1 /* 2 * Copyright 2014, Paweł Dziepak, pdziepak@quarnos.org. 3 * Copyright 2008-2016, Ingo Weinhold, ingo_weinhold@gmx.de. 4 * Copyright 2002-2010, Axel Dörfler, axeld@pinc-software.de. 5 * Distributed under the terms of the MIT License. 6 * 7 * Copyright 2001-2002, Travis Geiselbrecht. All rights reserved. 8 * Distributed under the terms of the NewOS License. 9 */ 10 11 12 /*! Team functions */ 13 14 15 #include <team.h> 16 17 #include <errno.h> 18 #include <stdio.h> 19 #include <stdlib.h> 20 #include <string.h> 21 #include <sys/wait.h> 22 23 #include <OS.h> 24 25 #include <AutoDeleter.h> 26 #include <FindDirectory.h> 27 28 #include <extended_system_info_defs.h> 29 30 #include <commpage.h> 31 #include <boot_device.h> 32 #include <elf.h> 33 #include <file_cache.h> 34 #include <find_directory_private.h> 35 #include <fs/KPath.h> 36 #include <heap.h> 37 #include <int.h> 38 #include <kernel.h> 39 #include <kimage.h> 40 #include <kscheduler.h> 41 #include <ksignal.h> 42 #include <Notifications.h> 43 #include <port.h> 44 #include <posix/realtime_sem.h> 45 #include <posix/xsi_semaphore.h> 46 #include <sem.h> 47 #include <syscall_process_info.h> 48 #include <syscall_restart.h> 49 #include <syscalls.h> 50 #include <tls.h> 51 #include <tracing.h> 52 #include <user_runtime.h> 53 #include <user_thread.h> 54 #include <usergroup.h> 55 #include <vfs.h> 56 #include <vm/vm.h> 57 #include <vm/VMAddressSpace.h> 58 #include <util/AutoLock.h> 59 60 #include "TeamThreadTables.h" 61 62 63 //#define TRACE_TEAM 64 #ifdef TRACE_TEAM 65 # define TRACE(x) dprintf x 66 #else 67 # define TRACE(x) ; 68 #endif 69 70 71 struct team_key { 72 team_id id; 73 }; 74 75 struct team_arg { 76 char *path; 77 char **flat_args; 78 size_t flat_args_size; 79 uint32 arg_count; 80 uint32 env_count; 81 mode_t umask; 82 uint32 flags; 83 port_id error_port; 84 uint32 error_token; 85 }; 86 87 #define TEAM_ARGS_FLAG_NO_ASLR 0x01 88 89 90 namespace { 91 92 93 class TeamNotificationService : public DefaultNotificationService { 94 public: 95 TeamNotificationService(); 96 97 void Notify(uint32 eventCode, Team* team); 98 }; 99 100 101 // #pragma mark - TeamTable 102 103 104 typedef BKernel::TeamThreadTable<Team> TeamTable; 105 106 107 // #pragma mark - ProcessGroupHashDefinition 108 109 110 struct ProcessGroupHashDefinition { 111 typedef pid_t KeyType; 112 typedef ProcessGroup ValueType; 113 114 size_t HashKey(pid_t key) const 115 { 116 return key; 117 } 118 119 size_t Hash(ProcessGroup* value) const 120 { 121 return HashKey(value->id); 122 } 123 124 bool Compare(pid_t key, ProcessGroup* value) const 125 { 126 return value->id == key; 127 } 128 129 ProcessGroup*& GetLink(ProcessGroup* value) const 130 { 131 return value->next; 132 } 133 }; 134 135 typedef BOpenHashTable<ProcessGroupHashDefinition> ProcessGroupHashTable; 136 137 138 } // unnamed namespace 139 140 141 // #pragma mark - 142 143 144 // the team_id -> Team hash table and the lock protecting it 145 static TeamTable sTeamHash; 146 static spinlock sTeamHashLock = B_SPINLOCK_INITIALIZER; 147 148 // the pid_t -> ProcessGroup hash table and the lock protecting it 149 static ProcessGroupHashTable sGroupHash; 150 static spinlock sGroupHashLock = B_SPINLOCK_INITIALIZER; 151 152 static Team* sKernelTeam = NULL; 153 154 // A list of process groups of children of dying session leaders that need to 155 // be signalled, if they have become orphaned and contain stopped processes. 156 static ProcessGroupList sOrphanedCheckProcessGroups; 157 static mutex sOrphanedCheckLock 158 = MUTEX_INITIALIZER("orphaned process group check"); 159 160 // some arbitrarily chosen limits -- should probably depend on the available 161 // memory (the limit is not yet enforced) 162 static int32 sMaxTeams = 2048; 163 static int32 sUsedTeams = 1; 164 165 static TeamNotificationService sNotificationService; 166 167 static const size_t kTeamUserDataReservedSize = 128 * B_PAGE_SIZE; 168 static const size_t kTeamUserDataInitialSize = 4 * B_PAGE_SIZE; 169 170 171 // #pragma mark - TeamListIterator 172 173 174 TeamListIterator::TeamListIterator() 175 { 176 // queue the entry 177 InterruptsSpinLocker locker(sTeamHashLock); 178 sTeamHash.InsertIteratorEntry(&fEntry); 179 } 180 181 182 TeamListIterator::~TeamListIterator() 183 { 184 // remove the entry 185 InterruptsSpinLocker locker(sTeamHashLock); 186 sTeamHash.RemoveIteratorEntry(&fEntry); 187 } 188 189 190 Team* 191 TeamListIterator::Next() 192 { 193 // get the next team -- if there is one, get reference for it 194 InterruptsSpinLocker locker(sTeamHashLock); 195 Team* team = sTeamHash.NextElement(&fEntry); 196 if (team != NULL) 197 team->AcquireReference(); 198 199 return team; 200 } 201 202 203 // #pragma mark - Tracing 204 205 206 #if TEAM_TRACING 207 namespace TeamTracing { 208 209 class TeamForked : public AbstractTraceEntry { 210 public: 211 TeamForked(thread_id forkedThread) 212 : 213 fForkedThread(forkedThread) 214 { 215 Initialized(); 216 } 217 218 virtual void AddDump(TraceOutput& out) 219 { 220 out.Print("team forked, new thread %" B_PRId32, fForkedThread); 221 } 222 223 private: 224 thread_id fForkedThread; 225 }; 226 227 228 class ExecTeam : public AbstractTraceEntry { 229 public: 230 ExecTeam(const char* path, int32 argCount, const char* const* args, 231 int32 envCount, const char* const* env) 232 : 233 fArgCount(argCount), 234 fArgs(NULL) 235 { 236 fPath = alloc_tracing_buffer_strcpy(path, B_PATH_NAME_LENGTH, 237 false); 238 239 // determine the buffer size we need for the args 240 size_t argBufferSize = 0; 241 for (int32 i = 0; i < argCount; i++) 242 argBufferSize += strlen(args[i]) + 1; 243 244 // allocate a buffer 245 fArgs = (char*)alloc_tracing_buffer(argBufferSize); 246 if (fArgs) { 247 char* buffer = fArgs; 248 for (int32 i = 0; i < argCount; i++) { 249 size_t argSize = strlen(args[i]) + 1; 250 memcpy(buffer, args[i], argSize); 251 buffer += argSize; 252 } 253 } 254 255 // ignore env for the time being 256 (void)envCount; 257 (void)env; 258 259 Initialized(); 260 } 261 262 virtual void AddDump(TraceOutput& out) 263 { 264 out.Print("team exec, \"%p\", args:", fPath); 265 266 if (fArgs != NULL) { 267 char* args = fArgs; 268 for (int32 i = 0; !out.IsFull() && i < fArgCount; i++) { 269 out.Print(" \"%s\"", args); 270 args += strlen(args) + 1; 271 } 272 } else 273 out.Print(" <too long>"); 274 } 275 276 private: 277 char* fPath; 278 int32 fArgCount; 279 char* fArgs; 280 }; 281 282 283 static const char* 284 job_control_state_name(job_control_state state) 285 { 286 switch (state) { 287 case JOB_CONTROL_STATE_NONE: 288 return "none"; 289 case JOB_CONTROL_STATE_STOPPED: 290 return "stopped"; 291 case JOB_CONTROL_STATE_CONTINUED: 292 return "continued"; 293 case JOB_CONTROL_STATE_DEAD: 294 return "dead"; 295 default: 296 return "invalid"; 297 } 298 } 299 300 301 class SetJobControlState : public AbstractTraceEntry { 302 public: 303 SetJobControlState(team_id team, job_control_state newState, Signal* signal) 304 : 305 fTeam(team), 306 fNewState(newState), 307 fSignal(signal != NULL ? signal->Number() : 0) 308 { 309 Initialized(); 310 } 311 312 virtual void AddDump(TraceOutput& out) 313 { 314 out.Print("team set job control state, team %" B_PRId32 ", " 315 "new state: %s, signal: %d", 316 fTeam, job_control_state_name(fNewState), fSignal); 317 } 318 319 private: 320 team_id fTeam; 321 job_control_state fNewState; 322 int fSignal; 323 }; 324 325 326 class WaitForChild : public AbstractTraceEntry { 327 public: 328 WaitForChild(pid_t child, uint32 flags) 329 : 330 fChild(child), 331 fFlags(flags) 332 { 333 Initialized(); 334 } 335 336 virtual void AddDump(TraceOutput& out) 337 { 338 out.Print("team wait for child, child: %" B_PRId32 ", " 339 "flags: %#" B_PRIx32, fChild, fFlags); 340 } 341 342 private: 343 pid_t fChild; 344 uint32 fFlags; 345 }; 346 347 348 class WaitForChildDone : public AbstractTraceEntry { 349 public: 350 WaitForChildDone(const job_control_entry& entry) 351 : 352 fState(entry.state), 353 fTeam(entry.thread), 354 fStatus(entry.status), 355 fReason(entry.reason), 356 fSignal(entry.signal) 357 { 358 Initialized(); 359 } 360 361 WaitForChildDone(status_t error) 362 : 363 fTeam(error) 364 { 365 Initialized(); 366 } 367 368 virtual void AddDump(TraceOutput& out) 369 { 370 if (fTeam >= 0) { 371 out.Print("team wait for child done, team: %" B_PRId32 ", " 372 "state: %s, status: %#" B_PRIx32 ", reason: %#x, signal: %d\n", 373 fTeam, job_control_state_name(fState), fStatus, fReason, 374 fSignal); 375 } else { 376 out.Print("team wait for child failed, error: " 377 "%#" B_PRIx32 ", ", fTeam); 378 } 379 } 380 381 private: 382 job_control_state fState; 383 team_id fTeam; 384 status_t fStatus; 