock the 655 // parent, and re-lock this team 656 BReference<Team> parentReference(parent); 657 658 Unlock(); 659 parent->Lock(); 660 Lock(); 661 662 // If the parent hasn't changed in the meantime, we're done. 663 if (this->parent == parent) 664 return; 665 666 // The parent has changed -- unlock and retry. 667 parent->Unlock(); 668 } 669 } 670 671 672 /*! Unlocks the team and its parent team (if any). 673 */ 674 void 675 Team::UnlockTeamAndParent() 676 { 677 if (parent != NULL) 678 parent->Unlock(); 679 680 Unlock(); 681 } 682 683 684 /*! Locks the team, its parent team (if any), and the team's process group. 685 The caller must hold a reference to the team or otherwise make sure that 686 it won't be deleted. 687 If the team doesn't have a parent, only the team itself is locked. 688 */ 689 void 690 Team::LockTeamParentAndProcessGroup() 691 { 692 LockTeamAndProcessGroup(); 693 694 // We hold the group's and the team's lock, but not the parent team's lock. 695 // If we have a parent, try to lock it. 696 if (this->parent == NULL || this->parent->TryLock()) 697 return; 698 699 // No success -- unlock the team and let LockTeamAndParent() do the rest of 700 // the job. 701 Unlock(); 702 LockTeamAndParent(false); 703 } 704 705 706 /*! Unlocks the team, its parent team (if any), and the team's process group. 707 */ 708 void 709 Team::UnlockTeamParentAndProcessGroup() 710 { 711 group->Unlock(); 712 713 if (parent != NULL) 714 parent->Unlock(); 715 716 Unlock(); 717 } 718 719 720 void 721 Team::LockTeamAndProcessGroup() 722 { 723 // The locking order is process group -> child. Since the process group can 724 // change as long as we don't lock the team, we need to do a trial and error 725 // loop. 726 Lock(); 727 728 while (true) { 729 // Try to lock the group. This will succeed in most cases, simplifying 730 // things. 731 ProcessGroup* group = this->group; 732 if (group->TryLock()) 733 return; 734 735 // get a temporary reference to the group, unlock this team, lock the 736 // group, and re-lock this team 737 BReference<ProcessGroup> groupReference(group); 738 739 Unlock(); 740 group->Lock(); 741 Lock(); 742 743 // If the group hasn't changed in the meantime, we're done. 744 if (this->group == group) 745 return; 746 747 // The group has changed -- unlock and retry. 748 group->Unlock(); 749 } 750 } 751 752 753 void 754 Team::UnlockTeamAndProcessGroup() 755 { 756 group->Unlock(); 757 Unlock(); 758 } 759 760 761 void 762 Team::SetName(const char* name) 763 { 764 if (const char* lastSlash = strrchr(name, '/')) 765 name = lastSlash + 1; 766 767 strlcpy(fName, name, B_OS_NAME_LENGTH); 768 } 769 770 771 void 772 Team::SetArgs(const char* args) 773 { 774 strlcpy(fArgs, args, sizeof(fArgs)); 775 } 776 777 778 void 779 Team::SetArgs(const char* path, const char* const* otherArgs, int otherArgCount) 780 { 781 fArgs[0] = '\0'; 782 strlcpy(fArgs, path, sizeof(fArgs)); 783 for (int i = 0; i < otherArgCount; i++) { 784 strlcat(fArgs, " ", sizeof(fArgs)); 785 strlcat(fArgs, otherArgs[i], sizeof(fArgs)); 786 } 787 } 788 789 790 void 791 Team::ResetSignalsOnExec() 792 { 793 // We are supposed to keep pending signals. Signal actions shall be reset 794 // partially: SIG_IGN and SIG_DFL dispositions shall be kept as they are 795 // (for SIGCHLD it's implementation-defined). Others shall be reset to 796 // SIG_DFL. SA_ONSTACK shall be cleared. There's no mention of the other 797 // flags, but since there aren't any handlers, they make little sense, so 798 // we clear them. 799 800 for (uint32 i = 1; i <= MAX_SIGNAL_NUMBER; i++) { 801 struct sigaction& action = SignalActionFor(i); 802 if (action.sa_handler != SIG_IGN && action.sa_handler != SIG_DFL) 803 action.sa_handler = SIG_DFL; 804 805 action.sa_mask = 0; 806 action.sa_flags = 0; 807 action.sa_userdata = NULL; 808 } 809 } 810 811 812 void 813 Team::InheritSignalActions(Team* parent) 814 { 815 memcpy(fSignalActions, parent->fSignalActions, sizeof(fSignalActions)); 816 } 817 818 819 /*! Adds the given user timer to the team and, if user-defined, assigns it an 820 ID. 821 822 The caller must hold the team's lock. 823 824 \param timer The timer to be added. If it doesn't have an ID yet, it is 825 considered user-defined and will be assigned an ID. 826 \return \c B_OK, if the timer was added successfully, another error code 827 otherwise. 828 */ 829 status_t 830 Team::AddUserTimer(UserTimer* timer) 831 { 832 // don't allow addition of timers when already shutting the team down 833 if (state >= TEAM_STATE_SHUTDOWN) 834 return B_BAD_TEAM_ID; 835 836 // If the timer is user-defined, check timer limit and increment 837 // user-defined count. 838 if (timer->ID() < 0 && !CheckAddUserDefinedTimer()) 839 return EAGAIN; 840 841 fUserTimers.AddTimer(timer); 842 843 return B_OK; 844 } 845 846 847 /*! Removes the given user timer from the team. 848 849 The caller must hold the team's lock. 850 851 \param timer The timer to be removed. 852 853 */ 854 void 855 Team::RemoveUserTimer(UserTimer* timer) 856 { 857 fUserTimers.RemoveTimer(timer); 858 859 if (timer->ID() >= USER_TIMER_FIRST_USER_DEFINED_ID) 860 UserDefinedTimersRemoved(1); 861 } 862 863 864 /*! Deletes all (or all user-defined) user timers of the team. 865 866 Timer's belonging to the team's threads are not affected. 867 The caller must hold the team's lock. 868 869 \param userDefinedOnly If \c true, only the user-defined timers are deleted, 870 otherwise all timers are deleted. 871 */ 872 void 873 Team::DeleteUserTimers(bool userDefinedOnly) 874 { 875 int32 count = fUserTimers.DeleteTimers(userDefinedOnly); 876 UserDefinedTimersRemoved(count); 877 } 878 879 880 /*! If not at the limit yet, increments the team's user-defined timer count. 881 \return \c true, if the limit wasn't reached yet, \c false otherwise. 882 */ 883 bool 884 Team::CheckAddUserDefinedTimer() 885 { 886 int32 oldCount = atomic_add(&fUserDefinedTimerCount, 1); 887 if (oldCount >= MAX_USER_TIMERS_PER_TEAM) { 888 atomic_add(&fUserDefinedTimerCount, -1); 889 return false; 890 } 891 892 return true; 893 } 894 895 896 /*! Subtracts the given count for the team's user-defined timer count. 897 \param count The count to subtract. 898 */ 899 void 900 Team::UserDefinedTimersRemoved(int32 count) 901 { 902 atomic_add(&fUserDefinedTimerCount, -count); 903 } 904 905 906 void 907 Team::DeactivateCPUTimeUserTimers() 908 { 909 while (TeamTimeUserTimer* timer = fCPUTimeUserTimers.Head()) 910 timer->Deactivate(); 911 912 while (TeamUserTimeUserTimer* timer = fUserTimeUserTimers.Head()) 913 timer->Deactivate(); 914 } 915 916 917 /*! Returns the team's current total CPU time (kernel + user + offset). 918 919 The caller must hold \c time_lock. 920 921 \param ignoreCurrentRun If \c true and the current thread is one team's 922 threads, don't add the time since the last time \c last_time was 923 updated. Should be used in "thread unscheduled" scheduler callbacks, 924 since although the thread is still running at that time, its time has 925 already been stopped. 926 \return The team's current total CPU time. 927 */ 928 bigtime_t 929 Team::CPUTime(bool ignoreCurrentRun, Thread* lockedThread) const 930 { 931 bigtime_t time = cpu_clock_offset + dead_threads_kernel_time 932 + dead_threads_user_time; 933 934 Thread* currentThread = thread_get_current_thread(); 935 bigtime_t now = system_time(); 936 937 for (Thread* thread = thread_list; thread != NULL; 938 thread = thread->team_next) { 939 bool alreadyLocked = thread == lockedThread; 940 SpinLocker threadTimeLocker(thread->time_lock, alreadyLocked); 941 time += thread->kernel_time + thread->user_time; 942 943 if (thread->last_time != 0) { 944 if (!ignoreCurrentRun || thread != currentThread) 945 time += now - thread->last_time; 946 } 947 948 if (alreadyLocked) 949 threadTimeLocker.Detach(); 950 } 951 952 return time; 953 } 954 955 956 /*! Returns the team's current user CPU time. 957 958 The caller must hold \c time_lock. 959 960 \return The team's current user CPU time. 961 */ 962 bigtime_t 963 Team::UserCPUTime() const 964 { 965 bigtime_t time = dead_threads_user_time; 966 967 bigtime_t now = system_time(); 968 969 for (Thread* thread = thread_list; thread != NULL; 970 thread = thread->team_next) { 971 SpinLocker threadTimeLocker(thread->time_lock); 972 time += thread->user_time; 973 974 if (thread->last_time != 0 && !thread->in_kernel) 975 time += now - thread->last_time; 976 } 977 978 return time; 979 } 980 981 982 // #pragma mark - ProcessGroup 983 984 985 ProcessGroup::ProcessGroup(pid_t id) 986 : 987 id(id), 988 teams(NULL), 989 fSession(NULL), 990 fInOrphanedCheckList(false) 991 { 992 char lockName[32]; 993 snprintf(lockName, sizeof(lockName), "Group:%" B_PRId32, id); 994 mutex_init_etc(&fLock, lockName, MUTEX_FLAG_CLONE_NAME); 995 } 996 997 998 ProcessGroup::~ProcessGroup() 999 { 1000 TRACE(("ProcessGroup::~ProcessGroup(): id = %" B_PRId32 "\n", id)); 1001 1002 // If the group is in the orphaned check list, remove it. 1003 MutexLocker orphanedCheckLocker(sOrphanedCheckLock); 1004 1005 if (fInOrphanedCheckList) 1006 sOrphanedCheckProcessGroups.Remove(this); 1007 1008 orphanedCheckLocker.Unlock(); 1009 1010 // remove group from the hash table and from the session 1011 if (fSession != NULL) { 1012 InterruptsSpinLocker groupHashLocker(sGroupHashLock); 1013 sGroupHash.RemoveUnchecked(this); 1014 groupHashLocker.Unlock(); 1015 1016 fSession->ReleaseReference(); 1017 } 1018 1019 mutex_destroy(&fLock); 1020 } 1021 1022 1023 /*static*/ ProcessGroup* 1024 ProcessGroup::Get(pid_t id) 1025 { 1026 InterruptsSpinLocker groupHashLocker(sGroupHashLock); 1027 ProcessGroup* group = sGroupHash.Lookup(id); 1028 if (group != NULL) 1029 group->AcquireReference(); 1030 return group; 1031 } 1032 1033 1034 /*! Adds the group the given session and makes it publicly accessible. 1035 The caller must not hold the process group hash lock. 1036 */ 1037 void 1038 ProcessGroup::Publish(ProcessSession* session) 1039 { 1040 InterruptsSpinLocker groupHashLocker(sGroupHashLock); 1041 PublishLocked(session); 1042 } 1043 1044 1045 /*! Adds the group to the given session and makes it publicly accessible. 1046 The caller must hold the process group hash lock. 1047 */ 1048 void 1049 ProcessGroup::PublishLocked(ProcessSession* session) 1050 { 1051 ASSERT(sGroupHash.Lookup(this->id) == NULL); 1052 1053 fSession = session; 1054 fSession->AcquireReference(); 1055 1056 sGroupHash.InsertUnchecked(this); 1057 } 1058 1059 1060 /*! Checks whether the process group is orphaned. 1061 The caller must hold the group's lock. 1062 \return \c true, if the group is orphaned, \c false otherwise. 1063 */ 1064 bool 1065 ProcessGroup::IsOrphaned() const 1066 { 1067 // Orphaned Process Group: "A process group in which the parent of every 1068 // member is either itself a member of the group or is not a member of the 1069 // group's session." (Open Group Base Specs Issue 7) 1070 bool orphaned = true; 1071 1072 Team* team = teams; 1073 while (orphaned && team != NULL) { 1074 team->LockTeamAndParent(false); 1075 1076 Team* parent = team->parent; 1077 if (parent != NULL && parent->group_id != id 1078 && parent->session_id == fSession->id) { 1079 orphaned = false; 1080 } 1081 1082 team->UnlockTeamAndParent(); 1083 1084 team = team->group_next; 1085 } 1086 1087 return orphaned; 1088 } 1089 1090 1091 void 1092 ProcessGroup::ScheduleOrphanedCheck() 1093 { 1094 MutexLocker orphanedCheckLocker(sOrphanedCheckLock); 1095 1096 if (!fInOrphanedCheckList) { 1097 sOrphanedCheckProcessGroups.Add(this); 1098 fInOrphanedCheckList = true; 1099 } 1100 } 1101 1102 1103 void 1104 ProcessGroup::UnsetOrphanedCheck() 1105 { 1106 fInOrphanedCheckList = false; 1107 } 1108 1109 1110 // #pragma mark - ProcessSession 1111 1112 1113 ProcessSession::ProcessSession(pid_t id) 1114 : 1115 id(id), 1116 controlling_tty(-1), 1117 foreground_group(-1) 1118 { 1119 char lockName[32]; 1120 snprintf(lockName, sizeof(lockName), "Session:%" B_PRId32, id); 1121 mutex_init_etc(&fLock, lockName, MUTEX_FLAG_CLONE_NAME); 1122 } 1123 1124 1125 ProcessSession::~ProcessSession() 1126 { 1127 mutex_destroy(&fLock); 1128 } 1129 1130 1131 // #pragma mark - KDL functions 1132 1133 1134 static void 1135 _dump_team_info(Team* team) 1136 { 1137 kprintf("TEAM: %p\n", team); 1138 kprintf("id: %" B_PRId32 " (%#" B_PRIx32 ")\n", team->id, 1139 team->id); 1140 kprintf("serial_number: %" B_PRId64 "\n", team->serial_number); 1141 kprintf("name: '%s'\n", team->Name()); 1142 kprintf("args: '%s'\n", team->Args()); 1143 kprintf("hash_next: %p\n", team->hash_next); 1144 kprintf("parent: %p", team->parent); 1145 if (team->parent != NULL) { 1146 kprintf(" (id = %" B_PRId32 ")\n", team->parent->id); 1147 } else 1148 kprintf("\n"); 1149 1150 kprintf("children: %p\n", team->children); 1151 kprintf("num_threads: %d\n", team->num_threads); 1152 kprintf("state: %d\n", team->state); 1153 kprintf("flags: 0x%" B_PRIx32 "\n", team->flags); 1154 kprintf("io_context: %p\n", team->io_context); 1155 if (team->address_space) 1156 kprintf("address_space: %p\n", team->address_space); 1157 kprintf("user data: %p (area %" B_PRId32 ")\n", 1158 (void*)team->user_data, team->user_data_area); 1159 kprintf("free user thread: %p\n", team->free_user_threads); 1160 kprintf("main_thread: %p\n", team->main_thread); 1161 kprintf("thread_list: %p\n", team->thread_list); 1162 kprintf("group_id: %" B_PRId32 "\n", team->group_id); 1163 kprintf("session_id: %" B_PRId32 "\n", team->session_id); 1164 } 1165 1166 1167 static int 1168 dump_team_info(int argc, char** argv) 1169 { 1170 ulong arg; 1171 bool found = false; 1172 1173 if (argc < 2) { 1174 Thread* thread = thread_get_current_thread(); 1175 if (thread != NULL && thread->team != NULL) 1176 _dump_team_info(thread->team); 1177 else 1178 kprintf("No current team!