xref: /haiku/src/system/kernel/team.cpp (revision fce4895d1884da5ae6fb299d23c735c598e690b1)
1 /*
2  * Copyright 2014, Paweł Dziepak, pdziepak@quarnos.org.
3  * Copyright 2008-2016, Ingo Weinhold, ingo_weinhold@gmx.de.
4  * Copyright 2002-2010, Axel Dörfler, axeld@pinc-software.de.
5  * Distributed under the terms of the MIT License.
6  *
7  * Copyright 2001-2002, Travis Geiselbrecht. All rights reserved.
8  * Distributed under the terms of the NewOS License.
9  */
10 
11 
12 /*!	Team functions */
13 
14 
15 #include <team.h>
16 
17 #include <errno.h>
18 #include <stdio.h>
19 #include <stdlib.h>
20 #include <string.h>
21 #include <sys/wait.h>
22 
23 #include <OS.h>
24 
25 #include <AutoDeleter.h>
26 #include <FindDirectory.h>
27 
28 #include <extended_system_info_defs.h>
29 
30 #include <commpage.h>
31 #include <boot_device.h>
32 #include <elf.h>
33 #include <file_cache.h>
34 #include <find_directory_private.h>
35 #include <fs/KPath.h>
36 #include <heap.h>
37 #include <int.h>
38 #include <kernel.h>
39 #include <kimage.h>
40 #include <kscheduler.h>
41 #include <ksignal.h>
42 #include <Notifications.h>
43 #include <port.h>
44 #include <posix/realtime_sem.h>
45 #include <posix/xsi_semaphore.h>
46 #include <sem.h>
47 #include <syscall_process_info.h>
48 #include <syscall_restart.h>
49 #include <syscalls.h>
50 #include <tls.h>
51 #include <tracing.h>
52 #include <user_runtime.h>
53 #include <user_thread.h>
54 #include <usergroup.h>
55 #include <vfs.h>
56 #include <vm/vm.h>
57 #include <vm/VMAddressSpace.h>
58 #include <util/AutoLock.h>
59 
60 #include "TeamThreadTables.h"
61 
62 
63 //#define TRACE_TEAM
64 #ifdef TRACE_TEAM
65 #	define TRACE(x) dprintf x
66 #else
67 #	define TRACE(x) ;
68 #endif
69 
70 
71 struct team_key {
72 	team_id id;
73 };
74 
75 struct team_arg {
76 	char	*path;
77 	char	**flat_args;
78 	size_t	flat_args_size;
79 	uint32	arg_count;
80 	uint32	env_count;
81 	mode_t	umask;
82 	uint32	flags;
83 	port_id	error_port;
84 	uint32	error_token;
85 };
86 
87 #define TEAM_ARGS_FLAG_NO_ASLR	0x01
88 
89 
90 namespace {
91 
92 
93 class TeamNotificationService : public DefaultNotificationService {
94 public:
95 							TeamNotificationService();
96 
97 			void			Notify(uint32 eventCode, Team* team);
98 };
99 
100 
101 // #pragma mark - TeamTable
102 
103 
104 typedef BKernel::TeamThreadTable<Team> TeamTable;
105 
106 
107 // #pragma mark - ProcessGroupHashDefinition
108 
109 
110 struct ProcessGroupHashDefinition {
111 	typedef pid_t			KeyType;
112 	typedef	ProcessGroup	ValueType;
113 
114 	size_t HashKey(pid_t key) const
115 	{
116 		return key;
117 	}
118 
119 	size_t Hash(ProcessGroup* value) const
120 	{
121 		return HashKey(value->id);
122 	}
123 
124 	bool Compare(pid_t key, ProcessGroup* value) const
125 	{
126 		return value->id == key;
127 	}
128 
129 	ProcessGroup*& GetLink(ProcessGroup* value) const
130 	{
131 		return value->next;
132 	}
133 };
134 
135 typedef BOpenHashTable<ProcessGroupHashDefinition> ProcessGroupHashTable;
136 
137 
138 }	// unnamed namespace
139 
140 
141 // #pragma mark -
142 
143 
144 // the team_id -> Team hash table and the lock protecting it
145 static TeamTable sTeamHash;
146 static spinlock sTeamHashLock = B_SPINLOCK_INITIALIZER;
147 
148 // the pid_t -> ProcessGroup hash table and the lock protecting it
149 static ProcessGroupHashTable sGroupHash;
150 static spinlock sGroupHashLock = B_SPINLOCK_INITIALIZER;
151 
152 static Team* sKernelTeam = NULL;
153 
154 // A list of process groups of children of dying session leaders that need to
155 // be signalled, if they have become orphaned and contain stopped processes.
156 static ProcessGroupList sOrphanedCheckProcessGroups;
157 static mutex sOrphanedCheckLock
158 	= MUTEX_INITIALIZER("orphaned process group check");
159 
160 // some arbitrarily chosen limits -- should probably depend on the available
161 // memory (the limit is not yet enforced)
162 static int32 sMaxTeams = 2048;
163 static int32 sUsedTeams = 1;
164 
165 static TeamNotificationService sNotificationService;
166 
167 static const size_t kTeamUserDataReservedSize	= 128 * B_PAGE_SIZE;
168 static const size_t kTeamUserDataInitialSize	= 4 * B_PAGE_SIZE;
169 
170 
171 // #pragma mark - TeamListIterator
172 
173 
174 TeamListIterator::TeamListIterator()
175 {
176 	// queue the entry
177 	InterruptsSpinLocker locker(sTeamHashLock);
178 	sTeamHash.InsertIteratorEntry(&fEntry);
179 }
180 
181 
182 TeamListIterator::~TeamListIterator()
183 {
184 	// remove the entry
185 	InterruptsSpinLocker locker(sTeamHashLock);
186 	sTeamHash.RemoveIteratorEntry(&fEntry);
187 }
188 
189 
190 Team*
191 TeamListIterator::Next()
192 {
193 	// get the next team -- if there is one, get reference for it
194 	InterruptsSpinLocker locker(sTeamHashLock);
195 	Team* team = sTeamHash.NextElement(&fEntry);
196 	if (team != NULL)
197 		team->AcquireReference();
198 
199 	return team;
200 }
201 
202 
203 // #pragma mark - Tracing
204 
205 
206 #if TEAM_TRACING
207 namespace TeamTracing {
208 
209 class TeamForked : public AbstractTraceEntry {
210 public:
211 	TeamForked(thread_id forkedThread)
212 		:
213 		fForkedThread(forkedThread)
214 	{
215 		Initialized();
216 	}
217 
218 	virtual void AddDump(TraceOutput& out)
219 	{
220 		out.Print("team forked, new thread %" B_PRId32, fForkedThread);
221 	}
222 
223 private:
224 	thread_id			fForkedThread;
225 };
226 
227 
228 class ExecTeam : public AbstractTraceEntry {
229 public:
230 	ExecTeam(const char* path, int32 argCount, const char* const* args,
231 			int32 envCount, const char* const* env)
232 		:
233 		fArgCount(argCount),
234 		fArgs(NULL)
235 	{
236 		fPath = alloc_tracing_buffer_strcpy(path, B_PATH_NAME_LENGTH,
237 			false);
238 
239 		// determine the buffer size we need for the args
240 		size_t argBufferSize = 0;
241 		for (int32 i = 0; i < argCount; i++)
242 			argBufferSize += strlen(args[i]) + 1;
243 
244 		// allocate a buffer
245 		fArgs = (char*)alloc_tracing_buffer(argBufferSize);
246 		if (fArgs) {
247 			char* buffer = fArgs;
248 			for (int32 i = 0; i < argCount; i++) {
249 				size_t argSize = strlen(args[i]) + 1;
250 				memcpy(buffer, args[i], argSize);
251 				buffer += argSize;
252 			}
253 		}
254 
255 		// ignore env for the time being
256 		(void)envCount;
257 		(void)env;
258 
259 		Initialized();
260 	}
261 
262 	virtual void AddDump(TraceOutput& out)
263 	{
264 		out.Print("team exec, \"%p\", args:", fPath);
265 
266 		if (fArgs != NULL) {
267 			char* args = fArgs;
268 			for (int32 i = 0; !out.IsFull() && i < fArgCount; i++) {
269 				out.Print(" \"%s\"", args);
270 				args += strlen(args) + 1;
271 			}
272 		} else
273 			out.Print(" <too long>");
274 	}
275 
276 private:
277 	char*	fPath;
278 	int32	fArgCount;
279 	char*	fArgs;
280 };
281 
282 
283 static const char*
284 job_control_state_name(job_control_state state)
285 {
286 	switch (state) {
287 		case JOB_CONTROL_STATE_NONE:
288 			return "none";
289 		case JOB_CONTROL_STATE_STOPPED:
290 			return "stopped";
291 		case JOB_CONTROL_STATE_CONTINUED:
292 			return "continued";
293 		case JOB_CONTROL_STATE_DEAD:
294 			return "dead";
295 		default:
296 			return "invalid";
297 	}
298 }
299 
300 
301 class SetJobControlState : public AbstractTraceEntry {
302 public:
303 	SetJobControlState(team_id team, job_control_state newState, Signal* signal)
304 		:
305 		fTeam(team),
306 		fNewState(newState),
307 		fSignal(signal != NULL ? signal->Number() : 0)
308 	{
309 		Initialized();
310 	}
311 
312 	virtual void AddDump(TraceOutput& out)
313 	{
314 		out.Print("team set job control state, team %" B_PRId32 ", "
315 			"new state: %s, signal: %d",
316 			fTeam, job_control_state_name(fNewState), fSignal);
317 	}
318 
319 private:
320 	team_id				fTeam;
321 	job_control_state	fNewState;
322 	int					fSignal;
323 };
324 
325 
326 class WaitForChild : public AbstractTraceEntry {
327 public:
328 	WaitForChild(pid_t child, uint32 flags)
329 		:
330 		fChild(child),
331 		fFlags(flags)
332 	{
333 		Initialized();
334 	}
335 
336 	virtual void AddDump(TraceOutput& out)
337 	{
338 		out.Print("team wait for child, child: %" B_PRId32 ", "
339 			"flags: %#" B_PRIx32, fChild, fFlags);
340 	}
341 
342 private:
343 	pid_t	fChild;
344 	uint32	fFlags;
345 };
346 
347 
348 class WaitForChildDone : public AbstractTraceEntry {
349 public:
350 	WaitForChildDone(const job_control_entry& entry)
351 		:
352 		fState(entry.state),
353 		fTeam(entry.thread),
354 		fStatus(entry.status),
355 		fReason(entry.reason),
356 		fSignal(entry.signal)
357 	{
358 		Initialized();
359 	}
360 
361 	WaitForChildDone(status_t error)
362 		:
363 		fTeam(error)
364 	{
365 		Initialized();
366 	}
367 
368 	virtual void AddDump(TraceOutput& out)
369 	{
370 		if (fTeam >= 0) {
371 			out.Print("team wait for child done, team: %" B_PRId32 ", "
372 				"state: %s, status: %#" B_PRIx32 ", reason: %#x, signal: %d\n",
373 				fTeam, job_control_state_name(fState), fStatus, fReason,
374 				fSignal);
375 		} else {
376 			out.Print("team wait for child failed, error: "
377 				"%#" B_PRIx32 ", ", fTeam);
378 		}
379 	}
380 
381 private:
382 	job_control_state	fState;
383 	team_id				fTeam;
384 	status_t			fStatus;
385 	uint16				fReason;
386 	uint16				fSignal;
387 };
388 
389 }	// namespace TeamTracing
390 
391 #	define T(x) new(std::nothrow) TeamTracing::x;
392 #else
393 #	define T(x) ;
394 #endif
395 
396 
397 //	#pragma mark - TeamNotificationService
398 
399 
400 TeamNotificationService::TeamNotificationService()
401 	: DefaultNotificationService("teams")
402 {
403 }
404 
405 
406 void
407 TeamNotificationService::Notify(uint32 eventCode, Team* team)
408 {
409 	char eventBuffer[128];
410 	KMessage event;
411 	event.SetTo(eventBuffer, sizeof(eventBuffer), TEAM_MONITOR);
412 	event.AddInt32("event", eventCode);
413 	event.AddInt32("team", team->id);
414 	event.AddPointer("teamStruct", team);
415 
416 	DefaultNotificationService::Notify(event, eventCode);
417 }
418 
419 
420 //	#pragma mark - Team
421 
422 
423 Team::Team(team_id id, bool kernel)
424 {
425 	// allocate an ID
426 	this->id = id;
427 	visible = true;
428 	serial_number = -1;
429 
430 	// init mutex
431 	if (kernel) {
432 		mutex_init(&fLock, "Team:kernel");
433 	} else {
434 		char lockName[16];
435 		snprintf(lockName, sizeof(lockName), "Team:%" B_PRId32, id);
436 		mutex_init_etc(&fLock, lockName, MUTEX_FLAG_CLONE_NAME);
437 	}
438 
439 	hash_next = siblings_next = children = parent = NULL;
440 	fName[0] = '\0';
441 	fArgs[0] = '\0';
442 	num_threads = 0;
443 	io_context = NULL;
444 	address_space = NULL;
445 	realtime_sem_context = NULL;
446 	xsi_sem_context = NULL;
447 	thread_list = NULL;
448 	main_thread = NULL;
449 	loading_info = NULL;
450 	state = TEAM_STATE_BIRTH;
451 	flags = 0;
452 	death_entry = NULL;
453 	user_data_area = -1;
454 	user_data = 0;
455 	used_user_data = 0;
456 	user_data_size = 0;
457 	free_user_threads = NULL;
458 
459 	commpage_address = NULL;
460 
461 	supplementary_groups = NULL;
462 	supplementary_group_count = 0;
463 
464 	dead_threads_kernel_time = 0;
465 	dead_threads_user_time = 0;
466 	cpu_clock_offset = 0;
467 
468 	// dead threads
469 	list_init(&dead_threads);
470 	dead_threads_count = 0;
471 
472 	// dead children
473 	dead_children.count = 0;
474 	dead_children.kernel_time = 0;
475 	dead_children.user_time = 0;
476 
477 	// job control entry
478 	job_control_entry = new(nothrow) ::job_control_entry;
479 	if (job_control_entry != NULL) {
480 		job_control_entry->state = JOB_CONTROL_STATE_NONE;
481 		job_control_entry->thread = id;
482 		job_control_entry->team = this;
483 	}
484 
485 	// exit status -- setting initialized to false suffices
486 	exit.initialized = false;
487 
488 	list_init(&sem_list);
489 	list_init_etc(&port_list, port_team_link_offset());
490 	list_init(&image_list);
491 	list_init(&watcher_list);
492 
493 	clear_team_debug_info(&debug_info, true);
494 
495 	// init dead/stopped/continued children condition vars
496 	dead_children.condition_variable.Init(&dead_children, "team children");
497 
498 	B_INITIALIZE_SPINLOCK(&time_lock);
499 	B_INITIALIZE_SPINLOCK(&signal_lock);
500 
501 	fQueuedSignalsCounter = new(std::nothrow) BKernel::QueuedSignalsCounter(
502 		kernel ? -1 : MAX_QUEUED_SIGNALS);
503 	memset(fSignalActions, 0, sizeof(fSignalActions));
504 
505 	fUserDefinedTimerCount = 0;
506 
507 	fCoreDumpCondition = NULL;
508 }
509 
510 
511 Team::~Team()
512 {
513 	// get rid of all associated data
514 	PrepareForDeletion();
515 
516 	if (io_context != NULL)
517 		vfs_put_io_context(io_context);
518 	delete_owned_ports(this);
519 	sem_delete_owned_sems(this);
520 
521 	DeleteUserTimers(false);
522 
523 	fPendingSignals.Clear();
524 
525 	if (fQueuedSignalsCounter != NULL)
526 		fQueuedSignalsCounter->ReleaseReference();
527 
528 	while (thread_death_entry* threadDeathEntry
529 			= (thread_death_entry*)list_remove_head_item(&dead_threads)) {
530 		free(threadDeathEntry);
531 	}
532 
533 	while (::job_control_entry* entry = dead_children.entries.RemoveHead())
534 		delete entry;
535 
536 	while (free_user_thread* entry = free_user_threads) {
537 		free_user_threads = entry->next;
538 		free(entry);
539 	}
540 
541 	malloc_referenced_release(supplementary_groups);
542 
543 	delete job_control_entry;
544 		// usually already NULL and transferred to the parent
545 
546 	mutex_destroy(&fLock);
547 }
548 
549 
550 /*static*/ Team*
551 Team::Create(team_id id, const char* name, bool kernel)
552 {
553 	// create the team object
554 	Team* team = new(std::nothrow) Team(id, kernel);
555 	if (team == NULL)
556 		return NULL;
557 	ObjectDeleter<Team> teamDeleter(team);
558 
559 	if (name != NULL)
560 		team->SetName(name);
561 
562 	// check initialization
563 	if (team->job_control_entry == NULL || team->fQueuedSignalsCounter == NULL)
564 		return NULL;
565 
566 	// finish initialization (arch specifics)
567 	if (arch_team_init_team_struct(team, kernel) != B_OK)
568 		return NULL;
569 
570 	if (!kernel) {
571 		status_t error = user_timer_create_team_timers(team);
572 		if (error != B_OK)
573 			return NULL;
574 	}
575 
576 	// everything went fine
577 	return teamDeleter.Detach();
578 }
579 
580 
581 /*!	\brief Returns the team with the given ID.
582 	Returns a reference to the team.
583 	Team and thread spinlock must not be held.
584 */
585 /*static*/ Team*
586 Team::Get(team_id id)
587 {
588 	if (id == B_CURRENT_TEAM) {
589 		Team* team = thread_get_current_thread()->team;
590 		team->AcquireReference();
591 		return team;
592 	}
593 
594 	InterruptsSpinLocker locker(sTeamHashLock);
595 	Team* team = sTeamHash.Lookup(id);
596 	if (team != NULL)
597 		team->AcquireReference();
598 	return team;
599 }
600 
601 
602 /*!	\brief Returns the team with the given ID in a locked state.
603 	Returns a reference to the team.
604 	Team and thread spinlock must not be held.
605 */
606 /*static*/ Team*
607 Team::GetAndLock(team_id id)
608 {
609 	// get the team
610 	Team* team = Get(id);
611 	if (team == NULL)
612 		return NULL;
613 
614 	// lock it
615 	team->Lock();
616 
617 	// only return the team, when it isn't already dying
618 	if (team->state >= TEAM_STATE_SHUTDOWN) {
619 		team->Unlock();
620 		team->ReleaseReference();
621 		return NULL;
622 	}
623 
624 	return team;
625 }
626 
627 
628 /*!	Locks the team and its parent team (if any).
629 	The caller must hold a reference to the team or otherwise make sure that
630 	it won't be deleted.
631 	If the team doesn't have a parent, only the team itself is locked. If the
632 	team's parent is the kernel team and \a dontLockParentIfKernel is \c true,
633 	only the team itself is locked.
634 
635 	\param dontLockParentIfKernel If \c true, the team's parent team is only
636 		locked, if it is not the kernel team.
