xref: /haiku/src/system/kernel/team.cpp (revision c42868a015daa160e093679b2637b1cf9f0b26ba)
1 /*
2  * Copyright 2014, Paweł Dziepak, pdziepak@quarnos.org.
3  * Copyright 2008-2016, Ingo Weinhold, ingo_weinhold@gmx.de.
4  * Copyright 2002-2010, Axel Dörfler, axeld@pinc-software.de.
5  * Distributed under the terms of the MIT License.
6  *
7  * Copyright 2001-2002, Travis Geiselbrecht. All rights reserved.
8  * Distributed under the terms of the NewOS License.
9  */
10 
11 
12 /*!	Team functions */
13 
14 
15 #include <team.h>
16 
17 #include <errno.h>
18 #include <stdio.h>
19 #include <stdlib.h>
20 #include <string.h>
21 #include <sys/wait.h>
22 
23 #include <OS.h>
24 
25 #include <AutoDeleter.h>
26 #include <FindDirectory.h>
27 
28 #include <extended_system_info_defs.h>
29 
30 #include <commpage.h>
31 #include <boot_device.h>
32 #include <elf.h>
33 #include <file_cache.h>
34 #include <find_directory_private.h>
35 #include <fs/KPath.h>
36 #include <heap.h>
37 #include <int.h>
38 #include <kernel.h>
39 #include <kimage.h>
40 #include <kscheduler.h>
41 #include <ksignal.h>
42 #include <Notifications.h>
43 #include <port.h>
44 #include <posix/realtime_sem.h>
45 #include <posix/xsi_semaphore.h>
46 #include <sem.h>
47 #include <syscall_process_info.h>
48 #include <syscall_restart.h>
49 #include <syscalls.h>
50 #include <tls.h>
51 #include <tracing.h>
52 #include <user_runtime.h>
53 #include <user_thread.h>
54 #include <usergroup.h>
55 #include <vfs.h>
56 #include <vm/vm.h>
57 #include <vm/VMAddressSpace.h>
58 #include <util/AutoLock.h>
59 
60 #include "TeamThreadTables.h"
61 
62 
63 //#define TRACE_TEAM
64 #ifdef TRACE_TEAM
65 #	define TRACE(x) dprintf x
66 #else
67 #	define TRACE(x) ;
68 #endif
69 
70 
71 struct team_key {
72 	team_id id;
73 };
74 
75 struct team_arg {
76 	char	*path;
77 	char	**flat_args;
78 	size_t	flat_args_size;
79 	uint32	arg_count;
80 	uint32	env_count;
81 	mode_t	umask;
82 	uint32	flags;
83 	port_id	error_port;
84 	uint32	error_token;
85 };
86 
87 #define TEAM_ARGS_FLAG_NO_ASLR	0x01
88 
89 
90 namespace {
91 
92 
93 class TeamNotificationService : public DefaultNotificationService {
94 public:
95 							TeamNotificationService();
96 
97 			void			Notify(uint32 eventCode, Team* team);
98 };
99 
100 
101 // #pragma mark - TeamTable
102 
103 
104 typedef BKernel::TeamThreadTable<Team> TeamTable;
105 
106 
107 // #pragma mark - ProcessGroupHashDefinition
108 
109 
110 struct ProcessGroupHashDefinition {
111 	typedef pid_t			KeyType;
112 	typedef	ProcessGroup	ValueType;
113 
114 	size_t HashKey(pid_t key) const
115 	{
116 		return key;
117 	}
118 
119 	size_t Hash(ProcessGroup* value) const
120 	{
121 		return HashKey(value->id);
122 	}
123 
124 	bool Compare(pid_t key, ProcessGroup* value) const
125 	{
126 		return value->id == key;
127 	}
128 
129 	ProcessGroup*& GetLink(ProcessGroup* value) const
130 	{
131 		return value->next;
132 	}
133 };
134 
135 typedef BOpenHashTable<ProcessGroupHashDefinition> ProcessGroupHashTable;
136 
137 
138 }	// unnamed namespace
139 
140 
141 // #pragma mark -
142 
143 
144 // the team_id -> Team hash table and the lock protecting it
145 static TeamTable sTeamHash;
146 static spinlock sTeamHashLock = B_SPINLOCK_INITIALIZER;
147 
148 // the pid_t -> ProcessGroup hash table and the lock protecting it
149 static ProcessGroupHashTable sGroupHash;
150 static spinlock sGroupHashLock = B_SPINLOCK_INITIALIZER;
151 
152 static Team* sKernelTeam = NULL;
153 
154 // A list of process groups of children of dying session leaders that need to
155 // be signalled, if they have become orphaned and contain stopped processes.
156 static ProcessGroupList sOrphanedCheckProcessGroups;
157 static mutex sOrphanedCheckLock
158 	= MUTEX_INITIALIZER("orphaned process group check");
159 
160 // some arbitrarily chosen limits -- should probably depend on the available
161 // memory (the limit is not yet enforced)
162 static int32 sMaxTeams = 2048;
163 static int32 sUsedTeams = 1;
164 
165 static TeamNotificationService sNotificationService;
166 
167 static const size_t kTeamUserDataReservedSize	= 128 * B_PAGE_SIZE;
168 static const size_t kTeamUserDataInitialSize	= 4 * B_PAGE_SIZE;
169 
170 
171 // #pragma mark - TeamListIterator
172 
173 
174 TeamListIterator::TeamListIterator()
175 {
176 	// queue the entry
177 	InterruptsSpinLocker locker(sTeamHashLock);
178 	sTeamHash.InsertIteratorEntry(&fEntry);
179 }
180 
181 
182 TeamListIterator::~TeamListIterator()
183 {
184 	// remove the entry
185 	InterruptsSpinLocker locker(sTeamHashLock);
186 	sTeamHash.RemoveIteratorEntry(&fEntry);
187 }
188 
189 
190 Team*
191 TeamListIterator::Next()
192 {
193 	// get the next team -- if there is one, get reference for it
194 	InterruptsSpinLocker locker(sTeamHashLock);
195 	Team* team = sTeamHash.NextElement(&fEntry);
196 	if (team != NULL)
197 		team->AcquireReference();
198 
199 	return team;
200 }
201 
202 
203 // #pragma mark - Tracing
204 
205 
206 #if TEAM_TRACING
207 namespace TeamTracing {
208 
209 class TeamForked : public AbstractTraceEntry {
210 public:
211 	TeamForked(thread_id forkedThread)
212 		:
213 		fForkedThread(forkedThread)
214 	{
215 		Initialized();
216 	}
217 
218 	virtual void AddDump(TraceOutput& out)
219 	{
220 		out.Print("team forked, new thread %" B_PRId32, fForkedThread);
221 	}
222 
223 private:
224 	thread_id			fForkedThread;
225 };
226 
227 
228 class ExecTeam : public AbstractTraceEntry {
229 public:
230 	ExecTeam(const char* path, int32 argCount, const char* const* args,
231 			int32 envCount, const char* const* env)
232 		:
233 		fArgCount(argCount),
234 		fArgs(NULL)
235 	{
236 		fPath = alloc_tracing_buffer_strcpy(path, B_PATH_NAME_LENGTH,
237 			false);
238 
239 		// determine the buffer size we need for the args
240 		size_t argBufferSize = 0;
241 		for (int32 i = 0; i < argCount; i++)
242 			argBufferSize += strlen(args[i]) + 1;
243 
244 		// allocate a buffer
245 		fArgs = (char*)alloc_tracing_buffer(argBufferSize);
246 		if (fArgs) {
247 			char* buffer = fArgs;
248 			for (int32 i = 0; i < argCount; i++) {
249 				size_t argSize = strlen(args[i]) + 1;
250 				memcpy(buffer, args[i], argSize);
251 				buffer += argSize;
252 			}
253 		}
254 
255 		// ignore env for the time being
256 		(void)envCount;
257 		(void)env;
258 
259 		Initialized();
260 	}
261 
262 	virtual void AddDump(TraceOutput& out)
263 	{
264 		out.Print("team exec, \"%p\", args:", fPath);
265 
266 		if (fArgs != NULL) {
267 			char* args = fArgs;
268 			for (int32 i = 0; !out.IsFull() && i < fArgCount; i++) {
269 				out.Print(" \"%s\"", args);
270 				args += strlen(args) + 1;
271 			}
272 		} else
273 			out.Print(" <too long>");
274 	}
275 
276 private:
277 	char*	fPath;
278 	int32	fArgCount;
279 	char*	fArgs;
280 };
281 
282 
283 static const char*
284 job_control_state_name(job_control_state state)
285 {
286 	switch (state) {
287 		case JOB_CONTROL_STATE_NONE:
288 			return "none";
289 		case JOB_CONTROL_STATE_STOPPED:
290 			return "stopped";
291 		case JOB_CONTROL_STATE_CONTINUED:
292 			return "continued";
293 		case JOB_CONTROL_STATE_DEAD:
294 			return "dead";
295 		default:
296 			return "invalid";
297 	}
298 }
299 
300 
301 class SetJobControlState : public AbstractTraceEntry {
302 public:
303 	SetJobControlState(team_id team, job_control_state newState, Signal* signal)
304 		:
305 		fTeam(team),
306 		fNewState(newState),
307 		fSignal(signal != NULL ? signal->Number() : 0)
308 	{
309 		Initialized();
310 	}
311 
312 	virtual void AddDump(TraceOutput& out)
313 	{
314 		out.Print("team set job control state, team %" B_PRId32 ", "
315 			"new state: %s, signal: %d",
316 			fTeam, job_control_state_name(fNewState), fSignal);
317 	}
318 
319 private:
320 	team_id				fTeam;
321 	job_control_state	fNewState;
322 	int					fSignal;
323 };
324 
325 
326 class WaitForChild : public AbstractTraceEntry {
327 public:
328 	WaitForChild(pid_t child, uint32 flags)
329 		:
330 		fChild(child),
331 		fFlags(flags)
332 	{
333 		Initialized();
334 	}
335 
336 	virtual void AddDump(TraceOutput& out)
337 	{
338 		out.Print("team wait for child, child: %" B_PRId32 ", "
339 			"flags: %#" B_PRIx32, fChild, fFlags);
340 	}
341 
342 private:
343 	pid_t	fChild;
344 	uint32	fFlags;
345 };
346 
347 
348 class WaitForChildDone : public AbstractTraceEntry {
349 public:
350 	WaitForChildDone(const job_control_entry& entry)
351 		:
352 		fState(entry.state),
353 		fTeam(entry.thread),
354 		fStatus(entry.status),
355 		fReason(entry.reason),
356 		fSignal(entry.signal)
357 	{
358 		Initialized();
359 	}
360 
361 	WaitForChildDone(status_t error)
362 		:
363 		fTeam(error)
364 	{
365 		Initialized();
366 	}
367 
368 	virtual void AddDump(TraceOutput& out)
369 	{
370 		if (fTeam >= 0) {
371 			out.Print("team wait for child done, team: %" B_PRId32 ", "
372 				"state: %s, status: %#" B_PRIx32 ", reason: %#x, signal: %d\n",
373 				fTeam, job_control_state_name(fState), fStatus, fReason,
374 				fSignal);
375 		} else {
376 			out.Print("team wait for child failed, error: "
377 				"%#" B_PRIx32 ", ", fTeam);
378 		}
379 	}
380 
381 private:
382 	job_control_state	fState;
383 	team_id				fTeam;
384 	status_t			fStatus;
385 	uint16				fReason;
386 	uint16				fSignal;
387 };
388 
389 }	// namespace TeamTracing
390 
391 #	define T(x) new(std::nothrow) TeamTracing::x;
392 #else
393 #	define T(x) ;
394 #endif
395 
396 
397 //	#pragma mark - TeamNotificationService
398 
399 
400 TeamNotificationService::TeamNotificationService()
401 	: DefaultNotificationService("teams")
402 {
403 }
404 
405 
406 void
407 TeamNotificationService::Notify(uint32 eventCode, Team* team)
408 {
409 	char eventBuffer[128];
410 	KMessage event;
411 	event.SetTo(eventBuffer, sizeof(eventBuffer), TEAM_MONITOR);
412 	event.AddInt32("event", eventCode);
413 	event.AddInt32("team", team->id);
414 	event.AddPointer("teamStruct", team);
415 
416 	DefaultNotificationService::Notify(event, eventCode);
417 }
418 
419 
420 //	#pragma mark - Team
421 
422 
423 Team::Team(team_id id, bool kernel)
424 {
425 	// allocate an ID
426 	this->id = id;
427 	visible = true;
428 	serial_number = -1;
429 
430 	// init mutex
431 	if (kernel) {
432 		mutex_init(&fLock, "Team:kernel");
433 	} else {
434 		char lockName[16];
435 		snprintf(lockName, sizeof(lockName), "Team:%" B_PRId32, id);
436 		mutex_init_etc(&fLock, lockName, MUTEX_FLAG_CLONE_NAME);
437 	}
438 
439 	hash_next = siblings_next = children = parent = NULL;
440 	fName[0] = '\0';
441 	fArgs[0] = '\0';
442 	num_threads = 0;
443 	io_context = NULL;
444 	address_space = NULL;
445 	realtime_sem_context = NULL;
446 	xsi_sem_context = NULL;
447 	thread_list = NULL;
448 	main_thread = NULL;
449 	loading_info = NULL;
450 	state = TEAM_STATE_BIRTH;
451 	flags = 0;
452 	death_entry = NULL;
453 	user_data_area = -1;
454 	user_data = 0;
455 	used_user_data = 0;
456 	user_data_size = 0;
457 	free_user_threads = NULL;
458 
459 	commpage_address = NULL;
460 
461 	supplementary_groups = NULL;
462 	supplementary_group_count = 0;
463 
464 	dead_threads_kernel_time = 0;
465 	dead_threads_user_time = 0;
466 	cpu_clock_offset = 0;
467 
468 	// dead threads
469 	list_init(&dead_threads);
470 	dead_threads_count = 0;
471 
472 	// dead children
473 	dead_children.count = 0;
474 	dead_children.kernel_time = 0;
475 	dead_children.user_time = 0;
476 
477 	// job control entry
478 	job_control_entry = new(nothrow) ::job_control_entry;
479 	if (job_control_entry != NULL) {
480 		job_control_entry->state = JOB_CONTROL_STATE_NONE;
481 		job_control_entry->thread = id;
482 		job_control_entry->team = this;
483 	}
484 
485 	// exit status -- setting initialized to false suffices
486 	exit.initialized = false;
487 
488 	list_init(&sem_list);
489 	list_init_etc(&port_list, port_team_link_offset());
490 	list_init(&image_list);
491 	list_init(&watcher_list);
492 
493 	clear_team_debug_info(&debug_info, true);
494 
495 	// init dead/stopped/continued children condition vars
496 	dead_children.condition_variable.Init(&dead_children, "team children");
497 
498 	B_INITIALIZE_SPINLOCK(&time_lock);
499 	B_INITIALIZE_SPINLOCK(&signal_lock);
500 
501 	fQueuedSignalsCounter = new(std::nothrow) BKernel::QueuedSignalsCounter(
502 		kernel ? -1 : MAX_QUEUED_SIGNALS);
503 	memset(fSignalActions, 0, sizeof(fSignalActions));
504 
505 	fUserDefinedTimerCount = 0;
506 
507 	fCoreDumpCondition = NULL;
508 }
509 
510 
511 Team::~Team()
512 {
513 	// get rid of all associated data
514 	PrepareForDeletion();
515 
516 	if (io_context != NULL)
517 		vfs_put_io_context(io_context);
518 	delete_owned_ports(this);
519 	sem_delete_owned_sems(this);
520 
521 	DeleteUserTimers(false);
522 
523 	fPendingSignals.Clear();
524 
525 	if (fQueuedSignalsCounter != NULL)
526 		fQueuedSignalsCounter->ReleaseReference();
527 
528 	while (thread_death_entry* threadDeathEntry
529 			= (thread_death_entry*)list_remove_head_item(&dead_threads)) {
530 		free(threadDeathEntry);
531 	}
532 
533 	while (::job_control_entry* entry = dead_children.entries.RemoveHead())
534 		delete entry;
535 
536 	while (free_user_thread* entry = free_user_threads) {
537 		free_user_threads = entry->next;
538 		free(entry);
539 	}
540 
541 	malloc_referenced_release(supplementary_groups);
542 
543 	delete job_control_entry;
544 		// usually already NULL and transferred to the parent
545 
546 	mutex_destroy(&fLock);
547 }
548 
549 
550 /*static*/ Team*
551 Team::Create(team_id id, const char* name, bool kernel)
552 {
553 	// create the team object
554 	Team* team = new(std::nothrow) Team(id, kernel);
555 	if (team == NULL)
556 		return NULL;
557 	ObjectDeleter<Team> teamDeleter(team);
558 
559 	if (name != NULL)
560 		team->SetName(name);
561 
562 	// check initialization
563 	if (team->job_control_entry == NULL || team->fQueuedSignalsCounter == NULL)
564 		return NULL;
565 
566 	// finish initialization (arch specifics)
567 	if (arch_team_init_team_struct(team, kernel) != B_OK)
568 		return NULL;
569 
570 	if (!kernel) {
571 		status_t error = user_timer_create_team_timers(team);
572 		if (error != B_OK)
573 			return NULL;
574 	}
575 
576 	// everything went fine
577 	return teamDeleter.Detach();
578 }
579 
580 
581 /*!	\brief Returns the team with the given ID.
582 	Returns a reference to the team.
583 	Team and thread spinlock must not be held.
584 */
585 /*static*/ Team*
586 Team::Get(team_id id)
587 {
588 	if (id == B_CURRENT_TEAM) {
589 		Team* team = thread_get_current_thread()->team;
590 		team->AcquireReference();
591 		return team;
592 	}
593 
594 	InterruptsSpinLocker locker(sTeamHashLock);
595 	Team* team = sTeamHash.Lookup(id);
596 	if (team != NULL)
597 		team->AcquireReference();
598 	return team;
599 }
600 
601 
602 /*!	\brief Returns the team with the given ID in a locked state.
603 	Returns a reference to the team.
604 	Team and thread spinlock must not be held.
605 */
606 /*static*/ Team*
607 Team::GetAndLock(team_id id)
608 {
609 	// get the team
610 	Team* team = Get(id);
611 	if (team == NULL)
612 		return NULL;
613 
614 	// lock it
615 	team->Lock();
616 
617 	// only return the team, when it isn't already dying
618 	if (team->state >= TEAM_STATE_SHUTDOWN) {
619 		team->Unlock();
620 		team->ReleaseReference();
621 		return NULL;
622 	}
623 
624 	return team;
625 }
626 
627 
628 /*!	Locks the team and its parent team (if any).
629 	The caller must hold a reference to the team or otherwise make sure that
630 	it won't be deleted.
631 	If the team doesn't have a parent, only the team itself is locked. If the
632 	team's parent is the kernel team and \a dontLockParentIfKernel is \c true,
633 	only the team itself is locked.
634 
635 	\param dontLockParentIfKernel If \c true, the team's parent team is only
636 		locked, if it is not the kernel team.
637 */
638 void
639 Team::LockTeamAndParent(bool dontLockParentIfKernel)
640 {
641 	// The locking order is parent -> child. Since the parent can change as long
642 	// as we don't lock the team, we need to do a trial and error loop.