\n"); 1179 return 0; 1180 } 1181 1182 arg = strtoul(argv[1], NULL, 0); 1183 if (IS_KERNEL_ADDRESS(arg)) { 1184 // semi-hack 1185 _dump_team_info((Team*)arg); 1186 return 0; 1187 } 1188 1189 // walk through the thread list, trying to match name or id 1190 for (TeamTable::Iterator it = sTeamHash.GetIterator(); 1191 Team* team = it.Next();) { 1192 if ((team->Name() && strcmp(argv[1], team->Name()) == 0) 1193 || team->id == (team_id)arg) { 1194 _dump_team_info(team); 1195 found = true; 1196 break; 1197 } 1198 } 1199 1200 if (!found) 1201 kprintf("team \"%s\" (%" B_PRId32 ") doesn't exist!\n", argv[1], (team_id)arg); 1202 return 0; 1203 } 1204 1205 1206 static int 1207 dump_teams(int argc, char** argv) 1208 { 1209 kprintf("%-*s id %-*s name\n", B_PRINTF_POINTER_WIDTH, "team", 1210 B_PRINTF_POINTER_WIDTH, "parent"); 1211 1212 for (TeamTable::Iterator it = sTeamHash.GetIterator(); 1213 Team* team = it.Next();) { 1214 kprintf("%p%7" B_PRId32 " %p %s\n", team, team->id, team->parent, team->Name()); 1215 } 1216 1217 return 0; 1218 } 1219 1220 1221 // #pragma mark - Private functions 1222 1223 1224 /*! Inserts team \a team into the child list of team \a parent. 1225 1226 The caller must hold the lock of both \a parent and \a team. 1227 1228 \param parent The parent team. 1229 \param team The team to be inserted into \a parent's child list. 1230 */ 1231 static void 1232 insert_team_into_parent(Team* parent, Team* team) 1233 { 1234 ASSERT(parent != NULL); 1235 1236 team->siblings_next = parent->children; 1237 parent->children = team; 1238 team->parent = parent; 1239 } 1240 1241 1242 /*! Removes team \a team from the child list of team \a parent. 1243 1244 The caller must hold the lock of both \a parent and \a team. 1245 1246 \param parent The parent team. 1247 \param team The team to be removed from \a parent's child list. 1248 */ 1249 static void 1250 remove_team_from_parent(Team* parent, Team* team) 1251 { 1252 Team* child; 1253 Team* last = NULL; 1254 1255 for (child = parent->children; child != NULL; 1256 child = child->siblings_next) { 1257 if (child == team) { 1258 if (last == NULL) 1259 parent->children = child->siblings_next; 1260 else 1261 last->siblings_next = child->siblings_next; 1262 1263 team->parent = NULL; 1264 break; 1265 } 1266 last = child; 1267 } 1268 } 1269 1270 1271 /*! Returns whether the given team is a session leader. 1272 The caller must hold the team's lock or its process group's lock. 1273 */ 1274 static bool 1275 is_session_leader(Team* team) 1276 { 1277 return team->session_id == team->id; 1278 } 1279 1280 1281 /*! Returns whether the given team is a process group leader. 1282 The caller must hold the team's lock or its process group's lock. 1283 */ 1284 static bool 1285 is_process_group_leader(Team* team) 1286 { 1287 return team->group_id == team->id; 1288 } 1289 1290 1291 /*! Inserts the given team into the given process group. 1292 The caller must hold the process group's lock, the team's lock, and the 1293 team's parent's lock. 1294 */ 1295 static void 1296 insert_team_into_group(ProcessGroup* group, Team* team) 1297 { 1298 team->group = group; 1299 team->group_id = group->id; 1300 team->session_id = group->Session()->id; 1301 1302 team->group_next = group->teams; 1303 group->teams = team; 1304 group->AcquireReference(); 1305 } 1306 1307 1308 /*! Removes the given team from its process group. 1309 1310 The caller must hold the process group's lock, the team's lock, and the 1311 team's parent's lock. Interrupts must be enabled. 1312 1313 \param team The team that'll be removed from its process group. 1314 */ 1315 static void 1316 remove_team_from_group(Team* team) 1317 { 1318 ProcessGroup* group = team->group; 1319 Team* current; 1320 Team* last = NULL; 1321 1322 // the team must be in a process group to let this function have any effect 1323 if (group == NULL) 1324 return; 1325 1326 for (current = group->teams; current != NULL; 1327 current = current->group_next) { 1328 if (current == team) { 1329 if (last == NULL) 1330 group->teams = current->group_next; 1331 else 1332 last->group_next = current->group_next; 1333 1334 team->group = NULL; 1335 break; 1336 } 1337 last = current; 1338 } 1339 1340 team->group = NULL; 1341 team->group_next = NULL; 1342 1343 group->ReleaseReference(); 1344 } 1345 1346 1347 static status_t 1348 create_team_user_data(Team* team, void* exactAddress = NULL) 1349 { 1350 void* address; 1351 uint32 addressSpec; 1352 1353 if (exactAddress != NULL) { 1354 address = exactAddress; 1355 addressSpec = B_EXACT_ADDRESS; 1356 } else { 1357 address = (void*)KERNEL_USER_DATA_BASE; 1358 addressSpec = B_RANDOMIZED_BASE_ADDRESS; 1359 } 1360 1361 status_t result = vm_reserve_address_range(team->id, &address, addressSpec, 1362 kTeamUserDataReservedSize, RESERVED_AVOID_BASE); 1363 1364 virtual_address_restrictions virtualRestrictions = {}; 1365 if (result == B_OK || exactAddress != NULL) { 1366 if (exactAddress != NULL) 1367 virtualRestrictions.address = exactAddress; 1368 else 1369 virtualRestrictions.address = address; 1370 virtualRestrictions.address_specification = B_EXACT_ADDRESS; 1371 } else { 1372 virtualRestrictions.address = (void*)KERNEL_USER_DATA_BASE; 1373 virtualRestrictions.address_specification = B_RANDOMIZED_BASE_ADDRESS; 1374 } 1375 1376 physical_address_restrictions physicalRestrictions = {}; 1377 team->user_data_area = create_area_etc(team->id, "user area", 1378 kTeamUserDataInitialSize, B_FULL_LOCK, B_READ_AREA | B_WRITE_AREA, 0, 0, 1379 &virtualRestrictions, &physicalRestrictions, &address); 1380 if (team->user_data_area < 0) 1381 return team->user_data_area; 1382 1383 team->user_data = (addr_t)address; 1384 team->used_user_data = 0; 1385 team->user_data_size = kTeamUserDataInitialSize; 1386 team->free_user_threads = NULL; 1387 1388 return B_OK; 1389 } 1390 1391 1392 static void 1393 delete_team_user_data(Team* team) 1394 { 1395 if (team->user_data_area >= 0) { 1396 vm_delete_area(team->id, team->user_data_area, true); 1397 vm_unreserve_address_range(team->id, (void*)team->user_data, 1398 kTeamUserDataReservedSize); 1399 1400 team->user_data = 0; 1401 team->used_user_data = 0; 1402 team->user_data_size = 0; 1403 team->user_data_area = -1; 1404 while (free_user_thread* entry = team->free_user_threads) { 1405 team->free_user_threads = entry->next; 1406 free(entry); 1407 } 1408 } 1409 } 1410 1411 1412 static status_t 1413 copy_user_process_args(const char* const* userFlatArgs, size_t flatArgsSize, 1414 int32 argCount, int32 envCount, char**& _flatArgs) 1415 { 1416 if (argCount < 0 || envCount < 0) 1417 return B_BAD_VALUE; 1418 1419 if (flatArgsSize > MAX_PROCESS_ARGS_SIZE) 1420 return B_TOO_MANY_ARGS; 1421 if ((argCount + envCount + 2) * sizeof(char*) > flatArgsSize) 1422 return B_BAD_VALUE; 1423 1424 if (!IS_USER_ADDRESS(userFlatArgs)) 1425 return B_BAD_ADDRESS; 1426 1427 // allocate kernel memory 1428 char** flatArgs = (char**)malloc(_ALIGN(flatArgsSize)); 1429 if (flatArgs == NULL) 1430 return B_NO_MEMORY; 1431 1432 if (user_memcpy(flatArgs, userFlatArgs, flatArgsSize) != B_OK) { 1433 free(flatArgs); 1434 return B_BAD_ADDRESS; 1435 } 1436 1437 // check and relocate the array 1438 status_t error = B_OK; 1439 const char* stringBase = (char*)flatArgs + argCount + envCount + 2; 1440 const char* stringEnd = (char*)flatArgs + flatArgsSize; 1441 for (int32 i = 0; i < argCount + envCount + 2; i++) { 1442 if (i == argCount || i == argCount + envCount + 1) { 1443 // check array null termination 1444 if (flatArgs[i] != NULL) { 1445 error = B_BAD_VALUE; 1446 break; 1447 } 1448 } else { 1449 // check string 1450 char* arg = (char*)flatArgs + (flatArgs[i] - (char*)userFlatArgs); 1451 size_t maxLen = stringEnd - arg; 1452 if (arg < stringBase || arg >= stringEnd 1453 || strnlen(arg, maxLen) == maxLen) { 1454 error = B_BAD_VALUE; 1455 break; 1456 } 1457 1458 flatArgs[i] = arg; 1459 } 1460 } 1461 1462 if (error == B_OK) 1463 _flatArgs = flatArgs; 1464 else 1465 free(flatArgs); 1466 1467 return error; 1468 } 1469 1470 1471 static void 1472 free_team_arg(struct team_arg* teamArg) 1473 { 1474 if (teamArg != NULL) { 1475 free(teamArg->flat_args); 1476 free(teamArg->path); 1477 free(teamArg); 1478 } 1479 } 1480 1481 1482 static status_t 1483 create_team_arg(struct team_arg** _teamArg, const char* path, char** flatArgs, 1484 size_t flatArgsSize, int32 argCount, int32 envCount, mode_t umask, 1485 port_id port, uint32 token) 1486 { 1487 struct team_arg* teamArg = (struct team_arg*)malloc(sizeof(team_arg)); 1488 if (teamArg == NULL) 1489 return B_NO_MEMORY; 1490 1491 teamArg->path = strdup(path); 1492 if (teamArg->path == NULL) { 1493 free(teamArg); 1494 return B_NO_MEMORY; 1495 } 1496 1497 // copy the args over 1498 teamArg->flat_args = flatArgs; 1499 teamArg->flat_args_size = flatArgsSize; 1500 teamArg->arg_count = argCount; 1501 teamArg->env_count = envCount; 1502 teamArg->flags = 0; 1503 teamArg->umask = umask; 1504 teamArg->error_port = port; 1505 teamArg->error_token = token; 1506 1507 // determine the flags from the environment 1508 const char* const* env = flatArgs + argCount + 1; 1509 for (int32 i = 0; i < envCount; i++) { 1510 if (strcmp(env[i], "DISABLE_ASLR=1") == 0) { 1511 teamArg->flags |= TEAM_ARGS_FLAG_NO_ASLR; 1512 break; 1513 } 1514 } 1515 1516 *_teamArg = teamArg; 1517 return B_OK; 1518 } 1519 1520 1521 static status_t 1522 team_create_thread_start_internal(void* args) 1523 { 1524 status_t err; 1525 Thread* thread; 1526 Team* team; 1527 struct team_arg* teamArgs = (struct team_arg*)args; 1528 const char* path; 1529 addr_t entry; 1530 char** userArgs; 1531 char** userEnv; 1532 struct user_space_program_args* programArgs; 1533 uint32 argCount, envCount; 1534 1535 thread = thread_get_current_thread(); 1536 team = thread->team; 1537 cache_node_launched(teamArgs->arg_count, teamArgs->flat_args); 1538 1539 TRACE(("team_create_thread_start: entry thread %" B_PRId32 "\n", 1540 thread->id)); 1541 1542 // Main stack area layout is currently as follows (starting from 0): 1543 // 1544 // size | usage 1545 // ---------------------------------+-------------------------------- 1546 // USER_MAIN_THREAD_STACK_SIZE | actual stack 1547 // TLS_SIZE | TLS data 1548 // sizeof(user_space_program_args) | argument structure for the runtime 1549 // | loader 1550 // flat arguments size | flat process arguments and environment 1551 1552 // TODO: ENV_SIZE is a) limited, and b) not used after libroot copied it to 1553 // the heap 1554 // TODO: we could reserve the whole USER_STACK_REGION upfront... 1555 1556 argCount = teamArgs->arg_count; 1557 envCount = teamArgs->env_count; 1558 1559 programArgs = (struct user_space_program_args*)(thread->user_stack_base 1560 + thread->user_stack_size + TLS_SIZE); 1561 1562 userArgs = (char**)(programArgs + 1); 1563 userEnv = userArgs + argCount + 1; 1564 path = teamArgs->path; 1565 1566 if (user_strlcpy(programArgs->program_path, path, 1567 sizeof(programArgs->program_path)) < B_OK 1568 || user_memcpy(&programArgs->arg_count, &argCount, sizeof(int32)) < B_OK 1569 || user_memcpy(&programArgs->args, &userArgs, sizeof(char**)) < B_OK 1570 || user_memcpy(&programArgs->env_count, &envCount, sizeof(int32)) < B_OK 1571 || user_memcpy(&programArgs->env, &userEnv, sizeof(char**)) < B_OK 1572 || user_memcpy(&programArgs->error_port, &teamArgs->error_port, 1573 sizeof(port_id)) < B_OK 1574 || user_memcpy(&programArgs->error_token, &teamArgs->error_token, 1575 sizeof(uint32)) < B_OK 1576 || user_memcpy(&programArgs->umask, &teamArgs->umask, sizeof(mode_t)) < B_OK 1577 || user_memcpy(userArgs, teamArgs->flat_args, 1578 teamArgs->flat_args_size) < B_OK) { 1579 // the team deletion process will clean this mess 1580 free_team_arg(teamArgs); 1581 return B_BAD_ADDRESS; 1582 } 1583 1584 TRACE(("team_create_thread_start: loading elf binary '%s'\n", path)); 1585 1586 // set team args and update state 1587 team->Lock(); 1588 team->SetArgs(path, teamArgs->flat_args + 1, argCount - 1); 1589 team->state = TEAM_STATE_NORMAL; 1590 team->Unlock(); 1591 1592 free_team_arg(teamArgs); 1593 // the arguments are already on the user stack, we no longer need 1594 // them in this form 1595 1596 // Clone commpage area 1597 area_id commPageArea = clone_commpage_area(team->id, 1598 &team->commpage_address); 1599 if (commPageArea < B_OK) { 1600 TRACE(("team_create_thread_start: clone_commpage_area() failed: %s\n", 1601 strerror(commPageArea))); 1602 return commPageArea; 1603 } 1604 1605 // Register commpage image 1606 image_id commPageImage = get_commpage_image(); 1607 extended_image_info imageInfo; 1608 err = get_image_info(commPageImage, &imageInfo.basic_info); 1609 if (err != B_OK) { 1610 TRACE(("team_create_thread_start: get_image_info() failed: %s\n", 1611 strerror(err))); 1612 return err; 1613 } 1614 imageInfo.basic_info.text = team->commpage_address; 1615 imageInfo.text_delta = (ssize_t)(addr_t)team->commpage_address; 1616 imageInfo.symbol_table = NULL; 1617 imageInfo.symbol_hash = NULL; 1618 imageInfo.string_table = NULL; 1619 image_id image = register_image(team, &imageInfo, sizeof(imageInfo)); 1620 if (image < 0) { 1621 TRACE(("team_create_thread_start: register_image() failed: %s\n", 1622 strerror(image))); 1623 return image; 1624 } 1625 1626 // NOTE: Normally arch_thread_enter_userspace() never returns, that is 1627 // automatic variables with function scope will never be destroyed. 