385 uint16 fReason; 386 uint16 fSignal; 387 }; 388 389 } // namespace TeamTracing 390 391 # define T(x) new(std::nothrow) TeamTracing::x; 392 #else 393 # define T(x) ; 394 #endif 395 396 397 // #pragma mark - TeamNotificationService 398 399 400 TeamNotificationService::TeamNotificationService() 401 : DefaultNotificationService("teams") 402 { 403 } 404 405 406 void 407 TeamNotificationService::Notify(uint32 eventCode, Team* team) 408 { 409 char eventBuffer[128]; 410 KMessage event; 411 event.SetTo(eventBuffer, sizeof(eventBuffer), TEAM_MONITOR); 412 event.AddInt32("event", eventCode); 413 event.AddInt32("team", team->id); 414 event.AddPointer("teamStruct", team); 415 416 DefaultNotificationService::Notify(event, eventCode); 417 } 418 419 420 // #pragma mark - Team 421 422 423 Team::Team(team_id id, bool kernel) 424 { 425 // allocate an ID 426 this->id = id; 427 visible = true; 428 serial_number = -1; 429 430 // init mutex 431 if (kernel) { 432 mutex_init(&fLock, "Team:kernel"); 433 } else { 434 char lockName[16]; 435 snprintf(lockName, sizeof(lockName), "Team:%" B_PRId32, id); 436 mutex_init_etc(&fLock, lockName, MUTEX_FLAG_CLONE_NAME); 437 } 438 439 hash_next = siblings_next = children = parent = NULL; 440 fName[0] = '\0'; 441 fArgs[0] = '\0'; 442 num_threads = 0; 443 io_context = NULL; 444 address_space = NULL; 445 realtime_sem_context = NULL; 446 xsi_sem_context = NULL; 447 thread_list = NULL; 448 main_thread = NULL; 449 loading_info = NULL; 450 state = TEAM_STATE_BIRTH; 451 flags = 0; 452 death_entry = NULL; 453 user_data_area = -1; 454 user_data = 0; 455 used_user_data = 0; 456 user_data_size = 0; 457 free_user_threads = NULL; 458 459 commpage_address = NULL; 460 461 supplementary_groups = NULL; 462 supplementary_group_count = 0; 463 464 dead_threads_kernel_time = 0; 465 dead_threads_user_time = 0; 466 cpu_clock_offset = 0; 467 468 // dead threads 469 list_init(&dead_threads); 470 dead_threads_count = 0; 471 472 // dead children 473 dead_children.count = 0; 474 dead_children.kernel_time = 0; 475 dead_children.user_time = 0; 476 477 // job control entry 478 job_control_entry = new(nothrow) ::job_control_entry; 479 if (job_control_entry != NULL) { 480 job_control_entry->state = JOB_CONTROL_STATE_NONE; 481 job_control_entry->thread = id; 482 job_control_entry->team = this; 483 } 484 485 // exit status -- setting initialized to false suffices 486 exit.initialized = false; 487 488 list_init(&sem_list); 489 list_init_etc(&port_list, port_team_link_offset()); 490 list_init(&image_list); 491 list_init(&watcher_list); 492 493 clear_team_debug_info(&debug_info, true); 494 495 // init dead/stopped/continued children condition vars 496 dead_children.condition_variable.Init(&dead_children, "team children"); 497 498 B_INITIALIZE_SPINLOCK(&time_lock); 499 B_INITIALIZE_SPINLOCK(&signal_lock); 500 501 fQueuedSignalsCounter = new(std::nothrow) BKernel::QueuedSignalsCounter( 502 kernel ? -1 : MAX_QUEUED_SIGNALS); 503 memset(fSignalActions, 0, sizeof(fSignalActions)); 504 505 fUserDefinedTimerCount = 0; 506 507 fCoreDumpCondition = NULL; 508 } 509 510 511 Team::~Team() 512 { 513 // get rid of all associated data 514 PrepareForDeletion(); 515 516 if (io_context != NULL) 517 vfs_put_io_context(io_context); 518 delete_owned_ports(this); 519 sem_delete_owned_sems(this); 520 521 DeleteUserTimers(false); 522 523 fPendingSignals.Clear(); 524 525 if (fQueuedSignalsCounter != NULL) 526 fQueuedSignalsCounter->ReleaseReference(); 527 528 while (thread_death_entry* threadDeathEntry 529 = (thread_death_entry*)list_remove_head_item(&dead_threads)) { 530 free(threadDeathEntry); 531 } 532 533 while (::job_control_entry* entry = dead_children.entries.RemoveHead()) 534 delete entry; 535 536 while (free_user_thread* entry = free_user_threads) { 537 free_user_threads = entry->next; 538 free(entry); 539 } 540 541 malloc_referenced_release(supplementary_groups); 542 543 delete job_control_entry; 544 // usually already NULL and transferred to the parent 545 546 mutex_destroy(&fLock); 547 } 548 549 550 /*static*/ Team* 551 Team::Create(team_id id, const char* name, bool kernel) 552 { 553 // create the team object 554 Team* team = new(std::nothrow) Team(id, kernel); 555 if (team == NULL) 556 return NULL; 557 ObjectDeleter<Team> teamDeleter(team); 558 559 if (name != NULL) 560 team->SetName(name); 561 562 // check initialization 563 if (team->job_control_entry == NULL || team->fQueuedSignalsCounter == NULL) 564 return NULL; 565 566 // finish initialization (arch specifics) 567 if (arch_team_init_team_struct(team, kernel) != B_OK) 568 return NULL; 569 570 if (!kernel) { 571 status_t error = user_timer_create_team_timers(team); 572 if (error != B_OK) 573 return NULL; 574 } 575 576 // everything went fine 577 return teamDeleter.Detach(); 578 } 579 580 581 /*! \brief Returns the team with the given ID. 582 Returns a reference to the team. 583 Team and thread spinlock must not be held. 584 */ 585 /*static*/ Team* 586 Team::Get(team_id id) 587 { 588 if (id == B_CURRENT_TEAM) { 589 Team* team = thread_get_current_thread()->team; 590 team->AcquireReference(); 591 return team; 592 } 593 594 InterruptsSpinLocker locker(sTeamHashLock); 595 Team* team = sTeamHash.Lookup(id); 596 if (team != NULL) 597 team->AcquireReference(); 598 return team; 599 } 600 601 602 /*! \brief Returns the team with the given ID in a locked state. 603 Returns a reference to the team. 604 Team and thread spinlock must not be held. 605 */ 606 /*static*/ Team* 607 Team::GetAndLock(team_id id) 608 { 609 // get the team 610 Team* team = Get(id); 611 if (team == NULL) 612 return NULL; 613 614 // lock it 615 team->Lock(); 616 617 // only return the team, when it isn't already dying 618 if (team->state >= TEAM_STATE_SHUTDOWN) { 619 team->Unlock(); 620 team->ReleaseReference(); 621 return NULL; 622 } 623 624 return team; 625 } 626 627 628 /*! Locks the team and its parent team (if any). 629 The caller must hold a reference to the team or otherwise make sure that 630 it won't be deleted. 631 If the team doesn't have a parent, only the team itself is locked. If the 632 team's parent is the kernel team and \a dontLockParentIfKernel is \c true, 633 only the team itself is locked. 634 635 \param dontLockParentIfKernel If \c true, the team's parent team is only 636 locked, if it is not the kernel team. 637 */ 638 void 639 Team::LockTeamAndParent(bool dontLockParentIfKernel) 640 { 641 // The locking order is parent -> child. Since the parent can change as long 642 // as we don't lock the team, we need to do a trial and error loop. 643 Lock(); 644 645 while (true) { 646 // If the team doesn't have a parent, we're done. Otherwise try to lock 647 // the parent.This will succeed in most cases, simplifying things. 648 Team* parent = this->parent; 649 if (parent == NULL || (dontLockParentIfKernel && parent == sKernelTeam) 650 || parent->TryLock()) { 651 return; 652 } 653 654 // get a temporary reference to the parent, unlock this team, lock the 655 // parent, and re-lock this team 656 BReference<Team> parentReference(parent); 657 658 Unlock(); 659 parent->Lock(); 660 Lock(); 661 662 // If the parent hasn't changed in the meantime, we're done. 663 if (this->parent == parent) 664 return; 665 666 // The parent has changed -- unlock and retry. 667 parent->Unlock(); 668 } 669 } 670 671 672 /*! Unlocks the team and its parent team (if any). 673 */ 674 void 675 Team::UnlockTeamAndParent() 676 { 677 if (parent != NULL) 678 parent->Unlock(); 679 680 Unlock(); 681 } 682 683 684 /*! Locks the team, its parent team (if any), and the team's process group. 685 The caller must hold a reference to the team or otherwise make sure that 686 it won't be deleted. 687 If the team doesn't have a parent, only the team itself is locked. 688 */ 689 void 690 Team::LockTeamParentAndProcessGroup() 691 { 692 LockTeamAndProcessGroup(); 693 694 // We hold the group's and the team's lock, but not the parent team's lock. 695 // If we have a parent, try to lock it. 696 if (this->parent == NULL || this->parent->TryLock()) 697 return; 698 699 // No success -- unlock the team and let LockTeamAndParent() do the rest of 700 // the job. 701 Unlock(); 702 LockTeamAndParent(false); 703 } 704 705 706 /*! Unlocks the team, its parent team (if any), and the team's process group. 707 */ 708 void 709 Team::UnlockTeamParentAndProcessGroup() 710 { 711 group->Unlock(); 712 713 if (parent != NULL) 714 parent->Unlock(); 715 716 Unlock(); 717 } 718 719 720 void 721 Team::LockTeamAndProcessGroup() 722 { 723 // The locking order is process group -> child. Since the process group can 724 // change as long as we don't lock the team, we need to do a trial and error 725 // loop. 726 Lock(); 727 728 while (true) { 729 // Try to lock the group. This will succeed in most cases, simplifying 730 // things. 