643 	Lock();
644 
645 	while (true) {
646 		// If the team doesn't have a parent, we're done. Otherwise try to lock
647 		// the parent.This will succeed in most cases, simplifying things.
648 		Team* parent = this->parent;
649 		if (parent == NULL || (dontLockParentIfKernel && parent == sKernelTeam)
650 			|| parent->TryLock()) {
651 			return;
652 		}
653 
654 		// get a temporary reference to the parent, unlock this team, lock the
655 		// parent, and re-lock this team
656 		BReference<Team> parentReference(parent);
657 
658 		Unlock();
659 		parent->Lock();
660 		Lock();
661 
662 		// If the parent hasn't changed in the meantime, we're done.
663 		if (this->parent == parent)
664 			return;
665 
666 		// The parent has changed -- unlock and retry.
667 		parent->Unlock();
668 	}
669 }
670 
671 
672 /*!	Unlocks the team and its parent team (if any).
673 */
674 void
675 Team::UnlockTeamAndParent()
676 {
677 	if (parent != NULL)
678 		parent->Unlock();
679 
680 	Unlock();
681 }
682 
683 
684 /*!	Locks the team, its parent team (if any), and the team's process group.
685 	The caller must hold a reference to the team or otherwise make sure that
686 	it won't be deleted.
687 	If the team doesn't have a parent, only the team itself is locked.
688 */
689 void
690 Team::LockTeamParentAndProcessGroup()
691 {
692 	LockTeamAndProcessGroup();
693 
694 	// We hold the group's and the team's lock, but not the parent team's lock.
695 	// If we have a parent, try to lock it.
696 	if (this->parent == NULL || this->parent->TryLock())
697 		return;
698 
699 	// No success -- unlock the team and let LockTeamAndParent() do the rest of
700 	// the job.
701 	Unlock();
702 	LockTeamAndParent(false);
703 }
704 
705 
706 /*!	Unlocks the team, its parent team (if any), and the team's process group.
707 */
708 void
709 Team::UnlockTeamParentAndProcessGroup()
710 {
711 	group->Unlock();
712 
713 	if (parent != NULL)
714 		parent->Unlock();
715 
716 	Unlock();
717 }
718 
719 
720 void
721 Team::LockTeamAndProcessGroup()
722 {
723 	// The locking order is process group -> child. Since the process group can
724 	// change as long as we don't lock the team, we need to do a trial and error
725 	// loop.
726 	Lock();
727 
728 	while (true) {
729 		// Try to lock the group. This will succeed in most cases, simplifying
730 		// things.
731 		ProcessGroup* group = this->group;
732 		if (group->TryLock())
733 			return;
734 
735 		// get a temporary reference to the group, unlock this team, lock the
736 		// group, and re-lock this team
737 		BReference<ProcessGroup> groupReference(group);
738 
739 		Unlock();
740 		group->Lock();
741 		Lock();
742 
743 		// If the group hasn't changed in the meantime, we're done.
744 		if (this->group == group)
745 			return;
746 
747 		// The group has changed -- unlock and retry.
748 		group->Unlock();
749 	}
750 }
751 
752 
753 void
754 Team::UnlockTeamAndProcessGroup()
755 {
756 	group->Unlock();
757 	Unlock();
758 }
759 
760 
761 void
762 Team::SetName(const char* name)
763 {
764 	if (const char* lastSlash = strrchr(name, '/'))
765 		name = lastSlash + 1;
766 
767 	strlcpy(fName, name, B_OS_NAME_LENGTH);
768 }
769 
770 
771 void
772 Team::SetArgs(const char* args)
773 {
774 	strlcpy(fArgs, args, sizeof(fArgs));
775 }
776 
777 
778 void
779 Team::SetArgs(const char* path, const char* const* otherArgs, int otherArgCount)
780 {
781 	fArgs[0] = '\0';
782 	strlcpy(fArgs, path, sizeof(fArgs));
783 	for (int i = 0; i < otherArgCount; i++) {
784 		strlcat(fArgs, " ", sizeof(fArgs));
785 		strlcat(fArgs, otherArgs[i], sizeof(fArgs));
786 	}
787 }
788 
789 
790 void
791 Team::ResetSignalsOnExec()
792 {
793 	// We are supposed to keep pending signals. Signal actions shall be reset
794 	// partially: SIG_IGN and SIG_DFL dispositions shall be kept as they are
795 	// (for SIGCHLD it's implementation-defined). Others shall be reset to
796 	// SIG_DFL. SA_ONSTACK shall be cleared. There's no mention of the other
797 	// flags, but since there aren't any handlers, they make little sense, so
798 	// we clear them.
799 
800 	for (uint32 i = 1; i <= MAX_SIGNAL_NUMBER; i++) {
801 		struct sigaction& action = SignalActionFor(i);
802 		if (action.sa_handler != SIG_IGN && action.sa_handler != SIG_DFL)
803 			action.sa_handler = SIG_DFL;
804 
805 		action.sa_mask = 0;
806 		action.sa_flags = 0;
807 		action.sa_userdata = NULL;
808 	}
809 }
810 
811 
812 void
813 Team::InheritSignalActions(Team* parent)
814 {
815 	memcpy(fSignalActions, parent->fSignalActions, sizeof(fSignalActions));
816 }
817 
818 
819 /*!	Adds the given user timer to the team and, if user-defined, assigns it an
820 	ID.
821 
822 	The caller must hold the team's lock.
823 
824 	\param timer The timer to be added. If it doesn't have an ID yet, it is
825 		considered user-defined and will be assigned an ID.
826 	\return \c B_OK, if the timer was added successfully, another error code
827 		otherwise.
828 */
829 status_t
830 Team::AddUserTimer(UserTimer* timer)
831 {
832 	// don't allow addition of timers when already shutting the team down
833 	if (state >= TEAM_STATE_SHUTDOWN)
834 		return B_BAD_TEAM_ID;
835 
836 	// If the timer is user-defined, check timer limit and increment
837 	// user-defined count.
838 	if (timer->ID() < 0 && !CheckAddUserDefinedTimer())
839 		return EAGAIN;
840 
841 	fUserTimers.AddTimer(timer);
842 
843 	return B_OK;
844 }
845 
846 
847 /*!	Removes the given user timer from the team.
848 
849 	The caller must hold the team's lock.
850 
851 	\param timer The timer to be removed.
852 
853 */
854 void
855 Team::RemoveUserTimer(UserTimer* timer)
856 {
857 	fUserTimers.RemoveTimer(timer);
858 
859 	if (timer->ID() >= USER_TIMER_FIRST_USER_DEFINED_ID)
860 		UserDefinedTimersRemoved(1);
861 }
862 
863 
864 /*!	Deletes all (or all user-defined) user timers of the team.
865 
866 	Timer's belonging to the team's threads are not affected.
867 	The caller must hold the team's lock.
868 
869 	\param userDefinedOnly If \c true, only the user-defined timers are deleted,
870 		otherwise all timers are deleted.
871 */
872 void
873 Team::DeleteUserTimers(bool userDefinedOnly)
874 {
875 	int32 count = fUserTimers.DeleteTimers(userDefinedOnly);
876 	UserDefinedTimersRemoved(count);
877 }
878 
879 
880 /*!	If not at the limit yet, increments the team's user-defined timer count.
881 	\return \c true, if the limit wasn't reached yet, \c false otherwise.
882 */
883 bool
884 Team::CheckAddUserDefinedTimer()
885 {
886 	int32 oldCount = atomic_add(&fUserDefinedTimerCount, 1);
887 	if (oldCount >= MAX_USER_TIMERS_PER_TEAM) {
888 		atomic_add(&fUserDefinedTimerCount, -1);
889 		return false;
890 	}
891 
892 	return true;
893 }
894 
895 
896 /*!	Subtracts the given count for the team's user-defined timer count.
897 	\param count The count to subtract.
898 */
899 void
900 Team::UserDefinedTimersRemoved(int32 count)
901 {
902 	atomic_add(&fUserDefinedTimerCount, -count);
903 }
904 
905 
906 void
907 Team::DeactivateCPUTimeUserTimers()
908 {
909 	while (TeamTimeUserTimer* timer = fCPUTimeUserTimers.Head())
910 		timer->Deactivate();
911 
912 	while (TeamUserTimeUserTimer* timer = fUserTimeUserTimers.Head())
913 		timer->Deactivate();
914 }
915 
916 
917 /*!	Returns the team's current total CPU time (kernel + user + offset).
918 
919 	The caller must hold \c time_lock.
920 
921 	\param ignoreCurrentRun If \c true and the current thread is one team's
922 		threads, don't add the time since the last time \c last_time was
923 		updated. Should be used in "thread unscheduled" scheduler callbacks,
924 		since although the thread is still running at that time, its time has
925 		already been stopped.
926 	\return The team's current total CPU time.
927 */
928 bigtime_t
929 Team::CPUTime(bool ignoreCurrentRun, Thread* lockedThread) const
930 {
931 	bigtime_t time = cpu_clock_offset + dead_threads_kernel_time
932 		+ dead_threads_user_time;
933 
934 	Thread* currentThread = thread_get_current_thread();
935 	bigtime_t now = system_time();
936 
937 	for (Thread* thread = thread_list; thread != NULL;
938 			thread = thread->team_next) {
939 		bool alreadyLocked = thread == lockedThread;
940 		SpinLocker threadTimeLocker(thread->time_lock, alreadyLocked);
941 		time += thread->kernel_time + thread->user_time;
942 
943 		if (thread->last_time != 0) {
944 			if (!ignoreCurrentRun || thread != currentThread)
945 				time += now - thread->last_time;
946 		}
947 
948 		if (alreadyLocked)
949 			threadTimeLocker.Detach();
950 	}
951 
952 	return time;
953 }
954 
955 
956 /*!	Returns the team's current user CPU time.
957 
958 	The caller must hold \c time_lock.
959 
960 	\return The team's current user CPU time.
961 */
962 bigtime_t
963 Team::UserCPUTime() const
964 {
965 	bigtime_t time = dead_threads_user_time;
966 
967 	bigtime_t now = system_time();
968 
969 	for (Thread* thread = thread_list; thread != NULL;
970 			thread = thread->team_next) {
971 		SpinLocker threadTimeLocker(thread->time_lock);
972 		time += thread->user_time;
973 
974 		if (thread->last_time != 0 && !thread->in_kernel)
975 			time += now - thread->last_time;
976 	}
977 
978 	return time;
979 }
980 
981 
982 //	#pragma mark - ProcessGroup
983 
984 
985 ProcessGroup::ProcessGroup(pid_t id)
986 	:
987 	id(id),
988 	teams(NULL),
989 	fSession(NULL),
990 	fInOrphanedCheckList(false)
991 {
992 	char lockName[32];
993 	snprintf(lockName, sizeof(lockName), "Group:%" B_PRId32, id);
994 	mutex_init_etc(&fLock, lockName, MUTEX_FLAG_CLONE_NAME);
995 }
996 
997 
998 ProcessGroup::~ProcessGroup()
999 {
1000 	TRACE(("ProcessGroup::~ProcessGroup(): id = %" B_PRId32 "\n", id));
1001 
1002 	// If the group is in the orphaned check list, remove it.
1003 	MutexLocker orphanedCheckLocker(sOrphanedCheckLock);
1004 
1005 	if (fInOrphanedCheckList)
1006 		sOrphanedCheckProcessGroups.Remove(this);
1007 
1008 	orphanedCheckLocker.Unlock();
1009 
1010 	// remove group from the hash table and from the session
1011 	if (fSession != NULL) {
1012 		InterruptsSpinLocker groupHashLocker(sGroupHashLock);
1013 		sGroupHash.RemoveUnchecked(this);
1014 		groupHashLocker.Unlock();
1015 
1016 		fSession->ReleaseReference();
1017 	}
1018 
1019 	mutex_destroy(&fLock);
1020 }
1021 
1022 
1023 /*static*/ ProcessGroup*
1024 ProcessGroup::Get(pid_t id)
1025 {
1026 	InterruptsSpinLocker groupHashLocker(sGroupHashLock);
1027 	ProcessGroup* group = sGroupHash.Lookup(id);
1028 	if (group != NULL)
1029 		group->AcquireReference();
1030 	return group;
1031 }
1032 
1033 
1034 /*!	Adds the group the given session and makes it publicly accessible.
1035 	The caller must not hold the process group hash lock.
1036 */
1037 void
1038 ProcessGroup::Publish(ProcessSession* session)
1039 {
1040 	InterruptsSpinLocker groupHashLocker(sGroupHashLock);
1041 	PublishLocked(session);
1042 }
1043 
1044 
1045 /*!	Adds the group to the given session and makes it publicly accessible.
1046 	The caller must hold the process group hash lock.
1047 */
1048 void
1049 ProcessGroup::PublishLocked(ProcessSession* session)
1050 {
1051 	ASSERT(sGroupHash.Lookup(this->id) == NULL);
1052 
1053 	fSession = session;
1054 	fSession->AcquireReference();
1055 
1056 	sGroupHash.InsertUnchecked(this);
1057 }
1058 
1059 
1060 /*!	Checks whether the process group is orphaned.
1061 	The caller must hold the group's lock.
1062 	\return \c true, if the group is orphaned, \c false otherwise.
1063 */
1064 bool
1065 ProcessGroup::IsOrphaned() const
1066 {
1067 	// Orphaned Process Group: "A process group in which the parent of every
1068 	// member is either itself a member of the group or is not a member of the
1069 	// group's session." (Open Group Base Specs Issue 7)
1070 	bool orphaned = true;
1071 
1072 	Team* team = teams;
1073 	while (orphaned && team != NULL) {
1074 		team->LockTeamAndParent(false);
1075 
1076 		Team* parent = team->parent;
1077 		if (parent != NULL && parent->group_id != id
1078 			&& parent->session_id == fSession->id) {
1079 			orphaned = false;
1080 		}
1081 
1082 		team->UnlockTeamAndParent();
1083 
1084 		team = team->group_next;
1085 	}
1086 
1087 	return orphaned;
1088 }
1089 
1090 
1091 void
1092 ProcessGroup::ScheduleOrphanedCheck()
1093 {
1094 	MutexLocker orphanedCheckLocker(sOrphanedCheckLock);
1095 
1096 	if (!fInOrphanedCheckList) {
1097 		sOrphanedCheckProcessGroups.Add(this);
1098 		fInOrphanedCheckList = true;
1099 	}
1100 }
1101 
1102 
1103 void
1104 ProcessGroup::UnsetOrphanedCheck()
1105 {
1106 	fInOrphanedCheckList = false;
1107 }
1108 
1109 
1110 //	#pragma mark - ProcessSession
1111 
1112 
1113 ProcessSession::ProcessSession(pid_t id)
1114 	:
1115 	id(id),
1116 	controlling_tty(-1),
1117 	foreground_group(-1)
1118 {
1119 	char lockName[32];
1120 	snprintf(lockName, sizeof(lockName), "Session:%" B_PRId32, id);
1121 	mutex_init_etc(&fLock, lockName, MUTEX_FLAG_CLONE_NAME);
1122 }
1123 
1124 
1125 ProcessSession::~ProcessSession()
1126 {
1127 	mutex_destroy(&fLock);
1128 }
1129 
1130 
1131 //	#pragma mark - KDL functions
1132 
1133 
1134 static void
1135 _dump_team_info(Team* team)
1136 {
1137 	kprintf("TEAM: %p\n", team);
1138 	kprintf("id:               %" B_PRId32 " (%#" B_PRIx32 ")\n", team->id,
1139 		team->id);
1140 	kprintf("serial_number:    %" B_PRId64 "\n", team->serial_number);
1141 	kprintf("name:             '%s'\n", team->Name());
1142 	kprintf("args:             '%s'\n", team->Args());
1143 	kprintf("hash_next:        %p\n", team->hash_next);
1144 	kprintf("parent:           %p", team->parent);
1145 	if (team->parent != NULL) {
1146 		kprintf(" (id = %" B_PRId32 ")\n", team->parent->id);
1147 	} else
1148 		kprintf("\n");
1149 
1150 	kprintf("children:         %p\n", team->children);
1151 	kprintf("num_threads:      %d\n", team->num_threads);
1152 	kprintf("state:            %d\n", team->state);
1153 	kprintf("flags:            0x%" B_PRIx32 "\n", team->flags);
1154 	kprintf("io_context:       %p\n", team->io_context);
1155 	if (team->address_space)
1156 		kprintf("address_space:    %p\n", team->address_space);
1157 	kprintf("user data:        %p (area %" B_PRId32 ")\n",
1158 		(void*)team->user_data, team->user_data_area);
1159 	kprintf("free user thread: %p\n", team->free_user_threads);
1160 	kprintf("main_thread:      %p\n", team->main_thread);
1161 	kprintf("thread_list:      %p\n", team->thread_list);
1162 	kprintf("group_id:         %" B_PRId32 "\n", team->group_id);
1163 	kprintf("session_id:       %" B_PRId32 "\n", team->session_id);
1164 }
1165 
1166 
1167 static int
1168 dump_team_info(int argc, char** argv)
1169 {
1170 	ulong arg;
1171 	bool found = false;
1172 
1173 	if (argc < 2) {
1174 		Thread* thread = thread_get_current_thread();
1175 		if (thread != NULL && thread->team != NULL)
1176 			_dump_team_info(thread->team);
1177 		else
1178 			kprintf("No current team!\n");
1179 		return 0;
1180 	}
1181 
1182 	arg = strtoul(argv[1], NULL, 0);
1183 	if (IS_KERNEL_ADDRESS(arg)) {
1184 		// semi-hack
1185 		_dump_team_info((Team*)arg);
1186 		return 0;
1187 	}
1188 
1189 	// walk through the thread list, trying to match name or id
1190 	for (TeamTable::Iterator it = sTeamHash.GetIterator();
1191 		Team* team = it.Next();) {
1192 		if ((team->Name() && strcmp(argv[1], team->Name()) == 0)
1193 			|| team->id == (team_id)arg) {
1194 			_dump_team_info(team);
1195 			found = true;
1196 			break;
1197 		}
1198 	}
1199 
1200 	if (!found)
1201 		kprintf("team \"%s\" (%" B_PRId32 ") doesn't exist!\n", argv[1], (team_id)arg);
1202 	return 0;
1203 }
1204 
1205 
1206 static int
1207 dump_teams(int argc, char** argv)
1208 {
1209 	kprintf("%-*s       id  %-*s    name\n", B_PRINTF_POINTER_WIDTH, "team",
1210 		B_PRINTF_POINTER_WIDTH, "parent");
1211 
1212 	for (TeamTable::Iterator it = sTeamHash.GetIterator();
1213 		Team* team = it.Next();) {
1214 		kprintf("%p%7" B_PRId32 "  %p  %s\n", team, team->id, team->parent, team->Name());
1215 	}
1216 
1217 	return 0;
1218 }
1219 
1220 
1221 //	#pragma mark - Private functions
1222 
1223 
1224 /*!	Inserts team \a team into the child list of team \a parent.
1225 
1226 	The caller must hold the lock of both \a parent and \a team.
1227 
1228 	\param parent The parent team.
1229 	\param team The team to be inserted into \a parent's child list.