1628 { 1629 // find runtime_loader path 1630 KPath runtimeLoaderPath; 1631 err = __find_directory(B_SYSTEM_DIRECTORY, gBootDevice, false, 1632 runtimeLoaderPath.LockBuffer(), runtimeLoaderPath.BufferSize()); 1633 if (err < B_OK) { 1634 TRACE(("team_create_thread_start: find_directory() failed: %s\n", 1635 strerror(err))); 1636 return err; 1637 } 1638 runtimeLoaderPath.UnlockBuffer(); 1639 err = runtimeLoaderPath.Append("runtime_loader"); 1640 1641 if (err == B_OK) { 1642 err = elf_load_user_image(runtimeLoaderPath.Path(), team, 0, 1643 &entry); 1644 } 1645 } 1646 1647 if (err < B_OK) { 1648 // Luckily, we don't have to clean up the mess we created - that's 1649 // done for us by the normal team deletion process 1650 TRACE(("team_create_thread_start: elf_load_user_image() failed: " 1651 "%s\n", strerror(err))); 1652 return err; 1653 } 1654 1655 TRACE(("team_create_thread_start: loaded elf. entry = %#lx\n", entry)); 1656 1657 // enter userspace -- returns only in case of error 1658 return thread_enter_userspace_new_team(thread, (addr_t)entry, 1659 programArgs, team->commpage_address); 1660 } 1661 1662 1663 static status_t 1664 team_create_thread_start(void* args) 1665 { 1666 team_create_thread_start_internal(args); 1667 team_init_exit_info_on_error(thread_get_current_thread()->team); 1668 thread_exit(); 1669 // does not return 1670 return B_OK; 1671 } 1672 1673 1674 static thread_id 1675 load_image_internal(char**& _flatArgs, size_t flatArgsSize, int32 argCount, 1676 int32 envCount, int32 priority, team_id parentID, uint32 flags, 1677 port_id errorPort, uint32 errorToken) 1678 { 1679 char** flatArgs = _flatArgs; 1680 thread_id thread; 1681 status_t status; 1682 struct team_arg* teamArgs; 1683 struct team_loading_info loadingInfo; 1684 io_context* parentIOContext = NULL; 1685 team_id teamID; 1686 1687 if (flatArgs == NULL || argCount == 0) 1688 return B_BAD_VALUE; 1689 1690 const char* path = flatArgs[0]; 1691 1692 TRACE(("load_image_internal: name '%s', args = %p, argCount = %" B_PRId32 1693 "\n", path, flatArgs, argCount)); 1694 1695 // cut the path from the main thread name 1696 const char* threadName = strrchr(path, '/'); 1697 if (threadName != NULL) 1698 threadName++; 1699 else 1700 threadName = path; 1701 1702 // create the main thread object 1703 Thread* mainThread; 1704 status = Thread::Create(threadName, mainThread); 1705 if (status != B_OK) 1706 return status; 1707 BReference<Thread> mainThreadReference(mainThread, true); 1708 1709 // create team object 1710 Team* team = Team::Create(mainThread->id, path, false); 1711 if (team == NULL) 1712 return B_NO_MEMORY; 1713 BReference<Team> teamReference(team, true); 1714 1715 if (flags & B_WAIT_TILL_LOADED) { 1716 loadingInfo.thread = thread_get_current_thread(); 1717 loadingInfo.result = B_ERROR; 1718 loadingInfo.done = false; 1719 team->loading_info = &loadingInfo; 1720 } 1721 1722 // get the parent team 1723 Team* parent = Team::Get(parentID); 1724 if (parent == NULL) 1725 return B_BAD_TEAM_ID; 1726 BReference<Team> parentReference(parent, true); 1727 1728 parent->LockTeamAndProcessGroup(); 1729 team->Lock(); 1730 1731 // inherit the parent's user/group 1732 inherit_parent_user_and_group(team, parent); 1733 1734 InterruptsSpinLocker teamsLocker(sTeamHashLock); 1735 1736 sTeamHash.Insert(team); 1737 bool teamLimitReached = sUsedTeams >= sMaxTeams; 1738 if (!teamLimitReached) 1739 sUsedTeams++; 1740 1741 teamsLocker.Unlock(); 1742 1743 insert_team_into_parent(parent, team); 1744 insert_team_into_group(parent->group, team); 1745 1746 // get a reference to the parent's I/O context -- we need it to create ours 1747 parentIOContext = parent->io_context; 1748 vfs_get_io_context(parentIOContext); 1749 1750 team->Unlock(); 1751 parent->UnlockTeamAndProcessGroup(); 1752 1753 // notify team listeners 1754 sNotificationService.Notify(TEAM_ADDED, team); 1755 1756 // check the executable's set-user/group-id permission 1757 update_set_id_user_and_group(team, path); 1758 1759 if (teamLimitReached) { 1760 status = B_NO_MORE_TEAMS; 1761 goto err1; 1762 } 1763 1764 status = create_team_arg(&teamArgs, path, flatArgs, flatArgsSize, argCount, 1765 envCount, (mode_t)-1, errorPort, errorToken); 1766 if (status != B_OK) 1767 goto err1; 1768 1769 _flatArgs = NULL; 1770 // args are owned by the team_arg structure now 1771 1772 // create a new io_context for this team 1773 team->io_context = vfs_new_io_context(parentIOContext, true); 1774 if (!team->io_context) { 1775 status = B_NO_MEMORY; 1776 goto err2; 1777 } 1778 1779 // We don't need the parent's I/O context any longer. 1780 vfs_put_io_context(parentIOContext); 1781 parentIOContext = NULL; 1782 1783 // remove any fds that have the CLOEXEC flag set (emulating BeOS behaviour) 1784 vfs_exec_io_context(team->io_context); 1785 1786 // create an address space for this team 1787 status = VMAddressSpace::Create(team->id, USER_BASE, USER_SIZE, false, 1788 &team->address_space); 1789 if (status != B_OK) 1790 goto err2; 1791 1792 team->address_space->SetRandomizingEnabled( 1793 (teamArgs->flags & TEAM_ARGS_FLAG_NO_ASLR) == 0); 1794 1795 // create the user data area 1796 status = create_team_user_data(team); 1797 if (status != B_OK) 1798 goto err4; 1799 1800 // In case we start the main thread, we shouldn't access the team object 1801 // afterwards, so cache the team's ID. 1802 teamID = team->id; 1803 1804 // Create a kernel thread, but under the context of the new team 1805 // The new thread will take over ownership of teamArgs. 1806 { 1807 ThreadCreationAttributes threadAttributes(team_create_thread_start, 1808 threadName, B_NORMAL_PRIORITY, teamArgs, teamID, mainThread); 1809 threadAttributes.additional_stack_size = sizeof(user_space_program_args) 1810 + teamArgs->flat_args_size; 1811 thread = thread_create_thread(threadAttributes, false); 1812 if (thread < 0) { 1813 status = thread; 1814 goto err5; 1815 } 1816 } 1817 1818 // The team has been created successfully, so we keep the reference. Or 1819 // more precisely: It's owned by the team's main thread, now. 1820 teamReference.Detach(); 1821 1822 // wait for the loader of the new team to finish its work 1823 if ((flags & B_WAIT_TILL_LOADED) != 0) { 1824 if (mainThread != NULL) { 1825 // resume the team's main thread 1826 thread_continue(mainThread); 1827 } 1828 1829 // Now suspend ourselves until loading is finished. We will be woken 1830 // either by the thread, when it finished or aborted loading, or when 1831 // the team is going to die (e.g. is killed). In either case the one 1832 // setting `loadingInfo.done' is responsible for removing the info from 1833 // the team structure. 1834 while (!loadingInfo.done) 1835 thread_suspend(); 1836 1837 if (loadingInfo.result < B_OK) 1838 return loadingInfo.result; 1839 } 1840 1841 // notify the debugger 1842 user_debug_team_created(teamID); 1843 1844 return thread; 1845 1846 err5: 1847 delete_team_user_data(team); 1848 err4: 1849 team->address_space->Put(); 1850 err2: 1851 free_team_arg(teamArgs); 1852 err1: 1853 if (parentIOContext != NULL) 1854 vfs_put_io_context(parentIOContext); 1855 1856 // Remove the team structure from the process group, the parent team, and 1857 // the team hash table and delete the team structure. 1858 parent->LockTeamAndProcessGroup(); 1859 team->Lock(); 1860 1861 remove_team_from_group(team); 1862 remove_team_from_parent(team->parent, team); 1863 1864 team->Unlock(); 1865 parent->UnlockTeamAndProcessGroup(); 1866 1867 teamsLocker.Lock(); 1868 sTeamHash.Remove(team); 1869 if (!teamLimitReached) 1870 sUsedTeams--; 1871 teamsLocker.Unlock(); 1872 1873 sNotificationService.Notify(TEAM_REMOVED, team); 1874 1875 return status; 1876 } 1877 1878 1879 /*! Almost shuts down the current team and loads a new image into it. 1880 If successful, this function does not return and will takeover ownership of 1881 the arguments provided. 1882 This function may only be called in a userland team (caused by one of the 1883 exec*() syscalls). 1884 */ 1885 static status_t 1886 exec_team(const char* path, char**& _flatArgs, size_t flatArgsSize, 1887 int32 argCount, int32 envCount, mode_t umask) 1888 { 1889 // NOTE: Since this function normally doesn't return, don't use automatic 1890 // variables that need destruction in the function scope. 1891 char** flatArgs = _flatArgs; 1892 Team* team = thread_get_current_thread()->team; 1893 struct team_arg* teamArgs; 1894 const char* threadName; 1895 thread_id nubThreadID = -1; 1896 1897 TRACE(("exec_team(path = \"%s\", argc = %" B_PRId32 ", envCount = %" 1898 B_PRId32 "): team %" B_PRId32 "\n", path, argCount, envCount, 1899 team->id)); 1900 1901 T(ExecTeam(path, argCount, flatArgs, envCount, flatArgs + argCount + 1)); 1902 1903 // switching the kernel at run time is probably not a good idea :) 1904 if (team == team_get_kernel_team()) 1905 return B_NOT_ALLOWED; 1906 1907 // we currently need to be single threaded here 1908 // TODO: maybe we should just kill all other threads and 1909 // make the current thread the team's main thread? 1910 Thread* currentThread = thread_get_current_thread(); 1911 if (currentThread != team->main_thread) 1912 return B_NOT_ALLOWED; 1913 1914 // The debug nub thread, a pure kernel thread, is allowed to survive. 1915 // We iterate through the thread list to make sure that there's no other 1916 // thread. 1917 TeamLocker teamLocker(team); 1918 InterruptsSpinLocker debugInfoLocker(team->debug_info.lock); 1919 1920 if (team->debug_info.flags & B_TEAM_DEBUG_DEBUGGER_INSTALLED) 1921 nubThreadID = team->debug_info.nub_thread; 1922 1923 debugInfoLocker.Unlock(); 1924 1925 for (Thread* thread = team->thread_list; thread != NULL; 1926 thread = thread->team_next) { 1927 if (thread != team->main_thread && thread->id != nubThreadID) 1928 return B_NOT_ALLOWED; 1929 } 1930 1931 team->DeleteUserTimers(true); 1932 team->ResetSignalsOnExec(); 1933 1934 teamLocker.Unlock(); 1935 1936 status_t status = create_team_arg(&teamArgs, path, flatArgs, flatArgsSize, 1937 argCount, envCount, umask, -1, 0); 1938 if (status != B_OK) 1939 return status; 1940 1941 _flatArgs = NULL; 1942 // args are owned by the team_arg structure now 1943 1944 // TODO: remove team resources if there are any left 1945 // thread_atkernel_exit() might not be called at all 1946 1947 thread_reset_for_exec(); 1948 1949 user_debug_prepare_for_exec(); 1950 1951 delete_team_user_data(team); 1952 vm_delete_areas(team->address_space, false); 1953 xsi_sem_undo(team); 1954 delete_owned_ports(team); 1955 sem_delete_owned_sems(team); 1956 remove_images(team); 1957 vfs_exec_io_context(team->io_context); 1958 delete_realtime_sem_context(team->realtime_sem_context); 1959 team->realtime_sem_context = NULL; 1960 1961 // update ASLR 1962 team->address_space->SetRandomizingEnabled( 1963 (teamArgs->flags & TEAM_ARGS_FLAG_NO_ASLR) == 0); 1964 1965 status = create_team_user_data(team); 1966 if (status != B_OK) { 1967 // creating the user data failed -- we're toast 1968 free_team_arg(teamArgs); 1969 exit_thread(status); 1970 return status; 1971 } 1972 1973 user_debug_finish_after_exec(); 1974 1975 // rename the team 1976 1977 team->Lock(); 1978 team->SetName(path); 1979 team->Unlock(); 1980 1981 // cut the path from the team name and rename the main thread, too 1982 threadName = strrchr(path, '/'); 1983 if (threadName != NULL) 1984 threadName++; 1985 else 1986 threadName = path; 1987 rename_thread(thread_get_current_thread_id(), threadName); 1988 1989 atomic_or(&team->flags, TEAM_FLAG_EXEC_DONE); 1990 1991 // Update user/group according to the executable's set-user/group-id 1992 // permission. 1993 update_set_id_user_and_group(team, path); 1994 1995 user_debug_team_exec(); 1996 1997 // notify team listeners 1998 sNotificationService.Notify(TEAM_EXEC, team); 1999 2000 // get a user thread for the thread 2001 user_thread* userThread = team_allocate_user_thread(team); 2002 // cannot fail (the allocation for the team would have failed already) 2003 ThreadLocker currentThreadLocker(currentThread); 2004 currentThread->user_thread = userThread; 2005 currentThreadLocker.Unlock(); 2006 2007 // create the user stack for the thread 2008 status = thread_create_user_stack(currentThread->team, currentThread, NULL, 2009 0, sizeof(user_space_program_args) + teamArgs->flat_args_size); 2010 if (status == B_OK) { 2011 // prepare the stack, load the runtime loader, and enter userspace 2012 team_create_thread_start(teamArgs); 2013 // does never return 2014 } else 2015 free_team_arg(teamArgs); 2016 2017 // Sorry, we have to kill ourselves, there is no way out anymore 2018 // (without any areas left and all that). 2019 exit_thread(status); 2020 2021 // We return a status here since the signal that is sent by the 2022 // call above is not immediately handled. 2023 return B_ERROR; 2024 } 2025 2026 2027 static thread_id 2028 fork_team(void) 2029 { 2030 Thread* parentThread = thread_get_current_thread(); 2031 Team* parentTeam = parentThread->team; 2032 Team* team; 2033 arch_fork_arg* forkArgs; 2034 struct area_info info; 2035 thread_id threadID; 2036 status_t status; 2037 ssize_t areaCookie; 2038 2039 TRACE(("fork_team(): team %" B_PRId32 "\n", parentTeam->id)); 2040 2041 if (parentTeam == team_get_kernel_team()) 2042 return B_NOT_ALLOWED; 2043 2044 // create a new team 2045 // TODO: this is very similar to load_image_internal() - maybe we can do 2046 // something about it :) 2047 2048 // create the main thread object 2049 Thread* thread; 2050 status = Thread::Create(parentThread->name, thread); 2051 if (status != B_OK) 2052 return status; 2053 BReference<Thread> threadReference(thread, true); 2054 2055 // create the team object 2056 team = Team::Create(thread->id, NULL, false); 2057 if (team == NULL) 2058 return B_NO_MEMORY; 2059 2060 parentTeam->LockTeamAndProcessGroup(); 2061 team->Lock(); 2062 2063 team->SetName(parentTeam->Name()); 2064 team->SetArgs(parentTeam->Args()); 2065 2066 team->commpage_address = parentTeam->commpage_address; 2067 2068 // Inherit the parent's user/group. 