637 */
638 void
639 Team::LockTeamAndParent(bool dontLockParentIfKernel)
640 {
641 	// The locking order is parent -> child. Since the parent can change as long
642 	// as we don't lock the team, we need to do a trial and error loop.
643 	Lock();
644 
645 	while (true) {
646 		// If the team doesn't have a parent, we're done. Otherwise try to lock
647 		// the parent.This will succeed in most cases, simplifying things.
648 		Team* parent = this->parent;
649 		if (parent == NULL || (dontLockParentIfKernel && parent == sKernelTeam)
650 			|| parent->TryLock()) {
651 			return;
652 		}
653 
654 		// get a temporary reference to the parent, unlock this team, lock the
655 		// parent, and re-lock this team
656 		BReference<Team> parentReference(parent);
657 
658 		Unlock();
659 		parent->Lock();
660 		Lock();
661 
662 		// If the parent hasn't changed in the meantime, we're done.
663 		if (this->parent == parent)
664 			return;
665 
666 		// The parent has changed -- unlock and retry.
667 		parent->Unlock();
668 	}
669 }
670 
671 
672 /*!	Unlocks the team and its parent team (if any).
673 */
674 void
675 Team::UnlockTeamAndParent()
676 {
677 	if (parent != NULL)
678 		parent->Unlock();
679 
680 	Unlock();
681 }
682 
683 
684 /*!	Locks the team, its parent team (if any), and the team's process group.
685 	The caller must hold a reference to the team or otherwise make sure that
686 	it won't be deleted.
687 	If the team doesn't have a parent, only the team itself is locked.
688 */
689 void
690 Team::LockTeamParentAndProcessGroup()
691 {
692 	LockTeamAndProcessGroup();
693 
694 	// We hold the group's and the team's lock, but not the parent team's lock.
695 	// If we have a parent, try to lock it.
696 	if (this->parent == NULL || this->parent->TryLock())
697 		return;
698 
699 	// No success -- unlock the team and let LockTeamAndParent() do the rest of
700 	// the job.
701 	Unlock();
702 	LockTeamAndParent(false);
703 }
704 
705 
706 /*!	Unlocks the team, its parent team (if any), and the team's process group.
707 */
708 void
709 Team::UnlockTeamParentAndProcessGroup()
710 {
711 	group->Unlock();
712 
713 	if (parent != NULL)
714 		parent->Unlock();
715 
716 	Unlock();
717 }
718 
719 
720 void
721 Team::LockTeamAndProcessGroup()
722 {
723 	// The locking order is process group -> child. Since the process group can
724 	// change as long as we don't lock the team, we need to do a trial and error
725 	// loop.
726 	Lock();
727 
728 	while (true) {
729 		// Try to lock the group. This will succeed in most cases, simplifying
730 		// things.
731 		ProcessGroup* group = this->group;
732 		if (group->TryLock())
733 			return;
734 
735 		// get a temporary reference to the group, unlock this team, lock the
736 		// group, and re-lock this team
737 		BReference<ProcessGroup> groupReference(group);
738 
739 		Unlock();
740 		group->Lock();
741 		Lock();
742 
743 		// If the group hasn't changed in the meantime, we're done.
744 		if (this->group == group)
745 			return;
746 
747 		// The group has changed -- unlock and retry.
748 		group->Unlock();
749 	}
750 }
751 
752 
753 void
754 Team::UnlockTeamAndProcessGroup()
755 {
756 	group->Unlock();
757 	Unlock();
758 }
759 
760 
761 void
762 Team::SetName(const char* name)
763 {
764 	if (const char* lastSlash = strrchr(name, '/'))
765 		name = lastSlash + 1;
766 
767 	strlcpy(fName, name, B_OS_NAME_LENGTH);
768 }
769 
770 
771 void
772 Team::SetArgs(const char* args)
773 {
774 	strlcpy(fArgs, args, sizeof(fArgs));
775 }
776 
777 
778 void
779 Team::SetArgs(const char* path, const char* const* otherArgs, int otherArgCount)
780 {
781 	fArgs[0] = '\0';
782 	strlcpy(fArgs, path, sizeof(fArgs));
783 	for (int i = 0; i < otherArgCount; i++) {
784 		strlcat(fArgs, " ", sizeof(fArgs));
785 		strlcat(fArgs, otherArgs[i], sizeof(fArgs));
786 	}
787 }
788 
789 
790 void
791 Team::ResetSignalsOnExec()
792 {
793 	// We are supposed to keep pending signals. Signal actions shall be reset
794 	// partially: SIG_IGN and SIG_DFL dispositions shall be kept as they are
795 	// (for SIGCHLD it's implementation-defined). Others shall be reset to
796 	// SIG_DFL. SA_ONSTACK shall be cleared. There's no mention of the other
797 	// flags, but since there aren't any handlers, they make little sense, so
798 	// we clear them.
799 
800 	for (uint32 i = 1; i <= MAX_SIGNAL_NUMBER; i++) {
801 		struct sigaction& action = SignalActionFor(i);
802 		if (action.sa_handler != SIG_IGN && action.sa_handler != SIG_DFL)
803 			action.sa_handler = SIG_DFL;
804 
805 		action.sa_mask = 0;
806 		action.sa_flags = 0;
807 		action.sa_userdata = NULL;
808 	}
809 }
810 
811 
812 void
813 Team::InheritSignalActions(Team* parent)
814 {
815 	memcpy(fSignalActions, parent->fSignalActions, sizeof(fSignalActions));
816 }
817 
818 
819 /*!	Adds the given user timer to the team and, if user-defined, assigns it an
820 	ID.
821 
822 	The caller must hold the team's lock.
823 
824 	\param timer The timer to be added. If it doesn't have an ID yet, it is
825 		considered user-defined and will be assigned an ID.
826 	\return \c B_OK, if the timer was added successfully, another error code
827 		otherwise.
828 */
829 status_t
830 Team::AddUserTimer(UserTimer* timer)
831 {
832 	// don't allow addition of timers when already shutting the team down
833 	if (state >= TEAM_STATE_SHUTDOWN)
834 		return B_BAD_TEAM_ID;
835 
836 	// If the timer is user-defined, check timer limit and increment
837 	// user-defined count.
838 	if (timer->ID() < 0 && !CheckAddUserDefinedTimer())
839 		return EAGAIN;
840 
841 	fUserTimers.AddTimer(timer);
842 
843 	return B_OK;
844 }
845 
846 
847 /*!	Removes the given user timer from the team.
848 
849 	The caller must hold the team's lock.
850 
851 	\param timer The timer to be removed.
852 
853 */
854 void
855 Team::RemoveUserTimer(UserTimer* timer)
856 {
857 	fUserTimers.RemoveTimer(timer);
858 
859 	if (timer->ID() >= USER_TIMER_FIRST_USER_DEFINED_ID)
860 		UserDefinedTimersRemoved(1);
861 }
862 
863 
864 /*!	Deletes all (or all user-defined) user timers of the team.
865 
866 	Timer's belonging to the team's threads are not affected.
867 	The caller must hold the team's lock.
868 
869 	\param userDefinedOnly If \c true, only the user-defined timers are deleted,
870 		otherwise all timers are deleted.
871 */
872 void
873 Team::DeleteUserTimers(bool userDefinedOnly)
874 {
875 	int32 count = fUserTimers.DeleteTimers(userDefinedOnly);
876 	UserDefinedTimersRemoved(count);
877 }
878 
879 
880 /*!	If not at the limit yet, increments the team's user-defined timer count.
881 	\return \c true, if the limit wasn't reached yet, \c false otherwise.
882 */
883 bool
884 Team::CheckAddUserDefinedTimer()
885 {
886 	int32 oldCount = atomic_add(&fUserDefinedTimerCount, 1);
887 	if (oldCount >= MAX_USER_TIMERS_PER_TEAM) {
888 		atomic_add(&fUserDefinedTimerCount, -1);
889 		return false;
890 	}
891 
892 	return true;
893 }
894 
895 
896 /*!	Subtracts the given count for the team's user-defined timer count.
897 	\param count The count to subtract.
898 */
899 void
900 Team::UserDefinedTimersRemoved(int32 count)
901 {
902 	atomic_add(&fUserDefinedTimerCount, -count);
903 }
904 
905 
906 void
907 Team::DeactivateCPUTimeUserTimers()
908 {
909 	while (TeamTimeUserTimer* timer = fCPUTimeUserTimers.Head())
910 		timer->Deactivate();
911 
912 	while (TeamUserTimeUserTimer* timer = fUserTimeUserTimers.Head())
913 		timer->Deactivate();
914 }
915 
916 
917 /*!	Returns the team's current total CPU time (kernel + user + offset).
918 
919 	The caller must hold \c time_lock.
920 
921 	\param ignoreCurrentRun If \c true and the current thread is one team's
922 		threads, don't add the time since the last time \c last_time was
923 		updated. Should be used in "thread unscheduled" scheduler callbacks,
924 		since although the thread is still running at that time, its time has
925 		already been stopped.
926 	\return The team's current total CPU time.
927 */
928 bigtime_t
929 Team::CPUTime(bool ignoreCurrentRun, Thread* lockedThread) const
930 {
931 	bigtime_t time = cpu_clock_offset + dead_threads_kernel_time
932 		+ dead_threads_user_time;
933 
934 	Thread* currentThread = thread_get_current_thread();
935 	bigtime_t now = system_time();
936 
937 	for (Thread* thread = thread_list; thread != NULL;
938 			thread = thread->team_next) {
939 		bool alreadyLocked = thread == lockedThread;
940 		SpinLocker threadTimeLocker(thread->time_lock, alreadyLocked);
941 		time += thread->kernel_time + thread->user_time;
942 
943 		if (thread->last_time != 0) {
944 			if (!ignoreCurrentRun || thread != currentThread)
945 				time += now - thread->last_time;
946 		}
947 
948 		if (alreadyLocked)
949 			threadTimeLocker.Detach();
950 	}
951 
952 	return time;
953 }
954 
955 
956 /*!	Returns the team's current user CPU time.
957 
958 	The caller must hold \c time_lock.
959 
960 	\return The team's current user CPU time.
961 */
962 bigtime_t
963 Team::UserCPUTime() const
964 {
965 	bigtime_t time = dead_threads_user_time;
966 
967 	bigtime_t now = system_time();
968 
969 	for (Thread* thread = thread_list; thread != NULL;
970 			thread = thread->team_next) {
971 		SpinLocker threadTimeLocker(thread->time_lock);
972 		time += thread->user_time;
973 
974 		if (thread->last_time != 0 && !thread->in_kernel)
975 			time += now - thread->last_time;
976 	}
977 
978 	return time;
979 }
980 
981 
982 //	#pragma mark - ProcessGroup
983 
984 
985 ProcessGroup::ProcessGroup(pid_t id)
986 	:
987 	id(id),
988 	teams(NULL),
989 	fSession(NULL),
990 	fInOrphanedCheckList(false)
991 {
992 	char lockName[32];
993 	snprintf(lockName, sizeof(lockName), "Group:%" B_PRId32, id);
994 	mutex_init_etc(&fLock, lockName, MUTEX_FLAG_CLONE_NAME);
995 }
996 
997 
998 ProcessGroup::~ProcessGroup()
999 {
1000 	TRACE(("ProcessGroup::~ProcessGroup(): id = %" B_PRId32 "\n", id));
1001 
1002 	// If the group is in the orphaned check list, remove it.
1003 	MutexLocker orphanedCheckLocker(sOrphanedCheckLock);
1004 
1005 	if (fInOrphanedCheckList)
1006 		sOrphanedCheckProcessGroups.Remove(this);
1007 
1008 	orphanedCheckLocker.Unlock();
1009 
1010 	// remove group from the hash table and from the session
1011 	if (fSession != NULL) {
1012 		InterruptsSpinLocker groupHashLocker(sGroupHashLock);
1013 		sGroupHash.RemoveUnchecked(this);
1014 		groupHashLocker.Unlock();
1015 
1016 		fSession->ReleaseReference();
1017 	}
1018 
1019 	mutex_destroy(&fLock);
1020 }
1021 
1022 
1023 /*static*/ ProcessGroup*
1024 ProcessGroup::Get(pid_t id)
1025 {
1026 	InterruptsSpinLocker groupHashLocker(sGroupHashLock);
1027 	ProcessGroup* group = sGroupHash.Lookup(id);
1028 	if (group != NULL)
1029 		group->AcquireReference();
1030 	return group;
1031 }
1032 
1033 
1034 /*!	Adds the group the given session and makes it publicly accessible.
1035 	The caller must not hold the process group hash lock.
1036 */
1037 void
1038 ProcessGroup::Publish(ProcessSession* session)
1039 {
1040 	InterruptsSpinLocker groupHashLocker(sGroupHashLock);
1041 	PublishLocked(session);
1042 }
1043 
1044 
1045 /*!	Adds the group to the given session and makes it publicly accessible.
1046 	The caller must hold the process group hash lock.
1047 */
1048 void
1049 ProcessGroup::PublishLocked(ProcessSession* session)
1050 {
1051 	ASSERT(sGroupHash.Lookup(this->id) == NULL);
1052 
1053 	fSession = session;
1054 	fSession->AcquireReference();
1055 
1056 	sGroupHash.InsertUnchecked(this);
1057 }
1058 
1059 
1060 /*!	Checks whether the process group is orphaned.
1061 	The caller must hold the group's lock.
1062 	\return \c true, if the group is orphaned, \c false otherwise.
1063 */
1064 bool
1065 ProcessGroup::IsOrphaned() const
1066 {
1067 	// Orphaned Process Group: "A process group in which the parent of every
1068 	// member is either itself a member of the group or is not a member of the
1069 	// group's session." (Open Group Base Specs Issue 7)
1070 	bool orphaned = true;
1071 
1072 	Team* team = teams;
1073 	while (orphaned && team != NULL) {
1074 		team->LockTeamAndParent(false);
1075 
1076 		Team* parent = team->parent;
1077 		if (parent != NULL && parent->group_id != id
1078 			&& parent->session_id == fSession->id) {
1079 			orphaned = false;
1080 		}
1081 
1082 		team->UnlockTeamAndParent();
1083 
1084 		team = team->group_next;
1085 	}
1086 
1087 	return orphaned;
1088 }
1089 
1090 
1091 void
1092 ProcessGroup::ScheduleOrphanedCheck()
1093 {
1094 	MutexLocker orphanedCheckLocker(sOrphanedCheckLock);
1095 
1096 	if (!fInOrphanedCheckList) {
1097 		sOrphanedCheckProcessGroups.Add(this);
1098 		fInOrphanedCheckList = true;
1099 	}
1100 }
1101 
1102 
1103 void
1104 ProcessGroup::UnsetOrphanedCheck()
1105 {
1106 	fInOrphanedCheckList = false;
1107 }
1108 
1109 
1110 //	#pragma mark - ProcessSession
1111 
1112 
1113 ProcessSession::ProcessSession(pid_t id)
1114 	:
1115 	id(id),
1116 	controlling_tty(-1),
1117 	foreground_group(-1)
1118 {
1119 	char lockName[32];
1120 	snprintf(lockName, sizeof(lockName), "Session:%" B_PRId32, id);
1121 	mutex_init_etc(&fLock, lockName, MUTEX_FLAG_CLONE_NAME);
1122 }
1123 
1124 
1125 ProcessSession::~ProcessSession()
1126 {
1127 	mutex_destroy(&fLock);
1128 }
1129 
1130 
1131 //	#pragma mark - KDL functions
1132 
1133 
1134 static void
1135 _dump_team_info(Team* team)
1136 {
1137 	kprintf("TEAM: %p\n", team);
1138 	kprintf("id:               %" B_PRId32 " (%#" B_PRIx32 ")\n", team->id,
1139 		team->id);
1140 	kprintf("serial_number:    %" B_PRId64 "\n", team->serial_number);
1141 	kprintf("name:             '%s'\n", team->Name());
1142 	kprintf("args:             '%s'\n", team->Args());
1143 	kprintf("hash_next:        %p\n", team->hash_next);
1144 	kprintf("parent:           %p", team->parent);
1145 	if (team->parent != NULL) {
1146 		kprintf(" (id = %" B_PRId32 ")\n", team->parent->id);
1147 	} else
1148 		kprintf("\n");
1149 
1150 	kprintf("children:         %p\n", team->children);
1151 	kprintf("num_threads:      %d\n", team->num_threads);
1152 	kprintf("state:            %d\n", team->state);
1153 	kprintf("flags:            0x%" B_PRIx32 "\n", team->flags);
1154 	kprintf("io_context:       %p\n", team->io_context);
1155 	if (team->address_space)
1156 		kprintf("address_space:    %p\n", team->address_space);
1157 	kprintf("user data:        %p (area %" B_PRId32 ")\n",
1158 		(void*)team->user_data, team->user_data_area);
1159 	kprintf("free user thread: %p\n", team->free_user_threads);
1160 	kprintf("main_thread:      %p\n", team->main_thread);
1161 	kprintf("thread_list:      %p\n", team->thread_list);
1162 	kprintf("group_id:         %" B_PRId32 "\n", team->group_id);
1163 	kprintf("session_id:       %" B_PRId32 "\n", team->session_id);
1164 }
1165 
1166 
1167 static int
1168 dump_team_info(int argc, char** argv)
1169 {
1170 	ulong arg;
1171 	bool found = false;
1172 
1173 	if (argc < 2) {
1174 		Thread* thread = thread_get_current_thread();
1175 		if (thread != NULL && thread->team != NULL)
1176 			_dump_team_info(thread->team);
1177 		else
1178 			kprintf("No current team!\n");
1179 		return 0;
1180 	}
1181 
1182 	arg = strtoul(argv[1], NULL, 0);
1183 	if (IS_KERNEL_ADDRESS(arg)) {
1184 		// semi-hack
1185 		_dump_team_info((Team*)arg);
1186 		return 0;
1187 	}
1188 
1189 	// walk through the thread list, trying to match name or id
1190 	for (TeamTable::Iterator it = sTeamHash.GetIterator();
1191 		Team* team = it.Next();) {
1192 		if ((team->Name() && strcmp(argv[1], team->Name()) == 0)
1193 			|| team->id == (team_id)arg) {
1194 			_dump_team_info(team);
1195 			found = true;
1196 			break;
1197 		}
1198 	}
1199 
1200 	if (!found)
1201 		kprintf("team \"%s\" (%" B_PRId32 ") doesn't exist!\n", argv[1], (team_id)arg);
1202 	return 0;
1203 }
1204 
1205 
1206 static int
1207 dump_teams(int argc, char** argv)
1208 {
1209 	kprintf("%-*s       id  %-*s    name\n", B_PRINTF_POINTER_WIDTH, "team",
1210 		B_PRINTF_POINTER_WIDTH, "parent");
1211 
1212 	for (TeamTable::Iterator it = sTeamHash.GetIterator();
1213 		Team* team = it.Next();) {
1214 		kprintf("%p%7" B_PRId32 "  %p  %s\n", team, team->id, team->parent, team->Name());
1215 	}
1216 
1217 	return 0;
1218 }
1219 
1220 
1221 //	#pragma mark - Private functions
1222 
1223 
1224 /*!	Inserts team \a team into the child list of team \a parent.