1230 */
1231 static void
1232 insert_team_into_parent(Team* parent, Team* team)
1233 {
1234 	ASSERT(parent != NULL);
1235 
1236 	team->siblings_next = parent->children;
1237 	parent->children = team;
1238 	team->parent = parent;
1239 }
1240 
1241 
1242 /*!	Removes team \a team from the child list of team \a parent.
1243 
1244 	The caller must hold the lock of both \a parent and \a team.
1245 
1246 	\param parent The parent team.
1247 	\param team The team to be removed from \a parent's child list.
1248 */
1249 static void
1250 remove_team_from_parent(Team* parent, Team* team)
1251 {
1252 	Team* child;
1253 	Team* last = NULL;
1254 
1255 	for (child = parent->children; child != NULL;
1256 			child = child->siblings_next) {
1257 		if (child == team) {
1258 			if (last == NULL)
1259 				parent->children = child->siblings_next;
1260 			else
1261 				last->siblings_next = child->siblings_next;
1262 
1263 			team->parent = NULL;
1264 			break;
1265 		}
1266 		last = child;
1267 	}
1268 }
1269 
1270 
1271 /*!	Returns whether the given team is a session leader.
1272 	The caller must hold the team's lock or its process group's lock.
1273 */
1274 static bool
1275 is_session_leader(Team* team)
1276 {
1277 	return team->session_id == team->id;
1278 }
1279 
1280 
1281 /*!	Returns whether the given team is a process group leader.
1282 	The caller must hold the team's lock or its process group's lock.
1283 */
1284 static bool
1285 is_process_group_leader(Team* team)
1286 {
1287 	return team->group_id == team->id;
1288 }
1289 
1290 
1291 /*!	Inserts the given team into the given process group.
1292 	The caller must hold the process group's lock, the team's lock, and the
1293 	team's parent's lock.
1294 */
1295 static void
1296 insert_team_into_group(ProcessGroup* group, Team* team)
1297 {
1298 	team->group = group;
1299 	team->group_id = group->id;
1300 	team->session_id = group->Session()->id;
1301 
1302 	team->group_next = group->teams;
1303 	group->teams = team;
1304 	group->AcquireReference();
1305 }
1306 
1307 
1308 /*!	Removes the given team from its process group.
1309 
1310 	The caller must hold the process group's lock, the team's lock, and the
1311 	team's parent's lock. Interrupts must be enabled.
1312 
1313 	\param team The team that'll be removed from its process group.
1314 */
1315 static void
1316 remove_team_from_group(Team* team)
1317 {
1318 	ProcessGroup* group = team->group;
1319 	Team* current;
1320 	Team* last = NULL;
1321 
1322 	// the team must be in a process group to let this function have any effect
1323 	if  (group == NULL)
1324 		return;
1325 
1326 	for (current = group->teams; current != NULL;
1327 			current = current->group_next) {
1328 		if (current == team) {
1329 			if (last == NULL)
1330 				group->teams = current->group_next;
1331 			else
1332 				last->group_next = current->group_next;
1333 
1334 			team->group = NULL;
1335 			break;
1336 		}
1337 		last = current;
1338 	}
1339 
1340 	team->group = NULL;
1341 	team->group_next = NULL;
1342 
1343 	group->ReleaseReference();
1344 }
1345 
1346 
1347 static status_t
1348 create_team_user_data(Team* team, void* exactAddress = NULL)
1349 {
1350 	void* address;
1351 	uint32 addressSpec;
1352 
1353 	if (exactAddress != NULL) {
1354 		address = exactAddress;
1355 		addressSpec = B_EXACT_ADDRESS;
1356 	} else {
1357 		address = (void*)KERNEL_USER_DATA_BASE;
1358 		addressSpec = B_RANDOMIZED_BASE_ADDRESS;
1359 	}
1360 
1361 	status_t result = vm_reserve_address_range(team->id, &address, addressSpec,
1362 		kTeamUserDataReservedSize, RESERVED_AVOID_BASE);
1363 
1364 	virtual_address_restrictions virtualRestrictions = {};
1365 	if (result == B_OK || exactAddress != NULL) {
1366 		if (exactAddress != NULL)
1367 			virtualRestrictions.address = exactAddress;
1368 		else
1369 			virtualRestrictions.address = address;
1370 		virtualRestrictions.address_specification = B_EXACT_ADDRESS;
1371 	} else {
1372 		virtualRestrictions.address = (void*)KERNEL_USER_DATA_BASE;
1373 		virtualRestrictions.address_specification = B_RANDOMIZED_BASE_ADDRESS;
1374 	}
1375 
1376 	physical_address_restrictions physicalRestrictions = {};
1377 	team->user_data_area = create_area_etc(team->id, "user area",
1378 		kTeamUserDataInitialSize, B_FULL_LOCK, B_READ_AREA | B_WRITE_AREA, 0, 0,
1379 		&virtualRestrictions, &physicalRestrictions, &address);
1380 	if (team->user_data_area < 0)
1381 		return team->user_data_area;
1382 
1383 	team->user_data = (addr_t)address;
1384 	team->used_user_data = 0;
1385 	team->user_data_size = kTeamUserDataInitialSize;
1386 	team->free_user_threads = NULL;
1387 
1388 	return B_OK;
1389 }
1390 
1391 
1392 static void
1393 delete_team_user_data(Team* team)
1394 {
1395 	if (team->user_data_area >= 0) {
1396 		vm_delete_area(team->id, team->user_data_area, true);
1397 		vm_unreserve_address_range(team->id, (void*)team->user_data,
1398 			kTeamUserDataReservedSize);
1399 
1400 		team->user_data = 0;
1401 		team->used_user_data = 0;
1402 		team->user_data_size = 0;
1403 		team->user_data_area = -1;
1404 		while (free_user_thread* entry = team->free_user_threads) {
1405 			team->free_user_threads = entry->next;
1406 			free(entry);
1407 		}
1408 	}
1409 }
1410 
1411 
1412 static status_t
1413 copy_user_process_args(const char* const* userFlatArgs, size_t flatArgsSize,
1414 	int32 argCount, int32 envCount, char**& _flatArgs)
1415 {
1416 	if (argCount < 0 || envCount < 0)
1417 		return B_BAD_VALUE;
1418 
1419 	if (flatArgsSize > MAX_PROCESS_ARGS_SIZE)
1420 		return B_TOO_MANY_ARGS;
1421 	if ((argCount + envCount + 2) * sizeof(char*) > flatArgsSize)
1422 		return B_BAD_VALUE;
1423 
1424 	if (!IS_USER_ADDRESS(userFlatArgs))
1425 		return B_BAD_ADDRESS;
1426 
1427 	// allocate kernel memory
1428 	char** flatArgs = (char**)malloc(_ALIGN(flatArgsSize));
1429 	if (flatArgs == NULL)
1430 		return B_NO_MEMORY;
1431 
1432 	if (user_memcpy(flatArgs, userFlatArgs, flatArgsSize) != B_OK) {
1433 		free(flatArgs);
1434 		return B_BAD_ADDRESS;
1435 	}
1436 
1437 	// check and relocate the array
1438 	status_t error = B_OK;
1439 	const char* stringBase = (char*)flatArgs + argCount + envCount + 2;
1440 	const char* stringEnd = (char*)flatArgs + flatArgsSize;
1441 	for (int32 i = 0; i < argCount + envCount + 2; i++) {
1442 		if (i == argCount || i == argCount + envCount + 1) {
1443 			// check array null termination
1444 			if (flatArgs[i] != NULL) {
1445 				error = B_BAD_VALUE;
1446 				break;
1447 			}
1448 		} else {
1449 			// check string
1450 			char* arg = (char*)flatArgs + (flatArgs[i] - (char*)userFlatArgs);
1451 			size_t maxLen = stringEnd - arg;
1452 			if (arg < stringBase || arg >= stringEnd
1453 					|| strnlen(arg, maxLen) == maxLen) {
1454 				error = B_BAD_VALUE;
1455 				break;
1456 			}
1457 
1458 			flatArgs[i] = arg;
1459 		}
1460 	}
1461 
1462 	if (error == B_OK)
1463 		_flatArgs = flatArgs;
1464 	else
1465 		free(flatArgs);
1466 
1467 	return error;
1468 }
1469 
1470 
1471 static void
1472 free_team_arg(struct team_arg* teamArg)
1473 {
1474 	if (teamArg != NULL) {
1475 		free(teamArg->flat_args);
1476 		free(teamArg->path);
1477 		free(teamArg);
1478 	}
1479 }
1480 
1481 
1482 static status_t
1483 create_team_arg(struct team_arg** _teamArg, const char* path, char** flatArgs,
1484 	size_t flatArgsSize, int32 argCount, int32 envCount, mode_t umask,
1485 	port_id port, uint32 token)
1486 {
1487 	struct team_arg* teamArg = (struct team_arg*)malloc(sizeof(team_arg));
1488 	if (teamArg == NULL)
1489 		return B_NO_MEMORY;
1490 
1491 	teamArg->path = strdup(path);
1492 	if (teamArg->path == NULL) {
1493 		free(teamArg);
1494 		return B_NO_MEMORY;
1495 	}
1496 
1497 	// copy the args over
1498 	teamArg->flat_args = flatArgs;
1499 	teamArg->flat_args_size = flatArgsSize;
1500 	teamArg->arg_count = argCount;
1501 	teamArg->env_count = envCount;
1502 	teamArg->flags = 0;
1503 	teamArg->umask = umask;
1504 	teamArg->error_port = port;
1505 	teamArg->error_token = token;
1506 
1507 	// determine the flags from the environment
1508 	const char* const* env = flatArgs + argCount + 1;
1509 	for (int32 i = 0; i < envCount; i++) {
1510 		if (strcmp(env[i], "DISABLE_ASLR=1") == 0) {
1511 			teamArg->flags |= TEAM_ARGS_FLAG_NO_ASLR;
1512 			break;
1513 		}
1514 	}
1515 
1516 	*_teamArg = teamArg;
1517 	return B_OK;
1518 }
1519 
1520 
1521 static status_t
1522 team_create_thread_start_internal(void* args)
1523 {
1524 	status_t err;
1525 	Thread* thread;
1526 	Team* team;
1527 	struct team_arg* teamArgs = (struct team_arg*)args;
1528 	const char* path;
1529 	addr_t entry;
1530 	char** userArgs;
1531 	char** userEnv;
1532 	struct user_space_program_args* programArgs;
1533 	uint32 argCount, envCount;
1534 
1535 	thread = thread_get_current_thread();
1536 	team = thread->team;
1537 	cache_node_launched(teamArgs->arg_count, teamArgs->flat_args);
1538 
1539 	TRACE(("team_create_thread_start: entry thread %" B_PRId32 "\n",
1540 		thread->id));
1541 
1542 	// Main stack area layout is currently as follows (starting from 0):
1543 	//
1544 	// size								| usage
1545 	// ---------------------------------+--------------------------------
1546 	// USER_MAIN_THREAD_STACK_SIZE		| actual stack
1547 	// TLS_SIZE							| TLS data
1548 	// sizeof(user_space_program_args)	| argument structure for the runtime
1549 	//									| loader
1550 	// flat arguments size				| flat process arguments and environment
1551 
1552 	// TODO: ENV_SIZE is a) limited, and b) not used after libroot copied it to
1553 	// the heap
1554 	// TODO: we could reserve the whole USER_STACK_REGION upfront...
1555 
1556 	argCount = teamArgs->arg_count;
1557 	envCount = teamArgs->env_count;
1558 
1559 	programArgs = (struct user_space_program_args*)(thread->user_stack_base
1560 		+ thread->user_stack_size + TLS_SIZE);
1561 
1562 	userArgs = (char**)(programArgs + 1);
1563 	userEnv = userArgs + argCount + 1;
1564 	path = teamArgs->path;
1565 
1566 	if (user_strlcpy(programArgs->program_path, path,
1567 				sizeof(programArgs->program_path)) < B_OK
1568 		|| user_memcpy(&programArgs->arg_count, &argCount, sizeof(int32)) < B_OK
1569 		|| user_memcpy(&programArgs->args, &userArgs, sizeof(char**)) < B_OK
1570 		|| user_memcpy(&programArgs->env_count, &envCount, sizeof(int32)) < B_OK
1571 		|| user_memcpy(&programArgs->env, &userEnv, sizeof(char**)) < B_OK
1572 		|| user_memcpy(&programArgs->error_port, &teamArgs->error_port,
1573 				sizeof(port_id)) < B_OK
1574 		|| user_memcpy(&programArgs->error_token, &teamArgs->error_token,
1575 				sizeof(uint32)) < B_OK
1576 		|| user_memcpy(&programArgs->umask, &teamArgs->umask, sizeof(mode_t)) < B_OK
1577 		|| user_memcpy(userArgs, teamArgs->flat_args,
1578 				teamArgs->flat_args_size) < B_OK) {
1579 		// the team deletion process will clean this mess
1580 		free_team_arg(teamArgs);
1581 		return B_BAD_ADDRESS;
1582 	}
1583 
1584 	TRACE(("team_create_thread_start: loading elf binary '%s'\n", path));
1585 
1586 	// set team args and update state
1587 	team->Lock();
1588 	team->SetArgs(path, teamArgs->flat_args + 1, argCount - 1);
1589 	team->state = TEAM_STATE_NORMAL;
1590 	team->Unlock();
1591 
1592 	free_team_arg(teamArgs);
1593 		// the arguments are already on the user stack, we no longer need
1594 		// them in this form
1595 
1596 	// Clone commpage area
1597 	area_id commPageArea = clone_commpage_area(team->id,
1598 		&team->commpage_address);
1599 	if (commPageArea  < B_OK) {
1600 		TRACE(("team_create_thread_start: clone_commpage_area() failed: %s\n",
1601 			strerror(commPageArea)));
1602 		return commPageArea;
1603 	}
1604 
1605 	// Register commpage image
1606 	image_id commPageImage = get_commpage_image();
1607 	extended_image_info imageInfo;
1608 	err = get_image_info(commPageImage, &imageInfo.basic_info);
1609 	if (err != B_OK) {
1610 		TRACE(("team_create_thread_start: get_image_info() failed: %s\n",
1611 			strerror(err)));
1612 		return err;
1613 	}
1614 	imageInfo.basic_info.text = team->commpage_address;
1615 	imageInfo.text_delta = (ssize_t)(addr_t)team->commpage_address;
1616 	imageInfo.symbol_table = NULL;
1617 	imageInfo.symbol_hash = NULL;
1618 	imageInfo.string_table = NULL;
1619 	image_id image = register_image(team, &imageInfo, sizeof(imageInfo));
1620 	if (image < 0) {
1621 		TRACE(("team_create_thread_start: register_image() failed: %s\n",
1622 			strerror(image)));
1623 		return image;
1624 	}
1625 
1626 	// NOTE: Normally arch_thread_enter_userspace() never returns, that is
1627 	// automatic variables with function scope will never be destroyed.
1628 	{
1629 		// find runtime_loader path
1630 		KPath runtimeLoaderPath;
1631 		err = __find_directory(B_SYSTEM_DIRECTORY, gBootDevice, false,
1632 			runtimeLoaderPath.LockBuffer(), runtimeLoaderPath.BufferSize());
1633 		if (err < B_OK) {
1634 			TRACE(("team_create_thread_start: find_directory() failed: %s\n",
1635 				strerror(err)));
1636 			return err;
1637 		}
1638 		runtimeLoaderPath.UnlockBuffer();
1639 		err = runtimeLoaderPath.Append("runtime_loader");
1640 
1641 		if (err == B_OK) {
1642 			err = elf_load_user_image(runtimeLoaderPath.Path(), team, 0,
1643 				&entry);
1644 		}
1645 	}
1646 
1647 	if (err < B_OK) {
1648 		// Luckily, we don't have to clean up the mess we created - that's
1649 		// done for us by the normal team deletion process
1650 		TRACE(("team_create_thread_start: elf_load_user_image() failed: "
1651 			"%s\n", strerror(err)));
1652 		return err;
1653 	}
1654 
1655 	TRACE(("team_create_thread_start: loaded elf. entry = %#lx\n", entry));
1656 
1657 	// enter userspace -- returns only in case of error
1658 	return thread_enter_userspace_new_team(thread, (addr_t)entry,
1659 		programArgs, team->commpage_address);
1660 }
1661 
1662 
1663 static status_t
1664 team_create_thread_start(void* args)
1665 {
1666 	team_create_thread_start_internal(args);
1667 	team_init_exit_info_on_error(thread_get_current_thread()->team);
1668 	thread_exit();
1669 		// does not return
1670 	return B_OK;
1671 }
1672 
1673 
1674 static thread_id
1675 load_image_internal(char**& _flatArgs, size_t flatArgsSize, int32 argCount,
1676 	int32 envCount, int32 priority, team_id parentID, uint32 flags,
1677 	port_id errorPort, uint32 errorToken)
1678 {
1679 	char** flatArgs = _flatArgs;
1680 	thread_id thread;
1681 	status_t status;
1682 	struct team_arg* teamArgs;
1683 	struct team_loading_info loadingInfo;
1684 	io_context* parentIOContext = NULL;
1685 	team_id teamID;
1686 	bool teamLimitReached = false;
1687 
1688 	if (flatArgs == NULL || argCount == 0)
1689 		return B_BAD_VALUE;
1690 
1691 	const char* path = flatArgs[0];
1692 
1693 	TRACE(("load_image_internal: name '%s', args = %p, argCount = %" B_PRId32
1694 		"\n", path, flatArgs, argCount));
1695 
1696 	// cut the path from the main thread name
1697 	const char* threadName = strrchr(path, '/');
1698 	if (threadName != NULL)
1699 		threadName++;
1700 	else
1701 		threadName = path;
1702 
1703 	// create the main thread object
1704 	Thread* mainThread;
1705 	status = Thread::Create(threadName, mainThread);
1706 	if (status != B_OK)
1707 		return status;
1708 	BReference<Thread> mainThreadReference(mainThread, true);
1709 
1710 	// create team object
1711 	Team* team = Team::Create(mainThread->id, path, false);
1712 	if (team == NULL)
1713 		return B_NO_MEMORY;
1714 	BReference<Team> teamReference(team, true);
1715 
1716 	if (flags & B_WAIT_TILL_LOADED) {
1717 		loadingInfo.thread = thread_get_current_thread();
1718 		loadingInfo.result = B_ERROR;
1719 		loadingInfo.done = false;
1720 		team->loading_info = &loadingInfo;
1721 	}
1722 
1723 	// get the parent team
1724 	Team* parent = Team::Get(parentID);
1725 	if (parent == NULL)
1726 		return B_BAD_TEAM_ID;
1727 	BReference<Team> parentReference(parent, true);
1728 
1729 	parent->LockTeamAndProcessGroup();
1730 	team->Lock();
1731 
1732 	// inherit the parent's user/group
1733 	inherit_parent_user_and_group(team, parent);
1734 
1735 	// get a reference to the parent's I/O context -- we need it to create ours
1736 	parentIOContext = parent->io_context;
1737 	vfs_get_io_context(parentIOContext);
1738 
1739 	team->Unlock();
1740 	parent->UnlockTeamAndProcessGroup();
1741 
1742 	// check the executable's set-user/group-id permission
1743 	update_set_id_user_and_group(team, path);
1744 
1745 	status = create_team_arg(&teamArgs, path, flatArgs, flatArgsSize, argCount,
1746 		envCount, (mode_t)-1, errorPort, errorToken);
1747 	if (status != B_OK)
1748 		goto err1;
1749 
1750 	_flatArgs = NULL;
1751 		// args are owned by the team_arg structure now
1752 
1753 	// create a new io_context for this team
1754 	team->io_context = vfs_new_io_context(parentIOContext, true);
1755 	if (!team->io_context) {
1756 		status = B_NO_MEMORY;
1757 		goto err2;
1758 	}
1759 
1760 	// We don't need the parent's I/O context any longer.