731 ProcessGroup* group = this->group; 732 if (group->TryLock()) 733 return; 734 735 // get a temporary reference to the group, unlock this team, lock the 736 // group, and re-lock this team 737 BReference<ProcessGroup> groupReference(group); 738 739 Unlock(); 740 group->Lock(); 741 Lock(); 742 743 // If the group hasn't changed in the meantime, we're done. 744 if (this->group == group) 745 return; 746 747 // The group has changed -- unlock and retry. 748 group->Unlock(); 749 } 750 } 751 752 753 void 754 Team::UnlockTeamAndProcessGroup() 755 { 756 group->Unlock(); 757 Unlock(); 758 } 759 760 761 void 762 Team::SetName(const char* name) 763 { 764 if (const char* lastSlash = strrchr(name, '/')) 765 name = lastSlash + 1; 766 767 strlcpy(fName, name, B_OS_NAME_LENGTH); 768 } 769 770 771 void 772 Team::SetArgs(const char* args) 773 { 774 strlcpy(fArgs, args, sizeof(fArgs)); 775 } 776 777 778 void 779 Team::SetArgs(const char* path, const char* const* otherArgs, int otherArgCount) 780 { 781 fArgs[0] = '\0'; 782 strlcpy(fArgs, path, sizeof(fArgs)); 783 for (int i = 0; i < otherArgCount; i++) { 784 strlcat(fArgs, " ", sizeof(fArgs)); 785 strlcat(fArgs, otherArgs[i], sizeof(fArgs)); 786 } 787 } 788 789 790 void 791 Team::ResetSignalsOnExec() 792 { 793 // We are supposed to keep pending signals. Signal actions shall be reset 794 // partially: SIG_IGN and SIG_DFL dispositions shall be kept as they are 795 // (for SIGCHLD it's implementation-defined). Others shall be reset to 796 // SIG_DFL. SA_ONSTACK shall be cleared. There's no mention of the other 797 // flags, but since there aren't any handlers, they make little sense, so 798 // we clear them. 799 800 for (uint32 i = 1; i <= MAX_SIGNAL_NUMBER; i++) { 801 struct sigaction& action = SignalActionFor(i); 802 if (action.sa_handler != SIG_IGN && action.sa_handler != SIG_DFL) 803 action.sa_handler = SIG_DFL; 804 805 action.sa_mask = 0; 806 action.sa_flags = 0; 807 action.sa_userdata = NULL; 808 } 809 } 810 811 812 void 813 Team::InheritSignalActions(Team* parent) 814 { 815 memcpy(fSignalActions, parent->fSignalActions, sizeof(fSignalActions)); 816 } 817 818 819 /*! Adds the given user timer to the team and, if user-defined, assigns it an 820 ID. 821 822 The caller must hold the team's lock. 823 824 \param timer The timer to be added. If it doesn't have an ID yet, it is 825 considered user-defined and will be assigned an ID. 826 \return \c B_OK, if the timer was added successfully, another error code 827 otherwise. 828 */ 829 status_t 830 Team::AddUserTimer(UserTimer* timer) 831 { 832 // don't allow addition of timers when already shutting the team down 833 if (state >= TEAM_STATE_SHUTDOWN) 834 return B_BAD_TEAM_ID; 835 836 // If the timer is user-defined, check timer limit and increment 837 // user-defined count. 838 if (timer->ID() < 0 && !CheckAddUserDefinedTimer()) 839 return EAGAIN; 840 841 fUserTimers.AddTimer(timer); 842 843 return B_OK; 844 } 845 846 847 /*! Removes the given user timer from the team. 848 849 The caller must hold the team's lock. 850 851 \param timer The timer to be removed. 852 853 */ 854 void 855 Team::RemoveUserTimer(UserTimer* timer) 856 { 857 fUserTimers.RemoveTimer(timer); 858 859 if (timer->ID() >= USER_TIMER_FIRST_USER_DEFINED_ID) 860 UserDefinedTimersRemoved(1); 861 } 862 863 864 /*! Deletes all (or all user-defined) user timers of the team. 865 866 Timer's belonging to the team's threads are not affected. 867 The caller must hold the team's lock. 868 869 \param userDefinedOnly If \c true, only the user-defined timers are deleted, 870 otherwise all timers are deleted. 871 */ 872 void 873 Team::DeleteUserTimers(bool userDefinedOnly) 874 { 875 int32 count = fUserTimers.DeleteTimers(userDefinedOnly); 876 UserDefinedTimersRemoved(count); 877 } 878 879 880 /*! If not at the limit yet, increments the team's user-defined timer count. 881 \return \c true, if the limit wasn't reached yet, \c false otherwise. 882 */ 883 bool 884 Team::CheckAddUserDefinedTimer() 885 { 886 int32 oldCount = atomic_add(&fUserDefinedTimerCount, 1); 887 if (oldCount >= MAX_USER_TIMERS_PER_TEAM) { 888 atomic_add(&fUserDefinedTimerCount, -1); 889 return false; 890 } 891 892 return true; 893 } 894 895 896 /*! Subtracts the given count for the team's user-defined timer count. 897 \param count The count to subtract. 898 */ 899 void 900 Team::UserDefinedTimersRemoved(int32 count) 901 { 902 atomic_add(&fUserDefinedTimerCount, -count); 903 } 904 905 906 void 907 Team::DeactivateCPUTimeUserTimers() 908 { 909 while (TeamTimeUserTimer* timer = fCPUTimeUserTimers.Head()) 910 timer->Deactivate(); 911 912 while (TeamUserTimeUserTimer* timer = fUserTimeUserTimers.Head()) 913 timer->Deactivate(); 914 } 915 916 917 /*! Returns the team's current total CPU time (kernel + user + offset). 918 919 The caller must hold \c time_lock. 920 921 \param ignoreCurrentRun If \c true and the current thread is one team's 922 threads, don't add the time since the last time \c last_time was 923 updated. Should be used in "thread unscheduled" scheduler callbacks, 924 since although the thread is still running at that time, its time has 925 already been stopped. 926 \return The team's current total CPU time. 927 */ 928 bigtime_t 929 Team::CPUTime(bool ignoreCurrentRun, Thread* lockedThread) const 930 { 931 bigtime_t time = cpu_clock_offset + dead_threads_kernel_time 932 + dead_threads_user_time; 933 934 Thread* currentThread = thread_get_current_thread(); 935 bigtime_t now = system_time(); 936 937 for (Thread* thread = thread_list; thread != NULL; 938 thread = thread->team_next) { 939 bool alreadyLocked = thread == lockedThread; 940 SpinLocker threadTimeLocker(thread->time_lock, alreadyLocked); 941 time += thread->kernel_time + thread->user_time; 942 943 if (thread->last_time != 0) { 944 if (!ignoreCurrentRun || thread != currentThread) 945 time += now - thread->last_time; 946 } 947 948 if (alreadyLocked) 949 threadTimeLocker.Detach(); 950 } 951 952 return time; 953 } 954 955 956 /*! Returns the team's current user CPU time. 957 958 The caller must hold \c time_lock. 959 960 \return The team's current user CPU time. 961 */ 962 bigtime_t 963 Team::UserCPUTime() const 964 { 965 bigtime_t time = dead_threads_user_time; 966 967 bigtime_t now = system_time(); 968 969 for (Thread* thread = thread_list; thread != NULL; 970 thread = thread->team_next) { 971 SpinLocker threadTimeLocker(thread->time_lock); 972 time += thread->user_time; 973 974 if (thread->last_time != 0 && !thread->in_kernel) 975 time += now - thread->last_time; 976 } 977 978 return time; 979 } 980 981 982 // #pragma mark - ProcessGroup 983 984 985 ProcessGroup::ProcessGroup(pid_t id) 986 : 987 id(id), 988 teams(NULL), 989 fSession(NULL), 990 fInOrphanedCheckList(false) 991 { 992 char lockName[32]; 993 snprintf(lockName, sizeof(lockName), "Group:%" B_PRId32, id); 994 mutex_init_etc(&fLock, lockName, MUTEX_FLAG_CLONE_NAME); 995 } 996 997 998 ProcessGroup::~ProcessGroup() 999 { 1000 TRACE(("ProcessGroup::~ProcessGroup(): id = %" B_PRId32 "\n", id)); 1001 1002 // If the group is in the orphaned check list, remove it. 1003 MutexLocker orphanedCheckLocker(sOrphanedCheckLock); 1004 1005 if (fInOrphanedCheckList) 1006 sOrphanedCheckProcessGroups.Remove(this); 1007 1008 orphanedCheckLocker.Unlock(); 1009 1010 // remove group from the hash table and from the session 1011 if (fSession != NULL) { 1012 InterruptsSpinLocker groupHashLocker(sGroupHashLock); 1013 sGroupHash.RemoveUnchecked(this); 1014 groupHashLocker.Unlock(); 1015 1016 fSession->ReleaseReference(); 1017 } 1018 1019 mutex_destroy(&fLock); 1020 } 1021 1022 1023 /*static*/ ProcessGroup* 1024 ProcessGroup::Get(pid_t id) 1025 { 1026 InterruptsSpinLocker groupHashLocker(sGroupHashLock); 1027 ProcessGroup* group = sGroupHash.Lookup(id); 1028 if (group != NULL) 1029 group->AcquireReference(); 1030 return group; 1031 } 1032 1033 1034 /*! Adds the group the given session and makes it publicly accessible. 1035 The caller must not hold the process group hash lock. 1036 */ 1037 void 1038 ProcessGroup::Publish(ProcessSession* session) 1039 { 1040 InterruptsSpinLocker groupHashLocker(sGroupHashLock); 1041 PublishLocked(session); 1042 } 1043 1044 1045 /*! Adds the group to the given session and makes it publicly accessible. 1046 The caller must hold the process group hash lock. 1047 */ 1048 void 1049 ProcessGroup::PublishLocked(ProcessSession* session) 1050 { 1051 ASSERT(sGroupHash.Lookup(this->id) == NULL); 1052 1053 fSession = session; 1054 fSession->AcquireReference(); 1055 1056 sGroupHash.InsertUnchecked(this); 1057 } 1058 1059 1060 /*! Checks whether the process group is orphaned. 