1225 
1226 	The caller must hold the lock of both \a parent and \a team.
1227 
1228 	\param parent The parent team.
1229 	\param team The team to be inserted into \a parent's child list.
1230 */
1231 static void
1232 insert_team_into_parent(Team* parent, Team* team)
1233 {
1234 	ASSERT(parent != NULL);
1235 
1236 	team->siblings_next = parent->children;
1237 	parent->children = team;
1238 	team->parent = parent;
1239 }
1240 
1241 
1242 /*!	Removes team \a team from the child list of team \a parent.
1243 
1244 	The caller must hold the lock of both \a parent and \a team.
1245 
1246 	\param parent The parent team.
1247 	\param team The team to be removed from \a parent's child list.
1248 */
1249 static void
1250 remove_team_from_parent(Team* parent, Team* team)
1251 {
1252 	Team* child;
1253 	Team* last = NULL;
1254 
1255 	for (child = parent->children; child != NULL;
1256 			child = child->siblings_next) {
1257 		if (child == team) {
1258 			if (last == NULL)
1259 				parent->children = child->siblings_next;
1260 			else
1261 				last->siblings_next = child->siblings_next;
1262 
1263 			team->parent = NULL;
1264 			break;
1265 		}
1266 		last = child;
1267 	}
1268 }
1269 
1270 
1271 /*!	Returns whether the given team is a session leader.
1272 	The caller must hold the team's lock or its process group's lock.
1273 */
1274 static bool
1275 is_session_leader(Team* team)
1276 {
1277 	return team->session_id == team->id;
1278 }
1279 
1280 
1281 /*!	Returns whether the given team is a process group leader.
1282 	The caller must hold the team's lock or its process group's lock.
1283 */
1284 static bool
1285 is_process_group_leader(Team* team)
1286 {
1287 	return team->group_id == team->id;
1288 }
1289 
1290 
1291 /*!	Inserts the given team into the given process group.
1292 	The caller must hold the process group's lock, the team's lock, and the
1293 	team's parent's lock.
1294 */
1295 static void
1296 insert_team_into_group(ProcessGroup* group, Team* team)
1297 {
1298 	team->group = group;
1299 	team->group_id = group->id;
1300 	team->session_id = group->Session()->id;
1301 
1302 	team->group_next = group->teams;
1303 	group->teams = team;
1304 	group->AcquireReference();
1305 }
1306 
1307 
1308 /*!	Removes the given team from its process group.
1309 
1310 	The caller must hold the process group's lock, the team's lock, and the
1311 	team's parent's lock. Interrupts must be enabled.
1312 
1313 	\param team The team that'll be removed from its process group.
1314 */
1315 static void
1316 remove_team_from_group(Team* team)
1317 {
1318 	ProcessGroup* group = team->group;
1319 	Team* current;
1320 	Team* last = NULL;
1321 
1322 	// the team must be in a process group to let this function have any effect
1323 	if  (group == NULL)
1324 		return;
1325 
1326 	for (current = group->teams; current != NULL;
1327 			current = current->group_next) {
1328 		if (current == team) {
1329 			if (last == NULL)
1330 				group->teams = current->group_next;
1331 			else
1332 				last->group_next = current->group_next;
1333 
1334 			team->group = NULL;
1335 			break;
1336 		}
1337 		last = current;
1338 	}
1339 
1340 	team->group = NULL;
1341 	team->group_next = NULL;
1342 
1343 	group->ReleaseReference();
1344 }
1345 
1346 
1347 static status_t
1348 create_team_user_data(Team* team, void* exactAddress = NULL)
1349 {
1350 	void* address;
1351 	uint32 addressSpec;
1352 
1353 	if (exactAddress != NULL) {
1354 		address = exactAddress;
1355 		addressSpec = B_EXACT_ADDRESS;
1356 	} else {
1357 		address = (void*)KERNEL_USER_DATA_BASE;
1358 		addressSpec = B_RANDOMIZED_BASE_ADDRESS;
1359 	}
1360 
1361 	status_t result = vm_reserve_address_range(team->id, &address, addressSpec,
1362 		kTeamUserDataReservedSize, RESERVED_AVOID_BASE);
1363 
1364 	virtual_address_restrictions virtualRestrictions = {};
1365 	if (result == B_OK || exactAddress != NULL) {
1366 		if (exactAddress != NULL)
1367 			virtualRestrictions.address = exactAddress;
1368 		else
1369 			virtualRestrictions.address = address;
1370 		virtualRestrictions.address_specification = B_EXACT_ADDRESS;
1371 	} else {
1372 		virtualRestrictions.address = (void*)KERNEL_USER_DATA_BASE;
1373 		virtualRestrictions.address_specification = B_RANDOMIZED_BASE_ADDRESS;
1374 	}
1375 
1376 	physical_address_restrictions physicalRestrictions = {};
1377 	team->user_data_area = create_area_etc(team->id, "user area",
1378 		kTeamUserDataInitialSize, B_FULL_LOCK, B_READ_AREA | B_WRITE_AREA, 0, 0,
1379 		&virtualRestrictions, &physicalRestrictions, &address);
1380 	if (team->user_data_area < 0)
1381 		return team->user_data_area;
1382 
1383 	team->user_data = (addr_t)address;
1384 	team->used_user_data = 0;
1385 	team->user_data_size = kTeamUserDataInitialSize;
1386 	team->free_user_threads = NULL;
1387 
1388 	return B_OK;
1389 }
1390 
1391 
1392 static void
1393 delete_team_user_data(Team* team)
1394 {
1395 	if (team->user_data_area >= 0) {
1396 		vm_delete_area(team->id, team->user_data_area, true);
1397 		vm_unreserve_address_range(team->id, (void*)team->user_data,
1398 			kTeamUserDataReservedSize);
1399 
1400 		team->user_data = 0;
1401 		team->used_user_data = 0;
1402 		team->user_data_size = 0;
1403 		team->user_data_area = -1;
1404 		while (free_user_thread* entry = team->free_user_threads) {
1405 			team->free_user_threads = entry->next;
1406 			free(entry);
1407 		}
1408 	}
1409 }
1410 
1411 
1412 static status_t
1413 copy_user_process_args(const char* const* userFlatArgs, size_t flatArgsSize,
1414 	int32 argCount, int32 envCount, char**& _flatArgs)
1415 {
1416 	if (argCount < 0 || envCount < 0)
1417 		return B_BAD_VALUE;
1418 
1419 	if (flatArgsSize > MAX_PROCESS_ARGS_SIZE)
1420 		return B_TOO_MANY_ARGS;
1421 	if ((argCount + envCount + 2) * sizeof(char*) > flatArgsSize)
1422 		return B_BAD_VALUE;
1423 
1424 	if (!IS_USER_ADDRESS(userFlatArgs))
1425 		return B_BAD_ADDRESS;
1426 
1427 	// allocate kernel memory
1428 	char** flatArgs = (char**)malloc(_ALIGN(flatArgsSize));
1429 	if (flatArgs == NULL)
1430 		return B_NO_MEMORY;
1431 
1432 	if (user_memcpy(flatArgs, userFlatArgs, flatArgsSize) != B_OK) {
1433 		free(flatArgs);
1434 		return B_BAD_ADDRESS;
1435 	}
1436 
1437 	// check and relocate the array
1438 	status_t error = B_OK;
1439 	const char* stringBase = (char*)flatArgs + argCount + envCount + 2;
1440 	const char* stringEnd = (char*)flatArgs + flatArgsSize;
1441 	for (int32 i = 0; i < argCount + envCount + 2; i++) {
1442 		if (i == argCount || i == argCount + envCount + 1) {
1443 			// check array null termination
1444 			if (flatArgs[i] != NULL) {
1445 				error = B_BAD_VALUE;
1446 				break;
1447 			}
1448 		} else {
1449 			// check string
1450 			char* arg = (char*)flatArgs + (flatArgs[i] - (char*)userFlatArgs);
1451 			size_t maxLen = stringEnd - arg;
1452 			if (arg < stringBase || arg >= stringEnd
1453 					|| strnlen(arg, maxLen) == maxLen) {
1454 				error = B_BAD_VALUE;
1455 				break;
1456 			}
1457 
1458 			flatArgs[i] = arg;
1459 		}
1460 	}
1461 
1462 	if (error == B_OK)
1463 		_flatArgs = flatArgs;
1464 	else
1465 		free(flatArgs);
1466 
1467 	return error;
1468 }
1469 
1470 
1471 static void
1472 free_team_arg(struct team_arg* teamArg)
1473 {
1474 	if (teamArg != NULL) {
1475 		free(teamArg->flat_args);
1476 		free(teamArg->path);
1477 		free(teamArg);
1478 	}
1479 }
1480 
1481 
1482 static status_t
1483 create_team_arg(struct team_arg** _teamArg, const char* path, char** flatArgs,
1484 	size_t flatArgsSize, int32 argCount, int32 envCount, mode_t umask,
1485 	port_id port, uint32 token)
1486 {
1487 	struct team_arg* teamArg = (struct team_arg*)malloc(sizeof(team_arg));
1488 	if (teamArg == NULL)
1489 		return B_NO_MEMORY;
1490 
1491 	teamArg->path = strdup(path);
1492 	if (teamArg->path == NULL) {
1493 		free(teamArg);
1494 		return B_NO_MEMORY;
1495 	}
1496 
1497 	// copy the args over
1498 	teamArg->flat_args = flatArgs;
1499 	teamArg->flat_args_size = flatArgsSize;
1500 	teamArg->arg_count = argCount;
1501 	teamArg->env_count = envCount;
1502 	teamArg->flags = 0;
1503 	teamArg->umask = umask;
1504 	teamArg->error_port = port;
1505 	teamArg->error_token = token;
1506 
1507 	// determine the flags from the environment
1508 	const char* const* env = flatArgs + argCount + 1;
1509 	for (int32 i = 0; i < envCount; i++) {
1510 		if (strcmp(env[i], "DISABLE_ASLR=1") == 0) {
1511 			teamArg->flags |= TEAM_ARGS_FLAG_NO_ASLR;
1512 			break;
1513 		}
1514 	}
1515 
1516 	*_teamArg = teamArg;
1517 	return B_OK;
1518 }
1519 
1520 
1521 static status_t
1522 team_create_thread_start_internal(void* args)
1523 {
1524 	status_t err;
1525 	Thread* thread;
1526 	Team* team;
1527 	struct team_arg* teamArgs = (struct team_arg*)args;
1528 	const char* path;
1529 	addr_t entry;
1530 	char** userArgs;
1531 	char** userEnv;
1532 	struct user_space_program_args* programArgs;
1533 	uint32 argCount, envCount;
1534 
1535 	thread = thread_get_current_thread();
1536 	team = thread->team;
1537 	cache_node_launched(teamArgs->arg_count, teamArgs->flat_args);
1538 
1539 	TRACE(("team_create_thread_start: entry thread %" B_PRId32 "\n",
1540 		thread->id));
1541 
1542 	// Main stack area layout is currently as follows (starting from 0):
1543 	//
1544 	// size								| usage
1545 	// ---------------------------------+--------------------------------
1546 	// USER_MAIN_THREAD_STACK_SIZE		| actual stack
1547 	// TLS_SIZE							| TLS data
1548 	// sizeof(user_space_program_args)	| argument structure for the runtime
1549 	//									| loader
1550 	// flat arguments size				| flat process arguments and environment
1551 
1552 	// TODO: ENV_SIZE is a) limited, and b) not used after libroot copied it to
1553 	// the heap
1554 	// TODO: we could reserve the whole USER_STACK_REGION upfront...
1555 
1556 	argCount = teamArgs->arg_count;
1557 	envCount = teamArgs->env_count;
1558 
1559 	programArgs = (struct user_space_program_args*)(thread->user_stack_base
1560 		+ thread->user_stack_size + TLS_SIZE);
1561 
1562 	userArgs = (char**)(programArgs + 1);
1563 	userEnv = userArgs + argCount + 1;
1564 	path = teamArgs->path;
1565 
1566 	if (user_strlcpy(programArgs->program_path, path,
1567 				sizeof(programArgs->program_path)) < B_OK
1568 		|| user_memcpy(&programArgs->arg_count, &argCount, sizeof(int32)) < B_OK
1569 		|| user_memcpy(&programArgs->args, &userArgs, sizeof(char**)) < B_OK
1570 		|| user_memcpy(&programArgs->env_count, &envCount, sizeof(int32)) < B_OK
1571 		|| user_memcpy(&programArgs->env, &userEnv, sizeof(char**)) < B_OK
1572 		|| user_memcpy(&programArgs->error_port, &teamArgs->error_port,
1573 				sizeof(port_id)) < B_OK
1574 		|| user_memcpy(&programArgs->error_token, &teamArgs->error_token,
1575 				sizeof(uint32)) < B_OK
1576 		|| user_memcpy(&programArgs->umask, &teamArgs->umask, sizeof(mode_t)) < B_OK
1577 		|| user_memcpy(userArgs, teamArgs->flat_args,
1578 				teamArgs->flat_args_size) < B_OK) {
1579 		// the team deletion process will clean this mess
1580 		free_team_arg(teamArgs);
1581 		return B_BAD_ADDRESS;
1582 	}
1583 
1584 	TRACE(("team_create_thread_start: loading elf binary '%s'\n", path));
1585 
1586 	// set team args and update state
1587 	team->Lock();
1588 	team->SetArgs(path, teamArgs->flat_args + 1, argCount - 1);
1589 	team->state = TEAM_STATE_NORMAL;
1590 	team->Unlock();
1591 
1592 	free_team_arg(teamArgs);
1593 		// the arguments are already on the user stack, we no longer need
1594 		// them in this form
1595 
1596 	// Clone commpage area
1597 	area_id commPageArea = clone_commpage_area(team->id,
1598 		&team->commpage_address);
1599 	if (commPageArea  < B_OK) {
1600 		TRACE(("team_create_thread_start: clone_commpage_area() failed: %s\n",
1601 			strerror(commPageArea)));
1602 		return commPageArea;
1603 	}
1604 
1605 	// Register commpage image
1606 	image_id commPageImage = get_commpage_image();
1607 	extended_image_info imageInfo;
1608 	err = get_image_info(commPageImage, &imageInfo.basic_info);
1609 	if (err != B_OK) {
1610 		TRACE(("team_create_thread_start: get_image_info() failed: %s\n",
1611 			strerror(err)));
1612 		return err;
1613 	}
1614 	imageInfo.basic_info.text = team->commpage_address;
1615 	imageInfo.text_delta = (ssize_t)(addr_t)team->commpage_address;
1616 	imageInfo.symbol_table = NULL;
1617 	imageInfo.symbol_hash = NULL;
1618 	imageInfo.string_table = NULL;
1619 	image_id image = register_image(team, &imageInfo, sizeof(imageInfo));
1620 	if (image < 0) {
1621 		TRACE(("team_create_thread_start: register_image() failed: %s\n",
1622 			strerror(image)));
1623 		return image;
1624 	}
1625 
1626 	// NOTE: Normally arch_thread_enter_userspace() never returns, that is
1627 	// automatic variables with function scope will never be destroyed.
1628 	{
1629 		// find runtime_loader path
1630 		KPath runtimeLoaderPath;
1631 		err = __find_directory(B_SYSTEM_DIRECTORY, gBootDevice, false,
1632 			runtimeLoaderPath.LockBuffer(), runtimeLoaderPath.BufferSize());
1633 		if (err < B_OK) {
1634 			TRACE(("team_create_thread_start: find_directory() failed: %s\n",
1635 				strerror(err)));
1636 			return err;
1637 		}
1638 		runtimeLoaderPath.UnlockBuffer();
1639 		err = runtimeLoaderPath.Append("runtime_loader");
1640 
1641 		if (err == B_OK) {
1642 			err = elf_load_user_image(runtimeLoaderPath.Path(), team, 0,
1643 				&entry);
1644 		}
1645 	}
1646 
1647 	if (err < B_OK) {
1648 		// Luckily, we don't have to clean up the mess we created - that's
1649 		// done for us by the normal team deletion process
1650 		TRACE(("team_create_thread_start: elf_load_user_image() failed: "
1651 			"%s\n", strerror(err)));
1652 		return err;
1653 	}
1654 
1655 	TRACE(("team_create_thread_start: loaded elf. entry = %#lx\n", entry));
1656 
1657 	// enter userspace -- returns only in case of error
1658 	return thread_enter_userspace_new_team(thread, (addr_t)entry,
1659 		programArgs, team->commpage_address);
1660 }
1661 
1662 
1663 static status_t
1664 team_create_thread_start(void* args)
1665 {
1666 	team_create_thread_start_internal(args);
1667 	team_init_exit_info_on_error(thread_get_current_thread()->team);
1668 	thread_exit();
1669 		// does not return
1670 	return B_OK;
1671 }
1672 
1673 
1674 static thread_id
1675 load_image_internal(char**& _flatArgs, size_t flatArgsSize, int32 argCount,
1676 	int32 envCount, int32 priority, team_id parentID, uint32 flags,
1677 	port_id errorPort, uint32 errorToken)
1678 {
1679 	char** flatArgs = _flatArgs;
1680 	thread_id thread;
1681 	status_t status;
1682 	struct team_arg* teamArgs;
1683 	struct team_loading_info loadingInfo;
1684 	io_context* parentIOContext = NULL;
1685 	team_id teamID;
1686 
1687 	if (flatArgs == NULL || argCount == 0)
1688 		return B_BAD_VALUE;
1689 
1690 	const char* path = flatArgs[0];
1691 
1692 	TRACE(("load_image_internal: name '%s', args = %p, argCount = %" B_PRId32
1693 		"\n", path, flatArgs, argCount));
1694 
1695 	// cut the path from the main thread name
1696 	const char* threadName = strrchr(path, '/');
1697 	if (threadName != NULL)
1698 		threadName++;
1699 	else
1700 		threadName = path;
1701 
1702 	// create the main thread object
1703 	Thread* mainThread;
1704 	status = Thread::Create(threadName, mainThread);
1705 	if (status != B_OK)
1706 		return status;
1707 	BReference<Thread> mainThreadReference(mainThread, true);
1708 
1709 	// create team object
1710 	Team* team = Team::Create(mainThread->id, path, false);
1711 	if (team == NULL)
1712 		return B_NO_MEMORY;
1713 	BReference<Team> teamReference(team, true);
1714 
1715 	if (flags & B_WAIT_TILL_LOADED) {
1716 		loadingInfo.thread = thread_get_current_thread();
1717 		loadingInfo.result = B_ERROR;
1718 		loadingInfo.done = false;
1719 		team->loading_info = &loadingInfo;
1720 	}
1721 
1722 	// get the parent team
1723 	Team* parent = Team::Get(parentID);
1724 	if (parent == NULL)
1725 		return B_BAD_TEAM_ID;
1726 	BReference<Team> parentReference(parent, true);
1727 
1728 	parent->LockTeamAndProcessGroup();
1729 	team->Lock();
1730 
1731 	// inherit the parent's user/group
1732 	inherit_parent_user_and_group(team, parent);
1733 
1734  	InterruptsSpinLocker teamsLocker(sTeamHashLock);
1735 
1736 	sTeamHash.Insert(team);
1737 	bool teamLimitReached = sUsedTeams >= sMaxTeams;
1738 	if (!teamLimitReached)
1739 		sUsedTeams++;
1740 
1741 	teamsLocker.Unlock();
1742 
1743 	insert_team_into_parent(parent, team);
1744 	insert_team_into_group(parent->group, team);
1745 
1746 	// get a reference to the parent's I/O context -- we need it to create ours
1747 	parentIOContext = parent->io_context;
1748 	vfs_get_io_context(parentIOContext);
1749 
1750 	team->Unlock();
1751 	parent->UnlockTeamAndProcessGroup();
1752 
1753 	// notify team listeners
1754 	sNotificationService.Notify(TEAM_ADDED, team);
1755 
1756 	// check the executable's set-user/group-id permission
1757 	update_set_id_user_and_group(team, path);
1758 
1759 	if (teamLimitReached) {
1760 		status = B_NO_MORE_TEAMS;
1761 		goto err1;
1762 	}
1763 
1764 	status = create_team_arg(&teamArgs, path, flatArgs, flatArgsSize, argCount,
1765 		envCount, (mode_t)-1, errorPort, errorToken);
1766 	if (status != B_OK)
1767 		goto err1;
1768 
1769 	_flatArgs = NULL;
1770 		// args are owned by the team_arg structure now
1771 
1772 	// create a new io_context for this team
1773 	team->io_context = vfs_new_io_context(parentIOContext, true);
1774 	if (!team->io_context) {
1775 		status = B_NO_MEMORY;
1776 		goto err2;
1777 	}
1778 
1779 	// We don't need the parent's I/O context any longer.