1761 	vfs_put_io_context(parentIOContext);
1762 	parentIOContext = NULL;
1763 
1764 	// remove any fds that have the CLOEXEC flag set (emulating BeOS behaviour)
1765 	vfs_exec_io_context(team->io_context);
1766 
1767 	// create an address space for this team
1768 	status = VMAddressSpace::Create(team->id, USER_BASE, USER_SIZE, false,
1769 		&team->address_space);
1770 	if (status != B_OK)
1771 		goto err2;
1772 
1773 	team->address_space->SetRandomizingEnabled(
1774 		(teamArgs->flags & TEAM_ARGS_FLAG_NO_ASLR) == 0);
1775 
1776 	// create the user data area
1777 	status = create_team_user_data(team);
1778 	if (status != B_OK)
1779 		goto err4;
1780 
1781 	// insert the team into its parent and the teams hash
1782 	parent->LockTeamAndProcessGroup();
1783 	team->Lock();
1784 
1785 	{
1786 		InterruptsSpinLocker teamsLocker(sTeamHashLock);
1787 
1788 		sTeamHash.Insert(team);
1789 		teamLimitReached = sUsedTeams >= sMaxTeams;
1790 		if (!teamLimitReached)
1791 			sUsedTeams++;
1792 	}
1793 
1794 	insert_team_into_parent(parent, team);
1795 	insert_team_into_group(parent->group, team);
1796 
1797 	team->Unlock();
1798 	parent->UnlockTeamAndProcessGroup();
1799 
1800 	// notify team listeners
1801 	sNotificationService.Notify(TEAM_ADDED, team);
1802 
1803 	if (teamLimitReached) {
1804 		status = B_NO_MORE_TEAMS;
1805 		goto err6;
1806 	}
1807 
1808 	// In case we start the main thread, we shouldn't access the team object
1809 	// afterwards, so cache the team's ID.
1810 	teamID = team->id;
1811 
1812 	// Create a kernel thread, but under the context of the new team
1813 	// The new thread will take over ownership of teamArgs.
1814 	{
1815 		ThreadCreationAttributes threadAttributes(team_create_thread_start,
1816 			threadName, B_NORMAL_PRIORITY, teamArgs, teamID, mainThread);
1817 		threadAttributes.additional_stack_size = sizeof(user_space_program_args)
1818 			+ teamArgs->flat_args_size;
1819 		thread = thread_create_thread(threadAttributes, false);
1820 		if (thread < 0) {
1821 			status = thread;
1822 			goto err6;
1823 		}
1824 	}
1825 
1826 	// The team has been created successfully, so we keep the reference. Or
1827 	// more precisely: It's owned by the team's main thread, now.
1828 	teamReference.Detach();
1829 
1830 	// wait for the loader of the new team to finish its work
1831 	if ((flags & B_WAIT_TILL_LOADED) != 0) {
1832 		if (mainThread != NULL) {
1833 			// resume the team's main thread
1834 			thread_continue(mainThread);
1835 		}
1836 
1837 		// Now suspend ourselves until loading is finished. We will be woken
1838 		// either by the thread, when it finished or aborted loading, or when
1839 		// the team is going to die (e.g. is killed). In either case the one
1840 		// setting `loadingInfo.done' is responsible for removing the info from
1841 		// the team structure.
1842 		while (!loadingInfo.done)
1843 			thread_suspend();
1844 
1845 		if (loadingInfo.result < B_OK)
1846 			return loadingInfo.result;
1847 	}
1848 
1849 	// notify the debugger
1850 	user_debug_team_created(teamID);
1851 
1852 	return thread;
1853 
1854 err6:
1855 	// Remove the team structure from the process group, the parent team, and
1856 	// the team hash table and delete the team structure.
1857 	parent->LockTeamAndProcessGroup();
1858 	team->Lock();
1859 
1860 	remove_team_from_group(team);
1861 	remove_team_from_parent(team->parent, team);
1862 
1863 	team->Unlock();
1864 	parent->UnlockTeamAndProcessGroup();
1865 
1866 	{
1867 		InterruptsSpinLocker teamsLocker(sTeamHashLock);
1868 		sTeamHash.Remove(team);
1869 		if (!teamLimitReached)
1870 			sUsedTeams--;
1871 	}
1872 
1873 	sNotificationService.Notify(TEAM_REMOVED, team);
1874 
1875 	delete_team_user_data(team);
1876 err4:
1877 	team->address_space->Put();
1878 err2:
1879 	free_team_arg(teamArgs);
1880 err1:
1881 	if (parentIOContext != NULL)
1882 		vfs_put_io_context(parentIOContext);
1883 
1884 	return status;
1885 }
1886 
1887 
1888 /*!	Almost shuts down the current team and loads a new image into it.
1889 	If successful, this function does not return and will takeover ownership of
1890 	the arguments provided.
1891 	This function may only be called in a userland team (caused by one of the
1892 	exec*() syscalls).
1893 */
1894 static status_t
1895 exec_team(const char* path, char**& _flatArgs, size_t flatArgsSize,
1896 	int32 argCount, int32 envCount, mode_t umask)
1897 {
1898 	// NOTE: Since this function normally doesn't return, don't use automatic
1899 	// variables that need destruction in the function scope.
1900 	char** flatArgs = _flatArgs;
1901 	Team* team = thread_get_current_thread()->team;
1902 	struct team_arg* teamArgs;
1903 	const char* threadName;
1904 	thread_id nubThreadID = -1;
1905 
1906 	TRACE(("exec_team(path = \"%s\", argc = %" B_PRId32 ", envCount = %"
1907 		B_PRId32 "): team %" B_PRId32 "\n", path, argCount, envCount,
1908 		team->id));
1909 
1910 	T(ExecTeam(path, argCount, flatArgs, envCount, flatArgs + argCount + 1));
1911 
1912 	// switching the kernel at run time is probably not a good idea :)
1913 	if (team == team_get_kernel_team())
1914 		return B_NOT_ALLOWED;
1915 
1916 	// we currently need to be single threaded here
1917 	// TODO: maybe we should just kill all other threads and
1918 	//	make the current thread the team's main thread?
1919 	Thread* currentThread = thread_get_current_thread();
1920 	if (currentThread != team->main_thread)
1921 		return B_NOT_ALLOWED;
1922 
1923 	// The debug nub thread, a pure kernel thread, is allowed to survive.
1924 	// We iterate through the thread list to make sure that there's no other
1925 	// thread.
1926 	TeamLocker teamLocker(team);
1927 	InterruptsSpinLocker debugInfoLocker(team->debug_info.lock);
1928 
1929 	if (team->debug_info.flags & B_TEAM_DEBUG_DEBUGGER_INSTALLED)
1930 		nubThreadID = team->debug_info.nub_thread;
1931 
1932 	debugInfoLocker.Unlock();
1933 
1934 	for (Thread* thread = team->thread_list; thread != NULL;
1935 			thread = thread->team_next) {
1936 		if (thread != team->main_thread && thread->id != nubThreadID)
1937 			return B_NOT_ALLOWED;
1938 	}
1939 
1940 	team->DeleteUserTimers(true);
1941 	team->ResetSignalsOnExec();
1942 
1943 	teamLocker.Unlock();
1944 
1945 	status_t status = create_team_arg(&teamArgs, path, flatArgs, flatArgsSize,
1946 		argCount, envCount, umask, -1, 0);
1947 	if (status != B_OK)
1948 		return status;
1949 
1950 	_flatArgs = NULL;
1951 		// args are owned by the team_arg structure now
1952 
1953 	// TODO: remove team resources if there are any left
1954 	// thread_atkernel_exit() might not be called at all
1955 
1956 	thread_reset_for_exec();
1957 
1958 	user_debug_prepare_for_exec();
1959 
1960 	delete_team_user_data(team);
1961 	vm_delete_areas(team->address_space, false);
1962 	xsi_sem_undo(team);
1963 	delete_owned_ports(team);
1964 	sem_delete_owned_sems(team);
1965 	remove_images(team);
1966 	vfs_exec_io_context(team->io_context);
1967 	delete_realtime_sem_context(team->realtime_sem_context);
1968 	team->realtime_sem_context = NULL;
1969 
1970 	// update ASLR
1971 	team->address_space->SetRandomizingEnabled(
1972 		(teamArgs->flags & TEAM_ARGS_FLAG_NO_ASLR) == 0);
1973 
1974 	status = create_team_user_data(team);
1975 	if (status != B_OK) {
1976 		// creating the user data failed -- we're toast
1977 		free_team_arg(teamArgs);
1978 		exit_thread(status);
1979 		return status;
1980 	}
1981 
1982 	user_debug_finish_after_exec();
1983 
1984 	// rename the team
1985 
1986 	team->Lock();
1987 	team->SetName(path);
1988 	team->Unlock();
1989 
1990 	// cut the path from the team name and rename the main thread, too
1991 	threadName = strrchr(path, '/');
1992 	if (threadName != NULL)
1993 		threadName++;
1994 	else
1995 		threadName = path;
1996 	rename_thread(thread_get_current_thread_id(), threadName);
1997 
1998 	atomic_or(&team->flags, TEAM_FLAG_EXEC_DONE);
1999 
2000 	// Update user/group according to the executable's set-user/group-id
2001 	// permission.
2002 	update_set_id_user_and_group(team, path);
2003 
2004 	user_debug_team_exec();
2005 
2006 	// notify team listeners
2007 	sNotificationService.Notify(TEAM_EXEC, team);
2008 
2009 	// get a user thread for the thread
2010 	user_thread* userThread = team_allocate_user_thread(team);
2011 		// cannot fail (the allocation for the team would have failed already)
2012 	ThreadLocker currentThreadLocker(currentThread);
2013 	currentThread->user_thread = userThread;
2014 	currentThreadLocker.Unlock();
2015 
2016 	// create the user stack for the thread
2017 	status = thread_create_user_stack(currentThread->team, currentThread, NULL,
2018 		0, sizeof(user_space_program_args) + teamArgs->flat_args_size);
2019 	if (status == B_OK) {
2020 		// prepare the stack, load the runtime loader, and enter userspace
2021 		team_create_thread_start(teamArgs);
2022 			// does never return
2023 	} else
2024 		free_team_arg(teamArgs);
2025 
2026 	// Sorry, we have to kill ourselves, there is no way out anymore
2027 	// (without any areas left and all that).
2028 	exit_thread(status);
2029 
2030 	// We return a status here since the signal that is sent by the
2031 	// call above is not immediately handled.
2032 	return B_ERROR;
2033 }
2034 
2035 
2036 static thread_id
2037 fork_team(void)
2038 {
2039 	Thread* parentThread = thread_get_current_thread();
2040 	Team* parentTeam = parentThread->team;
2041 	Team* team;
2042 	arch_fork_arg* forkArgs;
2043 	struct area_info info;
2044 	thread_id threadID;
2045 	status_t status;
2046 	ssize_t areaCookie;
2047 	bool teamLimitReached = false;
2048 
2049 	TRACE(("fork_team(): team %" B_PRId32 "\n", parentTeam->id));
2050 
2051 	if (parentTeam == team_get_kernel_team())
2052 		return B_NOT_ALLOWED;
2053 
2054 	// create a new team
2055 	// TODO: this is very similar to load_image_internal() - maybe we can do
2056 	// something about it :)
2057 
2058 	// create the main thread object
2059 	Thread* thread;
2060 	status = Thread::Create(parentThread->name, thread);
2061 	if (status != B_OK)
2062 		return status;
2063 	BReference<Thread> threadReference(thread, true);
2064 
2065 	// create the team object
2066 	team = Team::Create(thread->id, NULL, false);
2067 	if (team == NULL)
2068 		return B_NO_MEMORY;
2069 
2070 	parentTeam->LockTeamAndProcessGroup();
2071 	team->Lock();
2072 
2073 	team->SetName(parentTeam->Name());
2074 	team->SetArgs(parentTeam->Args());
2075 
2076 	team->commpage_address = parentTeam->commpage_address;
2077 
2078 	// Inherit the parent's user/group.
2079 	inherit_parent_user_and_group(team, parentTeam);
2080 
2081 	// inherit signal handlers
2082 	team->InheritSignalActions(parentTeam);
2083 
2084 	team->Unlock();
2085 	parentTeam->UnlockTeamAndProcessGroup();
2086 
2087 	// inherit some team debug flags
2088 	team->debug_info.flags |= atomic_get(&parentTeam->debug_info.flags)
2089 		& B_TEAM_DEBUG_INHERITED_FLAGS;
2090 
2091 	forkArgs = (arch_fork_arg*)malloc(sizeof(arch_fork_arg));
2092 	if (forkArgs == NULL) {
2093 		status = B_NO_MEMORY;
2094 		goto err1;
2095 	}
2096 
2097 	// create a new io_context for this team
2098 	team->io_context = vfs_new_io_context(parentTeam->io_context, false);
2099 	if (!team->io_context) {
2100 		status = B_NO_MEMORY;
2101 		goto err2;
2102 	}
2103 
2104 	// duplicate the realtime sem context
2105 	if (parentTeam->realtime_sem_context) {
2106 		team->realtime_sem_context = clone_realtime_sem_context(
2107 			parentTeam->realtime_sem_context);
2108 		if (team->realtime_sem_context == NULL) {
2109 			status = B_NO_MEMORY;
2110 			goto err2;
2111 		}
2112 	}
2113 
2114 	// create an address space for this team
2115 	status = VMAddressSpace::Create(team->id, USER_BASE, USER_SIZE, false,
2116 		&team->address_space);
2117 	if (status < B_OK)
2118 		goto err3;
2119 
2120 	// copy all areas of the team
2121 	// TODO: should be able to handle stack areas differently (ie. don't have
2122 	// them copy-on-write)
2123 
2124 	areaCookie = 0;
2125 	while (get_next_area_info(B_CURRENT_TEAM, &areaCookie, &info) == B_OK) {
2126 		if (info.area == parentTeam->user_data_area) {
2127 			// don't clone the user area; just create a new one
2128 			status = create_team_user_data(team, info.address);
2129 			if (status != B_OK)
2130 				break;
2131 
2132 			thread->user_thread = team_allocate_user_thread(team);
2133 		} else {
2134 			void* address;
2135 			area_id area = vm_copy_area(team->address_space->ID(), info.name,
2136 				&address, B_CLONE_ADDRESS, info.protection, info.area);
2137 			if (area < B_OK) {
2138 				status = area;
2139 				break;
2140 			}
2141 
2142 			if (info.area == parentThread->user_stack_area)
2143 				thread->user_stack_area = area;
2144 		}
2145 	}
2146 
2147 	if (status < B_OK)
2148 		goto err4;
2149 
2150 	if (thread->user_thread == NULL) {
2151 #if KDEBUG
2152 		panic("user data area not found, parent area is %" B_PRId32,
2153 			parentTeam->user_data_area);
2154 #endif
2155 		status = B_ERROR;
2156 		goto err4;
2157 	}
2158 
2159 	thread->user_stack_base = parentThread->user_stack_base;
2160 	thread->user_stack_size = parentThread->user_stack_size;
2161 	thread->user_local_storage = parentThread->user_local_storage;
2162 	thread->sig_block_mask = parentThread->sig_block_mask;
2163 	thread->signal_stack_base = parentThread->signal_stack_base;
2164 	thread->signal_stack_size = parentThread->signal_stack_size;
2165 	thread->signal_stack_enabled = parentThread->signal_stack_enabled;
2166 
2167 	arch_store_fork_frame(forkArgs);
2168 
2169 	// copy image list
2170 	if (copy_images(parentTeam->id, team) != B_OK)
2171 		goto err5;
2172 
2173 	// insert the team into its parent and the teams hash
2174 	parentTeam->LockTeamAndProcessGroup();
2175 	team->Lock();
2176 
2177 	{
2178 		InterruptsSpinLocker teamsLocker(sTeamHashLock);
2179 
2180 		sTeamHash.Insert(team);
2181 		teamLimitReached = sUsedTeams >= sMaxTeams;
2182 		if (!teamLimitReached)
2183 			sUsedTeams++;
2184 	}
2185 
2186 	insert_team_into_parent(parentTeam, team);
2187 	insert_team_into_group(parentTeam->group, team);
2188 
2189 	team->Unlock();
2190 	parentTeam->UnlockTeamAndProcessGroup();
2191 
2192 	// notify team listeners
2193 	sNotificationService.Notify(TEAM_ADDED, team);
2194 
2195 	if (teamLimitReached) {
2196 		status = B_NO_MORE_TEAMS;
2197 		goto err6;
2198 	}
2199 
2200 	// create the main thread
2201 	{
2202 		ThreadCreationAttributes threadCreationAttributes(NULL,
2203 			parentThread->name, parentThread->priority, NULL, team->id, thread);
2204 		threadCreationAttributes.forkArgs = forkArgs;
2205 		threadCreationAttributes.flags |= THREAD_CREATION_FLAG_DEFER_SIGNALS;
2206 		threadID = thread_create_thread(threadCreationAttributes, false);
2207 		if (threadID < 0) {
2208 			status = threadID;
2209 			goto err6;
2210 		}
2211 	}
2212 
2213 	// notify the debugger
2214 	user_debug_team_created(team->id);
2215 
2216 	T(TeamForked(threadID));
2217 
2218 	resume_thread(threadID);
2219 	return threadID;
2220 
2221 err6:
2222 	// Remove the team structure from the process group, the parent team, and
2223 	// the team hash table and delete the team structure.
2224 	parentTeam->LockTeamAndProcessGroup();
2225 	team->Lock();
2226 
2227 	remove_team_from_group(team);
2228 	remove_team_from_parent(team->parent, team);
2229 
2230 	team->Unlock();
2231 	parentTeam->UnlockTeamAndProcessGroup();
2232 
2233 	{
2234 		InterruptsSpinLocker teamsLocker(sTeamHashLock);
2235 		sTeamHash.Remove(team);
2236 		if (!teamLimitReached)
2237 			sUsedTeams--;
2238 	}
2239 
2240 	sNotificationService.Notify(TEAM_REMOVED, team);
2241 err5:
2242 	remove_images(team);
2243 err4:
2244 	team->address_space->RemoveAndPut();
2245 err3:
2246 	delete_realtime_sem_context(team->realtime_sem_context);
2247 err2:
2248 	free(forkArgs);
2249 err1:
2250 	team->ReleaseReference();
2251 
2252 	return status;
2253 }
2254 
2255 
2256 /*!	Returns if the specified team \a parent has any children belonging to the
2257 	process group with the specified ID \a groupID.