2069 inherit_parent_user_and_group(team, parentTeam); 2070 2071 // inherit signal handlers 2072 team->InheritSignalActions(parentTeam); 2073 2074 InterruptsSpinLocker teamsLocker(sTeamHashLock); 2075 2076 sTeamHash.Insert(team); 2077 bool teamLimitReached = sUsedTeams >= sMaxTeams; 2078 if (!teamLimitReached) 2079 sUsedTeams++; 2080 2081 teamsLocker.Unlock(); 2082 2083 insert_team_into_parent(parentTeam, team); 2084 insert_team_into_group(parentTeam->group, team); 2085 2086 team->Unlock(); 2087 parentTeam->UnlockTeamAndProcessGroup(); 2088 2089 // notify team listeners 2090 sNotificationService.Notify(TEAM_ADDED, team); 2091 2092 // inherit some team debug flags 2093 team->debug_info.flags |= atomic_get(&parentTeam->debug_info.flags) 2094 & B_TEAM_DEBUG_INHERITED_FLAGS; 2095 2096 if (teamLimitReached) { 2097 status = B_NO_MORE_TEAMS; 2098 goto err1; 2099 } 2100 2101 forkArgs = (arch_fork_arg*)malloc(sizeof(arch_fork_arg)); 2102 if (forkArgs == NULL) { 2103 status = B_NO_MEMORY; 2104 goto err1; 2105 } 2106 2107 // create a new io_context for this team 2108 team->io_context = vfs_new_io_context(parentTeam->io_context, false); 2109 if (!team->io_context) { 2110 status = B_NO_MEMORY; 2111 goto err2; 2112 } 2113 2114 // duplicate the realtime sem context 2115 if (parentTeam->realtime_sem_context) { 2116 team->realtime_sem_context = clone_realtime_sem_context( 2117 parentTeam->realtime_sem_context); 2118 if (team->realtime_sem_context == NULL) { 2119 status = B_NO_MEMORY; 2120 goto err2; 2121 } 2122 } 2123 2124 // create an address space for this team 2125 status = VMAddressSpace::Create(team->id, USER_BASE, USER_SIZE, false, 2126 &team->address_space); 2127 if (status < B_OK) 2128 goto err3; 2129 2130 // copy all areas of the team 2131 // TODO: should be able to handle stack areas differently (ie. don't have 2132 // them copy-on-write) 2133 2134 areaCookie = 0; 2135 while (get_next_area_info(B_CURRENT_TEAM, &areaCookie, &info) == B_OK) { 2136 if (info.area == parentTeam->user_data_area) { 2137 // don't clone the user area; just create a new one 2138 status = create_team_user_data(team, info.address); 2139 if (status != B_OK) 2140 break; 2141 2142 thread->user_thread = team_allocate_user_thread(team); 2143 } else { 2144 void* address; 2145 area_id area = vm_copy_area(team->address_space->ID(), info.name, 2146 &address, B_CLONE_ADDRESS, info.protection, info.area); 2147 if (area < B_OK) { 2148 status = area; 2149 break; 2150 } 2151 2152 if (info.area == parentThread->user_stack_area) 2153 thread->user_stack_area = area; 2154 } 2155 } 2156 2157 if (status < B_OK) 2158 goto err4; 2159 2160 if (thread->user_thread == NULL) { 2161 #if KDEBUG 2162 panic("user data area not found, parent area is %" B_PRId32, 2163 parentTeam->user_data_area); 2164 #endif 2165 status = B_ERROR; 2166 goto err4; 2167 } 2168 2169 thread->user_stack_base = parentThread->user_stack_base; 2170 thread->user_stack_size = parentThread->user_stack_size; 2171 thread->user_local_storage = parentThread->user_local_storage; 2172 thread->sig_block_mask = parentThread->sig_block_mask; 2173 thread->signal_stack_base = parentThread->signal_stack_base; 2174 thread->signal_stack_size = parentThread->signal_stack_size; 2175 thread->signal_stack_enabled = parentThread->signal_stack_enabled; 2176 2177 arch_store_fork_frame(forkArgs); 2178 2179 // copy image list 2180 if (copy_images(parentTeam->id, team) != B_OK) 2181 goto err5; 2182 2183 // create the main thread 2184 { 2185 ThreadCreationAttributes threadCreationAttributes(NULL, 2186 parentThread->name, parentThread->priority, NULL, team->id, thread); 2187 threadCreationAttributes.forkArgs = forkArgs; 2188 threadID = thread_create_thread(threadCreationAttributes, false); 2189 if (threadID < 0) { 2190 status = threadID; 2191 goto err5; 2192 } 2193 } 2194 2195 // notify the debugger 2196 user_debug_team_created(team->id); 2197 2198 T(TeamForked(threadID)); 2199 2200 resume_thread(threadID); 2201 return threadID; 2202 2203 err5: 2204 remove_images(team); 2205 err4: 2206 team->address_space->RemoveAndPut(); 2207 err3: 2208 delete_realtime_sem_context(team->realtime_sem_context); 2209 err2: 2210 free(forkArgs); 2211 err1: 2212 // Remove the team structure from the process group, the parent team, and 2213 // the team hash table and delete the team structure. 2214 parentTeam->LockTeamAndProcessGroup(); 2215 team->Lock(); 2216 2217 remove_team_from_group(team); 2218 remove_team_from_parent(team->parent, team); 2219 2220 team->Unlock(); 2221 parentTeam->UnlockTeamAndProcessGroup(); 2222 2223 teamsLocker.Lock(); 2224 sTeamHash.Remove(team); 2225 if (!teamLimitReached) 2226 sUsedTeams--; 2227 teamsLocker.Unlock(); 2228 2229 sNotificationService.Notify(TEAM_REMOVED, team); 2230 2231 team->ReleaseReference(); 2232 2233 return status; 2234 } 2235 2236 2237 /*! Returns if the specified team \a parent has any children belonging to the 2238 process group with the specified ID \a groupID. 2239 The caller must hold \a parent's lock. 2240 */ 2241 static bool 2242 has_children_in_group(Team* parent, pid_t groupID) 2243 { 2244 for (Team* child = parent->children; child != NULL; 2245 child = child->siblings_next) { 2246 TeamLocker childLocker(child); 2247 if (child->group_id == groupID) 2248 return true; 2249 } 2250 2251 return false; 2252 } 2253 2254 2255 /*! Returns the first job control entry from \a children, which matches \a id. 2256 \a id can be: 2257 - \code > 0 \endcode: Matching an entry with that team ID. 2258 - \code == -1 \endcode: Matching any entry. 2259 - \code < -1 \endcode: Matching any entry with a process group ID of \c -id. 2260 \c 0 is an invalid value for \a id. 2261 2262 The caller must hold the lock of the team that \a children belongs to. 2263 2264 \param children The job control entry list to check. 2265 \param id The match criterion. 2266 \return The first matching entry or \c NULL, if none matches. 2267 */ 2268 static job_control_entry* 2269 get_job_control_entry(team_job_control_children& children, pid_t id) 2270 { 2271 for (JobControlEntryList::Iterator it = children.entries.GetIterator(); 2272 job_control_entry* entry = it.Next();) { 2273 2274 if (id > 0) { 2275 if (entry->thread == id) 2276 return entry; 2277 } else if (id == -1) { 2278 return entry; 2279 } else { 2280 pid_t processGroup 2281 = (entry->team ? entry->team->group_id : entry->group_id); 2282 if (processGroup == -id) 2283 return entry; 2284 } 2285 } 2286 2287 return NULL; 2288 } 2289 2290 2291 /*! Returns the first job control entry from one of team's dead, continued, or 2292 stopped children which matches \a id. 2293 \a id can be: 2294 - \code > 0 \endcode: Matching an entry with that team ID. 2295 - \code == -1 \endcode: Matching any entry. 2296 - \code < -1 \endcode: Matching any entry with a process group ID of \c -id. 2297 \c 0 is an invalid value for \a id. 2298 2299 The caller must hold \a team's lock. 2300 2301 \param team The team whose dead, stopped, and continued child lists shall be 2302 checked. 2303 \param id The match criterion. 2304 \param flags Specifies which children shall be considered. Dead children 2305 always are. Stopped children are considered when \a flags is ORed 2306 bitwise with \c WUNTRACED, continued children when \a flags is ORed 2307 bitwise with \c WCONTINUED. 2308 \return The first matching entry or \c NULL, if none matches. 2309 */ 2310 static job_control_entry* 2311 get_job_control_entry(Team* team, pid_t id, uint32 flags) 2312 { 2313 job_control_entry* entry = get_job_control_entry(team->dead_children, id); 2314 2315 if (entry == NULL && (flags & WCONTINUED) != 0) 2316 entry = get_job_control_entry(team->continued_children, id); 2317 2318 if (entry == NULL && (flags & WUNTRACED) != 0) 2319 entry = get_job_control_entry(team->stopped_children, id); 2320 2321 return entry; 2322 } 2323 2324 2325 job_control_entry::job_control_entry() 2326 : 2327 has_group_ref(false) 2328 { 2329 } 2330 2331 2332 job_control_entry::~job_control_entry() 2333 { 2334 if (has_group_ref) { 2335 InterruptsSpinLocker groupHashLocker(sGroupHashLock); 2336 2337 ProcessGroup* group = sGroupHash.Lookup(group_id); 2338 if (group == NULL) { 2339 panic("job_control_entry::~job_control_entry(): unknown group " 2340 "ID: %" B_PRId32, group_id); 2341 return; 2342 } 2343 2344 groupHashLocker.Unlock(); 2345 2346 group->ReleaseReference(); 2347 } 2348 } 2349 2350 2351 /*! Invoked when the owning team is dying, initializing the entry according to 2352 the dead state. 2353 2354 The caller must hold the owning team's lock and the scheduler lock. 2355 */ 2356 void 2357 job_control_entry::InitDeadState() 2358 { 2359 if (team != NULL) { 2360 ASSERT(team->exit.initialized); 2361 2362 group_id = team->group_id; 2363 team->group->AcquireReference(); 2364 has_group_ref = true; 2365 2366 thread = team->id; 2367 status = team->exit.status; 2368 reason = team->exit.reason; 2369 signal = team->exit.signal; 2370 signaling_user = team->exit.signaling_user; 2371 2372 team = NULL; 2373 } 2374 } 2375 2376 2377 job_control_entry& 2378 job_control_entry::operator=(const job_control_entry& other) 2379 { 2380 state = other.state; 2381 thread = other.thread; 2382 signal = other.signal; 2383 has_group_ref = false; 2384 signaling_user = other.signaling_user; 2385 team = other.team; 2386 group_id = other.group_id; 2387 status = other.status; 2388 reason = other.reason; 2389 2390 return *this; 2391 } 2392 2393 2394 /*! This is the kernel backend for waitid(). 2395 */ 2396 static thread_id 2397 wait_for_child(pid_t child, uint32 flags, siginfo_t& _info) 2398 { 2399 Thread* thread = thread_get_current_thread(); 2400 Team* team = thread->team; 2401 struct job_control_entry foundEntry; 2402 struct job_control_entry* freeDeathEntry = NULL; 2403 status_t status = B_OK; 2404 2405 TRACE(("wait_for_child(child = %" B_PRId32 ", flags = %" B_PRId32 ")\n", 2406 child, flags)); 2407 2408 T(WaitForChild(child, flags)); 2409 2410 pid_t originalChild = child; 2411 2412 bool ignoreFoundEntries = false; 2413 bool ignoreFoundEntriesChecked = false; 2414 2415 while (true) { 2416 // lock the team 2417 TeamLocker teamLocker(team); 2418 2419 // A 0 child argument means to wait for all children in the process 2420 // group of the calling team. 2421 child = originalChild == 0 ? -team->group_id : originalChild; 2422 2423 // check whether any condition holds 2424 job_control_entry* entry = get_job_control_entry(team, child, flags); 2425 2426 // If we don't have an entry yet, check whether there are any children 2427 // complying to the process group specification at all. 2428 if (entry == NULL) { 2429 // No success yet -- check whether there are any children complying 2430 // to the process group specification at all. 2431 bool childrenExist = false; 2432 if (child == -1) { 2433 childrenExist = team->children != NULL; 2434 } else if (child < -1) { 2435 childrenExist = has_children_in_group(team, -child); 2436 } else { 2437 if (Team* childTeam = Team::Get(child)) { 2438 BReference<Team> childTeamReference(childTeam, true); 2439 TeamLocker childTeamLocker(childTeam); 2440 childrenExist = childTeam->parent == team; 2441 } 2442 } 2443 2444 if (!childrenExist) { 2445 // there is no child we could wait for 2446 status = ECHILD; 2447 } else { 2448 // the children we're waiting for are still running 2449 status = B_WOULD_BLOCK; 2450 } 2451 } else { 2452 // got something 2453 foundEntry = *entry; 2454 2455 // unless WNOWAIT has been specified, "consume" the wait state 2456 if ((flags & WNOWAIT) == 0 || ignoreFoundEntries) { 2457 if (entry->state == JOB_CONTROL_STATE_DEAD) { 2458 // The child is dead. Reap its death entry. 2459 freeDeathEntry = entry; 2460 team->dead_children.entries.Remove(entry); 2461 team->dead_children.count--; 2462 } else { 2463 // The child is well. Reset its job control state. 2464 team_set_job_control_state(entry->team, 2465 JOB_CONTROL_STATE_NONE, NULL); 2466 } 2467 } 2468 } 2469 2470 // If we haven't got anything yet, prepare for waiting for the 2471 // condition variable. 2472 ConditionVariableEntry deadWaitEntry; 2473 2474 if (status == B_WOULD_BLOCK && (flags & WNOHANG) == 0) 2475 team->dead_children.condition_variable.Add(&deadWaitEntry); 2476 2477 teamLocker.Unlock(); 2478 2479 // we got our entry and can return to our caller 2480 if (status == B_OK) { 2481 if (ignoreFoundEntries) { 2482 // ... unless we shall ignore found entries 2483 delete freeDeathEntry; 2484 freeDeathEntry = NULL; 2485 continue; 2486 } 2487 2488 break; 2489 } 2490 2491 if (status != B_WOULD_BLOCK || (flags & WNOHANG) != 0) { 2492 T(WaitForChildDone(status)); 2493 return status; 2494 } 2495 2496 status = deadWaitEntry.Wait(B_CAN_INTERRUPT); 2497 if (status == B_INTERRUPTED) { 2498 T(WaitForChildDone(status)); 2499 return status; 2500 } 2501 2502 // If SA_NOCLDWAIT is set or SIGCHLD is ignored, we shall wait until 2503 // all our children are dead and fail with ECHILD. We check the 2504 // condition at this point. 2505 if (!ignoreFoundEntriesChecked) { 2506 teamLocker.Lock(); 2507 2508 struct sigaction& handler = team->SignalActionFor(SIGCHLD); 2509 if ((handler.sa_flags & SA_NOCLDWAIT) != 0 2510 || handler.sa_handler == SIG_IGN) { 2511 ignoreFoundEntries = true; 2512 } 2513 2514 teamLocker.Unlock(); 2515 2516 ignoreFoundEntriesChecked = true; 2517 } 2518 } 2519 2520 delete freeDeathEntry; 2521 2522 // When we got here, we have a valid death entry, and already got 2523 // unregistered from the team or group. Fill in the returned info. 2524 memset(&_info, 0, sizeof(_info)); 2525 _info.si_signo = SIGCHLD; 2526 _info.si_pid = foundEntry.thread; 2527 _info.si_uid = foundEntry.signaling_user; 2528 // TODO: Fill in si_errno? 