1061 The caller must hold the group's lock. 1062 \return \c true, if the group is orphaned, \c false otherwise. 1063 */ 1064 bool 1065 ProcessGroup::IsOrphaned() const 1066 { 1067 // Orphaned Process Group: "A process group in which the parent of every 1068 // member is either itself a member of the group or is not a member of the 1069 // group's session." (Open Group Base Specs Issue 7) 1070 bool orphaned = true; 1071 1072 Team* team = teams; 1073 while (orphaned && team != NULL) { 1074 team->LockTeamAndParent(false); 1075 1076 Team* parent = team->parent; 1077 if (parent != NULL && parent->group_id != id 1078 && parent->session_id == fSession->id) { 1079 orphaned = false; 1080 } 1081 1082 team->UnlockTeamAndParent(); 1083 1084 team = team->group_next; 1085 } 1086 1087 return orphaned; 1088 } 1089 1090 1091 void 1092 ProcessGroup::ScheduleOrphanedCheck() 1093 { 1094 MutexLocker orphanedCheckLocker(sOrphanedCheckLock); 1095 1096 if (!fInOrphanedCheckList) { 1097 sOrphanedCheckProcessGroups.Add(this); 1098 fInOrphanedCheckList = true; 1099 } 1100 } 1101 1102 1103 void 1104 ProcessGroup::UnsetOrphanedCheck() 1105 { 1106 fInOrphanedCheckList = false; 1107 } 1108 1109 1110 // #pragma mark - ProcessSession 1111 1112 1113 ProcessSession::ProcessSession(pid_t id) 1114 : 1115 id(id), 1116 controlling_tty(-1), 1117 foreground_group(-1) 1118 { 1119 char lockName[32]; 1120 snprintf(lockName, sizeof(lockName), "Session:%" B_PRId32, id); 1121 mutex_init_etc(&fLock, lockName, MUTEX_FLAG_CLONE_NAME); 1122 } 1123 1124 1125 ProcessSession::~ProcessSession() 1126 { 1127 mutex_destroy(&fLock); 1128 } 1129 1130 1131 // #pragma mark - KDL functions 1132 1133 1134 static void 1135 _dump_team_info(Team* team) 1136 { 1137 kprintf("TEAM: %p\n", team); 1138 kprintf("id: %" B_PRId32 " (%#" B_PRIx32 ")\n", team->id, 1139 team->id); 1140 kprintf("serial_number: %" B_PRId64 "\n", team->serial_number); 1141 kprintf("name: '%s'\n", team->Name()); 1142 kprintf("args: '%s'\n", team->Args()); 1143 kprintf("hash_next: %p\n", team->hash_next); 1144 kprintf("parent: %p", team->parent); 1145 if (team->parent != NULL) { 1146 kprintf(" (id = %" B_PRId32 ")\n", team->parent->id); 1147 } else 1148 kprintf("\n"); 1149 1150 kprintf("children: %p\n", team->children); 1151 kprintf("num_threads: %d\n", team->num_threads); 1152 kprintf("state: %d\n", team->state); 1153 kprintf("flags: 0x%" B_PRIx32 "\n", team->flags); 1154 kprintf("io_context: %p\n", team->io_context); 1155 if (team->address_space) 1156 kprintf("address_space: %p\n", team->address_space); 1157 kprintf("user data: %p (area %" B_PRId32 ")\n", 1158 (void*)team->user_data, team->user_data_area); 1159 kprintf("free user thread: %p\n", team->free_user_threads); 1160 kprintf("main_thread: %p\n", team->main_thread); 1161 kprintf("thread_list: %p\n", team->thread_list); 1162 kprintf("group_id: %" B_PRId32 "\n", team->group_id); 1163 kprintf("session_id: %" B_PRId32 "\n", team->session_id); 1164 } 1165 1166 1167 static int 1168 dump_team_info(int argc, char** argv) 1169 { 1170 ulong arg; 1171 bool found = false; 1172 1173 if (argc < 2) { 1174 Thread* thread = thread_get_current_thread(); 1175 if (thread != NULL && thread->team != NULL) 1176 _dump_team_info(thread->team); 1177 else 1178 kprintf("No current team!\n"); 1179 return 0; 1180 } 1181 1182 arg = strtoul(argv[1], NULL, 0); 1183 if (IS_KERNEL_ADDRESS(arg)) { 1184 // semi-hack 1185 _dump_team_info((Team*)arg); 1186 return 0; 1187 } 1188 1189 // walk through the thread list, trying to match name or id 1190 for (TeamTable::Iterator it = sTeamHash.GetIterator(); 1191 Team* team = it.Next();) { 1192 if ((team->Name() && strcmp(argv[1], team->Name()) == 0) 1193 || team->id == (team_id)arg) { 1194 _dump_team_info(team); 1195 found = true; 1196 break; 1197 } 1198 } 1199 1200 if (!found) 1201 kprintf("team \"%s\" (%" B_PRId32 ") doesn't exist!\n", argv[1], (team_id)arg); 1202 return 0; 1203 } 1204 1205 1206 static int 1207 dump_teams(int argc, char** argv) 1208 { 1209 kprintf("%-*s id %-*s name\n", B_PRINTF_POINTER_WIDTH, "team", 1210 B_PRINTF_POINTER_WIDTH, "parent"); 1211 1212 for (TeamTable::Iterator it = sTeamHash.GetIterator(); 1213 Team* team = it.Next();) { 1214 kprintf("%p%7" B_PRId32 " %p %s\n", team, team->id, team->parent, team->Name()); 1215 } 1216 1217 return 0; 1218 } 1219 1220 1221 // #pragma mark - Private functions 1222 1223 1224 /*! Inserts team \a team into the child list of team \a parent. 1225 1226 The caller must hold the lock of both \a parent and \a team. 1227 1228 \param parent The parent team. 1229 \param team The team to be inserted into \a parent's child list. 1230 */ 1231 static void 1232 insert_team_into_parent(Team* parent, Team* team) 1233 { 1234 ASSERT(parent != NULL); 1235 1236 team->siblings_next = parent->children; 1237 parent->children = team; 1238 team->parent = parent; 1239 } 1240 1241 1242 /*! Removes team \a team from the child list of team \a parent. 1243 1244 The caller must hold the lock of both \a parent and \a team. 1245 1246 \param parent The parent team. 1247 \param team The team to be removed from \a parent's child list. 1248 */ 1249 static void 1250 remove_team_from_parent(Team* parent, Team* team) 1251 { 1252 Team* child; 1253 Team* last = NULL; 1254 1255 for (child = parent->children; child != NULL; 1256 child = child->siblings_next) { 1257 if (child == team) { 1258 if (last == NULL) 1259 parent->children = child->siblings_next; 1260 else 1261 last->siblings_next = child->siblings_next; 1262 1263 team->parent = NULL; 1264 break; 1265 } 1266 last = child; 1267 } 1268 } 1269 1270 1271 /*! Returns whether the given team is a session leader. 1272 The caller must hold the team's lock or its process group's lock. 1273 */ 1274 static bool 1275 is_session_leader(Team* team) 1276 { 1277 return team->session_id == team->id; 1278 } 1279 1280 1281 /*! Returns whether the given team is a process group leader. 1282 The caller must hold the team's lock or its process group's lock. 1283 */ 1284 static bool 1285 is_process_group_leader(Team* team) 1286 { 1287 return team->group_id == team->id; 1288 } 1289 1290 1291 /*! Inserts the given team into the given process group. 1292 The caller must hold the process group's lock, the team's lock, and the 1293 team's parent's lock. 1294 */ 1295 static void 1296 insert_team_into_group(ProcessGroup* group, Team* team) 1297 { 1298 team->group = group; 1299 team->group_id = group->id; 1300 team->session_id = group->Session()->id; 1301 1302 team->group_next = group->teams; 1303 group->teams = team; 1304 group->AcquireReference(); 1305 } 1306 1307 1308 /*! Removes the given team from its process group. 1309 1310 The caller must hold the process group's lock, the team's lock, and the 1311 team's parent's lock. Interrupts must be enabled. 1312 1313 \param team The team that'll be removed from its process group. 1314 */ 1315 static void 1316 remove_team_from_group(Team* team) 1317 { 1318 ProcessGroup* group = team->group; 1319 Team* current; 1320 Team* last = NULL; 1321 1322 // the team must be in a process group to let this function have any effect 1323 if (group == NULL) 1324 return; 1325 1326 for (current = group->teams; current != NULL; 1327 current = current->group_next) { 1328 if (current == team) { 1329 if (last == NULL) 1330 group->teams = current->group_next; 1331 else 1332 last->group_next = current->group_next; 1333 1334 team->group = NULL; 1335 break; 1336 } 1337 last = current; 1338 } 1339 1340 team->group = NULL; 1341 team->group_next = NULL; 1342 1343 group->ReleaseReference(); 1344 } 1345 1346 1347 static status_t 1348 create_team_user_data(Team* team, void* exactAddress = NULL) 1349 { 1350 void* address; 1351 uint32 addressSpec; 1352 1353 if (exactAddress != NULL) { 1354 address = exactAddress; 1355 addressSpec = B_EXACT_ADDRESS; 1356 } else { 1357 address = (void*)KERNEL_USER_DATA_BASE; 1358 addressSpec = B_RANDOMIZED_BASE_ADDRESS; 1359 } 1360 1361 status_t result = vm_reserve_address_range(team->id, &address, addressSpec, 1362 kTeamUserDataReservedSize, RESERVED_AVOID_BASE); 1363 1364 virtual_address_restrictions virtualRestrictions = {}; 1365 if (result == B_OK || exactAddress != NULL) { 1366 if (exactAddress != NULL) 1367 virtualRestrictions.address = exactAddress; 1368 else 1369 virtualRestrictions.address = address; 1370 virtualRestrictions.address_specification = B_EXACT_ADDRESS; 1371 } else { 1372 virtualRestrictions.address = (void*)KERNEL_USER_DATA_BASE; 1373 virtualRestrictions.address_specification = B_RANDOMIZED_BASE_ADDRESS; 1374 } 1375 1376 physical_address_restrictions