2258 	The caller must hold \a parent's lock.
2259 */
2260 static bool
2261 has_children_in_group(Team* parent, pid_t groupID)
2262 {
2263 	for (Team* child = parent->children; child != NULL;
2264 			child = child->siblings_next) {
2265 		TeamLocker childLocker(child);
2266 		if (child->group_id == groupID)
2267 			return true;
2268 	}
2269 
2270 	return false;
2271 }
2272 
2273 
2274 /*!	Returns the first job control entry from \a children, which matches \a id.
2275 	\a id can be:
2276 	- \code > 0 \endcode: Matching an entry with that team ID.
2277 	- \code == -1 \endcode: Matching any entry.
2278 	- \code < -1 \endcode: Matching any entry with a process group ID of \c -id.
2279 	\c 0 is an invalid value for \a id.
2280 
2281 	The caller must hold the lock of the team that \a children belongs to.
2282 
2283 	\param children The job control entry list to check.
2284 	\param id The match criterion.
2285 	\return The first matching entry or \c NULL, if none matches.
2286 */
2287 static job_control_entry*
2288 get_job_control_entry(team_job_control_children& children, pid_t id)
2289 {
2290 	for (JobControlEntryList::Iterator it = children.entries.GetIterator();
2291 		 job_control_entry* entry = it.Next();) {
2292 
2293 		if (id > 0) {
2294 			if (entry->thread == id)
2295 				return entry;
2296 		} else if (id == -1) {
2297 			return entry;
2298 		} else {
2299 			pid_t processGroup
2300 				= (entry->team ? entry->team->group_id : entry->group_id);
2301 			if (processGroup == -id)
2302 				return entry;
2303 		}
2304 	}
2305 
2306 	return NULL;
2307 }
2308 
2309 
2310 /*!	Returns the first job control entry from one of team's dead, continued, or
2311     stopped children which matches \a id.
2312 	\a id can be:
2313 	- \code > 0 \endcode: Matching an entry with that team ID.
2314 	- \code == -1 \endcode: Matching any entry.
2315 	- \code < -1 \endcode: Matching any entry with a process group ID of \c -id.
2316 	\c 0 is an invalid value for \a id.
2317 
2318 	The caller must hold \a team's lock.
2319 
2320 	\param team The team whose dead, stopped, and continued child lists shall be
2321 		checked.
2322 	\param id The match criterion.
2323 	\param flags Specifies which children shall be considered. Dead children
2324 		always are. Stopped children are considered when \a flags is ORed
2325 		bitwise with \c WUNTRACED, continued children when \a flags is ORed
2326 		bitwise with \c WCONTINUED.
2327 	\return The first matching entry or \c NULL, if none matches.
2328 */
2329 static job_control_entry*
2330 get_job_control_entry(Team* team, pid_t id, uint32 flags)
2331 {
2332 	job_control_entry* entry = get_job_control_entry(team->dead_children, id);
2333 
2334 	if (entry == NULL && (flags & WCONTINUED) != 0)
2335 		entry = get_job_control_entry(team->continued_children, id);
2336 
2337 	if (entry == NULL && (flags & WUNTRACED) != 0)
2338 		entry = get_job_control_entry(team->stopped_children, id);
2339 
2340 	return entry;
2341 }
2342 
2343 
2344 job_control_entry::job_control_entry()
2345 	:
2346 	has_group_ref(false)
2347 {
2348 }
2349 
2350 
2351 job_control_entry::~job_control_entry()
2352 {
2353 	if (has_group_ref) {
2354 		InterruptsSpinLocker groupHashLocker(sGroupHashLock);
2355 
2356 		ProcessGroup* group = sGroupHash.Lookup(group_id);
2357 		if (group == NULL) {
2358 			panic("job_control_entry::~job_control_entry(): unknown group "
2359 				"ID: %" B_PRId32, group_id);
2360 			return;
2361 		}
2362 
2363 		groupHashLocker.Unlock();
2364 
2365 		group->ReleaseReference();
2366 	}
2367 }
2368 
2369 
2370 /*!	Invoked when the owning team is dying, initializing the entry according to
2371 	the dead state.
2372 
2373 	The caller must hold the owning team's lock and the scheduler lock.
2374 */
2375 void
2376 job_control_entry::InitDeadState()
2377 {
2378 	if (team != NULL) {
2379 		ASSERT(team->exit.initialized);
2380 
2381 		group_id = team->group_id;
2382 		team->group->AcquireReference();
2383 		has_group_ref = true;
2384 
2385 		thread = team->id;
2386 		status = team->exit.status;
2387 		reason = team->exit.reason;
2388 		signal = team->exit.signal;
2389 		signaling_user = team->exit.signaling_user;
2390 		user_time = team->dead_threads_user_time
2391 			+ team->dead_children.user_time;
2392 		kernel_time = team->dead_threads_kernel_time
2393 			+ team->dead_children.kernel_time;
2394 
2395 		team = NULL;
2396 	}
2397 }
2398 
2399 
2400 job_control_entry&
2401 job_control_entry::operator=(const job_control_entry& other)
2402 {
2403 	state = other.state;
2404 	thread = other.thread;
2405 	signal = other.signal;
2406 	has_group_ref = false;
2407 	signaling_user = other.signaling_user;
2408 	team = other.team;
2409 	group_id = other.group_id;
2410 	status = other.status;
2411 	reason = other.reason;
2412 	user_time = other.user_time;
2413 	kernel_time = other.kernel_time;
2414 
2415 	return *this;
2416 }
2417 
2418 
2419 /*! This is the kernel backend for waitid().
2420 */
2421 static thread_id
2422 wait_for_child(pid_t child, uint32 flags, siginfo_t& _info,
2423 	team_usage_info& _usage_info)
2424 {
2425 	Thread* thread = thread_get_current_thread();
2426 	Team* team = thread->team;
2427 	struct job_control_entry foundEntry;
2428 	struct job_control_entry* freeDeathEntry = NULL;
2429 	status_t status = B_OK;
2430 
2431 	TRACE(("wait_for_child(child = %" B_PRId32 ", flags = %" B_PRId32 ")\n",
2432 		child, flags));
2433 
2434 	T(WaitForChild(child, flags));
2435 
2436 	pid_t originalChild = child;
2437 
2438 	bool ignoreFoundEntries = false;
2439 	bool ignoreFoundEntriesChecked = false;
2440 
2441 	while (true) {
2442 		// lock the team
2443 		TeamLocker teamLocker(team);
2444 
2445 		// A 0 child argument means to wait for all children in the process
2446 		// group of the calling team.
2447 		child = originalChild == 0 ? -team->group_id : originalChild;
2448 
2449 		// check whether any condition holds
2450 		job_control_entry* entry = get_job_control_entry(team, child, flags);
2451 
2452 		// If we don't have an entry yet, check whether there are any children
2453 		// complying to the process group specification at all.
2454 		if (entry == NULL) {
2455 			// No success yet -- check whether there are any children complying
2456 			// to the process group specification at all.
2457 			bool childrenExist = false;
2458 			if (child == -1) {
2459 				childrenExist = team->children != NULL;
2460 			} else if (child < -1) {
2461 				childrenExist = has_children_in_group(team, -child);
2462 			} else {
2463 				if (Team* childTeam = Team::Get(child)) {
2464 					BReference<Team> childTeamReference(childTeam, true);
2465 					TeamLocker childTeamLocker(childTeam);
2466 					childrenExist = childTeam->parent == team;
2467 				}
2468 			}
2469 
2470 			if (!childrenExist) {
2471 				// there is no child we could wait for
2472 				status = ECHILD;
2473 			} else {
2474 				// the children we're waiting for are still running
2475 				status = B_WOULD_BLOCK;
2476 			}
2477 		} else {
2478 			// got something
2479 			foundEntry = *entry;
2480 
2481 			// unless WNOWAIT has been specified, "consume" the wait state
2482 			if ((flags & WNOWAIT) == 0 || ignoreFoundEntries) {
2483 				if (entry->state == JOB_CONTROL_STATE_DEAD) {
2484 					// The child is dead. Reap its death entry.
2485 					freeDeathEntry = entry;
2486 					team->dead_children.entries.Remove(entry);
2487 					team->dead_children.count--;
2488 				} else {
2489 					// The child is well. Reset its job control state.
2490 					team_set_job_control_state(entry->team,
2491 						JOB_CONTROL_STATE_NONE, NULL);
2492 				}
2493 			}
2494 		}
2495 
2496 		// If we haven't got anything yet, prepare for waiting for the
2497 		// condition variable.
2498 		ConditionVariableEntry deadWaitEntry;
2499 
2500 		if (status == B_WOULD_BLOCK && (flags & WNOHANG) == 0)
2501 			team->dead_children.condition_variable.Add(&deadWaitEntry);
2502 
2503 		teamLocker.Unlock();
2504 
2505 		// we got our entry and can return to our caller
2506 		if (status == B_OK) {
2507 			if (ignoreFoundEntries) {
2508 				// ... unless we shall ignore found entries
2509 				delete freeDeathEntry;
2510 				freeDeathEntry = NULL;
2511 				continue;
2512 			}
2513 
2514 			break;
2515 		}
2516 
2517 		if (status != B_WOULD_BLOCK || (flags & WNOHANG) != 0) {
2518 			T(WaitForChildDone(status));
2519 			return status;
2520 		}
2521 
2522 		status = deadWaitEntry.Wait(B_CAN_INTERRUPT);
2523 		if (status == B_INTERRUPTED) {
2524 			T(WaitForChildDone(status));
2525 			return status;
2526 		}
2527 
2528 		// If SA_NOCLDWAIT is set or SIGCHLD is ignored, we shall wait until
2529 		// all our children are dead and fail with ECHILD. We check the
2530 		// condition at this point.
2531 		if (!ignoreFoundEntriesChecked) {
2532 			teamLocker.Lock();
2533 
2534 			struct sigaction& handler = team->SignalActionFor(SIGCHLD);
2535 			if ((handler.sa_flags & SA_NOCLDWAIT) != 0
2536 				|| handler.sa_handler == SIG_IGN) {
2537 				ignoreFoundEntries = true;
2538 			}
2539 
2540 			teamLocker.Unlock();
2541 
2542 			ignoreFoundEntriesChecked = true;
2543 		}
2544 	}
2545 
2546 	delete freeDeathEntry;
2547 
2548 	// When we got here, we have a valid death entry, and already got
2549 	// unregistered from the team or group. Fill in the returned info.
2550 	memset(&_info, 0, sizeof(_info));
2551 	_info.si_signo = SIGCHLD;
2552 	_info.si_pid = foundEntry.thread;
2553 	_info.si_uid = foundEntry.signaling_user;
2554 	// TODO: Fill in si_errno?
2555 
2556 	switch (foundEntry.state) {
2557 		case JOB_CONTROL_STATE_DEAD:
2558 			_info.si_code = foundEntry.reason;
2559 			_info.si_status = foundEntry.reason == CLD_EXITED
2560 				? foundEntry.status : foundEntry.signal;
2561 			_usage_info.user_time = foundEntry.user_time;
2562 			_usage_info.kernel_time = foundEntry.kernel_time;
2563 			break;
2564 		case JOB_CONTROL_STATE_STOPPED:
2565 			_info.si_code = CLD_STOPPED;
2566 			_info.si_status = foundEntry.signal;
2567 			break;
2568 		case JOB_CONTROL_STATE_CONTINUED:
2569 			_info.si_code = CLD_CONTINUED;
2570 			_info.si_status = 0;
2571 			break;
2572 		case JOB_CONTROL_STATE_NONE:
2573 			// can't happen
2574 			break;
2575 	}
2576 
2577 	// If SIGCHLD is blocked, we shall clear pending SIGCHLDs, if no other child
2578 	// status is available.
2579 	TeamLocker teamLocker(team);
2580 	InterruptsSpinLocker signalLocker(team->signal_lock);
2581 	SpinLocker threadCreationLocker(gThreadCreationLock);
2582 
2583 	if (is_team_signal_blocked(team, SIGCHLD)) {
2584 		if (get_job_control_entry(team, child, flags) == NULL)
2585 			team->RemovePendingSignals(SIGNAL_TO_MASK(SIGCHLD));
2586 	}
2587 
2588 	threadCreationLocker.Unlock();
2589 	signalLocker.Unlock();
2590 	teamLocker.Unlock();
2591 
2592 	// When the team is dead, the main thread continues to live in the kernel
2593 	// team for a very short time. To avoid surprises for the caller we rather
2594 	// wait until the thread is really gone.
2595 	if (foundEntry.state == JOB_CONTROL_STATE_DEAD)
2596 		wait_for_thread(foundEntry.thread, NULL);
2597 
2598 	T(WaitForChildDone(foundEntry));
2599 
2600 	return foundEntry.thread;
2601 }
2602 
2603 
2604 /*! Fills the team_info structure with information from the specified team.
2605 	Interrupts must be enabled. The team must not be locked.
2606 */
2607 static status_t
2608 fill_team_info(Team* team, team_info* info, size_t size)
2609 {
2610 	if (size != sizeof(team_info))
2611 		return B_BAD_VALUE;
2612 
2613 	// TODO: Set more informations for team_info
2614 	memset(info, 0, size);
2615 
2616 	info->team = team->id;
2617 		// immutable
2618 	info->image_count = count_images(team);
2619 		// protected by sImageMutex
2620 
2621 	TeamLocker teamLocker(team);
2622 	InterruptsSpinLocker debugInfoLocker(team->debug_info.lock);
2623 
2624 	info->thread_count = team->num_threads;
2625 	//info->area_count =
2626 	info->debugger_nub_thread = team->debug_info.nub_thread;
2627 	info->debugger_nub_port = team->debug_info.nub_port;
2628 	info->uid = team->effective_uid;
2629 	info->gid = team->effective_gid;
2630 
2631 	strlcpy(info->args, team->Args(), sizeof(info->args));
2632 	info->argc = 1;
2633 
2634 	return B_OK;
2635 }
2636 
2637 
2638 /*!	Returns whether the process group contains stopped processes.
2639 	The caller must hold the process group's lock.
2640 */
2641 static bool
2642 process_group_has_stopped_processes(ProcessGroup* group)
2643 {
2644 	Team* team = group->teams;
2645 	while (team != NULL) {
2646 		// the parent team's lock guards the job control entry -- acquire it
2647 		team->LockTeamAndParent(false);
2648 
2649 		if (team->job_control_entry != NULL
2650 			&& team->job_control_entry->state == JOB_CONTROL_STATE_STOPPED) {
2651 			team->UnlockTeamAndParent();
2652 			return true;
2653 		}
2654 
2655 		team->UnlockTeamAndParent();
2656 
2657 		team = team->group_next;
2658 	}
2659 
2660 	return false;
2661 }
2662 
2663 
2664 /*!	Iterates through all process groups queued in team_remove_team() and signals
2665 	those that are orphaned and have stopped processes.
2666 	The caller must not hold any team or process group locks.
2667 */
2668 static void
2669 orphaned_process_group_check()
2670 {
2671 	// process as long as there are groups in the list
2672 	while (true) {
2673 		// remove the head from the list
2674 		MutexLocker orphanedCheckLocker(sOrphanedCheckLock);
2675 
2676 		ProcessGroup* group = sOrphanedCheckProcessGroups.RemoveHead();
2677 		if (group == NULL)
2678 			return;
2679 
2680 		group->UnsetOrphanedCheck();
2681 		BReference<ProcessGroup> groupReference(group);
2682 
2683 		orphanedCheckLocker.Unlock();
2684 
2685 		AutoLocker<ProcessGroup> groupLocker(group);
2686 
2687 		// If the group is orphaned and contains stopped processes, we're
2688 		// supposed to send SIGHUP + SIGCONT.
2689 		if (group->IsOrphaned() && process_group_has_stopped_processes(group)) {
2690 			Thread* currentThread = thread_get_current_thread();
2691 
2692 			Signal signal(SIGHUP, SI_USER, B_OK, currentThread->team->id);
2693 			send_signal_to_process_group_locked(group, signal, 0);
2694 
2695 			signal.SetNumber(SIGCONT);
2696 			send_signal_to_process_group_locked(group, signal, 0);
2697 		}
2698 	}
2699 }
2700 
2701 
2702 static status_t
2703 common_get_team_usage_info(team_id id, int32 who, team_usage_info* info,
2704 	uint32 flags)
2705 {
2706 	if (who != B_TEAM_USAGE_SELF && who != B_TEAM_USAGE_CHILDREN)
2707 		return B_BAD_VALUE;
2708 
2709 	// get the team
2710 	Team* team = Team::GetAndLock(id);
2711 	if (team == NULL)
2712 		return B_BAD_TEAM_ID;
2713 	BReference<Team> teamReference(team, true);
2714 	TeamLocker teamLocker(team, true);
2715 
2716 	if ((flags & B_CHECK_PERMISSION) != 0) {
2717 		uid_t uid = geteuid();
2718 		if (uid != 0 && uid != team->effective_uid)
2719 			return B_NOT_ALLOWED;
2720 	}
2721 
2722 	bigtime_t kernelTime = 0;
2723 	bigtime_t userTime = 0;
2724 
2725 	switch (who) {
2726 		case B_TEAM_USAGE_SELF:
2727 		{
2728 			Thread* thread = team->thread_list;
2729 
2730 			for (; thread != NULL; thread = thread->team_next) {
2731 				InterruptsSpinLocker threadTimeLocker(thread->time_lock);
2732 				kernelTime += thread->kernel_time;
2733 				userTime += thread->user_time;
2734 			}
2735 
2736 			kernelTime += team->dead_threads_kernel_time;
2737 			userTime += team->dead_threads_user_time;
2738 			break;
2739 		}
2740 
2741 		case B_TEAM_USAGE_CHILDREN:
2742 		{
2743 			Team* child = team->children;
2744 			for (; child != NULL; child = child->siblings_next) {
2745 				TeamLocker childLocker(child);
2746 
2747 				Thread* thread = team->thread_list;
2748 
2749 				for (; thread != NULL; thread = thread->team_next) {
2750 					InterruptsSpinLocker threadTimeLocker(thread->time_lock);
2751 					kernelTime += thread->kernel_time;
2752 					userTime += thread->user_time;
2753 				}
2754 
2755 				kernelTime += child->dead_threads_kernel_time;
2756 				userTime += child->dead_threads_user_time;
2757 			}
2758 
2759 			kernelTime += team->dead_children.kernel_time;
2760 			userTime += team->dead_children.user_time;
2761 			break;
2762 		}
2763 	}
2764 
2765 	info->kernel_time = kernelTime;
2766 	info->user_time = userTime;
2767 
2768 	return B_OK;
2769 }
2770 
2771 
2772 //	#pragma mark - Private kernel API
2773 
2774 
2775 status_t
2776 team_init(kernel_args* args)
2777 {
2778 	// create the team hash table
2779 	new(&sTeamHash) TeamTable;
2780 	if (sTeamHash.Init(64) != B_OK)
2781 		panic("Failed to init team hash table!");
2782 
2783 	new(&sGroupHash) ProcessGroupHashTable;
2784 	if (sGroupHash.Init() != B_OK)
2785 		panic("Failed to init process group hash table!");
2786 
2787 	// create initial session and process groups
2788 
2789 	ProcessSession* session = new(std::nothrow) ProcessSession(1);
2790 	if (session == NULL)
2791 		panic("Could not create initial session.\n");
2792 	BReference<ProcessSession> sessionReference(session, true);
2793 
2794 	ProcessGroup* group = new(std::nothrow) ProcessGroup(1);
2795 	if (group == NULL)
2796 		panic("Could not create initial process group.\n");
2797 	BReference<ProcessGroup> groupReference(group, true);
2798 
2799 	group->Publish(session);
2800 
2801 	// create the kernel team
2802 	sKernelTeam = Team::Create(1, "kernel_team", true);
2803 	if (sKernelTeam == NULL)
2804 		panic("could not create kernel team!\n");
2805 	sKernelTeam->SetArgs(sKernelTeam->Name());
2806 	sKernelTeam->state = TEAM_STATE_NORMAL;
2807 
2808 	sKernelTeam->saved_set_uid = 0;
2809 	sKernelTeam->real_uid = 0;
2810 	sKernelTeam->effective_uid = 0;
2811 	sKernelTeam->saved_set_gid = 0;
2812 	sKernelTeam->real_gid = 0;
2813 	sKernelTeam->effective_gid = 0;
2814 	sKernelTeam->supplementary_groups = NULL;
2815 	sKernelTeam->supplementary_group_count = 0;
2816 
2817 	insert_team_into_group(group, sKernelTeam);
2818 
2819 	sKernelTeam->io_context = vfs_new_io_context(NULL, false);
2820 	if (sKernelTeam->io_context == NULL)
2821 		panic("could not create io_context for kernel team!\n");
2822 
2823 	if (vfs_resize_fd_table(sKernelTeam->io_context, 4096) != B_OK)
2824 		dprintf("Failed to resize FD table for kernel team!\n");
2825 
2826 	// stick it in the team hash
2827 	sTeamHash.Insert(sKernelTeam);
2828 
2829 	add_debugger_command_etc("team", &dump_team_info,
2830 		"Dump info about a particular team",
2831 		"[ <id> | <address> | <name> ]\n"
2832 		"Prints information about the specified team. If no argument is given\n"
2833 		"the current team is selected.\n"
2834 		"  <id>       - The ID of the team.\n"
2835 		"  <address>  - The address of the team structure.\n"
2836 		"  <name>     - The team's name.\n", 0);
2837 	add_debugger_command_etc("teams", &dump_teams, "List all teams",
2838 		"\n"
2839 		"Prints a list of all existing teams.\n", 0);
2840 
2841 	new(&sNotificationService) TeamNotificationService();
2842 
2843 	sNotificationService.Register();
2844 
2845 	return B_OK;
2846 }
2847 
2848 
2849 int32
2850 team_max_teams(void)
2851 {
2852 	return sMaxTeams;
2853 }
2854 
2855 
2856 int32
2857 team_used_teams(void)
2858 {
2859 	InterruptsSpinLocker teamsLocker(sTeamHashLock);
2860 	return sUsedTeams;
2861 }
2862 
2863 
2864 /*! Returns a death entry of a child team specified by ID (if any).