2529 2530 switch (foundEntry.state) { 2531 case JOB_CONTROL_STATE_DEAD: 2532 _info.si_code = foundEntry.reason; 2533 _info.si_status = foundEntry.reason == CLD_EXITED 2534 ? foundEntry.status : foundEntry.signal; 2535 break; 2536 case JOB_CONTROL_STATE_STOPPED: 2537 _info.si_code = CLD_STOPPED; 2538 _info.si_status = foundEntry.signal; 2539 break; 2540 case JOB_CONTROL_STATE_CONTINUED: 2541 _info.si_code = CLD_CONTINUED; 2542 _info.si_status = 0; 2543 break; 2544 case JOB_CONTROL_STATE_NONE: 2545 // can't happen 2546 break; 2547 } 2548 2549 // If SIGCHLD is blocked, we shall clear pending SIGCHLDs, if no other child 2550 // status is available. 2551 TeamLocker teamLocker(team); 2552 InterruptsSpinLocker signalLocker(team->signal_lock); 2553 SpinLocker threadCreationLocker(gThreadCreationLock); 2554 2555 if (is_team_signal_blocked(team, SIGCHLD)) { 2556 if (get_job_control_entry(team, child, flags) == NULL) 2557 team->RemovePendingSignals(SIGNAL_TO_MASK(SIGCHLD)); 2558 } 2559 2560 threadCreationLocker.Unlock(); 2561 signalLocker.Unlock(); 2562 teamLocker.Unlock(); 2563 2564 // When the team is dead, the main thread continues to live in the kernel 2565 // team for a very short time. To avoid surprises for the caller we rather 2566 // wait until the thread is really gone. 2567 if (foundEntry.state == JOB_CONTROL_STATE_DEAD) 2568 wait_for_thread(foundEntry.thread, NULL); 2569 2570 T(WaitForChildDone(foundEntry)); 2571 2572 return foundEntry.thread; 2573 } 2574 2575 2576 /*! Fills the team_info structure with information from the specified team. 2577 Interrupts must be enabled. The team must not be locked. 2578 */ 2579 static status_t 2580 fill_team_info(Team* team, team_info* info, size_t size) 2581 { 2582 if (size != sizeof(team_info)) 2583 return B_BAD_VALUE; 2584 2585 // TODO: Set more informations for team_info 2586 memset(info, 0, size); 2587 2588 info->team = team->id; 2589 // immutable 2590 info->image_count = count_images(team); 2591 // protected by sImageMutex 2592 2593 TeamLocker teamLocker(team); 2594 InterruptsSpinLocker debugInfoLocker(team->debug_info.lock); 2595 2596 info->thread_count = team->num_threads; 2597 //info->area_count = 2598 info->debugger_nub_thread = team->debug_info.nub_thread; 2599 info->debugger_nub_port = team->debug_info.nub_port; 2600 info->uid = team->effective_uid; 2601 info->gid = team->effective_gid; 2602 2603 strlcpy(info->args, team->Args(), sizeof(info->args)); 2604 info->argc = 1; 2605 2606 return B_OK; 2607 } 2608 2609 2610 /*! Returns whether the process group contains stopped processes. 2611 The caller must hold the process group's lock. 2612 */ 2613 static bool 2614 process_group_has_stopped_processes(ProcessGroup* group) 2615 { 2616 Team* team = group->teams; 2617 while (team != NULL) { 2618 // the parent team's lock guards the job control entry -- acquire it 2619 team->LockTeamAndParent(false); 2620 2621 if (team->job_control_entry != NULL 2622 && team->job_control_entry->state == JOB_CONTROL_STATE_STOPPED) { 2623 team->UnlockTeamAndParent(); 2624 return true; 2625 } 2626 2627 team->UnlockTeamAndParent(); 2628 2629 team = team->group_next; 2630 } 2631 2632 return false; 2633 } 2634 2635 2636 /*! Iterates through all process groups queued in team_remove_team() and signals 2637 those that are orphaned and have stopped processes. 2638 The caller must not hold any team or process group locks. 2639 */ 2640 static void 2641 orphaned_process_group_check() 2642 { 2643 // process as long as there are groups in the list 2644 while (true) { 2645 // remove the head from the list 2646 MutexLocker orphanedCheckLocker(sOrphanedCheckLock); 2647 2648 ProcessGroup* group = sOrphanedCheckProcessGroups.RemoveHead(); 2649 if (group == NULL) 2650 return; 2651 2652 group->UnsetOrphanedCheck(); 2653 BReference<ProcessGroup> groupReference(group); 2654 2655 orphanedCheckLocker.Unlock(); 2656 2657 AutoLocker<ProcessGroup> groupLocker(group); 2658 2659 // If the group is orphaned and contains stopped processes, we're 2660 // supposed to send SIGHUP + SIGCONT. 2661 if (group->IsOrphaned() && process_group_has_stopped_processes(group)) { 2662 Thread* currentThread = thread_get_current_thread(); 2663 2664 Signal signal(SIGHUP, SI_USER, B_OK, currentThread->team->id); 2665 send_signal_to_process_group_locked(group, signal, 0); 2666 2667 signal.SetNumber(SIGCONT); 2668 send_signal_to_process_group_locked(group, signal, 0); 2669 } 2670 } 2671 } 2672 2673 2674 static status_t 2675 common_get_team_usage_info(team_id id, int32 who, team_usage_info* info, 2676 uint32 flags) 2677 { 2678 if (who != B_TEAM_USAGE_SELF && who != B_TEAM_USAGE_CHILDREN) 2679 return B_BAD_VALUE; 2680 2681 // get the team 2682 Team* team = Team::GetAndLock(id); 2683 if (team == NULL) 2684 return B_BAD_TEAM_ID; 2685 BReference<Team> teamReference(team, true); 2686 TeamLocker teamLocker(team, true); 2687 2688 if ((flags & B_CHECK_PERMISSION) != 0) { 2689 uid_t uid = geteuid(); 2690 if (uid != 0 && uid != team->effective_uid) 2691 return B_NOT_ALLOWED; 2692 } 2693 2694 bigtime_t kernelTime = 0; 2695 bigtime_t userTime = 0; 2696 2697 switch (who) { 2698 case B_TEAM_USAGE_SELF: 2699 { 2700 Thread* thread = team->thread_list; 2701 2702 for (; thread != NULL; thread = thread->team_next) { 2703 InterruptsSpinLocker threadTimeLocker(thread->time_lock); 2704 kernelTime += thread->kernel_time; 2705 userTime += thread->user_time; 2706 } 2707 2708 kernelTime += team->dead_threads_kernel_time; 2709 userTime += team->dead_threads_user_time; 2710 break; 2711 } 2712 2713 case B_TEAM_USAGE_CHILDREN: 2714 { 2715 Team* child = team->children; 2716 for (; child != NULL; child = child->siblings_next) { 2717 TeamLocker childLocker(child); 2718 2719 Thread* thread = team->thread_list; 2720 2721 for (; thread != NULL; thread = thread->team_next) { 2722 InterruptsSpinLocker threadTimeLocker(thread->time_lock); 2723 kernelTime += thread->kernel_time; 2724 userTime += thread->user_time; 2725 } 2726 2727 kernelTime += child->dead_threads_kernel_time; 2728 userTime += child->dead_threads_user_time; 2729 } 2730 2731 kernelTime += team->dead_children.kernel_time; 2732 userTime += team->dead_children.user_time; 2733 break; 2734 } 2735 } 2736 2737 info->kernel_time = kernelTime; 2738 info->user_time = userTime; 2739 2740 return B_OK; 2741 } 2742 2743 2744 // #pragma mark - Private kernel API 2745 2746 2747 status_t 2748 team_init(kernel_args* args) 2749 { 2750 // create the team hash table 2751 new(&sTeamHash) TeamTable; 2752 if (sTeamHash.Init(64) != B_OK) 2753 panic("Failed to init team hash table!"); 2754 2755 new(&sGroupHash) ProcessGroupHashTable; 2756 if (sGroupHash.Init() != B_OK) 2757 panic("Failed to init process group hash table!"); 2758 2759 // create initial session and process groups 2760 2761 ProcessSession* session = new(std::nothrow) ProcessSession(1); 2762 if (session == NULL) 2763 panic("Could not create initial session.\n"); 2764 BReference<ProcessSession> sessionReference(session, true); 2765 2766 ProcessGroup* group = new(std::nothrow) ProcessGroup(1); 2767 if (group == NULL) 2768 panic("Could not create initial process group.\n"); 2769 BReference<ProcessGroup> groupReference(group, true); 2770 2771 group->Publish(session); 2772 2773 // create the kernel team 2774 sKernelTeam = Team::Create(1, "kernel_team", true); 2775 if (sKernelTeam == NULL) 2776 panic("could not create kernel team!\n"); 2777 sKernelTeam->SetArgs(sKernelTeam->Name()); 2778 sKernelTeam->state = TEAM_STATE_NORMAL; 2779 2780 sKernelTeam->saved_set_uid = 0; 2781 sKernelTeam->real_uid = 0; 2782 sKernelTeam->effective_uid = 0; 2783 sKernelTeam->saved_set_gid = 0; 2784 sKernelTeam->real_gid = 0; 2785 sKernelTeam->effective_gid = 0; 2786 sKernelTeam->supplementary_groups = NULL; 2787 sKernelTeam->supplementary_group_count = 0; 2788 2789 insert_team_into_group(group, sKernelTeam); 2790 2791 sKernelTeam->io_context = vfs_new_io_context(NULL, false); 2792 if (sKernelTeam->io_context == NULL) 2793 panic("could not create io_context for kernel team!\n"); 2794 2795 if (vfs_resize_fd_table(sKernelTeam->io_context, 4096) != B_OK) 2796 dprintf("Failed to resize FD table for kernel team!\n"); 2797 2798 // stick it in the team hash 2799 sTeamHash.Insert(sKernelTeam); 2800 2801 add_debugger_command_etc("team", &dump_team_info, 2802 "Dump info about a particular team", 2803 "[ <id> | <address> | <name> ]\n" 2804 "Prints information about the specified team. If no argument is given\n" 2805 "the current team is selected.\n" 2806 " <id> - The ID of the team.\n" 2807 " <address> - The address of the team structure.\n" 2808 " <name> - The team's name.\n", 0); 2809 add_debugger_command_etc("teams", &dump_teams, "List all teams", 2810 "\n" 2811 "Prints a list of all existing teams.\n", 0); 2812 2813 new(&sNotificationService) TeamNotificationService(); 2814 2815 sNotificationService.Register(); 2816 2817 return B_OK; 2818 } 2819 2820 2821 int32 2822 team_max_teams(void) 2823 { 2824 return sMaxTeams; 2825 } 2826 2827 2828 int32 2829 team_used_teams(void) 2830 { 2831 InterruptsSpinLocker teamsLocker(sTeamHashLock); 2832 return sUsedTeams; 2833 } 2834 2835 2836 /*! Returns a death entry of a child team specified by ID (if any). 2837 The caller must hold the team's lock. 2838 2839 \param team The team whose dead children list to check. 2840 \param child The ID of the child for whose death entry to lock. Must be > 0. 2841 \param _deleteEntry Return variable, indicating whether the caller needs to 2842 delete the returned entry. 2843 \return The death entry of the matching team, or \c NULL, if no death entry 2844 for the team was found. 2845 */ 2846 job_control_entry* 2847 team_get_death_entry(Team* team, thread_id child, bool* _deleteEntry) 2848 { 2849 if (child <= 0) 2850 return NULL; 2851 2852 job_control_entry* entry = get_job_control_entry(team->dead_children, 2853 child); 2854 if (entry) { 2855 // remove the entry only, if the caller is the parent of the found team 2856 if (team_get_current_team_id() == entry->thread) { 2857 team->dead_children.entries.Remove(entry); 2858 team->dead_children.count--; 2859 *_deleteEntry = true; 2860 } else { 2861 *_deleteEntry = false; 2862 } 2863 } 2864 2865 return entry; 2866 } 2867 2868 2869 /*! Quick check to see if we have a valid team ID. */ 2870 bool 2871 team_is_valid(team_id id) 2872 { 2873 if (id <= 0) 2874 return false; 2875 2876 InterruptsSpinLocker teamsLocker(sTeamHashLock); 2877 2878 return team_get_team_struct_locked(id) != NULL; 2879 } 2880 2881 2882 Team* 2883 team_get_team_struct_locked(team_id id) 2884 { 2885 return sTeamHash.Lookup(id); 2886 } 2887 2888 2889 void 2890 team_set_controlling_tty(int32 ttyIndex) 2891 { 2892 // lock the team, so its session won't change while we're playing with it 2893 Team* team = thread_get_current_thread()->team; 2894 TeamLocker teamLocker(team); 2895 2896 // get and lock the session 2897 ProcessSession* session = team->group->Session(); 2898 AutoLocker<ProcessSession> sessionLocker(session); 2899 2900 // set the session's fields 2901 session->controlling_tty = ttyIndex; 2902 session->foreground_group = -1; 2903 } 2904 2905 2906 int32 2907 team_get_controlling_tty() 2908 { 2909 // lock the team, so its session won't change while we're playing with it 2910 Team* team = thread_get_current_thread()->team; 2911 TeamLocker teamLocker(team); 2912 2913 // get and lock the session 2914 ProcessSession* session = team->group->Session(); 2915 AutoLocker<ProcessSession> sessionLocker(session); 2916 2917 // get the session's field 2918 return session->controlling_tty; 2919 } 2920 2921 2922 status_t 2923 team_set_foreground_process_group(int32 ttyIndex, pid_t processGroupID) 2924 { 2925 // lock the team, so its session won't change while we're playing with it 2926 Thread* thread = thread_get_current_thread(); 2927 Team* team = thread->team; 2928 TeamLocker teamLocker(team); 2929 2930 // get and lock the session 2931 ProcessSession* session = team->group->Session(); 2932 AutoLocker<ProcessSession> sessionLocker(session); 2933 2934 // check given TTY -- must be the controlling tty of the calling process 2935 if (session->controlling_tty != ttyIndex) 2936 return ENOTTY; 2937 2938 // check given process group -- must belong to our session 2939 { 2940 InterruptsSpinLocker groupHashLocker(sGroupHashLock); 2941 ProcessGroup* group = sGroupHash.Lookup(processGroupID); 2942 if (group == NULL || group->Session() != session) 2943 return B_BAD_VALUE; 2944 } 2945 2946 // If we are a background group, we can do that unharmed only when we 2947 // ignore or block SIGTTOU. Otherwise the group gets a SIGTTOU. 2948 if (session->foreground_group != -1 2949 && session->foreground_group != team->group_id 2950 && team->SignalActionFor(SIGTTOU).sa_handler != SIG_IGN 2951 && (thread->sig_block_mask & SIGNAL_TO_MASK(SIGTTOU)) == 0) { 2952 InterruptsSpinLocker signalLocker(team->signal_lock); 2953 2954 if (!is_team_signal_blocked(team, SIGTTOU)) { 2955 pid_t groupID = team->group_id; 2956 2957 signalLocker.Unlock(); 2958 sessionLocker.Unlock(); 2959 teamLocker.Unlock(); 2960 2961 Signal signal(SIGTTOU, SI_USER, B_OK, team->id); 2962 send_signal_to_process_group(groupID, signal, 0); 2963 return B_INTERRUPTED; 2964 } 2965 } 2966 2967 session->foreground_group = processGroupID; 2968 2969 return B_OK; 2970 } 2971 2972 2973 /*! Removes the specified team from the global team hash, from its process 2974 group, and from its parent. 