1780 	vfs_put_io_context(parentIOContext);
1781 	parentIOContext = NULL;
1782 
1783 	// remove any fds that have the CLOEXEC flag set (emulating BeOS behaviour)
1784 	vfs_exec_io_context(team->io_context);
1785 
1786 	// create an address space for this team
1787 	status = VMAddressSpace::Create(team->id, USER_BASE, USER_SIZE, false,
1788 		&team->address_space);
1789 	if (status != B_OK)
1790 		goto err2;
1791 
1792 	team->address_space->SetRandomizingEnabled(
1793 		(teamArgs->flags & TEAM_ARGS_FLAG_NO_ASLR) == 0);
1794 
1795 	// create the user data area
1796 	status = create_team_user_data(team);
1797 	if (status != B_OK)
1798 		goto err4;
1799 
1800 	// In case we start the main thread, we shouldn't access the team object
1801 	// afterwards, so cache the team's ID.
1802 	teamID = team->id;
1803 
1804 	// Create a kernel thread, but under the context of the new team
1805 	// The new thread will take over ownership of teamArgs.
1806 	{
1807 		ThreadCreationAttributes threadAttributes(team_create_thread_start,
1808 			threadName, B_NORMAL_PRIORITY, teamArgs, teamID, mainThread);
1809 		threadAttributes.additional_stack_size = sizeof(user_space_program_args)
1810 			+ teamArgs->flat_args_size;
1811 		thread = thread_create_thread(threadAttributes, false);
1812 		if (thread < 0) {
1813 			status = thread;
1814 			goto err5;
1815 		}
1816 	}
1817 
1818 	// The team has been created successfully, so we keep the reference. Or
1819 	// more precisely: It's owned by the team's main thread, now.
1820 	teamReference.Detach();
1821 
1822 	// wait for the loader of the new team to finish its work
1823 	if ((flags & B_WAIT_TILL_LOADED) != 0) {
1824 		if (mainThread != NULL) {
1825 			// resume the team's main thread
1826 			thread_continue(mainThread);
1827 		}
1828 
1829 		// Now suspend ourselves until loading is finished. We will be woken
1830 		// either by the thread, when it finished or aborted loading, or when
1831 		// the team is going to die (e.g. is killed). In either case the one
1832 		// setting `loadingInfo.done' is responsible for removing the info from
1833 		// the team structure.
1834 		while (!loadingInfo.done)
1835 			thread_suspend();
1836 
1837 		if (loadingInfo.result < B_OK)
1838 			return loadingInfo.result;
1839 	}
1840 
1841 	// notify the debugger
1842 	user_debug_team_created(teamID);
1843 
1844 	return thread;
1845 
1846 err5:
1847 	delete_team_user_data(team);
1848 err4:
1849 	team->address_space->Put();
1850 err2:
1851 	free_team_arg(teamArgs);
1852 err1:
1853 	if (parentIOContext != NULL)
1854 		vfs_put_io_context(parentIOContext);
1855 
1856 	// Remove the team structure from the process group, the parent team, and
1857 	// the team hash table and delete the team structure.
1858 	parent->LockTeamAndProcessGroup();
1859 	team->Lock();
1860 
1861 	remove_team_from_group(team);
1862 	remove_team_from_parent(team->parent, team);
1863 
1864 	team->Unlock();
1865 	parent->UnlockTeamAndProcessGroup();
1866 
1867 	teamsLocker.Lock();
1868 	sTeamHash.Remove(team);
1869 	if (!teamLimitReached)
1870 		sUsedTeams--;
1871 	teamsLocker.Unlock();
1872 
1873 	sNotificationService.Notify(TEAM_REMOVED, team);
1874 
1875 	return status;
1876 }
1877 
1878 
1879 /*!	Almost shuts down the current team and loads a new image into it.
1880 	If successful, this function does not return and will takeover ownership of
1881 	the arguments provided.
1882 	This function may only be called in a userland team (caused by one of the
1883 	exec*() syscalls).
1884 */
1885 static status_t
1886 exec_team(const char* path, char**& _flatArgs, size_t flatArgsSize,
1887 	int32 argCount, int32 envCount, mode_t umask)
1888 {
1889 	// NOTE: Since this function normally doesn't return, don't use automatic
1890 	// variables that need destruction in the function scope.
1891 	char** flatArgs = _flatArgs;
1892 	Team* team = thread_get_current_thread()->team;
1893 	struct team_arg* teamArgs;
1894 	const char* threadName;
1895 	thread_id nubThreadID = -1;
1896 
1897 	TRACE(("exec_team(path = \"%s\", argc = %" B_PRId32 ", envCount = %"
1898 		B_PRId32 "): team %" B_PRId32 "\n", path, argCount, envCount,
1899 		team->id));
1900 
1901 	T(ExecTeam(path, argCount, flatArgs, envCount, flatArgs + argCount + 1));
1902 
1903 	// switching the kernel at run time is probably not a good idea :)
1904 	if (team == team_get_kernel_team())
1905 		return B_NOT_ALLOWED;
1906 
1907 	// we currently need to be single threaded here
1908 	// TODO: maybe we should just kill all other threads and
1909 	//	make the current thread the team's main thread?
1910 	Thread* currentThread = thread_get_current_thread();
1911 	if (currentThread != team->main_thread)
1912 		return B_NOT_ALLOWED;
1913 
1914 	// The debug nub thread, a pure kernel thread, is allowed to survive.
1915 	// We iterate through the thread list to make sure that there's no other
1916 	// thread.
1917 	TeamLocker teamLocker(team);
1918 	InterruptsSpinLocker debugInfoLocker(team->debug_info.lock);
1919 
1920 	if (team->debug_info.flags & B_TEAM_DEBUG_DEBUGGER_INSTALLED)
1921 		nubThreadID = team->debug_info.nub_thread;
1922 
1923 	debugInfoLocker.Unlock();
1924 
1925 	for (Thread* thread = team->thread_list; thread != NULL;
1926 			thread = thread->team_next) {
1927 		if (thread != team->main_thread && thread->id != nubThreadID)
1928 			return B_NOT_ALLOWED;
1929 	}
1930 
1931 	team->DeleteUserTimers(true);
1932 	team->ResetSignalsOnExec();
1933 
1934 	teamLocker.Unlock();
1935 
1936 	status_t status = create_team_arg(&teamArgs, path, flatArgs, flatArgsSize,
1937 		argCount, envCount, umask, -1, 0);
1938 	if (status != B_OK)
1939 		return status;
1940 
1941 	_flatArgs = NULL;
1942 		// args are owned by the team_arg structure now
1943 
1944 	// TODO: remove team resources if there are any left
1945 	// thread_atkernel_exit() might not be called at all
1946 
1947 	thread_reset_for_exec();
1948 
1949 	user_debug_prepare_for_exec();
1950 
1951 	delete_team_user_data(team);
1952 	vm_delete_areas(team->address_space, false);
1953 	xsi_sem_undo(team);
1954 	delete_owned_ports(team);
1955 	sem_delete_owned_sems(team);
1956 	remove_images(team);
1957 	vfs_exec_io_context(team->io_context);
1958 	delete_realtime_sem_context(team->realtime_sem_context);
1959 	team->realtime_sem_context = NULL;
1960 
1961 	// update ASLR
1962 	team->address_space->SetRandomizingEnabled(
1963 		(teamArgs->flags & TEAM_ARGS_FLAG_NO_ASLR) == 0);
1964 
1965 	status = create_team_user_data(team);
1966 	if (status != B_OK) {
1967 		// creating the user data failed -- we're toast
1968 		free_team_arg(teamArgs);
1969 		exit_thread(status);
1970 		return status;
1971 	}
1972 
1973 	user_debug_finish_after_exec();
1974 
1975 	// rename the team
1976 
1977 	team->Lock();
1978 	team->SetName(path);
1979 	team->Unlock();
1980 
1981 	// cut the path from the team name and rename the main thread, too
1982 	threadName = strrchr(path, '/');
1983 	if (threadName != NULL)
1984 		threadName++;
1985 	else
1986 		threadName = path;
1987 	rename_thread(thread_get_current_thread_id(), threadName);
1988 
1989 	atomic_or(&team->flags, TEAM_FLAG_EXEC_DONE);
1990 
1991 	// Update user/group according to the executable's set-user/group-id
1992 	// permission.
1993 	update_set_id_user_and_group(team, path);
1994 
1995 	user_debug_team_exec();
1996 
1997 	// notify team listeners
1998 	sNotificationService.Notify(TEAM_EXEC, team);
1999 
2000 	// get a user thread for the thread
2001 	user_thread* userThread = team_allocate_user_thread(team);
2002 		// cannot fail (the allocation for the team would have failed already)
2003 	ThreadLocker currentThreadLocker(currentThread);
2004 	currentThread->user_thread = userThread;
2005 	currentThreadLocker.Unlock();
2006 
2007 	// create the user stack for the thread
2008 	status = thread_create_user_stack(currentThread->team, currentThread, NULL,
2009 		0, sizeof(user_space_program_args) + teamArgs->flat_args_size);
2010 	if (status == B_OK) {
2011 		// prepare the stack, load the runtime loader, and enter userspace
2012 		team_create_thread_start(teamArgs);
2013 			// does never return
2014 	} else
2015 		free_team_arg(teamArgs);
2016 
2017 	// Sorry, we have to kill ourselves, there is no way out anymore
2018 	// (without any areas left and all that).
2019 	exit_thread(status);
2020 
2021 	// We return a status here since the signal that is sent by the
2022 	// call above is not immediately handled.
2023 	return B_ERROR;
2024 }
2025 
2026 
2027 static thread_id
2028 fork_team(void)
2029 {
2030 	Thread* parentThread = thread_get_current_thread();
2031 	Team* parentTeam = parentThread->team;
2032 	Team* team;
2033 	arch_fork_arg* forkArgs;
2034 	struct area_info info;
2035 	thread_id threadID;
2036 	status_t status;
2037 	ssize_t areaCookie;
2038 
2039 	TRACE(("fork_team(): team %" B_PRId32 "\n", parentTeam->id));
2040 
2041 	if (parentTeam == team_get_kernel_team())
2042 		return B_NOT_ALLOWED;
2043 
2044 	// create a new team
2045 	// TODO: this is very similar to load_image_internal() - maybe we can do
2046 	// something about it :)
2047 
2048 	// create the main thread object
2049 	Thread* thread;
2050 	status = Thread::Create(parentThread->name, thread);
2051 	if (status != B_OK)
2052 		return status;
2053 	BReference<Thread> threadReference(thread, true);
2054 
2055 	// create the team object
2056 	team = Team::Create(thread->id, NULL, false);
2057 	if (team == NULL)
2058 		return B_NO_MEMORY;
2059 
2060 	parentTeam->LockTeamAndProcessGroup();
2061 	team->Lock();
2062 
2063 	team->SetName(parentTeam->Name());
2064 	team->SetArgs(parentTeam->Args());
2065 
2066 	team->commpage_address = parentTeam->commpage_address;
2067 
2068 	// Inherit the parent's user/group.
2069 	inherit_parent_user_and_group(team, parentTeam);
2070 
2071 	// inherit signal handlers
2072 	team->InheritSignalActions(parentTeam);
2073 
2074 	InterruptsSpinLocker teamsLocker(sTeamHashLock);
2075 
2076 	sTeamHash.Insert(team);
2077 	bool teamLimitReached = sUsedTeams >= sMaxTeams;
2078 	if (!teamLimitReached)
2079 		sUsedTeams++;
2080 
2081 	teamsLocker.Unlock();
2082 
2083 	insert_team_into_parent(parentTeam, team);
2084 	insert_team_into_group(parentTeam->group, team);
2085 
2086 	team->Unlock();
2087 	parentTeam->UnlockTeamAndProcessGroup();
2088 
2089 	// notify team listeners
2090 	sNotificationService.Notify(TEAM_ADDED, team);
2091 
2092 	// inherit some team debug flags
2093 	team->debug_info.flags |= atomic_get(&parentTeam->debug_info.flags)
2094 		& B_TEAM_DEBUG_INHERITED_FLAGS;
2095 
2096 	if (teamLimitReached) {
2097 		status = B_NO_MORE_TEAMS;
2098 		goto err1;
2099 	}
2100 
2101 	forkArgs = (arch_fork_arg*)malloc(sizeof(arch_fork_arg));
2102 	if (forkArgs == NULL) {
2103 		status = B_NO_MEMORY;
2104 		goto err1;
2105 	}
2106 
2107 	// create a new io_context for this team
2108 	team->io_context = vfs_new_io_context(parentTeam->io_context, false);
2109 	if (!team->io_context) {
2110 		status = B_NO_MEMORY;
2111 		goto err2;
2112 	}
2113 
2114 	// duplicate the realtime sem context
2115 	if (parentTeam->realtime_sem_context) {
2116 		team->realtime_sem_context = clone_realtime_sem_context(
2117 			parentTeam->realtime_sem_context);
2118 		if (team->realtime_sem_context == NULL) {
2119 			status = B_NO_MEMORY;
2120 			goto err2;
2121 		}
2122 	}
2123 
2124 	// create an address space for this team
2125 	status = VMAddressSpace::Create(team->id, USER_BASE, USER_SIZE, false,
2126 		&team->address_space);
2127 	if (status < B_OK)
2128 		goto err3;
2129 
2130 	// copy all areas of the team
2131 	// TODO: should be able to handle stack areas differently (ie. don't have
2132 	// them copy-on-write)
2133 
2134 	areaCookie = 0;
2135 	while (get_next_area_info(B_CURRENT_TEAM, &areaCookie, &info) == B_OK) {
2136 		if (info.area == parentTeam->user_data_area) {
2137 			// don't clone the user area; just create a new one
2138 			status = create_team_user_data(team, info.address);
2139 			if (status != B_OK)
2140 				break;
2141 
2142 			thread->user_thread = team_allocate_user_thread(team);
2143 		} else {
2144 			void* address;
2145 			area_id area = vm_copy_area(team->address_space->ID(), info.name,
2146 				&address, B_CLONE_ADDRESS, info.protection, info.area);
2147 			if (area < B_OK) {
2148 				status = area;
2149 				break;
2150 			}
2151 
2152 			if (info.area == parentThread->user_stack_area)
2153 				thread->user_stack_area = area;
2154 		}
2155 	}
2156 
2157 	if (status < B_OK)
2158 		goto err4;
2159 
2160 	if (thread->user_thread == NULL) {
2161 #if KDEBUG
2162 		panic("user data area not found, parent area is %" B_PRId32,
2163 			parentTeam->user_data_area);
2164 #endif
2165 		status = B_ERROR;
2166 		goto err4;
2167 	}
2168 
2169 	thread->user_stack_base = parentThread->user_stack_base;
2170 	thread->user_stack_size = parentThread->user_stack_size;
2171 	thread->user_local_storage = parentThread->user_local_storage;
2172 	thread->sig_block_mask = parentThread->sig_block_mask;
2173 	thread->signal_stack_base = parentThread->signal_stack_base;
2174 	thread->signal_stack_size = parentThread->signal_stack_size;
2175 	thread->signal_stack_enabled = parentThread->signal_stack_enabled;
2176 
2177 	arch_store_fork_frame(forkArgs);
2178 
2179 	// copy image list
2180 	if (copy_images(parentTeam->id, team) != B_OK)
2181 		goto err5;
2182 
2183 	// create the main thread
2184 	{
2185 		ThreadCreationAttributes threadCreationAttributes(NULL,
2186 			parentThread->name, parentThread->priority, NULL, team->id, thread);
2187 		threadCreationAttributes.forkArgs = forkArgs;
2188 		threadID = thread_create_thread(threadCreationAttributes, false);
2189 		if (threadID < 0) {
2190 			status = threadID;
2191 			goto err5;
2192 		}
2193 	}
2194 
2195 	// notify the debugger
2196 	user_debug_team_created(team->id);
2197 
2198 	T(TeamForked(threadID));
2199 
2200 	resume_thread(threadID);
2201 	return threadID;
2202 
2203 err5:
2204 	remove_images(team);
2205 err4:
2206 	team->address_space->RemoveAndPut();
2207 err3:
2208 	delete_realtime_sem_context(team->realtime_sem_context);
2209 err2:
2210 	free(forkArgs);
2211 err1:
2212 	// Remove the team structure from the process group, the parent team, and
2213 	// the team hash table and delete the team structure.
2214 	parentTeam->LockTeamAndProcessGroup();
2215 	team->Lock();
2216 
2217 	remove_team_from_group(team);
2218 	remove_team_from_parent(team->parent, team);
2219 
2220 	team->Unlock();
2221 	parentTeam->UnlockTeamAndProcessGroup();
2222 
2223 	teamsLocker.Lock();
2224 	sTeamHash.Remove(team);
2225 	if (!teamLimitReached)
2226 		sUsedTeams--;
2227 	teamsLocker.Unlock();
2228 
2229 	sNotificationService.Notify(TEAM_REMOVED, team);
2230 
2231 	team->ReleaseReference();
2232 
2233 	return status;
2234 }
2235 
2236 
2237 /*!	Returns if the specified team \a parent has any children belonging to the
2238 	process group with the specified ID \a groupID.