2865 	The caller must hold the team's lock.
2866 
2867 	\param team The team whose dead children list to check.
2868 	\param child The ID of the child for whose death entry to lock. Must be > 0.
2869 	\param _deleteEntry Return variable, indicating whether the caller needs to
2870 		delete the returned entry.
2871 	\return The death entry of the matching team, or \c NULL, if no death entry
2872 		for the team was found.
2873 */
2874 job_control_entry*
2875 team_get_death_entry(Team* team, thread_id child, bool* _deleteEntry)
2876 {
2877 	if (child <= 0)
2878 		return NULL;
2879 
2880 	job_control_entry* entry = get_job_control_entry(team->dead_children,
2881 		child);
2882 	if (entry) {
2883 		// remove the entry only, if the caller is the parent of the found team
2884 		if (team_get_current_team_id() == entry->thread) {
2885 			team->dead_children.entries.Remove(entry);
2886 			team->dead_children.count--;
2887 			*_deleteEntry = true;
2888 		} else {
2889 			*_deleteEntry = false;
2890 		}
2891 	}
2892 
2893 	return entry;
2894 }
2895 
2896 
2897 /*! Quick check to see if we have a valid team ID. */
2898 bool
2899 team_is_valid(team_id id)
2900 {
2901 	if (id <= 0)
2902 		return false;
2903 
2904 	InterruptsSpinLocker teamsLocker(sTeamHashLock);
2905 
2906 	return team_get_team_struct_locked(id) != NULL;
2907 }
2908 
2909 
2910 Team*
2911 team_get_team_struct_locked(team_id id)
2912 {
2913 	return sTeamHash.Lookup(id);
2914 }
2915 
2916 
2917 void
2918 team_set_controlling_tty(int32 ttyIndex)
2919 {
2920 	// lock the team, so its session won't change while we're playing with it
2921 	Team* team = thread_get_current_thread()->team;
2922 	TeamLocker teamLocker(team);
2923 
2924 	// get and lock the session
2925 	ProcessSession* session = team->group->Session();
2926 	AutoLocker<ProcessSession> sessionLocker(session);
2927 
2928 	// set the session's fields
2929 	session->controlling_tty = ttyIndex;
2930 	session->foreground_group = -1;
2931 }
2932 
2933 
2934 int32
2935 team_get_controlling_tty()
2936 {
2937 	// lock the team, so its session won't change while we're playing with it
2938 	Team* team = thread_get_current_thread()->team;
2939 	TeamLocker teamLocker(team);
2940 
2941 	// get and lock the session
2942 	ProcessSession* session = team->group->Session();
2943 	AutoLocker<ProcessSession> sessionLocker(session);
2944 
2945 	// get the session's field
2946 	return session->controlling_tty;
2947 }
2948 
2949 
2950 status_t
2951 team_set_foreground_process_group(int32 ttyIndex, pid_t processGroupID)
2952 {
2953 	// lock the team, so its session won't change while we're playing with it
2954 	Thread* thread = thread_get_current_thread();
2955 	Team* team = thread->team;
2956 	TeamLocker teamLocker(team);
2957 
2958 	// get and lock the session
2959 	ProcessSession* session = team->group->Session();
2960 	AutoLocker<ProcessSession> sessionLocker(session);
2961 
2962 	// check given TTY -- must be the controlling tty of the calling process
2963 	if (session->controlling_tty != ttyIndex)
2964 		return ENOTTY;
2965 
2966 	// check given process group -- must belong to our session
2967 	{
2968 		InterruptsSpinLocker groupHashLocker(sGroupHashLock);
2969 		ProcessGroup* group = sGroupHash.Lookup(processGroupID);
2970 		if (group == NULL || group->Session() != session)
2971 			return B_BAD_VALUE;
2972 	}
2973 
2974 	// If we are a background group, we can do that unharmed only when we
2975 	// ignore or block SIGTTOU. Otherwise the group gets a SIGTTOU.
2976 	if (session->foreground_group != -1
2977 		&& session->foreground_group != team->group_id
2978 		&& team->SignalActionFor(SIGTTOU).sa_handler != SIG_IGN
2979 		&& (thread->sig_block_mask & SIGNAL_TO_MASK(SIGTTOU)) == 0) {
2980 		InterruptsSpinLocker signalLocker(team->signal_lock);
2981 
2982 		if (!is_team_signal_blocked(team, SIGTTOU)) {
2983 			pid_t groupID = team->group_id;
2984 
2985 			signalLocker.Unlock();
2986 			sessionLocker.Unlock();
2987 			teamLocker.Unlock();
2988 
2989 			Signal signal(SIGTTOU, SI_USER, B_OK, team->id);
2990 			send_signal_to_process_group(groupID, signal, 0);
2991 			return B_INTERRUPTED;
2992 		}
2993 	}
2994 
2995 	session->foreground_group = processGroupID;
2996 
2997 	return B_OK;
2998 }
2999 
3000 
3001 /*!	Removes the specified team from the global team hash, from its process
3002 	group, and from its parent.
3003 	It also moves all of its children to the kernel team.
3004 
3005 	The caller must hold the following locks:
3006 	- \a team's process group's lock,
3007 	- the kernel team's lock,
3008 	- \a team's parent team's lock (might be the kernel team), and
3009 	- \a team's lock.
3010 */
3011 void
3012 team_remove_team(Team* team, pid_t& _signalGroup)
3013 {
3014 	Team* parent = team->parent;
3015 
3016 	// remember how long this team lasted
3017 	parent->dead_children.kernel_time += team->dead_threads_kernel_time
3018 		+ team->dead_children.kernel_time;
3019 	parent->dead_children.user_time += team->dead_threads_user_time
3020 		+ team->dead_children.user_time;
3021 
3022 	// remove the team from the hash table
3023 	InterruptsSpinLocker teamsLocker(sTeamHashLock);
3024 	sTeamHash.Remove(team);
3025 	sUsedTeams--;
3026 	teamsLocker.Unlock();
3027 
3028 	// The team can no longer be accessed by ID. Navigation to it is still
3029 	// possible from its process group and its parent and children, but that
3030 	// will be rectified shortly.
3031 	team->state = TEAM_STATE_DEATH;
3032 
3033 	// If we're a controlling process (i.e. a session leader with controlling
3034 	// terminal), there's a bit of signalling we have to do. We can't do any of
3035 	// the signaling here due to the bunch of locks we're holding, but we need
3036 	// to determine, whom to signal.
3037 	_signalGroup = -1;
3038 	bool isSessionLeader = false;
3039 	if (team->session_id == team->id
3040 		&& team->group->Session()->controlling_tty >= 0) {
3041 		isSessionLeader = true;
3042 
3043 		ProcessSession* session = team->group->Session();
3044 
3045 		AutoLocker<ProcessSession> sessionLocker(session);
3046 
3047 		session->controlling_tty = -1;
3048 		_signalGroup = session->foreground_group;
3049 	}
3050 
3051 	// remove us from our process group
3052 	remove_team_from_group(team);
3053 
3054 	// move the team's children to the kernel team
3055 	while (Team* child = team->children) {
3056 		// remove the child from the current team and add it to the kernel team
3057 		TeamLocker childLocker(child);
3058 
3059 		remove_team_from_parent(team, child);
3060 		insert_team_into_parent(sKernelTeam, child);
3061 
3062 		// move job control entries too
3063 		sKernelTeam->stopped_children.entries.MoveFrom(
3064 			&team->stopped_children.entries);
3065 		sKernelTeam->continued_children.entries.MoveFrom(
3066 			&team->continued_children.entries);
3067 
3068 		// If the team was a session leader with controlling terminal,
3069 		// we need to send SIGHUP + SIGCONT to all newly-orphaned process
3070 		// groups with stopped processes. Due to locking complications we can't
3071 		// do that here, so we only check whether we were a reason for the
3072 		// child's process group not being an orphan and, if so, schedule a
3073 		// later check (cf. orphaned_process_group_check()).
3074 		if (isSessionLeader) {
3075 			ProcessGroup* childGroup = child->group;
3076 			if (childGroup->Session()->id == team->session_id
3077 				&& childGroup->id != team->group_id) {
3078 				childGroup->ScheduleOrphanedCheck();
3079 			}
3080 		}
3081 
3082 		// Note, we don't move the dead children entries. Those will be deleted
3083 		// when the team structure is deleted.
3084 	}
3085 
3086 	// remove us from our parent
3087 	remove_team_from_parent(parent, team);
3088 }
3089 
3090 
3091 /*!	Kills all threads but the main thread of the team and shuts down user
3092 	debugging for it.
3093 	To be called on exit of the team's main thread. No locks must be held.
3094 
3095 	\param team The team in question.
3096 	\return The port of the debugger for the team, -1 if none. To be passed to
3097 		team_delete_team().
3098 */
3099 port_id
3100 team_shutdown_team(Team* team)
3101 {
3102 	ASSERT(thread_get_current_thread() == team->main_thread);
3103 
3104 	TeamLocker teamLocker(team);
3105 
3106 	// Make sure debugging changes won't happen anymore.
3107 	port_id debuggerPort = -1;
3108 	while (true) {
3109 		// If a debugger change is in progress for the team, we'll have to
3110 		// wait until it is done.
3111 		ConditionVariableEntry waitForDebuggerEntry;
3112 		bool waitForDebugger = false;
3113 
3114 		InterruptsSpinLocker debugInfoLocker(team->debug_info.lock);
3115 
3116 		if (team->debug_info.debugger_changed_condition != NULL) {
3117 			team->debug_info.debugger_changed_condition->Add(
3118 				&waitForDebuggerEntry);
3119 			waitForDebugger = true;
3120 		} else if (team->debug_info.flags & B_TEAM_DEBUG_DEBUGGER_INSTALLED) {
3121 			// The team is being debugged. That will stop with the termination
3122 			// of the nub thread. Since we set the team state to death, no one
3123 			// can install a debugger anymore. We fetch the debugger's port to
3124 			// send it a message at the bitter end.
3125 			debuggerPort = team->debug_info.debugger_port;
3126 		}
3127 
3128 		debugInfoLocker.Unlock();
3129 
3130 		if (!waitForDebugger)
3131 			break;
3132 
3133 		// wait for the debugger change to be finished
3134 		teamLocker.Unlock();
3135 
3136 		waitForDebuggerEntry.Wait();
3137 
3138 		teamLocker.Lock();
3139 	}
3140 
3141 	// Mark the team as shutting down. That will prevent new threads from being
3142 	// created and debugger changes from taking place.
3143 	team->state = TEAM_STATE_SHUTDOWN;
3144 
3145 	// delete all timers
3146 	team->DeleteUserTimers(false);
3147 
3148 	// deactivate CPU time user timers for the team
3149 	InterruptsSpinLocker timeLocker(team->time_lock);
3150 
3151 	if (team->HasActiveCPUTimeUserTimers())
3152 		team->DeactivateCPUTimeUserTimers();
3153 
3154 	timeLocker.Unlock();
3155 
3156 	// kill all threads but the main thread
3157 	team_death_entry deathEntry;
3158 	deathEntry.condition.Init(team, "team death");
3159 
3160 	while (true) {
3161 		team->death_entry = &deathEntry;
3162 		deathEntry.remaining_threads = 0;
3163 
3164 		Thread* thread = team->thread_list;
3165 		while (thread != NULL) {
3166 			if (thread != team->main_thread) {
3167 				Signal signal(SIGKILLTHR, SI_USER, B_OK, team->id);
3168 				send_signal_to_thread(thread, signal, B_DO_NOT_RESCHEDULE);
3169 				deathEntry.remaining_threads++;
3170 			}
3171 
3172 			thread = thread->team_next;
3173 		}
3174 
3175 		if (deathEntry.remaining_threads == 0)
3176 			break;
3177 
3178 		// there are threads to wait for
3179 		ConditionVariableEntry entry;
3180 		deathEntry.condition.Add(&entry);
3181 
3182 		teamLocker.Unlock();
3183 
3184 		entry.Wait();
3185 
3186 		teamLocker.Lock();
3187 	}
3188 
3189 	team->death_entry = NULL;
3190 
3191 	return debuggerPort;
3192 }
3193 
3194 
3195 /*!	Called on team exit to notify threads waiting on the team and free most
3196 	resources associated with it.
3197 	The caller shouldn't hold any locks.
3198 */
3199 void
3200 team_delete_team(Team* team, port_id debuggerPort)
3201 {
3202 	// Not quite in our job description, but work that has been left by
3203 	// team_remove_team() and that can be done now that we're not holding any
3204 	// locks.
3205 	orphaned_process_group_check();
3206 
3207 	team_id teamID = team->id;
3208 
3209 	ASSERT(team->num_threads == 0);
3210 
3211 	// If someone is waiting for this team to be loaded, but it dies
3212 	// unexpectedly before being done, we need to notify the waiting
3213 	// thread now.
3214 
3215 	TeamLocker teamLocker(team);
3216 
3217 	if (team->loading_info) {
3218 		// there's indeed someone waiting
3219 		struct team_loading_info* loadingInfo = team->loading_info;
3220 		team->loading_info = NULL;
3221 
3222 		loadingInfo->result = B_ERROR;
3223 		loadingInfo->done = true;
3224 
3225 		// wake up the waiting thread
3226 		thread_continue(loadingInfo->thread);
3227 	}
3228 
3229 	// notify team watchers
3230 
3231 	{
3232 		// we're not reachable from anyone anymore at this point, so we
3233 		// can safely access the list without any locking
3234 		struct team_watcher* watcher;
3235 		while ((watcher = (struct team_watcher*)list_remove_head_item(
3236 				&team->watcher_list)) != NULL) {
3237 			watcher->hook(teamID, watcher->data);
3238 			free(watcher);
3239 		}
3240 	}
3241 
3242 	teamLocker.Unlock();
3243 
3244 	sNotificationService.Notify(TEAM_REMOVED, team);
3245 
3246 	// free team resources
3247 
3248 	delete_realtime_sem_context(team->realtime_sem_context);
3249 	xsi_sem_undo(team);
3250 	remove_images(team);
3251 	team->address_space->RemoveAndPut();
3252 
3253 	team->ReleaseReference();
3254 
3255 	// notify the debugger, that the team is gone
3256 	user_debug_team_deleted(teamID, debuggerPort);
3257 }
3258 
3259 
3260 Team*
3261 team_get_kernel_team(void)
3262 {
3263 	return sKernelTeam;
3264 }
3265 
3266 
3267 team_id
3268 team_get_kernel_team_id(void)
3269 {
3270 	if (!sKernelTeam)
3271 		return 0;
3272 
3273 	return sKernelTeam->id;
3274 }
3275 
3276 
3277 team_id
3278 team_get_current_team_id(void)
3279 {
3280 	return thread_get_current_thread()->team->id;
3281 }
3282 
3283 
3284 status_t
3285 team_get_address_space(team_id id, VMAddressSpace** _addressSpace)
3286 {
3287 	if (id == sKernelTeam->id) {
3288 		// we're the kernel team, so we don't have to go through all
3289 		// the hassle (locking and hash lookup)
3290 		*_addressSpace = VMAddressSpace::GetKernel();
3291 		return B_OK;
3292 	}
3293 
3294 	InterruptsSpinLocker teamsLocker(sTeamHashLock);
3295 
3296 	Team* team = team_get_team_struct_locked(id);
3297 	if (team == NULL)
3298 		return B_BAD_VALUE;
3299 
3300 	team->address_space->Get();
3301 	*_addressSpace = team->address_space;
3302 	return B_OK;
3303 }
3304 
3305 
3306 /*!	Sets the team's job control state.
3307 	The caller must hold the parent team's lock. Interrupts are allowed to be
3308 	enabled or disabled.
3309 	\a team The team whose job control state shall be set.
3310 	\a newState The new state to be set.
3311 	\a signal The signal the new state was caused by. Can \c NULL, if none. Then
3312 		the caller is responsible for filling in the following fields of the
3313 		entry before releasing the parent team's lock, unless the new state is
3314 		\c JOB_CONTROL_STATE_NONE:
3315 		- \c signal: The number of the signal causing the state change.
3316 		- \c signaling_user: The real UID of the user sending the signal.