2975 It also moves all of its children to the kernel team. 2976 2977 The caller must hold the following locks: 2978 - \a team's process group's lock, 2979 - the kernel team's lock, 2980 - \a team's parent team's lock (might be the kernel team), and 2981 - \a team's lock. 2982 */ 2983 void 2984 team_remove_team(Team* team, pid_t& _signalGroup) 2985 { 2986 Team* parent = team->parent; 2987 2988 // remember how long this team lasted 2989 parent->dead_children.kernel_time += team->dead_threads_kernel_time 2990 + team->dead_children.kernel_time; 2991 parent->dead_children.user_time += team->dead_threads_user_time 2992 + team->dead_children.user_time; 2993 2994 // remove the team from the hash table 2995 InterruptsSpinLocker teamsLocker(sTeamHashLock); 2996 sTeamHash.Remove(team); 2997 sUsedTeams--; 2998 teamsLocker.Unlock(); 2999 3000 // The team can no longer be accessed by ID. Navigation to it is still 3001 // possible from its process group and its parent and children, but that 3002 // will be rectified shortly. 3003 team->state = TEAM_STATE_DEATH; 3004 3005 // If we're a controlling process (i.e. a session leader with controlling 3006 // terminal), there's a bit of signalling we have to do. We can't do any of 3007 // the signaling here due to the bunch of locks we're holding, but we need 3008 // to determine, whom to signal. 3009 _signalGroup = -1; 3010 bool isSessionLeader = false; 3011 if (team->session_id == team->id 3012 && team->group->Session()->controlling_tty >= 0) { 3013 isSessionLeader = true; 3014 3015 ProcessSession* session = team->group->Session(); 3016 3017 AutoLocker<ProcessSession> sessionLocker(session); 3018 3019 session->controlling_tty = -1; 3020 _signalGroup = session->foreground_group; 3021 } 3022 3023 // remove us from our process group 3024 remove_team_from_group(team); 3025 3026 // move the team's children to the kernel team 3027 while (Team* child = team->children) { 3028 // remove the child from the current team and add it to the kernel team 3029 TeamLocker childLocker(child); 3030 3031 remove_team_from_parent(team, child); 3032 insert_team_into_parent(sKernelTeam, child); 3033 3034 // move job control entries too 3035 sKernelTeam->stopped_children.entries.MoveFrom( 3036 &team->stopped_children.entries); 3037 sKernelTeam->continued_children.entries.MoveFrom( 3038 &team->continued_children.entries); 3039 3040 // If the team was a session leader with controlling terminal, 3041 // we need to send SIGHUP + SIGCONT to all newly-orphaned process 3042 // groups with stopped processes. Due to locking complications we can't 3043 // do that here, so we only check whether we were a reason for the 3044 // child's process group not being an orphan and, if so, schedule a 3045 // later check (cf. orphaned_process_group_check()). 3046 if (isSessionLeader) { 3047 ProcessGroup* childGroup = child->group; 3048 if (childGroup->Session()->id == team->session_id 3049 && childGroup->id != team->group_id) { 3050 childGroup->ScheduleOrphanedCheck(); 3051 } 3052 } 3053 3054 // Note, we don't move the dead children entries. Those will be deleted 3055 // when the team structure is deleted. 3056 } 3057 3058 // remove us from our parent 3059 remove_team_from_parent(parent, team); 3060 } 3061 3062 3063 /*! Kills all threads but the main thread of the team and shuts down user 3064 debugging for it. 3065 To be called on exit of the team's main thread. No locks must be held. 3066 3067 \param team The team in question. 3068 \return The port of the debugger for the team, -1 if none. To be passed to 3069 team_delete_team(). 3070 */ 3071 port_id 3072 team_shutdown_team(Team* team) 3073 { 3074 ASSERT(thread_get_current_thread() == team->main_thread); 3075 3076 TeamLocker teamLocker(team); 3077 3078 // Make sure debugging changes won't happen anymore. 3079 port_id debuggerPort = -1; 3080 while (true) { 3081 // If a debugger change is in progress for the team, we'll have to 3082 // wait until it is done. 3083 ConditionVariableEntry waitForDebuggerEntry; 3084 bool waitForDebugger = false; 3085 3086 InterruptsSpinLocker debugInfoLocker(team->debug_info.lock); 3087 3088 if (team->debug_info.debugger_changed_condition != NULL) { 3089 team->debug_info.debugger_changed_condition->Add( 3090 &waitForDebuggerEntry); 3091 waitForDebugger = true; 3092 } else if (team->debug_info.flags & B_TEAM_DEBUG_DEBUGGER_INSTALLED) { 3093 // The team is being debugged. That will stop with the termination 3094 // of the nub thread. Since we set the team state to death, no one 3095 // can install a debugger anymore. We fetch the debugger's port to 3096 // send it a message at the bitter end. 3097 debuggerPort = team->debug_info.debugger_port; 3098 } 3099 3100 debugInfoLocker.Unlock(); 3101 3102 if (!waitForDebugger) 3103 break; 3104 3105 // wait for the debugger change to be finished 3106 teamLocker.Unlock(); 3107 3108 waitForDebuggerEntry.Wait(); 3109 3110 teamLocker.Lock(); 3111 } 3112 3113 // Mark the team as shutting down. That will prevent new threads from being 3114 // created and debugger changes from taking place. 3115 team->state = TEAM_STATE_SHUTDOWN; 3116 3117 // delete all timers 3118 team->DeleteUserTimers(false); 3119 3120 // deactivate CPU time user timers for the team 3121 InterruptsSpinLocker timeLocker(team->time_lock); 3122 3123 if (team->HasActiveCPUTimeUserTimers()) 3124 team->DeactivateCPUTimeUserTimers(); 3125 3126 timeLocker.Unlock(); 3127 3128 // kill all threads but the main thread 3129 team_death_entry deathEntry; 3130 deathEntry.condition.Init(team, "team death"); 3131 3132 while (true) { 3133 team->death_entry = &deathEntry; 3134 deathEntry.remaining_threads = 0; 3135 3136 Thread* thread = team->thread_list; 3137 while (thread != NULL) { 3138 if (thread != team->main_thread) { 3139 Signal signal(SIGKILLTHR, SI_USER, B_OK, team->id); 3140 send_signal_to_thread(thread, signal, B_DO_NOT_RESCHEDULE); 3141 deathEntry.remaining_threads++; 3142 } 3143 3144 thread = thread->team_next; 3145 } 3146 3147 if (deathEntry.remaining_threads == 0) 3148 break; 3149 3150 // there are threads to wait for 3151 ConditionVariableEntry entry; 3152 deathEntry.condition.Add(&entry); 3153 3154 teamLocker.Unlock(); 3155 3156 entry.Wait(); 3157 3158 teamLocker.Lock(); 3159 } 3160 3161 team->death_entry = NULL; 3162 3163 return debuggerPort; 3164 } 3165 3166 3167 /*! Called on team exit to notify threads waiting on the team and free most 3168 resources associated with it. 3169 The caller shouldn't hold any locks. 3170 */ 3171 void 3172 team_delete_team(Team* team, port_id debuggerPort) 3173 { 3174 // Not quite in our job description, but work that has been left by 3175 // team_remove_team() and that can be done now that we're not holding any 3176 // locks. 3177 orphaned_process_group_check(); 3178 3179 team_id teamID = team->id; 3180 3181 ASSERT(team->num_threads == 0); 3182 3183 // If someone is waiting for this team to be loaded, but it dies 3184 // unexpectedly before being done, we need to notify the waiting 3185 // thread now. 3186 3187 TeamLocker teamLocker(team); 3188 3189 if (team->loading_info) { 3190 // there's indeed someone waiting 3191 struct team_loading_info* loadingInfo = team->loading_info; 3192 team->loading_info = NULL; 3193 3194 loadingInfo->result = B_ERROR; 3195 loadingInfo->done = true; 3196 3197 // wake up the waiting thread 3198 thread_continue(loadingInfo->thread); 3199 } 3200 3201 // notify team watchers 3202 3203 { 3204 // we're not reachable from anyone anymore at this point, so we 3205 // can safely access the list without any locking 3206 struct team_watcher* watcher; 3207 while ((watcher = (struct team_watcher*)list_remove_head_item( 3208 &team->watcher_list)) != NULL) { 3209 watcher->hook(teamID, watcher->data); 3210 free(watcher); 3211 } 3212 } 3213 3214 teamLocker.Unlock(); 3215 3216 sNotificationService.Notify(TEAM_REMOVED, team); 3217 3218 // free team resources 3219 3220 delete_realtime_sem_context(team->realtime_sem_context); 3221 xsi_sem_undo(team); 3222 remove_images(team); 3223 team->address_space->RemoveAndPut(); 3224 3225 team->ReleaseReference(); 3226 3227 // notify the debugger, that the team is gone 3228 user_debug_team_deleted(teamID, debuggerPort); 3229 } 3230 3231 3232 Team* 3233 team_get_kernel_team(void) 3234 { 3235 return sKernelTeam; 3236 } 3237 3238 3239 team_id 3240 team_get_kernel_team_id(void) 3241 { 3242 if (!sKernelTeam) 3243 return 0; 3244 3245 return sKernelTeam->id; 3246 } 3247 3248 3249 team_id 3250 team_get_current_team_id(void) 3251 { 3252 return thread_get_current_thread()->team->id; 3253 } 3254 3255 3256 status_t 3257 team_get_address_space(team_id id, VMAddressSpace** _addressSpace) 3258 { 3259 if (id == sKernelTeam->id) { 3260 // we're the kernel team, so we don't have to go through all 3261 // the hassle (locking and hash lookup) 3262 *_addressSpace = VMAddressSpace::GetKernel(); 3263 return B_OK; 3264 } 3265 3266 InterruptsSpinLocker teamsLocker(sTeamHashLock); 3267 3268 Team* team = team_get_team_struct_locked(id); 3269 if (team == NULL) 3270 return B_BAD_VALUE; 3271 3272 team->address_space->Get(); 3273 *_addressSpace = team->address_space; 3274 return B_OK; 3275 } 3276 3277 3278 /*! Sets the team's job control state. 3279 The caller must hold the parent team's lock. Interrupts are allowed to be 3280 enabled or disabled. 3281 \a team The team whose job control state shall be set. 3282 \a newState The new state to be set. 3283 \a signal The signal the new state was caused by. Can \c NULL, if none. Then 3284 the caller is responsible for filling in the following fields of the 3285 entry before releasing the parent team's lock, unless the new state is 3286 \c JOB_CONTROL_STATE_NONE: 3287 - \c signal: The number of the signal causing the state change. 3288 - \c signaling_user: The real UID of the user sending the signal. 3289 */ 3290 void 3291 team_set_job_control_state(Team* team, job_control_state newState, 3292 Signal* signal) 3293 { 3294 if (team == NULL || team->job_control_entry == NULL) 3295 return; 3296 3297 // don't touch anything, if the state stays the same or the team is already 3298 // dead 3299 job_control_entry* entry = team->job_control_entry; 3300 if (entry->state == newState || entry->state == JOB_CONTROL_STATE_DEAD) 3301 return; 3302 3303 T(SetJobControlState(team->id, newState, signal)); 3304 3305 // remove from the old list 3306 switch (entry->state) { 3307 case JOB_CONTROL_STATE_NONE: 3308 // entry is in no list ATM 3309 break; 3310 case JOB_CONTROL_STATE_DEAD: 3311 // can't get here 3312 break; 3313 case JOB_CONTROL_STATE_STOPPED: 3314 team->parent->stopped_children.entries.Remove(entry); 3315 break; 3316 case JOB_CONTROL_STATE_CONTINUED: 3317 team->parent->continued_children.entries.Remove(entry); 3318 break; 3319 } 3320 3321 entry->state = newState; 3322 3323 if (signal != NULL) { 3324 entry->signal = signal->Number(); 3325 entry->signaling_user = signal->SendingUser(); 3326 } 3327 3328 // add to new list 3329 team_job_control_children* childList = NULL; 3330 switch (entry->state) { 3331 case JOB_CONTROL_STATE_NONE: 3332 // entry doesn't get into any list 3333 break; 3334 case JOB_CONTROL_STATE_DEAD: 3335 childList = &team->parent->dead_children; 3336 team->parent->dead_children.count++; 3337 break; 3338 case JOB_CONTROL_STATE_STOPPED: 3339 childList = &team->parent->stopped_children; 3340 break; 3341 case JOB_CONTROL_STATE_CONTINUED: 3342 childList = &team->parent->continued_children; 3343 break; 3344 } 3345 3346 if (childList != NULL) { 3347 childList->entries.Add(entry); 3348 team->parent->dead_children.condition_variable.NotifyAll(); 3349 } 3350 } 3351 3352 3353 /*! Inits the given team's exit information, if not yet initialized, to some 3354 generic "killed" status. 3355 The caller must not hold the team's lock. Interrupts must be enabled. 3356 3357 \param team The team whose exit info shall be initialized. 3358 */ 3359 void 3360 team_init_exit_info_on_error(Team* team) 3361 { 3362 TeamLocker teamLocker(team); 3363 3364 if (!team->exit.initialized) { 3365 team->exit.reason = CLD_KILLED; 3366 team->exit.signal = SIGKILL; 3367 team->exit.signaling_user = geteuid(); 3368 team->exit.status = 0; 3369 team->exit.initialized = true; 3370 } 3371 } 3372 3373 3374 /*! Adds a hook to the team that is called as soon as this team goes away. 3375 This call might get public in the future. 3376 */ 3377 status_t 3378 start_watching_team(team_id teamID, void (*hook)(team_id, void*), void* data) 3379 { 3380 if (hook == NULL || teamID < B_OK) 3381 return B_BAD_VALUE; 3382 3383 // create the watcher object 3384 team_watcher* watcher = (team_watcher*)malloc(sizeof(team_watcher)); 3385 if (watcher == NULL) 3386 return B_NO_MEMORY; 3387 3388 watcher->hook = hook; 3389 watcher->data = data; 3390 3391 // add watcher, if the team isn't already dying 3392 // get the team 3393 Team* team = Team::GetAndLock(teamID); 3394 if (team == NULL) { 3395 free(watcher); 3396 return B_BAD_TEAM_ID; 3397 } 3398 3399 list_add_item(&team->watcher_list, watcher); 3400 3401 team->UnlockAndReleaseReference(); 3402 3403 return B_OK; 3404 } 3405 3406 3407 status_t 3408 stop_watching_team(team_id teamID, void (*hook)(team_id, void*), void* data) 3409 { 3410 if (hook == NULL || teamID < 0) 3411 return B_BAD_VALUE; 3412 3413 // get team and remove watcher (if present) 3414 Team* team = Team::GetAndLock(teamID); 3415 if (team == NULL) 3416 return B_BAD_TEAM_ID; 3417 3418 // search for watcher 3419 team_watcher* watcher = NULL; 3420 while ((watcher = (team_watcher*)list_get_next_item( 3421 &team->watcher_list, watcher)) != NULL) { 3422 if (watcher->hook == hook && watcher->data == data) { 3423 // got it! 3424 list_remove_item(&team->watcher_list, watcher); 3425 break; 3426 } 3427 } 3428 3429 team->UnlockAndReleaseReference(); 3430 3431 if (watcher == NULL) 3432 return B_ENTRY_NOT_FOUND; 3433 3434 free(watcher); 3435 return B_OK; 3436 } 3437 3438 3439 /*! Allocates a user_thread structure from the team. 3440 The team lock must be held, unless the function is called for the team's 3441 main thread. Interrupts must be enabled. 