2239 	The caller must hold \a parent's lock.
2240 */
2241 static bool
2242 has_children_in_group(Team* parent, pid_t groupID)
2243 {
2244 	for (Team* child = parent->children; child != NULL;
2245 			child = child->siblings_next) {
2246 		TeamLocker childLocker(child);
2247 		if (child->group_id == groupID)
2248 			return true;
2249 	}
2250 
2251 	return false;
2252 }
2253 
2254 
2255 /*!	Returns the first job control entry from \a children, which matches \a id.
2256 	\a id can be:
2257 	- \code > 0 \endcode: Matching an entry with that team ID.
2258 	- \code == -1 \endcode: Matching any entry.
2259 	- \code < -1 \endcode: Matching any entry with a process group ID of \c -id.
2260 	\c 0 is an invalid value for \a id.
2261 
2262 	The caller must hold the lock of the team that \a children belongs to.
2263 
2264 	\param children The job control entry list to check.
2265 	\param id The match criterion.
2266 	\return The first matching entry or \c NULL, if none matches.
2267 */
2268 static job_control_entry*
2269 get_job_control_entry(team_job_control_children& children, pid_t id)
2270 {
2271 	for (JobControlEntryList::Iterator it = children.entries.GetIterator();
2272 		 job_control_entry* entry = it.Next();) {
2273 
2274 		if (id > 0) {
2275 			if (entry->thread == id)
2276 				return entry;
2277 		} else if (id == -1) {
2278 			return entry;
2279 		} else {
2280 			pid_t processGroup
2281 				= (entry->team ? entry->team->group_id : entry->group_id);
2282 			if (processGroup == -id)
2283 				return entry;
2284 		}
2285 	}
2286 
2287 	return NULL;
2288 }
2289 
2290 
2291 /*!	Returns the first job control entry from one of team's dead, continued, or
2292     stopped children which matches \a id.
2293 	\a id can be:
2294 	- \code > 0 \endcode: Matching an entry with that team ID.
2295 	- \code == -1 \endcode: Matching any entry.
2296 	- \code < -1 \endcode: Matching any entry with a process group ID of \c -id.
2297 	\c 0 is an invalid value for \a id.
2298 
2299 	The caller must hold \a team's lock.
2300 
2301 	\param team The team whose dead, stopped, and continued child lists shall be
2302 		checked.
2303 	\param id The match criterion.
2304 	\param flags Specifies which children shall be considered. Dead children
2305 		always are. Stopped children are considered when \a flags is ORed
2306 		bitwise with \c WUNTRACED, continued children when \a flags is ORed
2307 		bitwise with \c WCONTINUED.
2308 	\return The first matching entry or \c NULL, if none matches.
2309 */
2310 static job_control_entry*
2311 get_job_control_entry(Team* team, pid_t id, uint32 flags)
2312 {
2313 	job_control_entry* entry = get_job_control_entry(team->dead_children, id);
2314 
2315 	if (entry == NULL && (flags & WCONTINUED) != 0)
2316 		entry = get_job_control_entry(team->continued_children, id);
2317 
2318 	if (entry == NULL && (flags & WUNTRACED) != 0)
2319 		entry = get_job_control_entry(team->stopped_children, id);
2320 
2321 	return entry;
2322 }
2323 
2324 
2325 job_control_entry::job_control_entry()
2326 	:
2327 	has_group_ref(false)
2328 {
2329 }
2330 
2331 
2332 job_control_entry::~job_control_entry()
2333 {
2334 	if (has_group_ref) {
2335 		InterruptsSpinLocker groupHashLocker(sGroupHashLock);
2336 
2337 		ProcessGroup* group = sGroupHash.Lookup(group_id);
2338 		if (group == NULL) {
2339 			panic("job_control_entry::~job_control_entry(): unknown group "
2340 				"ID: %" B_PRId32, group_id);
2341 			return;
2342 		}
2343 
2344 		groupHashLocker.Unlock();
2345 
2346 		group->ReleaseReference();
2347 	}
2348 }
2349 
2350 
2351 /*!	Invoked when the owning team is dying, initializing the entry according to
2352 	the dead state.
2353 
2354 	The caller must hold the owning team's lock and the scheduler lock.
2355 */
2356 void
2357 job_control_entry::InitDeadState()
2358 {
2359 	if (team != NULL) {
2360 		ASSERT(team->exit.initialized);
2361 
2362 		group_id = team->group_id;
2363 		team->group->AcquireReference();
2364 		has_group_ref = true;
2365 
2366 		thread = team->id;
2367 		status = team->exit.status;
2368 		reason = team->exit.reason;
2369 		signal = team->exit.signal;
2370 		signaling_user = team->exit.signaling_user;
2371 
2372 		team = NULL;
2373 	}
2374 }
2375 
2376 
2377 job_control_entry&
2378 job_control_entry::operator=(const job_control_entry& other)
2379 {
2380 	state = other.state;
2381 	thread = other.thread;
2382 	signal = other.signal;
2383 	has_group_ref = false;
2384 	signaling_user = other.signaling_user;
2385 	team = other.team;
2386 	group_id = other.group_id;
2387 	status = other.status;
2388 	reason = other.reason;
2389 
2390 	return *this;
2391 }
2392 
2393 
2394 /*! This is the kernel backend for waitid().
2395 */
2396 static thread_id
2397 wait_for_child(pid_t child, uint32 flags, siginfo_t& _info)
2398 {
2399 	Thread* thread = thread_get_current_thread();
2400 	Team* team = thread->team;
2401 	struct job_control_entry foundEntry;
2402 	struct job_control_entry* freeDeathEntry = NULL;
2403 	status_t status = B_OK;
2404 
2405 	TRACE(("wait_for_child(child = %" B_PRId32 ", flags = %" B_PRId32 ")\n",
2406 		child, flags));
2407 
2408 	T(WaitForChild(child, flags));
2409 
2410 	pid_t originalChild = child;
2411 
2412 	bool ignoreFoundEntries = false;
2413 	bool ignoreFoundEntriesChecked = false;
2414 
2415 	while (true) {
2416 		// lock the team
2417 		TeamLocker teamLocker(team);
2418 
2419 		// A 0 child argument means to wait for all children in the process
2420 		// group of the calling team.
2421 		child = originalChild == 0 ? -team->group_id : originalChild;
2422 
2423 		// check whether any condition holds
2424 		job_control_entry* entry = get_job_control_entry(team, child, flags);
2425 
2426 		// If we don't have an entry yet, check whether there are any children
2427 		// complying to the process group specification at all.
2428 		if (entry == NULL) {
2429 			// No success yet -- check whether there are any children complying
2430 			// to the process group specification at all.
2431 			bool childrenExist = false;
2432 			if (child == -1) {
2433 				childrenExist = team->children != NULL;
2434 			} else if (child < -1) {
2435 				childrenExist = has_children_in_group(team, -child);
2436 			} else {
2437 				if (Team* childTeam = Team::Get(child)) {
2438 					BReference<Team> childTeamReference(childTeam, true);
2439 					TeamLocker childTeamLocker(childTeam);
2440 					childrenExist = childTeam->parent == team;
2441 				}
2442 			}
2443 
2444 			if (!childrenExist) {
2445 				// there is no child we could wait for
2446 				status = ECHILD;
2447 			} else {
2448 				// the children we're waiting for are still running
2449 				status = B_WOULD_BLOCK;
2450 			}
2451 		} else {
2452 			// got something
2453 			foundEntry = *entry;
2454 
2455 			// unless WNOWAIT has been specified, "consume" the wait state
2456 			if ((flags & WNOWAIT) == 0 || ignoreFoundEntries) {
2457 				if (entry->state == JOB_CONTROL_STATE_DEAD) {
2458 					// The child is dead. Reap its death entry.
2459 					freeDeathEntry = entry;
2460 					team->dead_children.entries.Remove(entry);
2461 					team->dead_children.count--;
2462 				} else {
2463 					// The child is well. Reset its job control state.
2464 					team_set_job_control_state(entry->team,
2465 						JOB_CONTROL_STATE_NONE, NULL);
2466 				}
2467 			}
2468 		}
2469 
2470 		// If we haven't got anything yet, prepare for waiting for the
2471 		// condition variable.
2472 		ConditionVariableEntry deadWaitEntry;
2473 
2474 		if (status == B_WOULD_BLOCK && (flags & WNOHANG) == 0)
2475 			team->dead_children.condition_variable.Add(&deadWaitEntry);
2476 
2477 		teamLocker.Unlock();
2478 
2479 		// we got our entry and can return to our caller
2480 		if (status == B_OK) {
2481 			if (ignoreFoundEntries) {
2482 				// ... unless we shall ignore found entries
2483 				delete freeDeathEntry;
2484 				freeDeathEntry = NULL;
2485 				continue;
2486 			}
2487 
2488 			break;
2489 		}
2490 
2491 		if (status != B_WOULD_BLOCK || (flags & WNOHANG) != 0) {
2492 			T(WaitForChildDone(status));
2493 			return status;
2494 		}
2495 
2496 		status = deadWaitEntry.Wait(B_CAN_INTERRUPT);
2497 		if (status == B_INTERRUPTED) {
2498 			T(WaitForChildDone(status));
2499 			return status;
2500 		}
2501 
2502 		// If SA_NOCLDWAIT is set or SIGCHLD is ignored, we shall wait until
2503 		// all our children are dead and fail with ECHILD. We check the
2504 		// condition at this point.
2505 		if (!ignoreFoundEntriesChecked) {
2506 			teamLocker.Lock();
2507 
2508 			struct sigaction& handler = team->SignalActionFor(SIGCHLD);
2509 			if ((handler.sa_flags & SA_NOCLDWAIT) != 0
2510 				|| handler.sa_handler == SIG_IGN) {
2511 				ignoreFoundEntries = true;
2512 			}
2513 
2514 			teamLocker.Unlock();
2515 
2516 			ignoreFoundEntriesChecked = true;
2517 		}
2518 	}
2519 
2520 	delete freeDeathEntry;
2521 
2522 	// When we got here, we have a valid death entry, and already got
2523 	// unregistered from the team or group. Fill in the returned info.
2524 	memset(&_info, 0, sizeof(_info));
2525 	_info.si_signo = SIGCHLD;
2526 	_info.si_pid = foundEntry.thread;
2527 	_info.si_uid = foundEntry.signaling_user;
2528 	// TODO: Fill in si_errno?
2529 
2530 	switch (foundEntry.state) {
2531 		case JOB_CONTROL_STATE_DEAD:
2532 			_info.si_code = foundEntry.reason;
2533 			_info.si_status = foundEntry.reason == CLD_EXITED
2534 				? foundEntry.status : foundEntry.signal;
2535 			break;
2536 		case JOB_CONTROL_STATE_STOPPED:
2537 			_info.si_code = CLD_STOPPED;
2538 			_info.si_status = foundEntry.signal;
2539 			break;
2540 		case JOB_CONTROL_STATE_CONTINUED:
2541 			_info.si_code = CLD_CONTINUED;
2542 			_info.si_status = 0;
2543 			break;
2544 		case JOB_CONTROL_STATE_NONE:
2545 			// can't happen
2546 			break;
2547 	}
2548 
2549 	// If SIGCHLD is blocked, we shall clear pending SIGCHLDs, if no other child
2550 	// status is available.
2551 	TeamLocker teamLocker(team);
2552 	InterruptsSpinLocker signalLocker(team->signal_lock);
2553 	SpinLocker threadCreationLocker(gThreadCreationLock);
2554 
2555 	if (is_team_signal_blocked(team, SIGCHLD)) {
2556 		if (get_job_control_entry(team, child, flags) == NULL)
2557 			team->RemovePendingSignals(SIGNAL_TO_MASK(SIGCHLD));
2558 	}
2559 
2560 	threadCreationLocker.Unlock();
2561 	signalLocker.Unlock();
2562 	teamLocker.Unlock();
2563 
2564 	// When the team is dead, the main thread continues to live in the kernel
2565 	// team for a very short time. To avoid surprises for the caller we rather
2566 	// wait until the thread is really gone.
2567 	if (foundEntry.state == JOB_CONTROL_STATE_DEAD)
2568 		wait_for_thread(foundEntry.thread, NULL);
2569 
2570 	T(WaitForChildDone(foundEntry));
2571 
2572 	return foundEntry.thread;
2573 }
2574 
2575 
2576 /*! Fills the team_info structure with information from the specified team.
2577 	Interrupts must be enabled. The team must not be locked.
2578 */
2579 static status_t
2580 fill_team_info(Team* team, team_info* info, size_t size)
2581 {
2582 	if (size != sizeof(team_info))
2583 		return B_BAD_VALUE;
2584 
2585 	// TODO: Set more informations for team_info
2586 	memset(info, 0, size);
2587 
2588 	info->team = team->id;
2589 		// immutable
2590 	info->image_count = count_images(team);
2591 		// protected by sImageMutex
2592 
2593 	TeamLocker teamLocker(team);
2594 	InterruptsSpinLocker debugInfoLocker(team->debug_info.lock);
2595 
2596 	info->thread_count = team->num_threads;
2597 	//info->area_count =
2598 	info->debugger_nub_thread = team->debug_info.nub_thread;
2599 	info->debugger_nub_port = team->debug_info.nub_port;
2600 	info->uid = team->effective_uid;
2601 	info->gid = team->effective_gid;
2602 
2603 	strlcpy(info->args, team->Args(), sizeof(info->args));
2604 	info->argc = 1;
2605 
2606 	return B_OK;
2607 }
2608 
2609 
2610 /*!	Returns whether the process group contains stopped processes.
2611 	The caller must hold the process group's lock.
2612 */
2613 static bool
2614 process_group_has_stopped_processes(ProcessGroup* group)
2615 {
2616 	Team* team = group->teams;
2617 	while (team != NULL) {
2618 		// the parent team's lock guards the job control entry -- acquire it
2619 		team->LockTeamAndParent(false);
2620 
2621 		if (team->job_control_entry != NULL
2622 			&& team->job_control_entry->state == JOB_CONTROL_STATE_STOPPED) {
2623 			team->UnlockTeamAndParent();
2624 			return true;
2625 		}
2626 
2627 		team->UnlockTeamAndParent();
2628 
2629 		team = team->group_next;
2630 	}
2631 
2632 	return false;
2633 }
2634 
2635 
2636 /*!	Iterates through all process groups queued in team_remove_team() and signals
2637 	those that are orphaned and have stopped processes.
2638 	The caller must not hold any team or process group locks.
2639 */
2640 static void
2641 orphaned_process_group_check()
2642 {
2643 	// process as long as there are groups in the list
2644 	while (true) {
2645 		// remove the head from the list
2646 		MutexLocker orphanedCheckLocker(sOrphanedCheckLock);
2647 
2648 		ProcessGroup* group = sOrphanedCheckProcessGroups.RemoveHead();
2649 		if (group == NULL)
2650 			return;
2651 
2652 		group->UnsetOrphanedCheck();
2653 		BReference<ProcessGroup> groupReference(group);
2654 
2655 		orphanedCheckLocker.Unlock();
2656 
2657 		AutoLocker<ProcessGroup> groupLocker(group);
2658 
2659 		// If the group is orphaned and contains stopped processes, we're
2660 		// supposed to send SIGHUP + SIGCONT.
2661 		if (group->IsOrphaned() && process_group_has_stopped_processes(group)) {
2662 			Thread* currentThread = thread_get_current_thread();
2663 
2664 			Signal signal(SIGHUP, SI_USER, B_OK, currentThread->team->id);
2665 			send_signal_to_process_group_locked(group, signal, 0);
2666 
2667 			signal.SetNumber(SIGCONT);
2668 			send_signal_to_process_group_locked(group, signal, 0);
2669 		}
2670 	}
2671 }
2672 
2673 
2674 static status_t
2675 common_get_team_usage_info(team_id id, int32 who, team_usage_info* info,
2676 	uint32 flags)
2677 {
2678 	if (who != B_TEAM_USAGE_SELF && who != B_TEAM_USAGE_CHILDREN)
2679 		return B_BAD_VALUE;
2680 
2681 	// get the team
2682 	Team* team = Team::GetAndLock(id);
2683 	if (team == NULL)
2684 		return B_BAD_TEAM_ID;
2685 	BReference<Team> teamReference(team, true);
2686 	TeamLocker teamLocker(team, true);
2687 
2688 	if ((flags & B_CHECK_PERMISSION) != 0) {
2689 		uid_t uid = geteuid();
2690 		if (uid != 0 && uid != team->effective_uid)
2691 			return B_NOT_ALLOWED;
2692 	}
2693 
2694 	bigtime_t kernelTime = 0;
2695 	bigtime_t userTime = 0;
2696 
2697 	switch (who) {
2698 		case B_TEAM_USAGE_SELF:
2699 		{
2700 			Thread* thread = team->thread_list;
2701 
2702 			for (; thread != NULL; thread = thread->team_next) {
2703 				InterruptsSpinLocker threadTimeLocker(thread->time_lock);
2704 				kernelTime += thread->kernel_time;
2705 				userTime += thread->user_time;
2706 			}
2707 
2708 			kernelTime += team->dead_threads_kernel_time;
2709 			userTime += team->dead_threads_user_time;
2710 			break;
2711 		}
2712 
2713 		case B_TEAM_USAGE_CHILDREN:
2714 		{
2715 			Team* child = team->children;
2716 			for (; child != NULL; child = child->siblings_next) {
2717 				TeamLocker childLocker(child);
2718 
2719 				Thread* thread = team->thread_list;
2720 
2721 				for (; thread != NULL; thread = thread->team_next) {
2722 					InterruptsSpinLocker threadTimeLocker(thread->time_lock);
2723 					kernelTime += thread->kernel_time;
2724 					userTime += thread->user_time;
2725 				}
2726 
2727 				kernelTime += child->dead_threads_kernel_time;
2728 				userTime += child->dead_threads_user_time;
2729 			}
2730 
2731 			kernelTime += team->dead_children.kernel_time;
2732 			userTime += team->dead_children.user_time;
2733 			break;
2734 		}
2735 	}
2736 
2737 	info->kernel_time = kernelTime;
2738 	info->user_time = userTime;
2739 
2740 	return B_OK;
2741 }
2742 
2743 
2744 //	#pragma mark - Private kernel API
2745 
2746 
2747 status_t
2748 team_init(kernel_args* args)
2749 {
2750 	// create the team hash table
2751 	new(&sTeamHash) TeamTable;
2752 	if (sTeamHash.Init(64) != B_OK)
2753 		panic("Failed to init team hash table!");
2754 
2755 	new(&sGroupHash) ProcessGroupHashTable;
2756 	if (sGroupHash.Init() != B_OK)
2757 		panic("Failed to init process group hash table!");
2758 
2759 	// create initial session and process groups
2760 
2761 	ProcessSession* session = new(std::nothrow) ProcessSession(1);
2762 	if (session == NULL)
2763 		panic("Could not create initial session.\n");
2764 	BReference<ProcessSession> sessionReference(session, true);
2765 
2766 	ProcessGroup* group = new(std::nothrow) ProcessGroup(1);
2767 	if (group == NULL)
2768 		panic("Could not create initial process group.\n");
2769 	BReference<ProcessGroup> groupReference(group, true);
2770 
2771 	group->Publish(session);
2772 
2773 	// create the kernel team
2774 	sKernelTeam = Team::Create(1, "kernel_team", true);
2775 	if (sKernelTeam == NULL)
2776 		panic("could not create kernel team!\n");
2777 	sKernelTeam->SetArgs(sKernelTeam->Name());
2778 	sKernelTeam->state = TEAM_STATE_NORMAL;
2779 
2780 	sKernelTeam->saved_set_uid = 0;
2781 	sKernelTeam->real_uid = 0;
2782 	sKernelTeam->effective_uid = 0;
2783 	sKernelTeam->saved_set_gid = 0;
2784 	sKernelTeam->real_gid = 0;
2785 	sKernelTeam->effective_gid = 0;
2786 	sKernelTeam->supplementary_groups = NULL;
2787 	sKernelTeam->supplementary_group_count = 0;
2788 
2789 	insert_team_into_group(group, sKernelTeam);
2790 
2791 	sKernelTeam->io_context = vfs_new_io_context(NULL, false);
2792 	if (sKernelTeam->io_context == NULL)
2793 		panic("could not create io_context for kernel team!\n");
2794 
2795 	if (vfs_resize_fd_table(sKernelTeam->io_context, 4096) != B_OK)
2796 		dprintf("Failed to resize FD table for kernel team!\n");
2797 
2798 	// stick it in the team hash
2799 	sTeamHash.Insert(sKernelTeam);
2800 
2801 	add_debugger_command_etc("team", &dump_team_info,
2802 		"Dump info about a particular team",
2803 		"[ <id> | <address> | <name> ]\n"
2804 		"Prints information about the specified team. If no argument is given\n"
2805 		"the current team is selected.\n"
2806 		"  <id>       - The ID of the team.\n"
2807 		"  <address>  - The address of the team structure.\n"
2808 		"  <name>     - The team's name.\n", 0);
2809 	add_debugger_command_etc("teams", &dump_teams, "List all teams",
2810 		"\n"
2811 		"Prints a list of all existing teams.\n", 0);
2812 
2813 	new(&sNotificationService) TeamNotificationService();
2814 
2815 	sNotificationService.Register();
2816 
2817 	return B_OK;
2818 }
2819 
2820 
2821 int32
2822 team_max_teams(void)
2823 {
2824 	return sMaxTeams;
2825 }
2826 
2827 
2828 int32
2829 team_used_teams(void)
2830 {
2831 	InterruptsSpinLocker teamsLocker(sTeamHashLock);
2832 	return sUsedTeams;
2833 }
2834 
2835 
2836 /*! Returns a death entry of a child team specified by ID (if any).