3317 */
3318 void
3319 team_set_job_control_state(Team* team, job_control_state newState,
3320 	Signal* signal)
3321 {
3322 	if (team == NULL || team->job_control_entry == NULL)
3323 		return;
3324 
3325 	// don't touch anything, if the state stays the same or the team is already
3326 	// dead
3327 	job_control_entry* entry = team->job_control_entry;
3328 	if (entry->state == newState || entry->state == JOB_CONTROL_STATE_DEAD)
3329 		return;
3330 
3331 	T(SetJobControlState(team->id, newState, signal));
3332 
3333 	// remove from the old list
3334 	switch (entry->state) {
3335 		case JOB_CONTROL_STATE_NONE:
3336 			// entry is in no list ATM
3337 			break;
3338 		case JOB_CONTROL_STATE_DEAD:
3339 			// can't get here
3340 			break;
3341 		case JOB_CONTROL_STATE_STOPPED:
3342 			team->parent->stopped_children.entries.Remove(entry);
3343 			break;
3344 		case JOB_CONTROL_STATE_CONTINUED:
3345 			team->parent->continued_children.entries.Remove(entry);
3346 			break;
3347 	}
3348 
3349 	entry->state = newState;
3350 
3351 	if (signal != NULL) {
3352 		entry->signal = signal->Number();
3353 		entry->signaling_user = signal->SendingUser();
3354 	}
3355 
3356 	// add to new list
3357 	team_job_control_children* childList = NULL;
3358 	switch (entry->state) {
3359 		case JOB_CONTROL_STATE_NONE:
3360 			// entry doesn't get into any list
3361 			break;
3362 		case JOB_CONTROL_STATE_DEAD:
3363 			childList = &team->parent->dead_children;
3364 			team->parent->dead_children.count++;
3365 			break;
3366 		case JOB_CONTROL_STATE_STOPPED:
3367 			childList = &team->parent->stopped_children;
3368 			break;
3369 		case JOB_CONTROL_STATE_CONTINUED:
3370 			childList = &team->parent->continued_children;
3371 			break;
3372 	}
3373 
3374 	if (childList != NULL) {
3375 		childList->entries.Add(entry);
3376 		team->parent->dead_children.condition_variable.NotifyAll();
3377 	}
3378 }
3379 
3380 
3381 /*!	Inits the given team's exit information, if not yet initialized, to some
3382 	generic "killed" status.
3383 	The caller must not hold the team's lock. Interrupts must be enabled.
3384 
3385 	\param team The team whose exit info shall be initialized.
3386 */
3387 void
3388 team_init_exit_info_on_error(Team* team)
3389 {
3390 	TeamLocker teamLocker(team);
3391 
3392 	if (!team->exit.initialized) {
3393 		team->exit.reason = CLD_KILLED;
3394 		team->exit.signal = SIGKILL;
3395 		team->exit.signaling_user = geteuid();
3396 		team->exit.status = 0;
3397 		team->exit.initialized = true;
3398 	}
3399 }
3400 
3401 
3402 /*! Adds a hook to the team that is called as soon as this team goes away.
3403 	This call might get public in the future.
3404 */
3405 status_t
3406 start_watching_team(team_id teamID, void (*hook)(team_id, void*), void* data)
3407 {
3408 	if (hook == NULL || teamID < B_OK)
3409 		return B_BAD_VALUE;
3410 
3411 	// create the watcher object
3412 	team_watcher* watcher = (team_watcher*)malloc(sizeof(team_watcher));
3413 	if (watcher == NULL)
3414 		return B_NO_MEMORY;
3415 
3416 	watcher->hook = hook;
3417 	watcher->data = data;
3418 
3419 	// add watcher, if the team isn't already dying
3420 	// get the team
3421 	Team* team = Team::GetAndLock(teamID);
3422 	if (team == NULL) {
3423 		free(watcher);
3424 		return B_BAD_TEAM_ID;
3425 	}
3426 
3427 	list_add_item(&team->watcher_list, watcher);
3428 
3429 	team->UnlockAndReleaseReference();
3430 
3431 	return B_OK;
3432 }
3433 
3434 
3435 status_t
3436 stop_watching_team(team_id teamID, void (*hook)(team_id, void*), void* data)
3437 {
3438 	if (hook == NULL || teamID < 0)
3439 		return B_BAD_VALUE;
3440 
3441 	// get team and remove watcher (if present)
3442 	Team* team = Team::GetAndLock(teamID);
3443 	if (team == NULL)
3444 		return B_BAD_TEAM_ID;
3445 
3446 	// search for watcher
3447 	team_watcher* watcher = NULL;
3448 	while ((watcher = (team_watcher*)list_get_next_item(
3449 			&team->watcher_list, watcher)) != NULL) {
3450 		if (watcher->hook == hook && watcher->data == data) {
3451 			// got it!
3452 			list_remove_item(&team->watcher_list, watcher);
3453 			break;
3454 		}
3455 	}
3456 
3457 	team->UnlockAndReleaseReference();
3458 
3459 	if (watcher == NULL)
3460 		return B_ENTRY_NOT_FOUND;
3461 
3462 	free(watcher);
3463 	return B_OK;
3464 }
3465 
3466 
3467 /*!	Allocates a user_thread structure from the team.
3468 	The team lock must be held, unless the function is called for the team's
3469 	main thread. Interrupts must be enabled.
3470 */
3471 struct user_thread*
3472 team_allocate_user_thread(Team* team)
3473 {
3474 	if (team->user_data == 0)
3475 		return NULL;
3476 
3477 	// take an entry from the free list, if any
3478 	if (struct free_user_thread* entry = team->free_user_threads) {
3479 		user_thread* thread = entry->thread;
3480 		team->free_user_threads = entry->next;
3481 		free(entry);
3482 		return thread;
3483 	}
3484 
3485 	while (true) {
3486 		// enough space left?
3487 		size_t needed = ROUNDUP(sizeof(user_thread), CACHE_LINE_SIZE);
3488 		if (team->user_data_size - team->used_user_data < needed) {
3489 			// try to resize the area
3490 			if (resize_area(team->user_data_area,
3491 					team->user_data_size + B_PAGE_SIZE) != B_OK) {
3492 				return NULL;
3493 			}
3494 
3495 			// resized user area successfully -- try to allocate the user_thread
3496 			// again
3497 			team->user_data_size += B_PAGE_SIZE;
3498 			continue;
3499 		}
3500 
3501 		// allocate the user_thread
3502 		user_thread* thread
3503 			= (user_thread*)(team->user_data + team->used_user_data);
3504 		team->used_user_data += needed;
3505 
3506 		return thread;
3507 	}
3508 }
3509 
3510 
3511 /*!	Frees the given user_thread structure.
3512 	The team's lock must not be held. Interrupts must be enabled.
3513 	\param team The team the user thread was allocated from.
3514 	\param userThread The user thread to free.
3515 */
3516 void
3517 team_free_user_thread(Team* team, struct user_thread* userThread)
3518 {
3519 	if (userThread == NULL)
3520 		return;
3521 
3522 	// create a free list entry
3523 	free_user_thread* entry
3524 		= (free_user_thread*)malloc(sizeof(free_user_thread));
3525 	if (entry == NULL) {
3526 		// we have to leak the user thread :-/
3527 		return;
3528 	}
3529 
3530 	// add to free list
3531 	TeamLocker teamLocker(team);
3532 
3533 	entry->thread = userThread;
3534 	entry->next = team->free_user_threads;
3535 	team->free_user_threads = entry;
3536 }
3537 
3538 
3539 //	#pragma mark - Associated data interface
3540 
3541 
3542 AssociatedData::AssociatedData()
3543 	:
3544 	fOwner(NULL)
3545 {
3546 }
3547 
3548 
3549 AssociatedData::~AssociatedData()
3550 {
3551 }
3552 
3553 
3554 void
3555 AssociatedData::OwnerDeleted(AssociatedDataOwner* owner)
3556 {
3557 }
3558 
3559 
3560 AssociatedDataOwner::AssociatedDataOwner()
3561 {
3562 	mutex_init(&fLock, "associated data owner");
3563 }
3564 
3565 
3566 AssociatedDataOwner::~AssociatedDataOwner()
3567 {
3568 	mutex_destroy(&fLock);
3569 }
3570 
3571 
3572 bool
3573 AssociatedDataOwner::AddData(AssociatedData* data)
3574 {
3575 	MutexLocker locker(fLock);
3576 
3577 	if (data->Owner() != NULL)
3578 		return false;
3579 
3580 	data->AcquireReference();
3581 	fList.Add(data);
3582 	data->SetOwner(this);
3583 
3584 	return true;
3585 }
3586 
3587 
3588 bool
3589 AssociatedDataOwner::RemoveData(AssociatedData* data)
3590 {
3591 	MutexLocker locker(fLock);
3592 
3593 	if (data->Owner() != this)
3594 		return false;
3595 
3596 	data->SetOwner(NULL);
3597 	fList.Remove(data);
3598 
3599 	locker.Unlock();
3600 
3601 	data->ReleaseReference();
3602 
3603 	return true;
3604 }
3605 
3606 
3607 void
3608 AssociatedDataOwner::PrepareForDeletion()
3609 {
3610 	MutexLocker locker(fLock);
3611 
3612 	// move all data to a temporary list and unset the owner
3613 	DataList list;
3614 	list.MoveFrom(&fList);
3615 
3616 	for (DataList::Iterator it = list.GetIterator();
3617 		AssociatedData* data = it.Next();) {
3618 		data->SetOwner(NULL);
3619 	}
3620 
3621 	locker.Unlock();
3622 
3623 	// call the notification hooks and release our references
3624 	while (AssociatedData* data = list.RemoveHead()) {
3625 		data->OwnerDeleted(this);
3626 		data->ReleaseReference();
3627 	}
3628 }
3629 
3630 
3631 /*!	Associates data with the current team.
3632 	When the team is deleted, the data object is notified.
3633 	The team acquires a reference to the object.
3634 
3635 	\param data The data object.
3636 	\return \c true on success, \c false otherwise. Fails only when the supplied
3637 		data object is already associated with another owner.
3638 */
3639 bool
3640 team_associate_data(AssociatedData* data)
3641 {
3642 	return thread_get_current_thread()->team->AddData(data);
3643 }
3644 
3645 
3646 /*!	Dissociates data from the current team.
3647 	Balances an earlier call to team_associate_data().
3648 
3649 	\param data The data object.
3650 	\return \c true on success, \c false otherwise. Fails only when the data
3651 		object is not associated with the current team.
3652 */
3653 bool
3654 team_dissociate_data(AssociatedData* data)
3655 {
3656 	return thread_get_current_thread()->team->RemoveData(data);
3657 }
3658 
3659 
3660 //	#pragma mark - Public kernel API
3661 
3662 
3663 thread_id
3664 load_image(int32 argCount, const char** args, const char** env)
3665 {
3666 	return load_image_etc(argCount, args, env, B_NORMAL_PRIORITY,
3667 		B_CURRENT_TEAM, B_WAIT_TILL_LOADED);
3668 }
3669 
3670 
3671 thread_id
3672 load_image_etc(int32 argCount, const char* const* args,
3673 	const char* const* env, int32 priority, team_id parentID, uint32 flags)
3674 {
3675 	// we need to flatten the args and environment
3676 
3677 	if (args == NULL)
3678 		return B_BAD_VALUE;
3679 
3680 	// determine total needed size
3681 	int32 argSize = 0;
3682 	for (int32 i = 0; i < argCount; i++)
3683 		argSize += strlen(args[i]) + 1;
3684 
3685 	int32 envCount = 0;
3686 	int32 envSize = 0;
3687 	while (env != NULL && env[envCount] != NULL)
3688 		envSize += strlen(env[envCount++]) + 1;
3689 
3690 	int32 size = (argCount + envCount + 2) * sizeof(char*) + argSize + envSize;
3691 	if (size > MAX_PROCESS_ARGS_SIZE)
3692 		return B_TOO_MANY_ARGS;
3693 
3694 	// allocate space
3695 	char** flatArgs = (char**)malloc(size);
3696 	if (flatArgs == NULL)
3697 		return B_NO_MEMORY;
3698 
3699 	char** slot = flatArgs;
3700 	char* stringSpace = (char*)(flatArgs + argCount + envCount + 2);
3701 
3702 	// copy arguments and environment
3703 	for (int32 i = 0; i < argCount; i++) {
3704 		int32 argSize = strlen(args[i]) + 1;
3705 		memcpy(stringSpace, args[i], argSize);
3706 		*slot++ = stringSpace;
3707 		stringSpace += argSize;
3708 	}
3709 
3710 	*slot++ = NULL;
3711 
3712 	for (int32 i = 0; i < envCount; i++) {
3713 		int32 envSize = strlen(env[i]) + 1;
3714 		memcpy(stringSpace, env[i], envSize);
3715 		*slot++ = stringSpace;
3716 		stringSpace += envSize;
3717 	}
3718 
3719 	*slot++ = NULL;
3720 
3721 	thread_id thread = load_image_internal(flatArgs, size, argCount, envCount,
3722 		B_NORMAL_PRIORITY, parentID, B_WAIT_TILL_LOADED, -1, 0);
3723 
3724 	free(flatArgs);
3725 		// load_image_internal() unset our variable if it took over ownership
3726 
3727 	return thread;
3728 }
3729 
3730 
3731 status_t
3732 wait_for_team(team_id id, status_t* _returnCode)
3733 {
3734 	// check whether the team exists
3735 	InterruptsSpinLocker teamsLocker(sTeamHashLock);
3736 
3737 	Team* team = team_get_team_struct_locked(id);
3738 	if (team == NULL)
3739 		return B_BAD_TEAM_ID;
3740 
3741 	id = team->id;
3742 
3743 	teamsLocker.Unlock();
3744 
3745 	// wait for the main thread (it has the same ID as the team)
3746 	return wait_for_thread(id, _returnCode);
3747 }
3748 
3749 
3750 status_t
3751 kill_team(team_id id)
3752 {
3753 	InterruptsSpinLocker teamsLocker(sTeamHashLock);
3754 
3755 	Team* team = team_get_team_struct_locked(id);
3756 	if (team == NULL)
3757 		return B_BAD_TEAM_ID;
3758 
3759 	id = team->id;
3760 
3761 	teamsLocker.Unlock();
3762 
3763 	if (team == sKernelTeam)
3764 		return B_NOT_ALLOWED;
3765 
3766 	// Just kill the team's main thread (it has same ID as the team). The
3767 	// cleanup code there will take care of the team.
3768 	return kill_thread(id);
3769 }
3770 
3771 
3772 status_t
3773 _get_team_info(team_id id, team_info* info, size_t size)
3774 {
3775 	// get the team
3776 	Team* team = Team::Get(id);
3777 	if (team == NULL)
3778 		return B_BAD_TEAM_ID;
3779 	BReference<Team> teamReference(team, true);
3780 
3781 	// fill in the info
3782 	return fill_team_info(team, info, size);
3783 }
3784 
3785 
3786 status_t
3787 _get_next_team_info(int32* cookie, team_info* info, size_t size)
3788 {
3789 	int32 slot = *cookie;
3790 	if (slot < 1)
3791 		slot = 1;
3792 
3793 	InterruptsSpinLocker locker(sTeamHashLock);
3794 
3795 	team_id lastTeamID = peek_next_thread_id();
3796 		// TODO: This is broken, since the id can wrap around!
3797 
3798 	// get next valid team
3799 	Team* team = NULL;
3800 	while (slot < lastTeamID && !(team = team_get_team_struct_locked(slot)))
3801 		slot++;
3802 
3803 	if (team == NULL)
3804 		return B_BAD_TEAM_ID;
3805 
3806 	// get a reference to the team and unlock
3807 	BReference<Team> teamReference(team);
3808 	locker.Unlock();
3809 
3810 	// fill in the info
3811 	*cookie = ++slot;
3812 	return fill_team_info(team, info, size);
3813 }
3814 
3815 
3816 status_t
3817 _get_team_usage_info(team_id id, int32 who, team_usage_info* info, size_t size)
3818 {
3819 	if (size != sizeof(team_usage_info))
3820 		return B_BAD_VALUE;
3821 
3822 	return common_get_team_usage_info(id, who, info, 0);
3823 }
3824 
3825 
3826 pid_t
3827 getpid(void)
3828 {
3829 	return thread_get_current_thread()->team->id;
3830 }
3831 
3832 
3833 pid_t
3834 getppid(void)
3835 {
3836 	Team* team = thread_get_current_thread()->team;
3837 
3838 	TeamLocker teamLocker(team);
3839 
3840 	return team->parent->id;
3841 }
3842 
3843 
3844 pid_t
3845 getpgid(pid_t id)
3846 {
3847 	if (id < 0) {
3848 		errno = EINVAL;
3849 		return -1;
3850 	}
3851 
3852 	if (id == 0) {
3853 		// get process group of the calling process
3854 		Team* team = thread_get_current_thread()->team;
3855 		TeamLocker teamLocker(team);
3856 		return team->group_id;
3857 	}
3858 
3859 	// get the team
3860 	Team* team = Team::GetAndLock(id);
3861 	if (team == NULL) {
3862 		errno = ESRCH;
3863 		return -1;
3864 	}
3865 
3866 	// get the team's process group ID
3867 	pid_t groupID = team->group_id;
3868 
3869 	team->UnlockAndReleaseReference();
3870 
3871 	return groupID;
3872 }
3873 
3874 
3875 pid_t
3876 getsid(pid_t id)
3877 {
3878 	if (id < 0) {
3879 		errno = EINVAL;
3880 		return -1;
3881 	}
3882 
3883 	if (id == 0) {
3884 		// get session of the calling process
3885 		Team* team = thread_get_current_thread()->team;
3886 		TeamLocker teamLocker(team);
3887 		return team->session_id;
3888 	}
3889 
3890 	// get the team
3891 	Team* team = Team::GetAndLock(id);
3892 	if (team == NULL) {
3893 		errno = ESRCH;
3894 		return -1;
3895 	}
3896 
3897 	// get the team's session ID
3898 	pid_t sessionID = team->session_id;
3899 
3900 	team->UnlockAndReleaseReference();
3901 
3902 	return sessionID;
3903 }
3904 
3905 
3906 //	#pragma mark - User syscalls
3907 
3908 
3909 status_t
3910 _user_exec(const char* userPath, const char* const* userFlatArgs,
3911 	size_t flatArgsSize, int32 argCount, int32 envCount, mode_t umask)
3912 {
3913 	// NOTE: Since this function normally doesn't return, don't use automatic
3914 	// variables that need destruction in the function scope.