physicalRestrictions = {}; 1377 team->user_data_area = create_area_etc(team->id, "user area", 1378 kTeamUserDataInitialSize, B_FULL_LOCK, B_READ_AREA | B_WRITE_AREA, 0, 0, 1379 &virtualRestrictions, &physicalRestrictions, &address); 1380 if (team->user_data_area < 0) 1381 return team->user_data_area; 1382 1383 team->user_data = (addr_t)address; 1384 team->used_user_data = 0; 1385 team->user_data_size = kTeamUserDataInitialSize; 1386 team->free_user_threads = NULL; 1387 1388 return B_OK; 1389 } 1390 1391 1392 static void 1393 delete_team_user_data(Team* team) 1394 { 1395 if (team->user_data_area >= 0) { 1396 vm_delete_area(team->id, team->user_data_area, true); 1397 vm_unreserve_address_range(team->id, (void*)team->user_data, 1398 kTeamUserDataReservedSize); 1399 1400 team->user_data = 0; 1401 team->used_user_data = 0; 1402 team->user_data_size = 0; 1403 team->user_data_area = -1; 1404 while (free_user_thread* entry = team->free_user_threads) { 1405 team->free_user_threads = entry->next; 1406 free(entry); 1407 } 1408 } 1409 } 1410 1411 1412 static status_t 1413 copy_user_process_args(const char* const* userFlatArgs, size_t flatArgsSize, 1414 int32 argCount, int32 envCount, char**& _flatArgs) 1415 { 1416 if (argCount < 0 || envCount < 0) 1417 return B_BAD_VALUE; 1418 1419 if (flatArgsSize > MAX_PROCESS_ARGS_SIZE) 1420 return B_TOO_MANY_ARGS; 1421 if ((argCount + envCount + 2) * sizeof(char*) > flatArgsSize) 1422 return B_BAD_VALUE; 1423 1424 if (!IS_USER_ADDRESS(userFlatArgs)) 1425 return B_BAD_ADDRESS; 1426 1427 // allocate kernel memory 1428 char** flatArgs = (char**)malloc(_ALIGN(flatArgsSize)); 1429 if (flatArgs == NULL) 1430 return B_NO_MEMORY; 1431 1432 if (user_memcpy(flatArgs, userFlatArgs, flatArgsSize) != B_OK) { 1433 free(flatArgs); 1434 return B_BAD_ADDRESS; 1435 } 1436 1437 // check and relocate the array 1438 status_t error = B_OK; 1439 const char* stringBase = (char*)flatArgs + argCount + envCount + 2; 1440 const char* stringEnd = (char*)flatArgs + flatArgsSize; 1441 for (int32 i = 0; i < argCount + envCount + 2; i++) { 1442 if (i == argCount || i == argCount + envCount + 1) { 1443 // check array null termination 1444 if (flatArgs[i] != NULL) { 1445 error = B_BAD_VALUE; 1446 break; 1447 } 1448 } else { 1449 // check string 1450 char* arg = (char*)flatArgs + (flatArgs[i] - (char*)userFlatArgs); 1451 size_t maxLen = stringEnd - arg; 1452 if (arg < stringBase || arg >= stringEnd 1453 || strnlen(arg, maxLen) == maxLen) { 1454 error = B_BAD_VALUE; 1455 break; 1456 } 1457 1458 flatArgs[i] = arg; 1459 } 1460 } 1461 1462 if (error == B_OK) 1463 _flatArgs = flatArgs; 1464 else 1465 free(flatArgs); 1466 1467 return error; 1468 } 1469 1470 1471 static void 1472 free_team_arg(struct team_arg* teamArg) 1473 { 1474 if (teamArg != NULL) { 1475 free(teamArg->flat_args); 1476 free(teamArg->path); 1477 free(teamArg); 1478 } 1479 } 1480 1481 1482 static status_t 1483 create_team_arg(struct team_arg** _teamArg, const char* path, char** flatArgs, 1484 size_t flatArgsSize, int32 argCount, int32 envCount, mode_t umask, 1485 port_id port, uint32 token) 1486 { 1487 struct team_arg* teamArg = (struct team_arg*)malloc(sizeof(team_arg)); 1488 if (teamArg == NULL) 1489 return B_NO_MEMORY; 1490 1491 teamArg->path = strdup(path); 1492 if (teamArg->path == NULL) { 1493 free(teamArg); 1494 return B_NO_MEMORY; 1495 } 1496 1497 // copy the args over 1498 teamArg->flat_args = flatArgs; 1499 teamArg->flat_args_size = flatArgsSize; 1500 teamArg->arg_count = argCount; 1501 teamArg->env_count = envCount; 1502 teamArg->flags = 0; 1503 teamArg->umask = umask; 1504 teamArg->error_port = port; 1505 teamArg->error_token = token; 1506 1507 // determine the flags from the environment 1508 const char* const* env = flatArgs + argCount + 1; 1509 for (int32 i = 0; i < envCount; i++) { 1510 if (strcmp(env[i], "DISABLE_ASLR=1") == 0) { 1511 teamArg->flags |= TEAM_ARGS_FLAG_NO_ASLR; 1512 break; 1513 } 1514 } 1515 1516 *_teamArg = teamArg; 1517 return B_OK; 1518 } 1519 1520 1521 static status_t 1522 team_create_thread_start_internal(void* args) 1523 { 1524 status_t err; 1525 Thread* thread; 1526 Team* team; 1527 struct team_arg* teamArgs = (struct team_arg*)args; 1528 const char* path; 1529 addr_t entry; 1530 char** userArgs; 1531 char** userEnv; 1532 struct user_space_program_args* programArgs; 1533 uint32 argCount, envCount; 1534 1535 thread = thread_get_current_thread(); 1536 team = thread->team; 1537 cache_node_launched(teamArgs->arg_count, teamArgs->flat_args); 1538 1539 TRACE(("team_create_thread_start: entry thread %" B_PRId32 "\n", 1540 thread->id)); 1541 1542 // Main stack area layout is currently as follows (starting from 0): 1543 // 1544 // size | usage 1545 // ---------------------------------+-------------------------------- 1546 // USER_MAIN_THREAD_STACK_SIZE | actual stack 1547 // TLS_SIZE | TLS data 1548 // sizeof(user_space_program_args) | argument structure for the runtime 1549 // | loader 1550 // flat arguments size | flat process arguments and environment 1551 1552 // TODO: ENV_SIZE is a) limited, and b) not used after libroot copied it to 1553 // the heap 1554 // TODO: we could reserve the whole USER_STACK_REGION upfront... 1555 1556 argCount = teamArgs->arg_count; 1557 envCount = teamArgs->env_count; 1558 1559 programArgs = (struct user_space_program_args*)(thread->user_stack_base 1560 + thread->user_stack_size + TLS_SIZE); 1561 1562 userArgs = (char**)(programArgs + 1); 1563 userEnv = userArgs + argCount + 1; 1564 path = teamArgs->path; 1565 1566 if (user_strlcpy(programArgs->program_path, path, 1567 sizeof(programArgs->program_path)) < B_OK 1568 || user_memcpy(&programArgs->arg_count, &argCount, sizeof(int32)) < B_OK 1569 || user_memcpy(&programArgs->args, &userArgs, sizeof(char**)) < B_OK 1570 || user_memcpy(&programArgs->env_count, &envCount, sizeof(int32)) < B_OK 1571 || user_memcpy(&programArgs->env, &userEnv, sizeof(char**)) < B_OK 1572 || user_memcpy(&programArgs->error_port, &teamArgs->error_port, 1573 sizeof(port_id)) < B_OK 1574 || user_memcpy(&programArgs->error_token, &teamArgs->error_token, 1575 sizeof(uint32)) < B_OK 1576 || user_memcpy(&programArgs->umask, &teamArgs->umask, sizeof(mode_t)) < B_OK 1577 || user_memcpy(userArgs, teamArgs->flat_args, 1578 teamArgs->flat_args_size) < B_OK) { 1579 // the team deletion process will clean this mess 1580 free_team_arg(teamArgs); 1581 return B_BAD_ADDRESS; 1582 } 1583 1584 TRACE(("team_create_thread_start: loading elf binary '%s'\n", path)); 1585 1586 // set team args and update state 1587 team->Lock(); 1588 team->SetArgs(path, teamArgs->flat_args + 1, argCount - 1); 1589 team->state = TEAM_STATE_NORMAL; 1590 team->Unlock(); 1591 1592 free_team_arg(teamArgs); 1593 // the arguments are already on the user stack, we no longer need 1594 // them in this form 1595 1596 // Clone commpage area 1597 area_id commPageArea = clone_commpage_area(team->id, 1598 &team->commpage_address); 1599 if (commPageArea < B_OK) { 1600 TRACE(("team_create_thread_start: clone_commpage_area() failed: %s\n", 1601 strerror(commPageArea))); 1602 return commPageArea; 1603 } 1604 1605 // Register commpage image 1606 image_id commPageImage = get_commpage_image(); 1607 extended_image_info imageInfo; 1608 err = get_image_info(commPageImage, &imageInfo.basic_info); 1609 if (err != B_OK) { 1610 TRACE(("team_create_thread_start: get_image_info() failed: %s\n", 1611 strerror(err))); 1612 return err; 1613 } 1614 imageInfo.basic_info.text = team->commpage_address; 1615 imageInfo.text_delta = (ssize_t)(addr_t)team->commpage_address; 1616 imageInfo.symbol_table = NULL; 1617 imageInfo.symbol_hash = NULL; 1618 imageInfo.string_table = NULL; 1619 image_id image = register_image(team, &imageInfo, sizeof(imageInfo)); 1620 if (image < 0) { 1621 TRACE(("team_create_thread_start: register_image() failed: %s\n", 1622 strerror(image))); 1623 return image; 1624 } 1625 1626 // NOTE: Normally arch_thread_enter_userspace() never returns, that is 1627 // automatic variables with function scope will never be destroyed. 