2837 	The caller must hold the team's lock.
2838 
2839 	\param team The team whose dead children list to check.
2840 	\param child The ID of the child for whose death entry to lock. Must be > 0.
2841 	\param _deleteEntry Return variable, indicating whether the caller needs to
2842 		delete the returned entry.
2843 	\return The death entry of the matching team, or \c NULL, if no death entry
2844 		for the team was found.
2845 */
2846 job_control_entry*
2847 team_get_death_entry(Team* team, thread_id child, bool* _deleteEntry)
2848 {
2849 	if (child <= 0)
2850 		return NULL;
2851 
2852 	job_control_entry* entry = get_job_control_entry(team->dead_children,
2853 		child);
2854 	if (entry) {
2855 		// remove the entry only, if the caller is the parent of the found team
2856 		if (team_get_current_team_id() == entry->thread) {
2857 			team->dead_children.entries.Remove(entry);
2858 			team->dead_children.count--;
2859 			*_deleteEntry = true;
2860 		} else {
2861 			*_deleteEntry = false;
2862 		}
2863 	}
2864 
2865 	return entry;
2866 }
2867 
2868 
2869 /*! Quick check to see if we have a valid team ID. */
2870 bool
2871 team_is_valid(team_id id)
2872 {
2873 	if (id <= 0)
2874 		return false;
2875 
2876 	InterruptsSpinLocker teamsLocker(sTeamHashLock);
2877 
2878 	return team_get_team_struct_locked(id) != NULL;
2879 }
2880 
2881 
2882 Team*
2883 team_get_team_struct_locked(team_id id)
2884 {
2885 	return sTeamHash.Lookup(id);
2886 }
2887 
2888 
2889 void
2890 team_set_controlling_tty(int32 ttyIndex)
2891 {
2892 	// lock the team, so its session won't change while we're playing with it
2893 	Team* team = thread_get_current_thread()->team;
2894 	TeamLocker teamLocker(team);
2895 
2896 	// get and lock the session
2897 	ProcessSession* session = team->group->Session();
2898 	AutoLocker<ProcessSession> sessionLocker(session);
2899 
2900 	// set the session's fields
2901 	session->controlling_tty = ttyIndex;
2902 	session->foreground_group = -1;
2903 }
2904 
2905 
2906 int32
2907 team_get_controlling_tty()
2908 {
2909 	// lock the team, so its session won't change while we're playing with it
2910 	Team* team = thread_get_current_thread()->team;
2911 	TeamLocker teamLocker(team);
2912 
2913 	// get and lock the session
2914 	ProcessSession* session = team->group->Session();
2915 	AutoLocker<ProcessSession> sessionLocker(session);
2916 
2917 	// get the session's field
2918 	return session->controlling_tty;
2919 }
2920 
2921 
2922 status_t
2923 team_set_foreground_process_group(int32 ttyIndex, pid_t processGroupID)
2924 {
2925 	// lock the team, so its session won't change while we're playing with it
2926 	Thread* thread = thread_get_current_thread();
2927 	Team* team = thread->team;
2928 	TeamLocker teamLocker(team);
2929 
2930 	// get and lock the session
2931 	ProcessSession* session = team->group->Session();
2932 	AutoLocker<ProcessSession> sessionLocker(session);
2933 
2934 	// check given TTY -- must be the controlling tty of the calling process
2935 	if (session->controlling_tty != ttyIndex)
2936 		return ENOTTY;
2937 
2938 	// check given process group -- must belong to our session
2939 	{
2940 		InterruptsSpinLocker groupHashLocker(sGroupHashLock);
2941 		ProcessGroup* group = sGroupHash.Lookup(processGroupID);
2942 		if (group == NULL || group->Session() != session)
2943 			return B_BAD_VALUE;
2944 	}
2945 
2946 	// If we are a background group, we can do that unharmed only when we
2947 	// ignore or block SIGTTOU. Otherwise the group gets a SIGTTOU.
2948 	if (session->foreground_group != -1
2949 		&& session->foreground_group != team->group_id
2950 		&& team->SignalActionFor(SIGTTOU).sa_handler != SIG_IGN
2951 		&& (thread->sig_block_mask & SIGNAL_TO_MASK(SIGTTOU)) == 0) {
2952 		InterruptsSpinLocker signalLocker(team->signal_lock);
2953 
2954 		if (!is_team_signal_blocked(team, SIGTTOU)) {
2955 			pid_t groupID = team->group_id;
2956 
2957 			signalLocker.Unlock();
2958 			sessionLocker.Unlock();
2959 			teamLocker.Unlock();
2960 
2961 			Signal signal(SIGTTOU, SI_USER, B_OK, team->id);
2962 			send_signal_to_process_group(groupID, signal, 0);
2963 			return B_INTERRUPTED;
2964 		}
2965 	}
2966 
2967 	session->foreground_group = processGroupID;
2968 
2969 	return B_OK;
2970 }
2971 
2972 
2973 /*!	Removes the specified team from the global team hash, from its process
2974 	group, and from its parent.
2975 	It also moves all of its children to the kernel team.
2976 
2977 	The caller must hold the following locks:
2978 	- \a team's process group's lock,
2979 	- the kernel team's lock,
2980 	- \a team's parent team's lock (might be the kernel team), and
2981 	- \a team's lock.
2982 */
2983 void
2984 team_remove_team(Team* team, pid_t& _signalGroup)
2985 {
2986 	Team* parent = team->parent;
2987 
2988 	// remember how long this team lasted
2989 	parent->dead_children.kernel_time += team->dead_threads_kernel_time
2990 		+ team->dead_children.kernel_time;
2991 	parent->dead_children.user_time += team->dead_threads_user_time
2992 		+ team->dead_children.user_time;
2993 
2994 	// remove the team from the hash table
2995 	InterruptsSpinLocker teamsLocker(sTeamHashLock);
2996 	sTeamHash.Remove(team);
2997 	sUsedTeams--;
2998 	teamsLocker.Unlock();
2999 
3000 	// The team can no longer be accessed by ID. Navigation to it is still
3001 	// possible from its process group and its parent and children, but that
3002 	// will be rectified shortly.
3003 	team->state = TEAM_STATE_DEATH;
3004 
3005 	// If we're a controlling process (i.e. a session leader with controlling
3006 	// terminal), there's a bit of signalling we have to do. We can't do any of
3007 	// the signaling here due to the bunch of locks we're holding, but we need
3008 	// to determine, whom to signal.
3009 	_signalGroup = -1;
3010 	bool isSessionLeader = false;
3011 	if (team->session_id == team->id
3012 		&& team->group->Session()->controlling_tty >= 0) {
3013 		isSessionLeader = true;
3014 
3015 		ProcessSession* session = team->group->Session();
3016 
3017 		AutoLocker<ProcessSession> sessionLocker(session);
3018 
3019 		session->controlling_tty = -1;
3020 		_signalGroup = session->foreground_group;
3021 	}
3022 
3023 	// remove us from our process group
3024 	remove_team_from_group(team);
3025 
3026 	// move the team's children to the kernel team
3027 	while (Team* child = team->children) {
3028 		// remove the child from the current team and add it to the kernel team
3029 		TeamLocker childLocker(child);
3030 
3031 		remove_team_from_parent(team, child);
3032 		insert_team_into_parent(sKernelTeam, child);
3033 
3034 		// move job control entries too
3035 		sKernelTeam->stopped_children.entries.MoveFrom(
3036 			&team->stopped_children.entries);
3037 		sKernelTeam->continued_children.entries.MoveFrom(
3038 			&team->continued_children.entries);
3039 
3040 		// If the team was a session leader with controlling terminal,
3041 		// we need to send SIGHUP + SIGCONT to all newly-orphaned process
3042 		// groups with stopped processes. Due to locking complications we can't
3043 		// do that here, so we only check whether we were a reason for the
3044 		// child's process group not being an orphan and, if so, schedule a
3045 		// later check (cf. orphaned_process_group_check()).
3046 		if (isSessionLeader) {
3047 			ProcessGroup* childGroup = child->group;
3048 			if (childGroup->Session()->id == team->session_id
3049 				&& childGroup->id != team->group_id) {
3050 				childGroup->ScheduleOrphanedCheck();
3051 			}
3052 		}
3053 
3054 		// Note, we don't move the dead children entries. Those will be deleted
3055 		// when the team structure is deleted.
3056 	}
3057 
3058 	// remove us from our parent
3059 	remove_team_from_parent(parent, team);
3060 }
3061 
3062 
3063 /*!	Kills all threads but the main thread of the team and shuts down user
3064 	debugging for it.
3065 	To be called on exit of the team's main thread. No locks must be held.
3066 
3067 	\param team The team in question.
3068 	\return The port of the debugger for the team, -1 if none. To be passed to
3069 		team_delete_team().
3070 */
3071 port_id
3072 team_shutdown_team(Team* team)
3073 {
3074 	ASSERT(thread_get_current_thread() == team->main_thread);
3075 
3076 	TeamLocker teamLocker(team);
3077 
3078 	// Make sure debugging changes won't happen anymore.
3079 	port_id debuggerPort = -1;
3080 	while (true) {
3081 		// If a debugger change is in progress for the team, we'll have to
3082 		// wait until it is done.
3083 		ConditionVariableEntry waitForDebuggerEntry;
3084 		bool waitForDebugger = false;
3085 
3086 		InterruptsSpinLocker debugInfoLocker(team->debug_info.lock);
3087 
3088 		if (team->debug_info.debugger_changed_condition != NULL) {
3089 			team->debug_info.debugger_changed_condition->Add(
3090 				&waitForDebuggerEntry);
3091 			waitForDebugger = true;
3092 		} else if (team->debug_info.flags & B_TEAM_DEBUG_DEBUGGER_INSTALLED) {
3093 			// The team is being debugged. That will stop with the termination
3094 			// of the nub thread. Since we set the team state to death, no one
3095 			// can install a debugger anymore. We fetch the debugger's port to
3096 			// send it a message at the bitter end.
3097 			debuggerPort = team->debug_info.debugger_port;
3098 		}
3099 
3100 		debugInfoLocker.Unlock();
3101 
3102 		if (!waitForDebugger)
3103 			break;
3104 
3105 		// wait for the debugger change to be finished
3106 		teamLocker.Unlock();
3107 
3108 		waitForDebuggerEntry.Wait();
3109 
3110 		teamLocker.Lock();
3111 	}
3112 
3113 	// Mark the team as shutting down. That will prevent new threads from being
3114 	// created and debugger changes from taking place.
3115 	team->state = TEAM_STATE_SHUTDOWN;
3116 
3117 	// delete all timers
3118 	team->DeleteUserTimers(false);
3119 
3120 	// deactivate CPU time user timers for the team
3121 	InterruptsSpinLocker timeLocker(team->time_lock);
3122 
3123 	if (team->HasActiveCPUTimeUserTimers())
3124 		team->DeactivateCPUTimeUserTimers();
3125 
3126 	timeLocker.Unlock();
3127 
3128 	// kill all threads but the main thread
3129 	team_death_entry deathEntry;
3130 	deathEntry.condition.Init(team, "team death");
3131 
3132 	while (true) {
3133 		team->death_entry = &deathEntry;
3134 		deathEntry.remaining_threads = 0;
3135 
3136 		Thread* thread = team->thread_list;
3137 		while (thread != NULL) {
3138 			if (thread != team->main_thread) {
3139 				Signal signal(SIGKILLTHR, SI_USER, B_OK, team->id);
3140 				send_signal_to_thread(thread, signal, B_DO_NOT_RESCHEDULE);
3141 				deathEntry.remaining_threads++;
3142 			}
3143 
3144 			thread = thread->team_next;
3145 		}
3146 
3147 		if (deathEntry.remaining_threads == 0)
3148 			break;
3149 
3150 		// there are threads to wait for
3151 		ConditionVariableEntry entry;
3152 		deathEntry.condition.Add(&entry);
3153 
3154 		teamLocker.Unlock();
3155 
3156 		entry.Wait();
3157 
3158 		teamLocker.Lock();
3159 	}
3160 
3161 	team->death_entry = NULL;
3162 
3163 	return debuggerPort;
3164 }
3165 
3166 
3167 /*!	Called on team exit to notify threads waiting on the team and free most
3168 	resources associated with it.
3169 	The caller shouldn't hold any locks.
3170 */
3171 void
3172 team_delete_team(Team* team, port_id debuggerPort)
3173 {
3174 	// Not quite in our job description, but work that has been left by
3175 	// team_remove_team() and that can be done now that we're not holding any
3176 	// locks.
3177 	orphaned_process_group_check();
3178 
3179 	team_id teamID = team->id;
3180 
3181 	ASSERT(team->num_threads == 0);
3182 
3183 	// If someone is waiting for this team to be loaded, but it dies
3184 	// unexpectedly before being done, we need to notify the waiting
3185 	// thread now.
3186 
3187 	TeamLocker teamLocker(team);
3188 
3189 	if (team->loading_info) {
3190 		// there's indeed someone waiting
3191 		struct team_loading_info* loadingInfo = team->loading_info;
3192 		team->loading_info = NULL;
3193 
3194 		loadingInfo->result = B_ERROR;
3195 		loadingInfo->done = true;
3196 
3197 		// wake up the waiting thread
3198 		thread_continue(loadingInfo->thread);
3199 	}
3200 
3201 	// notify team watchers
3202 
3203 	{
3204 		// we're not reachable from anyone anymore at this point, so we
3205 		// can safely access the list without any locking
3206 		struct team_watcher* watcher;
3207 		while ((watcher = (struct team_watcher*)list_remove_head_item(
3208 				&team->watcher_list)) != NULL) {
3209 			watcher->hook(teamID, watcher->data);
3210 			free(watcher);
3211 		}
3212 	}
3213 
3214 	teamLocker.Unlock();
3215 
3216 	sNotificationService.Notify(TEAM_REMOVED, team);
3217 
3218 	// free team resources
3219 
3220 	delete_realtime_sem_context(team->realtime_sem_context);
3221 	xsi_sem_undo(team);
3222 	remove_images(team);
3223 	team->address_space->RemoveAndPut();
3224 
3225 	team->ReleaseReference();
3226 
3227 	// notify the debugger, that the team is gone
3228 	user_debug_team_deleted(teamID, debuggerPort);
3229 }
3230 
3231 
3232 Team*
3233 team_get_kernel_team(void)
3234 {
3235 	return sKernelTeam;
3236 }
3237 
3238 
3239 team_id
3240 team_get_kernel_team_id(void)
3241 {
3242 	if (!sKernelTeam)
3243 		return 0;
3244 
3245 	return sKernelTeam->id;
3246 }
3247 
3248 
3249 team_id
3250 team_get_current_team_id(void)
3251 {
3252 	return thread_get_current_thread()->team->id;
3253 }
3254 
3255 
3256 status_t
3257 team_get_address_space(team_id id, VMAddressSpace** _addressSpace)
3258 {
3259 	if (id == sKernelTeam->id) {
3260 		// we're the kernel team, so we don't have to go through all
3261 		// the hassle (locking and hash lookup)
3262 		*_addressSpace = VMAddressSpace::GetKernel();
3263 		return B_OK;
3264 	}
3265 
3266 	InterruptsSpinLocker teamsLocker(sTeamHashLock);
3267 
3268 	Team* team = team_get_team_struct_locked(id);
3269 	if (team == NULL)
3270 		return B_BAD_VALUE;
3271 
3272 	team->address_space->Get();
3273 	*_addressSpace = team->address_space;
3274 	return B_OK;
3275 }
3276 
3277 
3278 /*!	Sets the team's job control state.
3279 	The caller must hold the parent team's lock. Interrupts are allowed to be
3280 	enabled or disabled.
3281 	\a team The team whose job control state shall be set.
3282 	\a newState The new state to be set.
3283 	\a signal The signal the new state was caused by. Can \c NULL, if none. Then
3284 		the caller is responsible for filling in the following fields of the
3285 		entry before releasing the parent team's lock, unless the new state is
3286 		\c JOB_CONTROL_STATE_NONE:
3287 		- \c signal: The number of the signal causing the state change.
3288 		- \c signaling_user: The real UID of the user sending the signal.