3915 	char path[B_PATH_NAME_LENGTH];
3916 
3917 	if (!IS_USER_ADDRESS(userPath) || !IS_USER_ADDRESS(userFlatArgs)
3918 		|| user_strlcpy(path, userPath, sizeof(path)) < B_OK)
3919 		return B_BAD_ADDRESS;
3920 
3921 	// copy and relocate the flat arguments
3922 	char** flatArgs;
3923 	status_t error = copy_user_process_args(userFlatArgs, flatArgsSize,
3924 		argCount, envCount, flatArgs);
3925 
3926 	if (error == B_OK) {
3927 		error = exec_team(path, flatArgs, _ALIGN(flatArgsSize), argCount,
3928 			envCount, umask);
3929 			// this one only returns in case of error
3930 	}
3931 
3932 	free(flatArgs);
3933 	return error;
3934 }
3935 
3936 
3937 thread_id
3938 _user_fork(void)
3939 {
3940 	return fork_team();
3941 }
3942 
3943 
3944 pid_t
3945 _user_wait_for_child(thread_id child, uint32 flags, siginfo_t* userInfo,
3946 	team_usage_info* usageInfo)
3947 {
3948 	if (userInfo != NULL && !IS_USER_ADDRESS(userInfo))
3949 		return B_BAD_ADDRESS;
3950 	if (usageInfo != NULL && !IS_USER_ADDRESS(usageInfo))
3951 		return B_BAD_ADDRESS;
3952 
3953 	siginfo_t info;
3954 	team_usage_info usage_info;
3955 	pid_t foundChild = wait_for_child(child, flags, info, usage_info);
3956 	if (foundChild < 0)
3957 		return syscall_restart_handle_post(foundChild);
3958 
3959 	// copy info back to userland
3960 	if (userInfo != NULL && user_memcpy(userInfo, &info, sizeof(info)) != B_OK)
3961 		return B_BAD_ADDRESS;
3962 	// copy usage_info back to userland
3963 	if (usageInfo != NULL && user_memcpy(usageInfo, &usage_info,
3964 		sizeof(usage_info)) != B_OK) {
3965 		return B_BAD_ADDRESS;
3966 	}
3967 
3968 	return foundChild;
3969 }
3970 
3971 
3972 pid_t
3973 _user_process_info(pid_t process, int32 which)
3974 {
3975 	// we only allow to return the parent of the current process
3976 	if (which == PARENT_ID
3977 		&& process != 0 && process != thread_get_current_thread()->team->id)
3978 		return B_BAD_VALUE;
3979 
3980 	pid_t result;
3981 	switch (which) {
3982 		case SESSION_ID:
3983 			result = getsid(process);
3984 			break;
3985 		case GROUP_ID:
3986 			result = getpgid(process);
3987 			break;
3988 		case PARENT_ID:
3989 			result = getppid();
3990 			break;
3991 		default:
3992 			return B_BAD_VALUE;
3993 	}
3994 
3995 	return result >= 0 ? result : errno;
3996 }
3997 
3998 
3999 pid_t
4000 _user_setpgid(pid_t processID, pid_t groupID)
4001 {
4002 	// setpgid() can be called either by the parent of the target process or
4003 	// by the process itself to do one of two things:
4004 	// * Create a new process group with the target process' ID and the target
4005 	//   process as group leader.
4006 	// * Set the target process' process group to an already existing one in the
4007 	//   same session.
4008 
4009 	if (groupID < 0)
4010 		return B_BAD_VALUE;
4011 
4012 	Team* currentTeam = thread_get_current_thread()->team;
4013 	if (processID == 0)
4014 		processID = currentTeam->id;
4015 
4016 	// if the group ID is not specified, use the target process' ID
4017 	if (groupID == 0)
4018 		groupID = processID;
4019 
4020 	// We loop when running into the following race condition: We create a new
4021 	// process group, because there isn't one with that ID yet, but later when
4022 	// trying to publish it, we find that someone else created and published
4023 	// a group with that ID in the meantime. In that case we just restart the
4024 	// whole action.
4025 	while (true) {
4026 		// Look up the process group by ID. If it doesn't exist yet and we are
4027 		// allowed to create a new one, do that.
4028 		ProcessGroup* group = ProcessGroup::Get(groupID);
4029 		bool newGroup = false;
4030 		if (group == NULL) {
4031 			if (groupID != processID)
4032 				return B_NOT_ALLOWED;
4033 
4034 			group = new(std::nothrow) ProcessGroup(groupID);
4035 			if (group == NULL)
4036 				return B_NO_MEMORY;
4037 
4038 			newGroup = true;
4039 		}
4040 		BReference<ProcessGroup> groupReference(group, true);
4041 
4042 		// get the target team
4043 		Team* team = Team::Get(processID);
4044 		if (team == NULL)
4045 			return ESRCH;
4046 		BReference<Team> teamReference(team, true);
4047 
4048 		// lock the new process group and the team's current process group
4049 		while (true) {
4050 			// lock the team's current process group
4051 			team->LockProcessGroup();
4052 
4053 			ProcessGroup* oldGroup = team->group;
4054 			if (oldGroup == group) {
4055 				// it's the same as the target group, so just bail out
4056 				oldGroup->Unlock();
4057 				return group->id;
4058 			}
4059 
4060 			oldGroup->AcquireReference();
4061 
4062 			// lock the target process group, if locking order allows it
4063 			if (newGroup || group->id > oldGroup->id) {
4064 				group->Lock();
4065 				break;
4066 			}
4067 
4068 			// try to lock
4069 			if (group->TryLock())
4070 				break;
4071 
4072 			// no dice -- unlock the team's current process group and relock in
4073 			// the correct order
4074 			oldGroup->Unlock();
4075 
4076 			group->Lock();
4077 			oldGroup->Lock();
4078 
4079 			// check whether things are still the same
4080 			TeamLocker teamLocker(team);
4081 			if (team->group == oldGroup)
4082 				break;
4083 
4084 			// something changed -- unlock everything and retry
4085 			teamLocker.Unlock();
4086 			oldGroup->Unlock();
4087 			group->Unlock();
4088 			oldGroup->ReleaseReference();
4089 		}
4090 
4091 		// we now have references and locks of both new and old process group
4092 		BReference<ProcessGroup> oldGroupReference(team->group, true);
4093 		AutoLocker<ProcessGroup> oldGroupLocker(team->group, true);
4094 		AutoLocker<ProcessGroup> groupLocker(group, true);
4095 
4096 		// also lock the target team and its parent
4097 		team->LockTeamAndParent(false);
4098 		TeamLocker parentLocker(team->parent, true);
4099 		TeamLocker teamLocker(team, true);
4100 
4101 		// perform the checks
4102 		if (team == currentTeam) {
4103 			// we set our own group
4104 
4105 			// we must not change our process group ID if we're a session leader
4106 			if (is_session_leader(currentTeam))
4107 				return B_NOT_ALLOWED;
4108 		} else {
4109 			// Calling team != target team. The target team must be a child of
4110 			// the calling team and in the same session. (If that's the case it
4111 			// isn't a session leader either.)
4112 			if (team->parent != currentTeam
4113 				|| team->session_id != currentTeam->session_id) {
4114 				return B_NOT_ALLOWED;
4115 			}
4116 
4117 			// The call is also supposed to fail on a child, when the child has
4118 			// already executed exec*() [EACCES].
4119 			if ((team->flags & TEAM_FLAG_EXEC_DONE) != 0)
4120 				return EACCES;
4121 		}
4122 
4123 		// If we created a new process group, publish it now.
4124 		if (newGroup) {
4125 			InterruptsSpinLocker groupHashLocker(sGroupHashLock);
4126 			if (sGroupHash.Lookup(groupID)) {
4127 				// A group with the group ID appeared since we first checked.
4128 				// Back to square one.
4129 				continue;
4130 			}
4131 
4132 			group->PublishLocked(team->group->Session());
4133 		} else if (group->Session()->id != team->session_id) {
4134 			// The existing target process group belongs to a different session.
4135 			// That's not allowed.
4136 			return B_NOT_ALLOWED;
4137 		}
4138 
4139 		// Everything is ready -- set the group.
4140 		remove_team_from_group(team);
4141 		insert_team_into_group(group, team);
4142 
4143 		// Changing the process group might have changed the situation for a
4144 		// parent waiting in wait_for_child(). Hence we notify it.
4145 		team->parent->dead_children.condition_variable.NotifyAll();
4146 
4147 		return group->id;
4148 	}
4149 }
4150 
4151 
4152 pid_t
4153 _user_setsid(void)
4154 {
4155 	Team* team = thread_get_current_thread()->team;
4156 
4157 	// create a new process group and session
4158 	ProcessGroup* group = new(std::nothrow) ProcessGroup(team->id);
4159 	if (group == NULL)
4160 		return B_NO_MEMORY;
4161 	BReference<ProcessGroup> groupReference(group, true);
4162 	AutoLocker<ProcessGroup> groupLocker(group);
4163 
4164 	ProcessSession* session = new(std::nothrow) ProcessSession(group->id);
4165 	if (session == NULL)
4166 		return B_NO_MEMORY;
4167 	BReference<ProcessSession> sessionReference(session, true);
4168 
4169 	// lock the team's current process group, parent, and the team itself
4170 	team->LockTeamParentAndProcessGroup();
4171 	BReference<ProcessGroup> oldGroupReference(team->group);
4172 	AutoLocker<ProcessGroup> oldGroupLocker(team->group, true);
4173 	TeamLocker parentLocker(team->parent, true);
4174 	TeamLocker teamLocker(team, true);
4175 
4176 	// the team must not already be a process group leader
4177 	if (is_process_group_leader(team))
4178 		return B_NOT_ALLOWED;
4179 
4180 	// remove the team from the old and add it to the new process group
4181 	remove_team_from_group(team);
4182 	group->Publish(session);
4183 	insert_team_into_group(group, team);
4184 
4185 	// Changing the process group might have changed the situation for a
4186 	// parent waiting in wait_for_child(). Hence we notify it.
4187 	team->parent->dead_children.condition_variable.NotifyAll();
4188 
4189 	return group->id;
4190 }
4191 
4192 
4193 status_t
4194 _user_wait_for_team(team_id id, status_t* _userReturnCode)
4195 {
4196 	status_t returnCode;
4197 	status_t status;
4198 
4199 	if (_userReturnCode != NULL && !IS_USER_ADDRESS(_userReturnCode))
4200 		return B_BAD_ADDRESS;
4201 
4202 	status = wait_for_team(id, &returnCode);
4203 	if (status >= B_OK && _userReturnCode != NULL) {
4204 		if (user_memcpy(_userReturnCode, &returnCode, sizeof(returnCode))
4205 				!= B_OK)
4206 			return B_BAD_ADDRESS;
4207 		return B_OK;
4208 	}
4209 
4210 	return syscall_restart_handle_post(status);
4211 }
4212 
4213 
4214 thread_id
4215 _user_load_image(const char* const* userFlatArgs, size_t flatArgsSize,
4216 	int32 argCount, int32 envCount, int32 priority, uint32 flags,
4217 	port_id errorPort, uint32 errorToken)
4218 {
4219 	TRACE(("_user_load_image: argc = %" B_PRId32 "\n", argCount));
4220 
4221 	if (argCount < 1)
4222 		return B_BAD_VALUE;
4223 
4224 	// copy and relocate the flat arguments
4225 	char** flatArgs;
4226 	status_t error = copy_user_process_args(userFlatArgs, flatArgsSize,
4227 		argCount, envCount, flatArgs);
4228 	if (error != B_OK)
4229 		return error;
4230 
4231 	thread_id thread = load_image_internal(flatArgs, _ALIGN(flatArgsSize),
4232 		argCount, envCount, priority, B_CURRENT_TEAM, flags, errorPort,
4233 		errorToken);
4234 
4235 	free(flatArgs);
4236 		// load_image_internal() unset our variable if it took over ownership
4237 
4238 	return thread;
4239 }
4240 
4241 
4242 void
4243 _user_exit_team(status_t returnValue)
4244 {
4245 	Thread* thread = thread_get_current_thread();
4246 	Team* team = thread->team;
4247 
4248 	// set this thread's exit status
4249 	thread->exit.status = returnValue;
4250 
4251 	// set the team exit status
4252 	TeamLocker teamLocker(team);
4253 
4254 	if (!team->exit.initialized) {
4255 		team->exit.reason = CLD_EXITED;
4256 		team->exit.signal = 0;
4257 		team->exit.signaling_user = 0;
4258 		team->exit.status = returnValue;
4259 		team->exit.initialized = true;
4260 	}
4261 
4262 	teamLocker.Unlock();
4263 
4264 	// Stop the thread, if the team is being debugged and that has been
4265 	// requested.
4266 	if ((atomic_get(&team->debug_info.flags) & B_TEAM_DEBUG_PREVENT_EXIT) != 0)
4267 		user_debug_stop_thread();
4268 
4269 	// Send this thread a SIGKILL. This makes sure the thread will not return to
4270 	// userland. The signal handling code forwards the signal to the main
4271 	// thread (if that's not already this one), which will take the team down.
4272 	Signal signal(SIGKILL, SI_USER, B_OK, team->id);
4273 	send_signal_to_thread(thread, signal, 0);
4274 }
4275 
4276 
4277 status_t
4278 _user_kill_team(team_id team)
4279 {
4280 	return kill_team(team);
4281 }
4282 
4283 
4284 status_t
4285 _user_get_team_info(team_id id, team_info* userInfo)
4286 {
4287 	status_t status;
4288 	team_info info;
4289 
4290 	if (!IS_USER_ADDRESS(userInfo))
4291 		return B_BAD_ADDRESS;
4292 
4293 	status = _get_team_info(id, &info, sizeof(team_info));
4294 	if (status == B_OK) {
4295 		if (user_memcpy(userInfo, &info, sizeof(team_info)) < B_OK)
4296 			return B_BAD_ADDRESS;
4297 	}
4298 
4299 	return status;
4300 }
4301 
4302 
4303 status_t
4304 _user_get_next_team_info(int32* userCookie, team_info* userInfo)
4305 {
4306 	status_t status;
4307 	team_info info;
4308 	int32 cookie;
4309 
4310 	if (!IS_USER_ADDRESS(userCookie)
4311 		|| !IS_USER_ADDRESS(userInfo)
4312 		|| user_memcpy(&cookie, userCookie, sizeof(int32)) < B_OK)
4313 		return B_BAD_ADDRESS;
4314 
4315 	status = _get_next_team_info(&cookie, &info, sizeof(team_info));
4316 	if (status != B_OK)
4317 		return status;
4318 
4319 	if (user_memcpy(userCookie, &cookie, sizeof(int32)) < B_OK
4320 		|| user_memcpy(userInfo, &info, sizeof(team_info)) < B_OK)
4321 		return B_BAD_ADDRESS;
4322 
4323 	return status;
4324 }
4325 
4326 
4327 team_id
4328 _user_get_current_team(void)
4329 {
4330 	return team_get_current_team_id();
4331 }
4332 
4333 
4334 status_t
4335 _user_get_team_usage_info(team_id team, int32 who, team_usage_info* userInfo,
4336 	size_t size)
4337 {
4338 	if (size != sizeof(team_usage_info))
4339 		return B_BAD_VALUE;
4340 
4341 	team_usage_info info;
4342 	status_t status = common_get_team_usage_info(team, who, &info,
4343 		B_CHECK_PERMISSION);
4344 
4345 	if (userInfo == NULL || !IS_USER_ADDRESS(userInfo)
4346 		|| user_memcpy(userInfo, &info, size) != B_OK) {
4347 		return B_BAD_ADDRESS;
4348 	}
4349 
4350 	return status;
4351 }
4352 
4353 
4354 status_t
4355 _user_get_extended_team_info(team_id teamID, uint32 flags, void* buffer,
4356 	size_t size, size_t* _sizeNeeded)
4357 {
4358 	// check parameters
4359 	if ((buffer != NULL && !IS_USER_ADDRESS(buffer))
4360 		|| (buffer == NULL && size > 0)
4361 		|| _sizeNeeded == NULL || !IS_USER_ADDRESS(_sizeNeeded)) {
4362 		return B_BAD_ADDRESS;
4363 	}
4364 
4365 	KMessage info;
4366 
4367 	if ((flags & B_TEAM_INFO_BASIC) != 0) {
4368 		// allocate memory for a copy of the needed team data
4369 		struct ExtendedTeamData {
4370 			team_id	id;
4371 			pid_t	group_id;
4372 			pid_t	session_id;
4373 			uid_t	real_uid;
4374 			gid_t	real_gid;
4375 			uid_t	effective_uid;
4376 			gid_t	effective_gid;
4377 			char	name[B_OS_NAME_LENGTH];
4378 		};
4379 
4380 		ExtendedTeamData* teamClone
4381 			= (ExtendedTeamData*)malloc(sizeof(ExtendedTeamData));
4382 			// It would be nicer to use new, but then we'd have to use
4383 			// ObjectDeleter and declare the structure outside of the function
4384 			// due to template parameter restrictions.
4385 		if (teamClone == NULL)
4386 			return B_NO_MEMORY;
4387 		MemoryDeleter teamCloneDeleter(teamClone);
4388 
4389 		io_context* ioContext;
4390 		{
4391 			// get the team structure
4392 			Team* team = Team::GetAndLock(teamID);
4393 			if (team == NULL)
4394 				return B_BAD_TEAM_ID;
4395 			BReference<Team> teamReference(team, true);
4396 			TeamLocker teamLocker(team, true);
4397 
4398 			// copy the data
4399 			teamClone->id = team->id;
4400 			strlcpy(teamClone->name, team->Name(), sizeof(teamClone->name));
4401 			teamClone->group_id = team->group_id;
4402 			teamClone->session_id = team->session_id;
4403 			teamClone->real_uid = team->real_uid;
4404 			teamClone->real_gid = team->real_gid;
4405 			teamClone->effective_uid = team->effective_uid;
4406 			teamClone->effective_gid = team->effective_gid;
4407 
4408 			// also fetch a reference to the I/O context
4409 			ioContext = team->io_context;
4410 			vfs_get_io_context(ioContext);
4411 		}
4412 		CObjectDeleter<io_context> ioContextPutter(ioContext,
4413 			&vfs_put_io_context);
4414 
4415 		// add the basic data to the info message
4416 		if (info.AddInt32("id", teamClone->id) != B_OK
4417 			|| info.AddString("name", teamClone->name) != B_OK
4418 			|| info.AddInt32("process group", teamClone->group_id) != B_OK
4419 			|| info.AddInt32("session", teamClone->session_id) != B_OK
4420 			|| info.AddInt32("uid", teamClone->real_uid) != B_OK
4421 			|| info.AddInt32("gid", teamClone->real_gid) != B_OK
4422 			|| info.AddInt32("euid", teamClone->effective_uid) != B_OK
4423 			|| info.AddInt32("egid", teamClone->effective_gid) != B_OK) {
4424 			return B_NO_MEMORY;
4425 		}
4426 
4427 		// get the current working directory from the I/O context
4428 		dev_t cwdDevice;
4429 		ino_t cwdDirectory;
4430 		{
4431 			MutexLocker ioContextLocker(ioContext->io_mutex);
4432 			vfs_vnode_to_node_ref(ioContext->cwd, &cwdDevice, &cwdDirectory);
4433 		}
4434 
4435 		if (info.AddInt32("cwd device", cwdDevice) != B_OK
4436 			|| info.AddInt64("cwd directory", cwdDirectory) != B_OK) {
4437 			return B_NO_MEMORY;
4438 		}
4439 	}
4440 
4441 	// TODO: Support the other flags!
4442 
4443 	// copy the needed size and, if it fits, the message back to userland
4444 	size_t sizeNeeded = info.ContentSize();
4445 	if (user_memcpy(_sizeNeeded, &sizeNeeded, sizeof(sizeNeeded)) != B_OK)
4446 		return B_BAD_ADDRESS;
4447 
4448 	if (sizeNeeded > size)
4449 		return B_BUFFER_OVERFLOW;
4450 
4451 	if (user_memcpy(buffer, info.Buffer(), sizeNeeded) != B_OK)
4452 		return B_BAD_ADDRESS;
4453 
4454 	return B_OK;
4455 }
4456