1628 { 1629 // find runtime_loader path 1630 KPath runtimeLoaderPath; 1631 err = __find_directory(B_SYSTEM_DIRECTORY, gBootDevice, false, 1632 runtimeLoaderPath.LockBuffer(), runtimeLoaderPath.BufferSize()); 1633 if (err < B_OK) { 1634 TRACE(("team_create_thread_start: find_directory() failed: %s\n", 1635 strerror(err))); 1636 return err; 1637 } 1638 runtimeLoaderPath.UnlockBuffer(); 1639 err = runtimeLoaderPath.Append("runtime_loader"); 1640 1641 if (err == B_OK) { 1642 err = elf_load_user_image(runtimeLoaderPath.Path(), team, 0, 1643 &entry); 1644 } 1645 } 1646 1647 if (err < B_OK) { 1648 // Luckily, we don't have to clean up the mess we created - that's 1649 // done for us by the normal team deletion process 1650 TRACE(("team_create_thread_start: elf_load_user_image() failed: " 1651 "%s\n", strerror(err))); 1652 return err; 1653 } 1654 1655 TRACE(("team_create_thread_start: loaded elf. entry = %#lx\n", entry)); 1656 1657 // enter userspace -- returns only in case of error 1658 return thread_enter_userspace_new_team(thread, (addr_t)entry, 1659 programArgs, team->commpage_address); 1660 } 1661 1662 1663 static status_t 1664 team_create_thread_start(void* args) 1665 { 1666 team_create_thread_start_internal(args); 1667 team_init_exit_info_on_error(thread_get_current_thread()->team); 1668 thread_exit(); 1669 // does not return 1670 return B_OK; 1671 } 1672 1673 1674 static thread_id 1675 load_image_internal(char**& _flatArgs, size_t flatArgsSize, int32 argCount, 1676 int32 envCount, int32 priority, team_id parentID, uint32 flags, 1677 port_id errorPort, uint32 errorToken) 1678 { 1679 char** flatArgs = _flatArgs; 1680 thread_id thread; 1681 status_t status; 1682 struct team_arg* teamArgs; 1683 struct team_loading_info loadingInfo; 1684 io_context* parentIOContext = NULL; 1685 team_id teamID; 1686 bool teamLimitReached = false; 1687 1688 if (flatArgs == NULL || argCount == 0) 1689 return B_BAD_VALUE; 1690 1691 const char* path = flatArgs[0]; 1692 1693 TRACE(("load_image_internal: name '%s', args = %p, argCount = %" B_PRId32 1694 "\n", path, flatArgs, argCount)); 1695 1696 // cut the path from the main thread name 1697 const char* threadName = strrchr(path, '/'); 1698 if (threadName != NULL) 1699 threadName++; 1700 else 1701 threadName = path; 1702 1703 // create the main thread object 1704 Thread* mainThread; 1705 status = Thread::Create(threadName, mainThread); 1706 if (status != B_OK) 1707 return status; 1708 BReference<Thread> mainThreadReference(mainThread, true); 1709 1710 // create team object 1711 Team* team = Team::Create(mainThread->id, path, false); 1712 if (team == NULL) 1713 return B_NO_MEMORY; 1714 BReference<Team> teamReference(team, true); 1715 1716 if (flags & B_WAIT_TILL_LOADED) { 1717 loadingInfo.thread = thread_get_current_thread(); 1718 loadingInfo.result = B_ERROR; 1719 loadingInfo.done = false; 1720 team->loading_info = &loadingInfo; 1721 } 1722 1723 // get the parent team 1724 Team* parent = Team::Get(parentID); 1725 if (parent == NULL) 1726 return B_BAD_TEAM_ID; 1727 BReference<Team> parentReference(parent, true); 1728 1729 parent->LockTeamAndProcessGroup(); 1730 team->Lock(); 1731 1732 // inherit the parent's user/group 1733 inherit_parent_user_and_group(team, parent); 1734 1735 // get a reference to the parent's I/O context -- we need it to create ours 1736 parentIOContext = parent->io_context; 1737 vfs_get_io_context(parentIOContext); 1738 1739 team->Unlock(); 1740 parent->UnlockTeamAndProcessGroup(); 1741 1742 // check the executable's set-user/group-id permission 1743 update_set_id_user_and_group(team, path); 1744 1745 status = create_team_arg(&teamArgs, path, flatArgs, flatArgsSize, argCount, 1746 envCount, (mode_t)-1, errorPort, errorToken); 1747 if (status != B_OK) 1748 goto err1; 1749 1750 _flatArgs = NULL; 1751 // args are owned by the team_arg structure now 1752 1753 // create a new io_context for this team 1754 team->io_context = vfs_new_io_context(parentIOContext, true); 1755 if (!team->io_context) { 1756 status = B_NO_MEMORY; 1757 goto err2; 1758 } 1759 1760 // We don't need the parent's I/O context any longer. 1761 vfs_put_io_context(parentIOContext); 1762 parentIOContext = NULL; 1763 1764 // remove any fds that have the CLOEXEC flag set (emulating BeOS behaviour) 1765 vfs_exec_io_context(team->io_context); 1766 1767 // create an address space for this team 1768 status = VMAddressSpace::Create(team->id, USER_BASE, USER_SIZE, false, 1769 &team->address_space); 1770 if (status != B_OK) 1771 goto err2; 1772 1773 team->address_space->SetRandomizingEnabled( 1774 (teamArgs->flags & TEAM_ARGS_FLAG_NO_ASLR) == 0); 1775 1776 // create the user data area 1777 status = create_team_user_data(team); 1778 if (status != B_OK) 1779 goto err4; 1780 1781 // insert the team into its parent and the teams hash 1782 parent->LockTeamAndProcessGroup(); 1783 team->Lock(); 1784 1785 { 1786 InterruptsSpinLocker teamsLocker(sTeamHashLock); 1787 1788 sTeamHash.Insert(team); 1789 teamLimitReached = sUsedTeams >= sMaxTeams; 1790 if (!teamLimitReached) 1791 sUsedTeams++; 1792 } 1793 1794 insert_team_into_parent(parent, team); 1795 insert_team_into_group(parent->group, team); 1796 1797 team->Unlock(); 1798 parent->UnlockTeamAndProcessGroup(); 1799 1800 // notify team listeners 1801 sNotificationService.Notify(TEAM_ADDED, team); 1802 1803 if (teamLimitReached) { 1804 status = B_NO_MORE_TEAMS; 1805 goto err6; 1806 } 1807 1808 // In case we start the main thread, we shouldn't access the team object 1809 // afterwards, so cache the team's ID. 1810 teamID = team->id; 1811 1812 // Create a kernel thread, but under the context of the new team 1813 // The new thread will take over ownership of teamArgs. 1814 { 1815 ThreadCreationAttributes threadAttributes(team_create_thread_start, 1816 threadName, B_NORMAL_PRIORITY, teamArgs, teamID, mainThread); 1817 threadAttributes.additional_stack_size = sizeof(user_space_program_args) 1818 + teamArgs->flat_args_size; 1819 thread = thread_create_thread(threadAttributes, false); 1820 if (thread < 0) { 1821 status = thread; 1822 goto err6; 1823 } 1824 } 1825 1826 // The team has been created successfully, so we keep the reference. Or 1827 // more precisely: It's owned by the team's main thread, now. 1828 teamReference.Detach(); 1829 1830 // wait for the loader of the new team to finish its work 1831 if ((flags & B_WAIT_TILL_LOADED) != 0) { 1832 if (mainThread != NULL) { 1833 // resume the team's main thread 1834 thread_continue(mainThread); 1835 } 1836 1837 // Now suspend ourselves until loading is finished. We will be woken 1838 // either by the thread, when it finished or aborted loading, or when 1839 // the team is going to die (e.g. is killed). In either case the one 1840 // setting `loadingInfo.done' is responsible for removing the info from 1841 // the team structure. 1842 while (!loadingInfo.done) 1843 thread_suspend(); 1844 1845 if (loadingInfo.result < B_OK) 1846 return loadingInfo.result; 1847 } 1848 1849 // notify the debugger 1850 user_debug_team_created(teamID); 1851 1852 return thread; 1853 1854 err6: 1855 // Remove the team structure from the process group, the parent team, and 1856 // the team hash table and delete the team structure. 1857 parent->LockTeamAndProcessGroup(); 1858 team->Lock(); 1859 1860 remove_team_from_group(team); 1861 remove_team_from_parent(team->parent, team); 1862 1863 team->Unlock(); 1864 parent->UnlockTeamAndProcessGroup(); 1865 1866 { 1867 InterruptsSpinLocker teamsLocker(sTeamHashLock); 1868 sTeamHash.Remove(team); 1869 if (!teamLimitReached) 1870 sUsedTeams--; 1871 } 1872 1873 sNotificationService.Notify(TEAM_REMOVED, team); 1874 1875 delete_team_user_data(team); 1876 err4: 1877 team->address_space->Put(); 1878 err2: 1879 free_team_arg(teamArgs); 1880 err1: 1881 if (parentIOContext != NULL) 1882 vfs_put_io_context(parentIOContext); 1883 1884 return status; 1885 } 1886 1887 1888 /*! Almost shuts down the current team and loads a new image into it. 1889 If successful, this function does not return and will takeover ownership of 1890 the arguments provided. 1891 This function may only be called in a userland team (caused by one of the 1892 exec*() syscalls). 1893 */ 1894 static status_t 1895 exec_team(const char* path, char**& _flatArgs, size_t flatArgsSize, 1896 int32 argCount, int32 envCount, mode_t umask) 1897 { 1898 // NOTE: Since this function normally doesn't return, don't use automatic 1899 // variables that need destruction in the function scope. 1900 char** flatArgs = _flatArgs; 1901 Team* team = thread_get_current_thread()->team; 1902 struct team_arg* teamArgs; 1903 const char* threadName; 1904 thread_id nubThreadID = -1; 1905 1906 TRACE(("exec_team(path = \"%s\", argc = %" B_PRId32 ", envCount = %" 1907 B_PRId32 "): team %" B_PRId32 "\n", path, argCount, envCount, 1908 team->id)); 1909 1910 T(ExecTeam(path, argCount, flatArgs, envCount, flatArgs + argCount + 1)); 1911 1912 // switching the kernel at run time is probably not a good idea :) 1913 if (team == team_get_kernel_team()) 1914 return B_NOT_ALLOWED; 1915 1916 // we currently need to be single threaded here 1917 // TODO: maybe we should just kill all other threads and 1918 // make the current thread the team's main thread? 