3289 */
3290 void
3291 team_set_job_control_state(Team* team, job_control_state newState,
3292 	Signal* signal)
3293 {
3294 	if (team == NULL || team->job_control_entry == NULL)
3295 		return;
3296 
3297 	// don't touch anything, if the state stays the same or the team is already
3298 	// dead
3299 	job_control_entry* entry = team->job_control_entry;
3300 	if (entry->state == newState || entry->state == JOB_CONTROL_STATE_DEAD)
3301 		return;
3302 
3303 	T(SetJobControlState(team->id, newState, signal));
3304 
3305 	// remove from the old list
3306 	switch (entry->state) {
3307 		case JOB_CONTROL_STATE_NONE:
3308 			// entry is in no list ATM
3309 			break;
3310 		case JOB_CONTROL_STATE_DEAD:
3311 			// can't get here
3312 			break;
3313 		case JOB_CONTROL_STATE_STOPPED:
3314 			team->parent->stopped_children.entries.Remove(entry);
3315 			break;
3316 		case JOB_CONTROL_STATE_CONTINUED:
3317 			team->parent->continued_children.entries.Remove(entry);
3318 			break;
3319 	}
3320 
3321 	entry->state = newState;
3322 
3323 	if (signal != NULL) {
3324 		entry->signal = signal->Number();
3325 		entry->signaling_user = signal->SendingUser();
3326 	}
3327 
3328 	// add to new list
3329 	team_job_control_children* childList = NULL;
3330 	switch (entry->state) {
3331 		case JOB_CONTROL_STATE_NONE:
3332 			// entry doesn't get into any list
3333 			break;
3334 		case JOB_CONTROL_STATE_DEAD:
3335 			childList = &team->parent->dead_children;
3336 			team->parent->dead_children.count++;
3337 			break;
3338 		case JOB_CONTROL_STATE_STOPPED:
3339 			childList = &team->parent->stopped_children;
3340 			break;
3341 		case JOB_CONTROL_STATE_CONTINUED:
3342 			childList = &team->parent->continued_children;
3343 			break;
3344 	}
3345 
3346 	if (childList != NULL) {
3347 		childList->entries.Add(entry);
3348 		team->parent->dead_children.condition_variable.NotifyAll();
3349 	}
3350 }
3351 
3352 
3353 /*!	Inits the given team's exit information, if not yet initialized, to some
3354 	generic "killed" status.
3355 	The caller must not hold the team's lock. Interrupts must be enabled.
3356 
3357 	\param team The team whose exit info shall be initialized.
3358 */
3359 void
3360 team_init_exit_info_on_error(Team* team)
3361 {
3362 	TeamLocker teamLocker(team);
3363 
3364 	if (!team->exit.initialized) {
3365 		team->exit.reason = CLD_KILLED;
3366 		team->exit.signal = SIGKILL;
3367 		team->exit.signaling_user = geteuid();
3368 		team->exit.status = 0;
3369 		team->exit.initialized = true;
3370 	}
3371 }
3372 
3373 
3374 /*! Adds a hook to the team that is called as soon as this team goes away.
3375 	This call might get public in the future.
3376 */
3377 status_t
3378 start_watching_team(team_id teamID, void (*hook)(team_id, void*), void* data)
3379 {
3380 	if (hook == NULL || teamID < B_OK)
3381 		return B_BAD_VALUE;
3382 
3383 	// create the watcher object
3384 	team_watcher* watcher = (team_watcher*)malloc(sizeof(team_watcher));
3385 	if (watcher == NULL)
3386 		return B_NO_MEMORY;
3387 
3388 	watcher->hook = hook;
3389 	watcher->data = data;
3390 
3391 	// add watcher, if the team isn't already dying
3392 	// get the team
3393 	Team* team = Team::GetAndLock(teamID);
3394 	if (team == NULL) {
3395 		free(watcher);
3396 		return B_BAD_TEAM_ID;
3397 	}
3398 
3399 	list_add_item(&team->watcher_list, watcher);
3400 
3401 	team->UnlockAndReleaseReference();
3402 
3403 	return B_OK;
3404 }
3405 
3406 
3407 status_t
3408 stop_watching_team(team_id teamID, void (*hook)(team_id, void*), void* data)
3409 {
3410 	if (hook == NULL || teamID < 0)
3411 		return B_BAD_VALUE;
3412 
3413 	// get team and remove watcher (if present)
3414 	Team* team = Team::GetAndLock(teamID);
3415 	if (team == NULL)
3416 		return B_BAD_TEAM_ID;
3417 
3418 	// search for watcher
3419 	team_watcher* watcher = NULL;
3420 	while ((watcher = (team_watcher*)list_get_next_item(
3421 			&team->watcher_list, watcher)) != NULL) {
3422 		if (watcher->hook == hook && watcher->data == data) {
3423 			// got it!
3424 			list_remove_item(&team->watcher_list, watcher);
3425 			break;
3426 		}
3427 	}
3428 
3429 	team->UnlockAndReleaseReference();
3430 
3431 	if (watcher == NULL)
3432 		return B_ENTRY_NOT_FOUND;
3433 
3434 	free(watcher);
3435 	return B_OK;
3436 }
3437 
3438 
3439 /*!	Allocates a user_thread structure from the team.
3440 	The team lock must be held, unless the function is called for the team's
3441 	main thread. Interrupts must be enabled.
3442 */
3443 struct user_thread*
3444 team_allocate_user_thread(Team* team)
3445 {
3446 	if (team->user_data == 0)
3447 		return NULL;
3448 
3449 	// take an entry from the free list, if any
3450 	if (struct free_user_thread* entry = team->free_user_threads) {
3451 		user_thread* thread = entry->thread;
3452 		team->free_user_threads = entry->next;
3453 		free(entry);
3454 		return thread;
3455 	}
3456 
3457 	while (true) {
3458 		// enough space left?
3459 		size_t needed = ROUNDUP(sizeof(user_thread), CACHE_LINE_SIZE);
3460 		if (team->user_data_size - team->used_user_data < needed) {
3461 			// try to resize the area
3462 			if (resize_area(team->user_data_area,
3463 					team->user_data_size + B_PAGE_SIZE) != B_OK) {
3464 				return NULL;
3465 			}
3466 
3467 			// resized user area successfully -- try to allocate the user_thread
3468 			// again
3469 			team->user_data_size += B_PAGE_SIZE;
3470 			continue;
3471 		}
3472 
3473 		// allocate the user_thread
3474 		user_thread* thread
3475 			= (user_thread*)(team->user_data + team->used_user_data);
3476 		team->used_user_data += needed;
3477 
3478 		return thread;
3479 	}
3480 }
3481 
3482 
3483 /*!	Frees the given user_thread structure.
3484 	The team's lock must not be held. Interrupts must be enabled.
3485 	\param team The team the user thread was allocated from.
3486 	\param userThread The user thread to free.
3487 */
3488 void
3489 team_free_user_thread(Team* team, struct user_thread* userThread)
3490 {
3491 	if (userThread == NULL)
3492 		return;
3493 
3494 	// create a free list entry
3495 	free_user_thread* entry
3496 		= (free_user_thread*)malloc(sizeof(free_user_thread));
3497 	if (entry == NULL) {
3498 		// we have to leak the user thread :-/
3499 		return;
3500 	}
3501 
3502 	// add to free list
3503 	TeamLocker teamLocker(team);
3504 
3505 	entry->thread = userThread;
3506 	entry->next = team->free_user_threads;
3507 	team->free_user_threads = entry;
3508 }
3509 
3510 
3511 //	#pragma mark - Associated data interface
3512 
3513 
3514 AssociatedData::AssociatedData()
3515 	:
3516 	fOwner(NULL)
3517 {
3518 }
3519 
3520 
3521 AssociatedData::~AssociatedData()
3522 {
3523 }
3524 
3525 
3526 void
3527 AssociatedData::OwnerDeleted(AssociatedDataOwner* owner)
3528 {
3529 }
3530 
3531 
3532 AssociatedDataOwner::AssociatedDataOwner()
3533 {
3534 	mutex_init(&fLock, "associated data owner");
3535 }
3536 
3537 
3538 AssociatedDataOwner::~AssociatedDataOwner()
3539 {
3540 	mutex_destroy(&fLock);
3541 }
3542 
3543 
3544 bool
3545 AssociatedDataOwner::AddData(AssociatedData* data)
3546 {
3547 	MutexLocker locker(fLock);
3548 
3549 	if (data->Owner() != NULL)
3550 		return false;
3551 
3552 	data->AcquireReference();
3553 	fList.Add(data);
3554 	data->SetOwner(this);
3555 
3556 	return true;
3557 }
3558 
3559 
3560 bool
3561 AssociatedDataOwner::RemoveData(AssociatedData* data)
3562 {
3563 	MutexLocker locker(fLock);
3564 
3565 	if (data->Owner() != this)
3566 		return false;
3567 
3568 	data->SetOwner(NULL);
3569 	fList.Remove(data);
3570 
3571 	locker.Unlock();
3572 
3573 	data->ReleaseReference();
3574 
3575 	return true;
3576 }
3577 
3578 
3579 void
3580 AssociatedDataOwner::PrepareForDeletion()
3581 {
3582 	MutexLocker locker(fLock);
3583 
3584 	// move all data to a temporary list and unset the owner
3585 	DataList list;
3586 	list.MoveFrom(&fList);
3587 
3588 	for (DataList::Iterator it = list.GetIterator();
3589 		AssociatedData* data = it.Next();) {
3590 		data->SetOwner(NULL);
3591 	}
3592 
3593 	locker.Unlock();
3594 
3595 	// call the notification hooks and release our references
3596 	while (AssociatedData* data = list.RemoveHead()) {
3597 		data->OwnerDeleted(this);
3598 		data->ReleaseReference();
3599 	}
3600 }
3601 
3602 
3603 /*!	Associates data with the current team.
3604 	When the team is deleted, the data object is notified.
3605 	The team acquires a reference to the object.
3606 
3607 	\param data The data object.
3608 	\return \c true on success, \c false otherwise. Fails only when the supplied
3609 		data object is already associated with another owner.
3610 */
3611 bool
3612 team_associate_data(AssociatedData* data)
3613 {
3614 	return thread_get_current_thread()->team->AddData(data);
3615 }
3616 
3617 
3618 /*!	Dissociates data from the current team.
3619 	Balances an earlier call to team_associate_data().
3620 
3621 	\param data The data object.
3622 	\return \c true on success, \c false otherwise. Fails only when the data
3623 		object is not associated with the current team.
3624 */
3625 bool
3626 team_dissociate_data(AssociatedData* data)
3627 {
3628 	return thread_get_current_thread()->team->RemoveData(data);
3629 }
3630 
3631 
3632 //	#pragma mark - Public kernel API
3633 
3634 
3635 thread_id
3636 load_image(int32 argCount, const char** args, const char** env)
3637 {
3638 	return load_image_etc(argCount, args, env, B_NORMAL_PRIORITY,
3639 		B_CURRENT_TEAM, B_WAIT_TILL_LOADED);
3640 }
3641 
3642 
3643 thread_id
3644 load_image_etc(int32 argCount, const char* const* args,
3645 	const char* const* env, int32 priority, team_id parentID, uint32 flags)
3646 {
3647 	// we need to flatten the args and environment
3648 
3649 	if (args == NULL)
3650 		return B_BAD_VALUE;
3651 
3652 	// determine total needed size
3653 	int32 argSize = 0;
3654 	for (int32 i = 0; i < argCount; i++)
3655 		argSize += strlen(args[i]) + 1;
3656 
3657 	int32 envCount = 0;
3658 	int32 envSize = 0;
3659 	while (env != NULL && env[envCount] != NULL)
3660 		envSize += strlen(env[envCount++]) + 1;
3661 
3662 	int32 size = (argCount + envCount + 2) * sizeof(char*) + argSize + envSize;
3663 	if (size > MAX_PROCESS_ARGS_SIZE)
3664 		return B_TOO_MANY_ARGS;
3665 
3666 	// allocate space
3667 	char** flatArgs = (char**)malloc(size);
3668 	if (flatArgs == NULL)
3669 		return B_NO_MEMORY;
3670 
3671 	char** slot = flatArgs;
3672 	char* stringSpace = (char*)(flatArgs + argCount + envCount + 2);
3673 
3674 	// copy arguments and environment
3675 	for (int32 i = 0; i < argCount; i++) {
3676 		int32 argSize = strlen(args[i]) + 1;
3677 		memcpy(stringSpace, args[i], argSize);
3678 		*slot++ = stringSpace;
3679 		stringSpace += argSize;
3680 	}
3681 
3682 	*slot++ = NULL;
3683 
3684 	for (int32 i = 0; i < envCount; i++) {
3685 		int32 envSize = strlen(env[i]) + 1;
3686 		memcpy(stringSpace, env[i], envSize);
3687 		*slot++ = stringSpace;
3688 		stringSpace += envSize;
3689 	}
3690 
3691 	*slot++ = NULL;
3692 
3693 	thread_id thread = load_image_internal(flatArgs, size, argCount, envCount,
3694 		B_NORMAL_PRIORITY, parentID, B_WAIT_TILL_LOADED, -1, 0);
3695 
3696 	free(flatArgs);
3697 		// load_image_internal() unset our variable if it took over ownership
3698 
3699 	return thread;
3700 }
3701 
3702 
3703 status_t
3704 wait_for_team(team_id id, status_t* _returnCode)
3705 {
3706 	// check whether the team exists
3707 	InterruptsSpinLocker teamsLocker(sTeamHashLock);
3708 
3709 	Team* team = team_get_team_struct_locked(id);
3710 	if (team == NULL)
3711 		return B_BAD_TEAM_ID;
3712 
3713 	id = team->id;
3714 
3715 	teamsLocker.Unlock();
3716 
3717 	// wait for the main thread (it has the same ID as the team)
3718 	return wait_for_thread(id, _returnCode);
3719 }
3720 
3721 
3722 status_t
3723 kill_team(team_id id)
3724 {
3725 	InterruptsSpinLocker teamsLocker(sTeamHashLock);
3726 
3727 	Team* team = team_get_team_struct_locked(id);
3728 	if (team == NULL)
3729 		return B_BAD_TEAM_ID;
3730 
3731 	id = team->id;
3732 
3733 	teamsLocker.Unlock();
3734 
3735 	if (team == sKernelTeam)
3736 		return B_NOT_ALLOWED;
3737 
3738 	// Just kill the team's main thread (it has same ID as the team). The
3739 	// cleanup code there will take care of the team.
3740 	return kill_thread(id);
3741 }
3742 
3743 
3744 status_t
3745 _get_team_info(team_id id, team_info* info, size_t size)
3746 {
3747 	// get the team
3748 	Team* team = Team::Get(id);
3749 	if (team == NULL)
3750 		return B_BAD_TEAM_ID;
3751 	BReference<Team> teamReference(team, true);
3752 
3753 	// fill in the info
3754 	return fill_team_info(team, info, size);
3755 }
3756 
3757 
3758 status_t
3759 _get_next_team_info(int32* cookie, team_info* info, size_t size)
3760 {
3761 	int32 slot = *cookie;
3762 	if (slot < 1)
3763 		slot = 1;
3764 
3765 	InterruptsSpinLocker locker(sTeamHashLock);
3766 
3767 	team_id lastTeamID = peek_next_thread_id();
3768 		// TODO: This is broken, since the id can wrap around!
3769 
3770 	// get next valid team
3771 	Team* team = NULL;
3772 	while (slot < lastTeamID && !(team = team_get_team_struct_locked(slot)))
3773 		slot++;
3774 
3775 	if (team == NULL)
3776 		return B_BAD_TEAM_ID;
3777 
3778 	// get a reference to the team and unlock
3779 	BReference<Team> teamReference(team);
3780 	locker.Unlock();
3781 
3782 	// fill in the info
3783 	*cookie = ++slot;
3784 	return fill_team_info(team, info, size);
3785 }
3786 
3787 
3788 status_t
3789 _get_team_usage_info(team_id id, int32 who, team_usage_info* info, size_t size)
3790 {
3791 	if (size != sizeof(team_usage_info))
3792 		return B_BAD_VALUE;
3793 
3794 	return common_get_team_usage_info(id, who, info, 0);
3795 }
3796 
3797 
3798 pid_t
3799 getpid(void)
3800 {
3801 	return thread_get_current_thread()->team->id;
3802 }
3803 
3804 
3805 pid_t
3806 getppid(void)
3807 {
3808 	Team* team = thread_get_current_thread()->team;
3809 
3810 	TeamLocker teamLocker(team);
3811 
3812 	return team->parent->id;
3813 }
3814 
3815 
3816 pid_t
3817 getpgid(pid_t id)
3818 {
3819 	if (id < 0) {
3820 		errno = EINVAL;
3821 		return -1;
3822 	}
3823 
3824 	if (id == 0) {
3825 		// get process group of the calling process
3826 		Team* team = thread_get_current_thread()->team;
3827 		TeamLocker teamLocker(team);
3828 		return team->group_id;
3829 	}
3830 
3831 	// get the team
3832 	Team* team = Team::GetAndLock(id);
3833 	if (team == NULL) {
3834 		errno = ESRCH;
3835 		return -1;
3836 	}
3837 
3838 	// get the team's process group ID
3839 	pid_t groupID = team->group_id;
3840 
3841 	team->UnlockAndReleaseReference();
3842 
3843 	return groupID;
3844 }
3845 
3846 
3847 pid_t
3848 getsid(pid_t id)
3849 {
3850 	if (id < 0) {
3851 		errno = EINVAL;
3852 		return -1;
3853 	}
3854 
3855 	if (id == 0) {
3856 		// get session of the calling process
3857 		Team* team = thread_get_current_thread()->team;
3858 		TeamLocker teamLocker(team);
3859 		return team->session_id;
3860 	}
3861 
3862 	// get the team
3863 	Team* team = Team::GetAndLock(id);
3864 	if (team == NULL) {
3865 		errno = ESRCH;
3866 		return -1;
3867 	}
3868 
3869 	// get the team's session ID
3870 	pid_t sessionID = team->session_id;
3871 
3872 	team->UnlockAndReleaseReference();
3873 
3874 	return sessionID;
3875 }
3876 
3877 
3878 //	#pragma mark - User syscalls
3879 
3880 
3881 status_t
3882 _user_exec(const char* userPath, const char* const* userFlatArgs,
3883 	size_t flatArgsSize, int32 argCount, int32 envCount, mode_t umask)
3884 {
3885 	// NOTE: Since this function normally doesn't return, don't use automatic
3886 	// variables that need destruction in the function scope.