3442 */ 3443 struct user_thread* 3444 team_allocate_user_thread(Team* team) 3445 { 3446 if (team->user_data == 0) 3447 return NULL; 3448 3449 // take an entry from the free list, if any 3450 if (struct free_user_thread* entry = team->free_user_threads) { 3451 user_thread* thread = entry->thread; 3452 team->free_user_threads = entry->next; 3453 free(entry); 3454 return thread; 3455 } 3456 3457 while (true) { 3458 // enough space left? 3459 size_t needed = ROUNDUP(sizeof(user_thread), CACHE_LINE_SIZE); 3460 if (team->user_data_size - team->used_user_data < needed) { 3461 // try to resize the area 3462 if (resize_area(team->user_data_area, 3463 team->user_data_size + B_PAGE_SIZE) != B_OK) { 3464 return NULL; 3465 } 3466 3467 // resized user area successfully -- try to allocate the user_thread 3468 // again 3469 team->user_data_size += B_PAGE_SIZE; 3470 continue; 3471 } 3472 3473 // allocate the user_thread 3474 user_thread* thread 3475 = (user_thread*)(team->user_data + team->used_user_data); 3476 team->used_user_data += needed; 3477 3478 return thread; 3479 } 3480 } 3481 3482 3483 /*! Frees the given user_thread structure. 3484 The team's lock must not be held. Interrupts must be enabled. 3485 \param team The team the user thread was allocated from. 3486 \param userThread The user thread to free. 3487 */ 3488 void 3489 team_free_user_thread(Team* team, struct user_thread* userThread) 3490 { 3491 if (userThread == NULL) 3492 return; 3493 3494 // create a free list entry 3495 free_user_thread* entry 3496 = (free_user_thread*)malloc(sizeof(free_user_thread)); 3497 if (entry == NULL) { 3498 // we have to leak the user thread :-/ 3499 return; 3500 } 3501 3502 // add to free list 3503 TeamLocker teamLocker(team); 3504 3505 entry->thread = userThread; 3506 entry->next = team->free_user_threads; 3507 team->free_user_threads = entry; 3508 } 3509 3510 3511 // #pragma mark - Associated data interface 3512 3513 3514 AssociatedData::AssociatedData() 3515 : 3516 fOwner(NULL) 3517 { 3518 } 3519 3520 3521 AssociatedData::~AssociatedData() 3522 { 3523 } 3524 3525 3526 void 3527 AssociatedData::OwnerDeleted(AssociatedDataOwner* owner) 3528 { 3529 } 3530 3531 3532 AssociatedDataOwner::AssociatedDataOwner() 3533 { 3534 mutex_init(&fLock, "associated data owner"); 3535 } 3536 3537 3538 AssociatedDataOwner::~AssociatedDataOwner() 3539 { 3540 mutex_destroy(&fLock); 3541 } 3542 3543 3544 bool 3545 AssociatedDataOwner::AddData(AssociatedData* data) 3546 { 3547 MutexLocker locker(fLock); 3548 3549 if (data->Owner() != NULL) 3550 return false; 3551 3552 data->AcquireReference(); 3553 fList.Add(data); 3554 data->SetOwner(this); 3555 3556 return true; 3557 } 3558 3559 3560 bool 3561 AssociatedDataOwner::RemoveData(AssociatedData* data) 3562 { 3563 MutexLocker locker(fLock); 3564 3565 if (data->Owner() != this) 3566 return false; 3567 3568 data->SetOwner(NULL); 3569 fList.Remove(data); 3570 3571 locker.Unlock(); 3572 3573 data->ReleaseReference(); 3574 3575 return true; 3576 } 3577 3578 3579 void 3580 AssociatedDataOwner::PrepareForDeletion() 3581 { 3582 MutexLocker locker(fLock); 3583 3584 // move all data to a temporary list and unset the owner 3585 DataList list; 3586 list.MoveFrom(&fList); 3587 3588 for (DataList::Iterator it = list.GetIterator(); 3589 AssociatedData* data = it.Next();) { 3590 data->SetOwner(NULL); 3591 } 3592 3593 locker.Unlock(); 3594 3595 // call the notification hooks and release our references 3596 while (AssociatedData* data = list.RemoveHead()) { 3597 data->OwnerDeleted(this); 3598 data->ReleaseReference(); 3599 } 3600 } 3601 3602 3603 /*! Associates data with the current team. 3604 When the team is deleted, the data object is notified. 3605 The team acquires a reference to the object. 3606 3607 \param data The data object. 3608 \return \c true on success, \c false otherwise. Fails only when the supplied 3609 data object is already associated with another owner. 3610 */ 3611 bool 3612 team_associate_data(AssociatedData* data) 3613 { 3614 return thread_get_current_thread()->team->AddData(data); 3615 } 3616 3617 3618 /*! Dissociates data from the current team. 3619 Balances an earlier call to team_associate_data(). 3620 3621 \param data The data object. 3622 \return \c true on success, \c false otherwise. Fails only when the data 3623 object is not associated with the current team. 3624 */ 3625 bool 3626 team_dissociate_data(AssociatedData* data) 3627 { 3628 return thread_get_current_thread()->team->RemoveData(data); 3629 } 3630 3631 3632 // #pragma mark - Public kernel API 3633 3634 3635 thread_id 3636 load_image(int32 argCount, const char** args, const char** env) 3637 { 3638 return load_image_etc(argCount, args, env, B_NORMAL_PRIORITY, 3639 B_CURRENT_TEAM, B_WAIT_TILL_LOADED); 3640 } 3641 3642 3643 thread_id 3644 load_image_etc(int32 argCount, const char* const* args, 3645 const char* const* env, int32 priority, team_id parentID, uint32 flags) 3646 { 3647 // we need to flatten the args and environment 3648 3649 if (args == NULL) 3650 return B_BAD_VALUE; 3651 3652 // determine total needed size 3653 int32 argSize = 0; 3654 for (int32 i = 0; i < argCount; i++) 3655 argSize += strlen(args[i]) + 1; 3656 3657 int32 envCount = 0; 3658 int32 envSize = 0; 3659 while (env != NULL && env[envCount] != NULL) 3660 envSize += strlen(env[envCount++]) + 1; 3661 3662 int32 size = (argCount + envCount + 2) * sizeof(char*) + argSize + envSize; 3663 if (size > MAX_PROCESS_ARGS_SIZE) 3664 return B_TOO_MANY_ARGS; 3665 3666 // allocate space 3667 char** flatArgs = (char**)malloc(size); 3668 if (flatArgs == NULL) 3669 return B_NO_MEMORY; 3670 3671 char** slot = flatArgs; 3672 char* stringSpace = (char*)(flatArgs + argCount + envCount + 2); 3673 3674 // copy arguments and environment 3675 for (int32 i = 0; i < argCount; i++) { 3676 int32 argSize = strlen(args[i]) + 1; 3677 memcpy(stringSpace, args[i], argSize); 3678 *slot++ = stringSpace; 3679 stringSpace += argSize; 3680 } 3681 3682 *slot++ = NULL; 3683 3684 for (int32 i = 0; i < envCount; i++) { 3685 int32 envSize = strlen(env[i]) + 1; 3686 memcpy(stringSpace, env[i], envSize); 3687 *slot++ = stringSpace; 3688 stringSpace += envSize; 3689 } 3690 3691 *slot++ = NULL; 3692 3693 thread_id thread = load_image_internal(flatArgs, size, argCount, envCount, 3694 B_NORMAL_PRIORITY, parentID, B_WAIT_TILL_LOADED, -1, 0); 3695 3696 free(flatArgs); 3697 // load_image_internal() unset our variable if it took over ownership 3698 3699 return thread; 3700 } 3701 3702 3703 status_t 3704 wait_for_team(team_id id, status_t* _returnCode) 3705 { 3706 // check whether the team exists 3707 InterruptsSpinLocker teamsLocker(sTeamHashLock); 3708 3709 Team* team = team_get_team_struct_locked(id); 3710 if (team == NULL) 3711 return B_BAD_TEAM_ID; 3712 3713 id = team->id; 3714 3715 teamsLocker.Unlock(); 3716 3717 // wait for the main thread (it has the same ID as the team) 3718 return wait_for_thread(id, _returnCode); 3719 } 3720 3721 3722 status_t 3723 kill_team(team_id id) 3724 { 3725 InterruptsSpinLocker teamsLocker(sTeamHashLock); 3726 3727 Team* team = team_get_team_struct_locked(id); 3728 if (team == NULL) 3729 return B_BAD_TEAM_ID; 3730 3731 id = team->id; 3732 3733 teamsLocker.Unlock(); 3734 3735 if (team == sKernelTeam) 3736 return B_NOT_ALLOWED; 3737 3738 // Just kill the team's main thread (it has same ID as the team). The 3739 // cleanup code there will take care of the team. 3740 return kill_thread(id); 3741 } 3742 3743 3744 status_t 3745 _get_team_info(team_id id, team_info* info, size_t size) 3746 { 3747 // get the team 3748 Team* team = Team::Get(id); 3749 if (team == NULL) 3750 return B_BAD_TEAM_ID; 3751 BReference<Team> teamReference(team, true); 3752 3753 // fill in the info 3754 return fill_team_info(team, info, size); 3755 } 3756 3757 3758 status_t 3759 _get_next_team_info(int32* cookie, team_info* info, size_t size) 3760 { 3761 int32 slot = *cookie; 3762 if (slot < 1) 3763 slot = 1; 3764 3765 InterruptsSpinLocker locker(sTeamHashLock); 3766 3767 team_id lastTeamID = peek_next_thread_id(); 3768 // TODO: This is broken, since the id can wrap around! 3769 3770 // get next valid team 3771 Team* team = NULL; 3772 while (slot < lastTeamID && !(team = team_get_team_struct_locked(slot))) 3773 slot++; 3774 3775 if (team == NULL) 3776 return B_BAD_TEAM_ID; 3777 3778 // get a reference to the team and unlock 3779 BReference<Team> teamReference(team); 3780 locker.Unlock(); 3781 3782 // fill in the info 3783 *cookie = ++slot; 3784 return fill_team_info(team, info, size); 3785 } 3786 3787 3788 status_t 3789 _get_team_usage_info(team_id id, int32 who, team_usage_info* info, size_t size) 3790 { 3791 if (size != sizeof(team_usage_info)) 3792 return B_BAD_VALUE; 3793 3794 return common_get_team_usage_info(id, who, info, 0); 3795 } 3796 3797 3798 pid_t 3799 getpid(void) 3800 { 3801 return thread_get_current_thread()->team->id; 3802 } 3803 3804 3805 pid_t 3806 getppid(void) 3807 { 3808 Team* team = thread_get_current_thread()->team; 3809 3810 TeamLocker teamLocker(team); 3811 3812 return team->parent->id; 3813 } 3814 3815 3816 pid_t 3817 getpgid(pid_t id) 3818 { 3819 if (id < 0) { 3820 errno = EINVAL; 3821 return -1; 3822 } 3823 3824 if (id == 0) { 3825 // get process group of the calling process 3826 Team* team = thread_get_current_thread()->team; 3827 TeamLocker teamLocker(team); 3828 return team->group_id; 3829 } 3830 3831 // get the team 3832 Team* team = Team::GetAndLock(id); 3833 if (team == NULL) { 3834 errno = ESRCH; 3835 return -1; 3836 } 3837 3838 // get the team's process group ID 3839 pid_t groupID = team->group_id; 3840 3841 team->UnlockAndReleaseReference(); 3842 3843 return groupID; 3844 } 3845 3846 3847 pid_t 3848 getsid(pid_t id) 3849 { 3850 if (id < 0) { 3851 errno = EINVAL; 3852 return -1; 3853 } 3854 3855 if (id == 0) { 3856 // get session of the calling process 3857 Team* team = thread_get_current_thread()->team; 3858 TeamLocker teamLocker(team); 3859 return team->session_id; 3860 } 3861 3862 // get the team 3863 Team* team = Team::GetAndLock(id); 3864 if (team == NULL) { 3865 errno = ESRCH; 3866 return -1; 3867 } 3868 3869 // get the team's session ID 3870 pid_t sessionID = team->session_id; 3871 3872 team->UnlockAndReleaseReference(); 3873 3874 return sessionID; 3875 } 3876 3877 3878 // #pragma mark - User syscalls 3879 3880 3881 status_t 3882 _user_exec(const char* userPath, const char* const* userFlatArgs, 3883 size_t flatArgsSize, int32 argCount, int32 envCount, mode_t umask) 3884 { 3885 // NOTE: Since this function normally doesn't return, don't use automatic 3886 // variables that need destruction in the function scope. 3887 char path[B_PATH_NAME_LENGTH]; 3888 3889 if (!IS_USER_ADDRESS(userPath) || !IS_USER_ADDRESS(userFlatArgs) 3890 || user_strlcpy(path, userPath, sizeof(path)) < B_OK) 3891 return B_BAD_ADDRESS; 3892 3893 // copy and relocate the flat arguments 3894 char** flatArgs; 3895 status_t error = copy_user_process_args(userFlatArgs, flatArgsSize, 3896 argCount, envCount, flatArgs); 3897 3898 if (error == B_OK) { 3899 error = exec_team(path, flatArgs, _ALIGN(flatArgsSize), argCount, 3900 envCount, umask); 3901 // this one only returns in case of error 3902 } 3903 3904 free(flatArgs); 3905 return error; 3906 } 3907 3908 3909 thread_id 3910 _user_fork(void) 3911 { 3912 return fork_team(); 3913 } 3914 3915 3916 pid_t 3917 _user_wait_for_child(thread_id child, uint32 flags, siginfo_t* userInfo) 3918 { 3919 if (userInfo != NULL && !IS_USER_ADDRESS(userInfo)) 3920 return B_BAD_ADDRESS; 3921 3922 siginfo_t info; 3923 pid_t foundChild = wait_for_child(child, flags, info); 3924 if (foundChild < 0) 3925 return syscall_restart_handle_post(foundChild); 3926 3927 // copy info back to userland 3928 if (userInfo != NULL && user_memcpy(userInfo, &info, sizeof(info)) != B_OK) 3929 return B_BAD_ADDRESS; 3930 3931 return foundChild; 3932 } 3933 3934 3935 pid_t 3936 _user_process_info(pid_t process, int32 which) 3937 { 3938 // we only allow to return the parent of the current process 3939 if (which == PARENT_ID 3940 && process != 0 && process != thread_get_current_thread()->team->id) 3941 return B_BAD_VALUE; 3942 3943 pid_t result; 3944 switch (which) { 3945 case SESSION_ID: 3946 result = getsid(process); 3947 break; 3948 case GROUP_ID: 3949 result = getpgid(process); 3950 break; 3951 case PARENT_ID: 3952 result = getppid(); 3953 break; 3954 default: 3955 return B_BAD_VALUE; 3956 } 3957 3958 return result >= 0 ? result : errno; 3959 } 3960 3961 3962 pid_t 3963 _user_setpgid(pid_t processID, pid_t groupID) 3964 { 3965 // setpgid() can be called either by the parent of the target process or 3966 // by the process itself to do one of two things: 3967 // * Create a new process group with the target process' ID and the target 3968 // process as group leader. 3969 // * Set the target process' process group to an already existing one in the 3970 // same session. 