1919 Thread* currentThread = thread_get_current_thread(); 1920 if (currentThread != team->main_thread) 1921 return B_NOT_ALLOWED; 1922 1923 // The debug nub thread, a pure kernel thread, is allowed to survive. 1924 // We iterate through the thread list to make sure that there's no other 1925 // thread. 1926 TeamLocker teamLocker(team); 1927 InterruptsSpinLocker debugInfoLocker(team->debug_info.lock); 1928 1929 if (team->debug_info.flags & B_TEAM_DEBUG_DEBUGGER_INSTALLED) 1930 nubThreadID = team->debug_info.nub_thread; 1931 1932 debugInfoLocker.Unlock(); 1933 1934 for (Thread* thread = team->thread_list; thread != NULL; 1935 thread = thread->team_next) { 1936 if (thread != team->main_thread && thread->id != nubThreadID) 1937 return B_NOT_ALLOWED; 1938 } 1939 1940 team->DeleteUserTimers(true); 1941 team->ResetSignalsOnExec(); 1942 1943 teamLocker.Unlock(); 1944 1945 status_t status = create_team_arg(&teamArgs, path, flatArgs, flatArgsSize, 1946 argCount, envCount, umask, -1, 0); 1947 if (status != B_OK) 1948 return status; 1949 1950 _flatArgs = NULL; 1951 // args are owned by the team_arg structure now 1952 1953 // TODO: remove team resources if there are any left 1954 // thread_atkernel_exit() might not be called at all 1955 1956 thread_reset_for_exec(); 1957 1958 user_debug_prepare_for_exec(); 1959 1960 delete_team_user_data(team); 1961 vm_delete_areas(team->address_space, false); 1962 xsi_sem_undo(team); 1963 delete_owned_ports(team); 1964 sem_delete_owned_sems(team); 1965 remove_images(team); 1966 vfs_exec_io_context(team->io_context); 1967 delete_realtime_sem_context(team->realtime_sem_context); 1968 team->realtime_sem_context = NULL; 1969 1970 // update ASLR 1971 team->address_space->SetRandomizingEnabled( 1972 (teamArgs->flags & TEAM_ARGS_FLAG_NO_ASLR) == 0); 1973 1974 status = create_team_user_data(team); 1975 if (status != B_OK) { 1976 // creating the user data failed -- we're toast 1977 free_team_arg(teamArgs); 1978 exit_thread(status); 1979 return status; 1980 } 1981 1982 user_debug_finish_after_exec(); 1983 1984 // rename the team 1985 1986 team->Lock(); 1987 team->SetName(path); 1988 team->Unlock(); 1989 1990 // cut the path from the team name and rename the main thread, too 1991 threadName = strrchr(path, '/'); 1992 if (threadName != NULL) 1993 threadName++; 1994 else 1995 threadName = path; 1996 rename_thread(thread_get_current_thread_id(), threadName); 1997 1998 atomic_or(&team->flags, TEAM_FLAG_EXEC_DONE); 1999 2000 // Update user/group according to the executable's set-user/group-id 2001 // permission. 2002 update_set_id_user_and_group(team, path); 2003 2004 user_debug_team_exec(); 2005 2006 // notify team listeners 2007 sNotificationService.Notify(TEAM_EXEC, team); 2008 2009 // get a user thread for the thread 2010 user_thread* userThread = team_allocate_user_thread(team); 2011 // cannot fail (the allocation for the team would have failed already) 2012 ThreadLocker currentThreadLocker(currentThread); 2013 currentThread->user_thread = userThread; 2014 currentThreadLocker.Unlock(); 2015 2016 // create the user stack for the thread 2017 status = thread_create_user_stack(currentThread->team, currentThread, NULL, 2018 0, sizeof(user_space_program_args) + teamArgs->flat_args_size); 2019 if (status == B_OK) { 2020 // prepare the stack, load the runtime loader, and enter userspace 2021 team_create_thread_start(teamArgs); 2022 // does never return 2023 } else 2024 free_team_arg(teamArgs); 2025 2026 // Sorry, we have to kill ourselves, there is no way out anymore 2027 // (without any areas left and all that). 2028 exit_thread(status); 2029 2030 // We return a status here since the signal that is sent by the 2031 // call above is not immediately handled. 2032 return B_ERROR; 2033 } 2034 2035 2036 static thread_id 2037 fork_team(void) 2038 { 2039 Thread* parentThread = thread_get_current_thread(); 2040 Team* parentTeam = parentThread->team; 2041 Team* team; 2042 arch_fork_arg* forkArgs; 2043 struct area_info info; 2044 thread_id threadID; 2045 status_t status; 2046 ssize_t areaCookie; 2047 bool teamLimitReached = false; 2048 2049 TRACE(("fork_team(): team %" B_PRId32 "\n", parentTeam->id)); 2050 2051 if (parentTeam == team_get_kernel_team()) 2052 return B_NOT_ALLOWED; 2053 2054 // create a new team 2055 // TODO: this is very similar to load_image_internal() - maybe we can do 2056 // something about it :) 2057 2058 // create the main thread object 2059 Thread* thread; 2060 status = Thread::Create(parentThread->name, thread); 2061 if (status != B_OK) 2062 return status; 2063 BReference<Thread> threadReference(thread, true); 2064 2065 // create the team object 2066 team = Team::Create(thread->id, NULL, false); 2067 if (team == NULL) 2068 return B_NO_MEMORY; 2069 2070 parentTeam->LockTeamAndProcessGroup(); 2071 team->Lock(); 2072 2073 team->SetName(parentTeam->Name()); 2074 team->SetArgs(parentTeam->Args()); 2075 2076 team->commpage_address = parentTeam->commpage_address; 2077 2078 // Inherit the parent's user/group. 2079 inherit_parent_user_and_group(team, parentTeam); 2080 2081 // inherit signal handlers 2082 team->InheritSignalActions(parentTeam); 2083 2084 team->Unlock(); 2085 parentTeam->UnlockTeamAndProcessGroup(); 2086 2087 // inherit some team debug flags 2088 team->debug_info.flags |= atomic_get(&parentTeam->debug_info.flags) 2089 & B_TEAM_DEBUG_INHERITED_FLAGS; 2090 2091 forkArgs = (arch_fork_arg*)malloc(sizeof(arch_fork_arg)); 2092 if (forkArgs == NULL) { 2093 status = B_NO_MEMORY; 2094 goto err1; 2095 } 2096 2097 // create a new io_context for this team 2098 team->io_context = vfs_new_io_context(parentTeam->io_context, false); 2099 if (!team->io_context) { 2100 status = B_NO_MEMORY; 2101 goto err2; 2102 } 2103 2104 // duplicate the realtime sem context 2105 if (parentTeam->realtime_sem_context) { 2106 team->realtime_sem_context = clone_realtime_sem_context( 2107 parentTeam->realtime_sem_context); 2108 if (team->realtime_sem_context == NULL) { 2109 status = B_NO_MEMORY; 2110 goto err2; 2111 } 2112 } 2113 2114 // create an address space for this team 2115 status = VMAddressSpace::Create(team->id, USER_BASE, USER_SIZE, false, 2116 &team->address_space); 2117 if (status < B_OK) 2118 goto err3; 2119 2120 // copy all areas of the team 2121 // TODO: should be able to handle stack areas differently (ie. don't have 2122 // them copy-on-write) 2123 2124 areaCookie = 0; 2125 while (get_next_area_info(B_CURRENT_TEAM, &areaCookie, &info) == B_OK) { 2126 if (info.area == parentTeam->user_data_area) { 2127 // don't clone the user area; just create a new one 2128 status = create_team_user_data(team, info.address); 2129 if (status != B_OK) 2130 break; 2131 2132 thread->user_thread = team_allocate_user_thread(team); 2133 } else { 2134 void* address; 2135 area_id area = vm_copy_area(team->address_space->ID(), info.name, 2136 &address, B_CLONE_ADDRESS, info.protection, info.area); 2137 if (area < B_OK) { 2138 status = area; 2139 break; 2140 } 2141 2142 if (info.area == parentThread->user_stack_area) 2143 thread->user_stack_area = area; 2144 } 2145 } 2146 2147 if (status < B_OK) 2148 goto err4; 2149 2150 if (thread->user_thread == NULL) { 2151 #if KDEBUG 2152 panic("user data area not found, parent area is %" B_PRId32, 2153 parentTeam->user_data_area); 2154 #endif 2155 status = B_ERROR; 2156 goto err4; 2157 } 2158 2159 thread->user_stack_base = parentThread->user_stack_base; 2160 thread->user_stack_size = parentThread->user_stack_size; 2161 thread->user_local_storage = parentThread->user_local_storage; 2162 thread->sig_block_mask = parentThread->sig_block_mask; 2163 thread->signal_stack_base = parentThread->signal_stack_base; 2164 thread->signal_stack_size = parentThread->signal_stack_size; 2165 thread->signal_stack_enabled = parentThread->signal_stack_enabled; 2166 2167 arch_store_fork_frame(forkArgs); 2168 2169 // copy image list 2170 if (copy_images(parentTeam->id, team) != B_OK) 2171 goto err5; 2172 2173 // insert the team into its parent and the teams hash 2174 parentTeam->LockTeamAndProcessGroup(); 2175 team->Lock(); 2176 2177 { 2178 InterruptsSpinLocker teamsLocker(sTeamHashLock); 2179 2180 sTeamHash.Insert(team); 2181 teamLimitReached = sUsedTeams >= sMaxTeams; 2182 if (!teamLimitReached) 2183 sUsedTeams++; 2184 } 2185 2186 insert_team_into_parent(parentTeam, team); 2187 insert_team_into_group(parentTeam->group, team); 2188 2189 team->Unlock(); 2190 parentTeam->UnlockTeamAndProcessGroup(); 2191 2192 // notify team listeners 2193 sNotificationService.Notify(TEAM_ADDED, team); 2194 2195 if (teamLimitReached) { 2196 status = B_NO_MORE_TEAMS; 2197 goto err6; 2198 } 2199 2200 // create the main thread 2201 { 2202 ThreadCreationAttributes threadCreationAttributes(NULL, 2203 parentThread->name, parentThread->priority, NULL, team->id, thread); 2204 threadCreationAttributes.forkArgs = forkArgs; 2205 threadCreationAttributes.flags |= THREAD_CREATION_FLAG_DEFER_SIGNALS; 2206 threadID = thread_create_thread(threadCreationAttributes, false); 2207 if (threadID < 0) { 2208 status = threadID; 2209 goto err6; 2210 } 2211 } 2212 2213 // notify the debugger 2214 user_debug_team_created(team->id); 2215 2216 T(TeamForked(threadID)); 2217 2218 resume_thread(threadID); 2219 return threadID; 2220 2221 err6: 2222 // Remove the team structure from the process group, the parent team, and 2223 // the team hash table and delete the team structure. 