3887 	char path[B_PATH_NAME_LENGTH];
3888 
3889 	if (!IS_USER_ADDRESS(userPath) || !IS_USER_ADDRESS(userFlatArgs)
3890 		|| user_strlcpy(path, userPath, sizeof(path)) < B_OK)
3891 		return B_BAD_ADDRESS;
3892 
3893 	// copy and relocate the flat arguments
3894 	char** flatArgs;
3895 	status_t error = copy_user_process_args(userFlatArgs, flatArgsSize,
3896 		argCount, envCount, flatArgs);
3897 
3898 	if (error == B_OK) {
3899 		error = exec_team(path, flatArgs, _ALIGN(flatArgsSize), argCount,
3900 			envCount, umask);
3901 			// this one only returns in case of error
3902 	}
3903 
3904 	free(flatArgs);
3905 	return error;
3906 }
3907 
3908 
3909 thread_id
3910 _user_fork(void)
3911 {
3912 	return fork_team();
3913 }
3914 
3915 
3916 pid_t
3917 _user_wait_for_child(thread_id child, uint32 flags, siginfo_t* userInfo)
3918 {
3919 	if (userInfo != NULL && !IS_USER_ADDRESS(userInfo))
3920 		return B_BAD_ADDRESS;
3921 
3922 	siginfo_t info;
3923 	pid_t foundChild = wait_for_child(child, flags, info);
3924 	if (foundChild < 0)
3925 		return syscall_restart_handle_post(foundChild);
3926 
3927 	// copy info back to userland
3928 	if (userInfo != NULL && user_memcpy(userInfo, &info, sizeof(info)) != B_OK)
3929 		return B_BAD_ADDRESS;
3930 
3931 	return foundChild;
3932 }
3933 
3934 
3935 pid_t
3936 _user_process_info(pid_t process, int32 which)
3937 {
3938 	// we only allow to return the parent of the current process
3939 	if (which == PARENT_ID
3940 		&& process != 0 && process != thread_get_current_thread()->team->id)
3941 		return B_BAD_VALUE;
3942 
3943 	pid_t result;
3944 	switch (which) {
3945 		case SESSION_ID:
3946 			result = getsid(process);
3947 			break;
3948 		case GROUP_ID:
3949 			result = getpgid(process);
3950 			break;
3951 		case PARENT_ID:
3952 			result = getppid();
3953 			break;
3954 		default:
3955 			return B_BAD_VALUE;
3956 	}
3957 
3958 	return result >= 0 ? result : errno;
3959 }
3960 
3961 
3962 pid_t
3963 _user_setpgid(pid_t processID, pid_t groupID)
3964 {
3965 	// setpgid() can be called either by the parent of the target process or
3966 	// by the process itself to do one of two things:
3967 	// * Create a new process group with the target process' ID and the target
3968 	//   process as group leader.
3969 	// * Set the target process' process group to an already existing one in the
3970 	//   same session.
3971 
3972 	if (groupID < 0)
3973 		return B_BAD_VALUE;
3974 
3975 	Team* currentTeam = thread_get_current_thread()->team;
3976 	if (processID == 0)
3977 		processID = currentTeam->id;
3978 
3979 	// if the group ID is not specified, use the target process' ID
3980 	if (groupID == 0)
3981 		groupID = processID;
3982 
3983 	// We loop when running into the following race condition: We create a new
3984 	// process group, because there isn't one with that ID yet, but later when
3985 	// trying to publish it, we find that someone else created and published
3986 	// a group with that ID in the meantime. In that case we just restart the
3987 	// whole action.
3988 	while (true) {
3989 		// Look up the process group by ID. If it doesn't exist yet and we are
3990 		// allowed to create a new one, do that.
3991 		ProcessGroup* group = ProcessGroup::Get(groupID);
3992 		bool newGroup = false;
3993 		if (group == NULL) {
3994 			if (groupID != processID)
3995 				return B_NOT_ALLOWED;
3996 
3997 			group = new(std::nothrow) ProcessGroup(groupID);
3998 			if (group == NULL)
3999 				return B_NO_MEMORY;
4000 
4001 			newGroup = true;
4002 		}
4003 		BReference<ProcessGroup> groupReference(group, true);
4004 
4005 		// get the target team
4006 		Team* team = Team::Get(processID);
4007 		if (team == NULL)
4008 			return ESRCH;
4009 		BReference<Team> teamReference(team, true);
4010 
4011 		// lock the new process group and the team's current process group
4012 		while (true) {
4013 			// lock the team's current process group
4014 			team->LockProcessGroup();
4015 
4016 			ProcessGroup* oldGroup = team->group;
4017 			if (oldGroup == group) {
4018 				// it's the same as the target group, so just bail out
4019 				oldGroup->Unlock();
4020 				return group->id;
4021 			}
4022 
4023 			oldGroup->AcquireReference();
4024 
4025 			// lock the target process group, if locking order allows it
4026 			if (newGroup || group->id > oldGroup->id) {
4027 				group->Lock();
4028 				break;
4029 			}
4030 
4031 			// try to lock
4032 			if (group->TryLock())
4033 				break;
4034 
4035 			// no dice -- unlock the team's current process group and relock in
4036 			// the correct order
4037 			oldGroup->Unlock();
4038 
4039 			group->Lock();
4040 			oldGroup->Lock();
4041 
4042 			// check whether things are still the same
4043 			TeamLocker teamLocker(team);
4044 			if (team->group == oldGroup)
4045 				break;
4046 
4047 			// something changed -- unlock everything and retry
4048 			teamLocker.Unlock();
4049 			oldGroup->Unlock();
4050 			group->Unlock();
4051 			oldGroup->ReleaseReference();
4052 		}
4053 
4054 		// we now have references and locks of both new and old process group
4055 		BReference<ProcessGroup> oldGroupReference(team->group, true);
4056 		AutoLocker<ProcessGroup> oldGroupLocker(team->group, true);
4057 		AutoLocker<ProcessGroup> groupLocker(group, true);
4058 
4059 		// also lock the target team and its parent
4060 		team->LockTeamAndParent(false);
4061 		TeamLocker parentLocker(team->parent, true);
4062 		TeamLocker teamLocker(team, true);
4063 
4064 		// perform the checks
4065 		if (team == currentTeam) {
4066 			// we set our own group
4067 
4068 			// we must not change our process group ID if we're a session leader
4069 			if (is_session_leader(currentTeam))
4070 				return B_NOT_ALLOWED;
4071 		} else {
4072 			// Calling team != target team. The target team must be a child of
4073 			// the calling team and in the same session. (If that's the case it
4074 			// isn't a session leader either.)
4075 			if (team->parent != currentTeam
4076 				|| team->session_id != currentTeam->session_id) {
4077 				return B_NOT_ALLOWED;
4078 			}
4079 
4080 			// The call is also supposed to fail on a child, when the child has
4081 			// already executed exec*() [EACCES].
4082 			if ((team->flags & TEAM_FLAG_EXEC_DONE) != 0)
4083 				return EACCES;
4084 		}
4085 
4086 		// If we created a new process group, publish it now.
4087 		if (newGroup) {
4088 			InterruptsSpinLocker groupHashLocker(sGroupHashLock);
4089 			if (sGroupHash.Lookup(groupID)) {
4090 				// A group with the group ID appeared since we first checked.
4091 				// Back to square one.
4092 				continue;
4093 			}
4094 
4095 			group->PublishLocked(team->group->Session());
4096 		} else if (group->Session()->id != team->session_id) {
4097 			// The existing target process group belongs to a different session.
4098 			// That's not allowed.
4099 			return B_NOT_ALLOWED;
4100 		}
4101 
4102 		// Everything is ready -- set the group.
4103 		remove_team_from_group(team);
4104 		insert_team_into_group(group, team);
4105 
4106 		// Changing the process group might have changed the situation for a
4107 		// parent waiting in wait_for_child(). Hence we notify it.
4108 		team->parent->dead_children.condition_variable.NotifyAll();
4109 
4110 		return group->id;
4111 	}
4112 }
4113 
4114 
4115 pid_t
4116 _user_setsid(void)
4117 {
4118 	Team* team = thread_get_current_thread()->team;
4119 
4120 	// create a new process group and session
4121 	ProcessGroup* group = new(std::nothrow) ProcessGroup(team->id);
4122 	if (group == NULL)
4123 		return B_NO_MEMORY;
4124 	BReference<ProcessGroup> groupReference(group, true);
4125 	AutoLocker<ProcessGroup> groupLocker(group);
4126 
4127 	ProcessSession* session = new(std::nothrow) ProcessSession(group->id);
4128 	if (session == NULL)
4129 		return B_NO_MEMORY;
4130 	BReference<ProcessSession> sessionReference(session, true);
4131 
4132 	// lock the team's current process group, parent, and the team itself
4133 	team->LockTeamParentAndProcessGroup();
4134 	BReference<ProcessGroup> oldGroupReference(team->group);
4135 	AutoLocker<ProcessGroup> oldGroupLocker(team->group, true);
4136 	TeamLocker parentLocker(team->parent, true);
4137 	TeamLocker teamLocker(team, true);
4138 
4139 	// the team must not already be a process group leader
4140 	if (is_process_group_leader(team))
4141 		return B_NOT_ALLOWED;
4142 
4143 	// remove the team from the old and add it to the new process group
4144 	remove_team_from_group(team);
4145 	group->Publish(session);
4146 	insert_team_into_group(group, team);
4147 
4148 	// Changing the process group might have changed the situation for a
4149 	// parent waiting in wait_for_child(). Hence we notify it.
4150 	team->parent->dead_children.condition_variable.NotifyAll();
4151 
4152 	return group->id;
4153 }
4154 
4155 
4156 status_t
4157 _user_wait_for_team(team_id id, status_t* _userReturnCode)
4158 {
4159 	status_t returnCode;
4160 	status_t status;
4161 
4162 	if (_userReturnCode != NULL && !IS_USER_ADDRESS(_userReturnCode))
4163 		return B_BAD_ADDRESS;
4164 
4165 	status = wait_for_team(id, &returnCode);
4166 	if (status >= B_OK && _userReturnCode != NULL) {
4167 		if (user_memcpy(_userReturnCode, &returnCode, sizeof(returnCode))
4168 				!= B_OK)
4169 			return B_BAD_ADDRESS;
4170 		return B_OK;
4171 	}
4172 
4173 	return syscall_restart_handle_post(status);
4174 }
4175 
4176 
4177 thread_id
4178 _user_load_image(const char* const* userFlatArgs, size_t flatArgsSize,
4179 	int32 argCount, int32 envCount, int32 priority, uint32 flags,
4180 	port_id errorPort, uint32 errorToken)
4181 {
4182 	TRACE(("_user_load_image: argc = %" B_PRId32 "\n", argCount));
4183 
4184 	if (argCount < 1)
4185 		return B_BAD_VALUE;
4186 
4187 	// copy and relocate the flat arguments
4188 	char** flatArgs;
4189 	status_t error = copy_user_process_args(userFlatArgs, flatArgsSize,
4190 		argCount, envCount, flatArgs);
4191 	if (error != B_OK)
4192 		return error;
4193 
4194 	thread_id thread = load_image_internal(flatArgs, _ALIGN(flatArgsSize),
4195 		argCount, envCount, priority, B_CURRENT_TEAM, flags, errorPort,
4196 		errorToken);
4197 
4198 	free(flatArgs);
4199 		// load_image_internal() unset our variable if it took over ownership
4200 
4201 	return thread;
4202 }
4203 
4204 
4205 void
4206 _user_exit_team(status_t returnValue)
4207 {
4208 	Thread* thread = thread_get_current_thread();
4209 	Team* team = thread->team;
4210 
4211 	// set this thread's exit status
4212 	thread->exit.status = returnValue;
4213 
4214 	// set the team exit status
4215 	TeamLocker teamLocker(team);
4216 
4217 	if (!team->exit.initialized) {
4218 		team->exit.reason = CLD_EXITED;
4219 		team->exit.signal = 0;
4220 		team->exit.signaling_user = 0;
4221 		team->exit.status = returnValue;
4222 		team->exit.initialized = true;
4223 	}
4224 
4225 	teamLocker.Unlock();
4226 
4227 	// Stop the thread, if the team is being debugged and that has been
4228 	// requested.
4229 	if ((atomic_get(&team->debug_info.flags) & B_TEAM_DEBUG_PREVENT_EXIT) != 0)
4230 		user_debug_stop_thread();
4231 
4232 	// Send this thread a SIGKILL. This makes sure the thread will not return to
4233 	// userland. The signal handling code forwards the signal to the main
4234 	// thread (if that's not already this one), which will take the team down.
4235 	Signal signal(SIGKILL, SI_USER, B_OK, team->id);
4236 	send_signal_to_thread(thread, signal, 0);
4237 }
4238 
4239 
4240 status_t
4241 _user_kill_team(team_id team)
4242 {
4243 	return kill_team(team);
4244 }
4245 
4246 
4247 status_t
4248 _user_get_team_info(team_id id, team_info* userInfo)
4249 {
4250 	status_t status;
4251 	team_info info;
4252 
4253 	if (!IS_USER_ADDRESS(userInfo))
4254 		return B_BAD_ADDRESS;
4255 
4256 	status = _get_team_info(id, &info, sizeof(team_info));
4257 	if (status == B_OK) {
4258 		if (user_memcpy(userInfo, &info, sizeof(team_info)) < B_OK)
4259 			return B_BAD_ADDRESS;
4260 	}
4261 
4262 	return status;
4263 }
4264 
4265 
4266 status_t
4267 _user_get_next_team_info(int32* userCookie, team_info* userInfo)
4268 {
4269 	status_t status;
4270 	team_info info;
4271 	int32 cookie;
4272 
4273 	if (!IS_USER_ADDRESS(userCookie)
4274 		|| !IS_USER_ADDRESS(userInfo)
4275 		|| user_memcpy(&cookie, userCookie, sizeof(int32)) < B_OK)
4276 		return B_BAD_ADDRESS;
4277 
4278 	status = _get_next_team_info(&cookie, &info, sizeof(team_info));
4279 	if (status != B_OK)
4280 		return status;
4281 
4282 	if (user_memcpy(userCookie, &cookie, sizeof(int32)) < B_OK
4283 		|| user_memcpy(userInfo, &info, sizeof(team_info)) < B_OK)
4284 		return B_BAD_ADDRESS;
4285 
4286 	return status;
4287 }
4288 
4289 
4290 team_id
4291 _user_get_current_team(void)
4292 {
4293 	return team_get_current_team_id();
4294 }
4295 
4296 
4297 status_t
4298 _user_get_team_usage_info(team_id team, int32 who, team_usage_info* userInfo,
4299 	size_t size)
4300 {
4301 	if (size != sizeof(team_usage_info))
4302 		return B_BAD_VALUE;
4303 
4304 	team_usage_info info;
4305 	status_t status = common_get_team_usage_info(team, who, &info,
4306 		B_CHECK_PERMISSION);
4307 
4308 	if (userInfo == NULL || !IS_USER_ADDRESS(userInfo)
4309 		|| user_memcpy(userInfo, &info, size) != B_OK) {
4310 		return B_BAD_ADDRESS;
4311 	}
4312 
4313 	return status;
4314 }
4315 
4316 
4317 status_t
4318 _user_get_extended_team_info(team_id teamID, uint32 flags, void* buffer,
4319 	size_t size, size_t* _sizeNeeded)
4320 {
4321 	// check parameters
4322 	if ((buffer != NULL && !IS_USER_ADDRESS(buffer))
4323 		|| (buffer == NULL && size > 0)
4324 		|| _sizeNeeded == NULL || !IS_USER_ADDRESS(_sizeNeeded)) {
4325 		return B_BAD_ADDRESS;
4326 	}
4327 
4328 	KMessage info;
4329 
4330 	if ((flags & B_TEAM_INFO_BASIC) != 0) {
4331 		// allocate memory for a copy of the needed team data
4332 		struct ExtendedTeamData {
4333 			team_id	id;
4334 			pid_t	group_id;
4335 			pid_t	session_id;
4336 			uid_t	real_uid;
4337 			gid_t	real_gid;
4338 			uid_t	effective_uid;
4339 			gid_t	effective_gid;
4340 			char	name[B_OS_NAME_LENGTH];
4341 		};
4342 
4343 		ExtendedTeamData* teamClone
4344 			= (ExtendedTeamData*)malloc(sizeof(ExtendedTeamData));
4345 			// It would be nicer to use new, but then we'd have to use
4346 			// ObjectDeleter and declare the structure outside of the function
4347 			// due to template parameter restrictions.
4348 		if (teamClone == NULL)
4349 			return B_NO_MEMORY;
4350 		MemoryDeleter teamCloneDeleter(teamClone);
4351 
4352 		io_context* ioContext;
4353 		{
4354 			// get the team structure
4355 			Team* team = Team::GetAndLock(teamID);
4356 			if (team == NULL)
4357 				return B_BAD_TEAM_ID;
4358 			BReference<Team> teamReference(team, true);
4359 			TeamLocker teamLocker(team, true);
4360 
4361 			// copy the data
4362 			teamClone->id = team->id;
4363 			strlcpy(teamClone->name, team->Name(), sizeof(teamClone->name));
4364 			teamClone->group_id = team->group_id;
4365 			teamClone->session_id = team->session_id;
4366 			teamClone->real_uid = team->real_uid;
4367 			teamClone->real_gid = team->real_gid;
4368 			teamClone->effective_uid = team->effective_uid;
4369 			teamClone->effective_gid = team->effective_gid;
4370 
4371 			// also fetch a reference to the I/O context
4372 			ioContext = team->io_context;
4373 			vfs_get_io_context(ioContext);
4374 		}
4375 		CObjectDeleter<io_context> ioContextPutter(ioContext,
4376 			&vfs_put_io_context);
4377 
4378 		// add the basic data to the info message
4379 		if (info.AddInt32("id", teamClone->id) != B_OK
4380 			|| info.AddString("name", teamClone->name) != B_OK
4381 			|| info.AddInt32("process group", teamClone->group_id) != B_OK
4382 			|| info.AddInt32("session", teamClone->session_id) != B_OK
4383 			|| info.AddInt32("uid", teamClone->real_uid) != B_OK
4384 			|| info.AddInt32("gid", teamClone->real_gid) != B_OK
4385 			|| info.AddInt32("euid", teamClone->effective_uid) != B_OK
4386 			|| info.AddInt32("egid", teamClone->effective_gid) != B_OK) {
4387 			return B_NO_MEMORY;
4388 		}
4389 
4390 		// get the current working directory from the I/O context
4391 		dev_t cwdDevice;
4392 		ino_t cwdDirectory;
4393 		{
4394 			MutexLocker ioContextLocker(ioContext->io_mutex);
4395 			vfs_vnode_to_node_ref(ioContext->cwd, &cwdDevice, &cwdDirectory);
4396 		}
4397 
4398 		if (info.AddInt32("cwd device", cwdDevice) != B_OK
4399 			|| info.AddInt64("cwd directory", cwdDirectory) != B_OK) {
4400 			return B_NO_MEMORY;
4401 		}
4402 	}
4403 
4404 	// TODO: Support the other flags!
4405 
4406 	// copy the needed size and, if it fits, the message back to userland
4407 	size_t sizeNeeded = info.ContentSize();
4408 	if (user_memcpy(_sizeNeeded, &sizeNeeded, sizeof(sizeNeeded)) != B_OK)
4409 		return B_BAD_ADDRESS;
4410 
4411 	if (sizeNeeded > size)
4412 		return B_BUFFER_OVERFLOW;
4413 
4414 	if (user_memcpy(buffer, info.Buffer(), sizeNeeded) != B_OK)
4415 		return B_BAD_ADDRESS;
4416 
4417 	return B_OK;
4418 }
4419