3971 3972 if (groupID < 0) 3973 return B_BAD_VALUE; 3974 3975 Team* currentTeam = thread_get_current_thread()->team; 3976 if (processID == 0) 3977 processID = currentTeam->id; 3978 3979 // if the group ID is not specified, use the target process' ID 3980 if (groupID == 0) 3981 groupID = processID; 3982 3983 // We loop when running into the following race condition: We create a new 3984 // process group, because there isn't one with that ID yet, but later when 3985 // trying to publish it, we find that someone else created and published 3986 // a group with that ID in the meantime. In that case we just restart the 3987 // whole action. 3988 while (true) { 3989 // Look up the process group by ID. If it doesn't exist yet and we are 3990 // allowed to create a new one, do that. 3991 ProcessGroup* group = ProcessGroup::Get(groupID); 3992 bool newGroup = false; 3993 if (group == NULL) { 3994 if (groupID != processID) 3995 return B_NOT_ALLOWED; 3996 3997 group = new(std::nothrow) ProcessGroup(groupID); 3998 if (group == NULL) 3999 return B_NO_MEMORY; 4000 4001 newGroup = true; 4002 } 4003 BReference<ProcessGroup> groupReference(group, true); 4004 4005 // get the target team 4006 Team* team = Team::Get(processID); 4007 if (team == NULL) 4008 return ESRCH; 4009 BReference<Team> teamReference(team, true); 4010 4011 // lock the new process group and the team's current process group 4012 while (true) { 4013 // lock the team's current process group 4014 team->LockProcessGroup(); 4015 4016 ProcessGroup* oldGroup = team->group; 4017 if (oldGroup == group) { 4018 // it's the same as the target group, so just bail out 4019 oldGroup->Unlock(); 4020 return group->id; 4021 } 4022 4023 oldGroup->AcquireReference(); 4024 4025 // lock the target process group, if locking order allows it 4026 if (newGroup || group->id > oldGroup->id) { 4027 group->Lock(); 4028 break; 4029 } 4030 4031 // try to lock 4032 if (group->TryLock()) 4033 break; 4034 4035 // no dice -- unlock the team's current process group and relock in 4036 // the correct order 4037 oldGroup->Unlock(); 4038 4039 group->Lock(); 4040 oldGroup->Lock(); 4041 4042 // check whether things are still the same 4043 TeamLocker teamLocker(team); 4044 if (team->group == oldGroup) 4045 break; 4046 4047 // something changed -- unlock everything and retry 4048 teamLocker.Unlock(); 4049 oldGroup->Unlock(); 4050 group->Unlock(); 4051 oldGroup->ReleaseReference(); 4052 } 4053 4054 // we now have references and locks of both new and old process group 4055 BReference<ProcessGroup> oldGroupReference(team->group, true); 4056 AutoLocker<ProcessGroup> oldGroupLocker(team->group, true); 4057 AutoLocker<ProcessGroup> groupLocker(group, true); 4058 4059 // also lock the target team and its parent 4060 team->LockTeamAndParent(false); 4061 TeamLocker parentLocker(team->parent, true); 4062 TeamLocker teamLocker(team, true); 4063 4064 // perform the checks 4065 if (team == currentTeam) { 4066 // we set our own group 4067 4068 // we must not change our process group ID if we're a session leader 4069 if (is_session_leader(currentTeam)) 4070 return B_NOT_ALLOWED; 4071 } else { 4072 // Calling team != target team. The target team must be a child of 4073 // the calling team and in the same session. (If that's the case it 4074 // isn't a session leader either.) 4075 if (team->parent != currentTeam 4076 || team->session_id != currentTeam->session_id) { 4077 return B_NOT_ALLOWED; 4078 } 4079 4080 // The call is also supposed to fail on a child, when the child has 4081 // already executed exec*() [EACCES]. 4082 if ((team->flags & TEAM_FLAG_EXEC_DONE) != 0) 4083 return EACCES; 4084 } 4085 4086 // If we created a new process group, publish it now. 4087 if (newGroup) { 4088 InterruptsSpinLocker groupHashLocker(sGroupHashLock); 4089 if (sGroupHash.Lookup(groupID)) { 4090 // A group with the group ID appeared since we first checked. 4091 // Back to square one. 4092 continue; 4093 } 4094 4095 group->PublishLocked(team->group->Session()); 4096 } else if (group->Session()->id != team->session_id) { 4097 // The existing target process group belongs to a different session. 4098 // That's not allowed. 4099 return B_NOT_ALLOWED; 4100 } 4101 4102 // Everything is ready -- set the group. 4103 remove_team_from_group(team); 4104 insert_team_into_group(group, team); 4105 4106 // Changing the process group might have changed the situation for a 4107 // parent waiting in wait_for_child(). Hence we notify it. 4108 team->parent->dead_children.condition_variable.NotifyAll(); 4109 4110 return group->id; 4111 } 4112 } 4113 4114 4115 pid_t 4116 _user_setsid(void) 4117 { 4118 Team* team = thread_get_current_thread()->team; 4119 4120 // create a new process group and session 4121 ProcessGroup* group = new(std::nothrow) ProcessGroup(team->id); 4122 if (group == NULL) 4123 return B_NO_MEMORY; 4124 BReference<ProcessGroup> groupReference(group, true); 4125 AutoLocker<ProcessGroup> groupLocker(group); 4126 4127 ProcessSession* session = new(std::nothrow) ProcessSession(group->id); 4128 if (session == NULL) 4129 return B_NO_MEMORY; 4130 BReference<ProcessSession> sessionReference(session, true); 4131 4132 // lock the team's current process group, parent, and the team itself 4133 team->LockTeamParentAndProcessGroup(); 4134 BReference<ProcessGroup> oldGroupReference(team->group); 4135 AutoLocker<ProcessGroup> oldGroupLocker(team->group, true); 4136 TeamLocker parentLocker(team->parent, true); 4137 TeamLocker teamLocker(team, true); 4138 4139 // the team must not already be a process group leader 4140 if (is_process_group_leader(team)) 4141 return B_NOT_ALLOWED; 4142 4143 // remove the team from the old and add it to the new process group 4144 remove_team_from_group(team); 4145 group->Publish(session); 4146 insert_team_into_group(group, team); 4147 4148 // Changing the process group might have changed the situation for a 4149 // parent waiting in wait_for_child(). Hence we notify it. 4150 team->parent->dead_children.condition_variable.NotifyAll(); 4151 4152 return group->id; 4153 } 4154 4155 4156 status_t 4157 _user_wait_for_team(team_id id, status_t* _userReturnCode) 4158 { 4159 status_t returnCode; 4160 status_t status; 4161 4162 if (_userReturnCode != NULL && !IS_USER_ADDRESS(_userReturnCode)) 4163 return B_BAD_ADDRESS; 4164 4165 status = wait_for_team(id, &returnCode); 4166 if (status >= B_OK && _userReturnCode != NULL) { 4167 if (user_memcpy(_userReturnCode, &returnCode, sizeof(returnCode)) 4168 != B_OK) 4169 return B_BAD_ADDRESS; 4170 return B_OK; 4171 } 4172 4173 return syscall_restart_handle_post(status); 4174 } 4175 4176 4177 thread_id 4178 _user_load_image(const char* const* userFlatArgs, size_t flatArgsSize, 4179 int32 argCount, int32 envCount, int32 priority, uint32 flags, 4180 port_id errorPort, uint32 errorToken) 4181 { 4182 TRACE(("_user_load_image: argc = %" B_PRId32 "\n", argCount)); 4183 4184 if (argCount < 1) 4185 return B_BAD_VALUE; 4186 4187 // copy and relocate the flat arguments 4188 char** flatArgs; 4189 status_t error = copy_user_process_args(userFlatArgs, flatArgsSize, 4190 argCount, envCount, flatArgs); 4191 if (error != B_OK) 4192 return error; 4193 4194 thread_id thread = load_image_internal(flatArgs, _ALIGN(flatArgsSize), 4195 argCount, envCount, priority, B_CURRENT_TEAM, flags, errorPort, 4196 errorToken); 4197 4198 free(flatArgs); 4199 // load_image_internal() unset our variable if it took over ownership 4200 4201 return thread; 4202 } 4203 4204 4205 void 4206 _user_exit_team(status_t returnValue) 4207 { 4208 Thread* thread = thread_get_current_thread(); 4209 Team* team = thread->team; 4210 4211 // set this thread's exit status 4212 thread->exit.status = returnValue; 4213 4214 // set the team exit status 4215 TeamLocker teamLocker(team); 4216 4217 if (!team->exit.initialized) { 4218 team->exit.reason = CLD_EXITED; 4219 team->exit.signal = 0; 4220 team->exit.signaling_user = 0; 4221 team->exit.status = returnValue; 4222 team->exit.initialized = true; 4223 } 4224 4225 teamLocker.Unlock(); 4226 4227 // Stop the thread, if the team is being debugged and that has been 4228 // requested. 4229 if ((atomic_get(&team->debug_info.flags) & B_TEAM_DEBUG_PREVENT_EXIT) != 0) 4230 user_debug_stop_thread(); 4231 4232 // Send this thread a SIGKILL. This makes sure the thread will not return to 4233 // userland. The signal handling code forwards the signal to the main 4234 // thread (if that's not already this one), which will take the team down. 4235 Signal signal(SIGKILL, SI_USER, B_OK, team->id); 4236 send_signal_to_thread(thread, signal, 0); 4237 } 4238 4239 4240 status_t 4241 _user_kill_team(team_id team) 4242 { 4243 return kill_team(team); 4244 } 4245 4246 4247 status_t 4248 _user_get_team_info(team_id id, team_info* userInfo) 4249 { 4250 status_t status; 4251 team_info info; 4252 4253 if (!IS_USER_ADDRESS(userInfo)) 4254 return B_BAD_ADDRESS; 4255 4256 status = _get_team_info(id, &info, sizeof(team_info)); 4257 if (status == B_OK) { 4258 if (user_memcpy(userInfo, &info, sizeof(team_info)) < B_OK) 4259 return B_BAD_ADDRESS; 4260 } 4261 4262 return status; 4263 } 4264 4265 4266 status_t 4267 _user_get_next_team_info(int32* userCookie, team_info* userInfo) 4268 { 4269 status_t status; 4270 team_info info; 4271 int32 cookie; 4272 4273 if (!IS_USER_ADDRESS(userCookie) 4274 || !IS_USER_ADDRESS(userInfo) 4275 || user_memcpy(&cookie, userCookie, sizeof(int32)) < B_OK) 4276 return B_BAD_ADDRESS; 4277 4278 status = _get_next_team_info(&cookie, &info, sizeof(team_info)); 4279 if (status != B_OK) 4280 return status; 4281 4282 if (user_memcpy(userCookie, &cookie, sizeof(int32)) < B_OK 4283 || user_memcpy(userInfo, &info, sizeof(team_info)) < B_OK) 4284 return B_BAD_ADDRESS; 4285 4286 return status; 4287 } 4288 4289 4290 team_id 4291 _user_get_current_team(void) 4292 { 4293 return team_get_current_team_id(); 4294 } 4295 4296 4297 status_t 4298 _user_get_team_usage_info(team_id team, int32 who, team_usage_info* userInfo, 4299 size_t size) 4300 { 4301 if (size != sizeof(team_usage_info)) 4302 return B_BAD_VALUE; 4303 4304 team_usage_info info; 4305 status_t status = common_get_team_usage_info(team, who, &info, 4306 B_CHECK_PERMISSION); 4307 4308 if (userInfo == NULL || !IS_USER_ADDRESS(userInfo) 4309 || user_memcpy(userInfo, &info, size) != B_OK) { 4310 return B_BAD_ADDRESS; 4311 } 4312 4313 return status; 4314 } 4315 4316 4317 status_t 4318 _user_get_extended_team_info(team_id teamID, uint32 flags, void* buffer, 4319 size_t size, size_t* _sizeNeeded) 4320 { 4321 // check parameters 4322 if ((buffer != NULL && !IS_USER_ADDRESS(buffer)) 4323 || (buffer == NULL && size > 0) 4324 || _sizeNeeded == NULL || !IS_USER_ADDRESS(_sizeNeeded)) { 4325 return B_BAD_ADDRESS; 4326 } 4327 4328 KMessage info; 4329 4330 if ((flags & B_TEAM_INFO_BASIC) != 0) { 4331 // allocate memory for a copy of the needed team data 4332 struct ExtendedTeamData { 4333 team_id id; 4334 pid_t group_id; 4335 pid_t session_id; 4336 uid_t real_uid; 4337 gid_t real_gid; 4338 uid_t effective_uid; 4339 gid_t effective_gid; 4340 char name[B_OS_NAME_LENGTH]; 4341 }; 4342 4343 ExtendedTeamData* teamClone 4344 = (ExtendedTeamData*)malloc(sizeof(ExtendedTeamData)); 4345 // It would be nicer to use new, but then we'd have to use 4346 // ObjectDeleter and declare the structure outside of the function 4347 // due to template parameter restrictions. 4348 if (teamClone == NULL) 4349 return B_NO_MEMORY; 4350 MemoryDeleter teamCloneDeleter(teamClone); 4351 4352 io_context* ioContext; 4353 { 4354 // get the team structure 4355 Team* team = Team::GetAndLock(teamID); 4356 if (team == NULL) 4357 return B_BAD_TEAM_ID; 4358 BReference<Team> teamReference(team, true); 4359 TeamLocker teamLocker(team, true); 4360 4361 // copy the data 4362 teamClone->id = team->id; 4363 strlcpy(teamClone->name, team->Name(), sizeof(teamClone->name)); 4364 teamClone->group_id = team->group_id; 4365 teamClone->session_id = team->session_id; 4366 teamClone->real_uid = team->real_uid; 4367 teamClone->real_gid = team->real_gid; 4368 teamClone->effective_uid = team->effective_uid; 4369 teamClone->effective_gid = team->effective_gid; 4370 4371 // also fetch a reference to the I/O context 4372 ioContext = team->io_context; 4373 vfs_get_io_context(ioContext); 4374 } 4375 CObjectDeleter<io_context> ioContextPutter(ioContext, 4376 &vfs_put_io_context); 4377 4378 // add the basic data to the info message 4379 if (info.AddInt32("id", teamClone->id) != B_OK 4380 || info.AddString("name", teamClone->name) != B_OK 4381 || info.AddInt32("process group", teamClone->group_id) != B_OK 4382 || info.AddInt32("session", teamClone->session_id) != B_OK 4383 || info.AddInt32("uid", teamClone->real_uid) != B_OK 4384 || info.AddInt32("gid", teamClone->real_gid) != B_OK 4385 || info.AddInt32("euid", teamClone->effective_uid) != B_OK 4386 || info.AddInt32("egid", teamClone->effective_gid) != B_OK) { 4387 return B_NO_MEMORY; 4388 } 4389 4390 // get the current working directory from the I/O context 4391 dev_t cwdDevice; 4392 ino_t cwdDirectory; 4393 { 4394 MutexLocker ioContextLocker(ioContext->io_mutex); 4395 vfs_vnode_to_node_ref(ioContext->cwd, &cwdDevice, &cwdDirectory); 4396 } 4397 4398 if (info.AddInt32("cwd device", cwdDevice) != B_OK 4399 || info.AddInt64("cwd directory", cwdDirectory) != B_OK) { 4400 return B_NO_MEMORY; 4401 } 4402 } 4403 4404 // TODO: Support the other flags! 4405 4406 // copy the needed size and, if it fits, the message back to userland 4407 size_t sizeNeeded = info.ContentSize(); 4408 if (user_memcpy(_sizeNeeded, &sizeNeeded, sizeof(sizeNeeded)) != B_OK) 4409 return B_BAD_ADDRESS; 4410 4411 if (sizeNeeded > size) 4412 return B_BUFFER_OVERFLOW; 4413 4414 if (user_memcpy(buffer, info.Buffer(), sizeNeeded) != B_OK) 4415 return B_BAD_ADDRESS; 4416 4417 return B_OK; 4418 } 4419