2224 parentTeam->LockTeamAndProcessGroup(); 2225 team->Lock(); 2226 2227 remove_team_from_group(team); 2228 remove_team_from_parent(team->parent, team); 2229 2230 team->Unlock(); 2231 parentTeam->UnlockTeamAndProcessGroup(); 2232 2233 { 2234 InterruptsSpinLocker teamsLocker(sTeamHashLock); 2235 sTeamHash.Remove(team); 2236 if (!teamLimitReached) 2237 sUsedTeams--; 2238 } 2239 2240 sNotificationService.Notify(TEAM_REMOVED, team); 2241 err5: 2242 remove_images(team); 2243 err4: 2244 team->address_space->RemoveAndPut(); 2245 err3: 2246 delete_realtime_sem_context(team->realtime_sem_context); 2247 err2: 2248 free(forkArgs); 2249 err1: 2250 team->ReleaseReference(); 2251 2252 return status; 2253 } 2254 2255 2256 /*! Returns if the specified team \a parent has any children belonging to the 2257 process group with the specified ID \a groupID. 2258 The caller must hold \a parent's lock. 2259 */ 2260 static bool 2261 has_children_in_group(Team* parent, pid_t groupID) 2262 { 2263 for (Team* child = parent->children; child != NULL; 2264 child = child->siblings_next) { 2265 TeamLocker childLocker(child); 2266 if (child->group_id == groupID) 2267 return true; 2268 } 2269 2270 return false; 2271 } 2272 2273 2274 /*! Returns the first job control entry from \a children, which matches \a id. 2275 \a id can be: 2276 - \code > 0 \endcode: Matching an entry with that team ID. 2277 - \code == -1 \endcode: Matching any entry. 2278 - \code < -1 \endcode: Matching any entry with a process group ID of \c -id. 2279 \c 0 is an invalid value for \a id. 2280 2281 The caller must hold the lock of the team that \a children belongs to. 2282 2283 \param children The job control entry list to check. 2284 \param id The match criterion. 2285 \return The first matching entry or \c NULL, if none matches. 2286 */ 2287 static job_control_entry* 2288 get_job_control_entry(team_job_control_children& children, pid_t id) 2289 { 2290 for (JobControlEntryList::Iterator it = children.entries.GetIterator(); 2291 job_control_entry* entry = it.Next();) { 2292 2293 if (id > 0) { 2294 if (entry->thread == id) 2295 return entry; 2296 } else if (id == -1) { 2297 return entry; 2298 } else { 2299 pid_t processGroup 2300 = (entry->team ? entry->team->group_id : entry->group_id); 2301 if (processGroup == -id) 2302 return entry; 2303 } 2304 } 2305 2306 return NULL; 2307 } 2308 2309 2310 /*! Returns the first job control entry from one of team's dead, continued, or 2311 stopped children which matches \a id. 2312 \a id can be: 2313 - \code > 0 \endcode: Matching an entry with that team ID. 2314 - \code == -1 \endcode: Matching any entry. 2315 - \code < -1 \endcode: Matching any entry with a process group ID of \c -id. 2316 \c 0 is an invalid value for \a id. 2317 2318 The caller must hold \a team's lock. 2319 2320 \param team The team whose dead, stopped, and continued child lists shall be 2321 checked. 2322 \param id The match criterion. 2323 \param flags Specifies which children shall be considered. Dead children 2324 always are. Stopped children are considered when \a flags is ORed 2325 bitwise with \c WUNTRACED, continued children when \a flags is ORed 2326 bitwise with \c WCONTINUED. 2327 \return The first matching entry or \c NULL, if none matches. 2328 */ 2329 static job_control_entry* 2330 get_job_control_entry(Team* team, pid_t id, uint32 flags) 2331 { 2332 job_control_entry* entry = get_job_control_entry(team->dead_children, id); 2333 2334 if (entry == NULL && (flags & WCONTINUED) != 0) 2335 entry = get_job_control_entry(team->continued_children, id); 2336 2337 if (entry == NULL && (flags & WUNTRACED) != 0) 2338 entry = get_job_control_entry(team->stopped_children, id); 2339 2340 return entry; 2341 } 2342 2343 2344 job_control_entry::job_control_entry() 2345 : 2346 has_group_ref(false) 2347 { 2348 } 2349 2350 2351 job_control_entry::~job_control_entry() 2352 { 2353 if (has_group_ref) { 2354 InterruptsSpinLocker groupHashLocker(sGroupHashLock); 2355 2356 ProcessGroup* group = sGroupHash.Lookup(group_id); 2357 if (group == NULL) { 2358 panic("job_control_entry::~job_control_entry(): unknown group " 2359 "ID: %" B_PRId32, group_id); 2360 return; 2361 } 2362 2363 groupHashLocker.Unlock(); 2364 2365 group->ReleaseReference(); 2366 } 2367 } 2368 2369 2370 /*! Invoked when the owning team is dying, initializing the entry according to 2371 the dead state. 2372 2373 The caller must hold the owning team's lock and the scheduler lock. 2374 */ 2375 void 2376 job_control_entry::InitDeadState() 2377 { 2378 if (team != NULL) { 2379 ASSERT(team->exit.initialized); 2380 2381 group_id = team->group_id; 2382 team->group->AcquireReference(); 2383 has_group_ref = true; 2384 2385 thread = team->id; 2386 status = team->exit.status; 2387 reason = team->exit.reason; 2388 signal = team->exit.signal; 2389 signaling_user = team->exit.signaling_user; 2390 user_time = team->dead_threads_user_time 2391 + team->dead_children.user_time; 2392 kernel_time = team->dead_threads_kernel_time 2393 + team->dead_children.kernel_time; 2394 2395 team = NULL; 2396 } 2397 } 2398 2399 2400 job_control_entry& 2401 job_control_entry::operator=(const job_control_entry& other) 2402 { 2403 state = other.state; 2404 thread = other.thread; 2405 signal = other.signal; 2406 has_group_ref = false; 2407 signaling_user = other.signaling_user; 2408 team = other.team; 2409 group_id = other.group_id; 2410 status = other.status; 2411 reason = other.reason; 2412 user_time = other.user_time; 2413 kernel_time = other.kernel_time; 2414 2415 return *this; 2416 } 2417 2418 2419 /*! This is the kernel backend for waitid(). 2420 */ 2421 static thread_id 2422 wait_for_child(pid_t child, uint32 flags, siginfo_t& _info, 2423 team_usage_info& _usage_info) 2424 { 2425 Thread* thread = thread_get_current_thread(); 2426 Team* team = thread->team; 2427 struct job_control_entry foundEntry; 2428 struct job_control_entry* freeDeathEntry = NULL; 2429 status_t status = B_OK; 2430 2431 TRACE(("wait_for_child(child = %" B_PRId32 ", flags = %" B_PRId32 ")\n", 2432 child, flags)); 2433 2434 T(WaitForChild(child, flags)); 2435 2436 pid_t originalChild = child; 2437 2438 bool ignoreFoundEntries = false; 2439 bool ignoreFoundEntriesChecked = false; 2440 2441 while (true) { 2442 // lock the team 2443 TeamLocker teamLocker(team); 2444 2445 // A 0 child argument means to wait for all children in the process 2446 // group of the calling team. 2447 child = originalChild == 0 ? -team->group_id : originalChild; 2448 2449 // check whether any condition holds 2450 job_control_entry* entry = get_job_control_entry(team, child, flags); 2451 2452 // If we don't have an entry yet, check whether there are any children 2453 // complying to the process group specification at all. 2454 if (entry == NULL) { 2455 // No success yet -- check whether there are any children complying 2456 // to the process group specification at all. 2457 bool childrenExist = false; 2458 if (child == -1) { 2459 childrenExist = team->children != NULL; 2460 } else if (child < -1) { 2461 childrenExist = has_children_in_group(team, -child); 2462 } else { 2463 if (Team* childTeam = Team::Get(child)) { 2464 BReference<Team> childTeamReference(childTeam, true); 2465 TeamLocker childTeamLocker(childTeam); 2466 childrenExist = childTeam->parent == team; 2467 } 2468 } 2469 2470 if (!childrenExist) { 2471 // there is no child we could wait for 2472 status = ECHILD; 2473 } else { 2474 // the children we're waiting for are still running 2475 status = B_WOULD_BLOCK; 2476 } 2477 } else { 2478 // got something 2479 foundEntry = *entry; 2480 2481 // unless WNOWAIT has been specified, "consume" the wait state 2482 if ((flags & WNOWAIT) == 0 || ignoreFoundEntries) { 2483 if (entry->state == JOB_CONTROL_STATE_DEAD) { 2484 // The child is dead. Reap its death entry. 2485 freeDeathEntry = entry; 2486 team->dead_children.entries.Remove(entry); 2487 team->dead_children.count--; 2488 } else { 2489 // The child is well. Reset its job control state. 2490 team_set_job_control_state(entry->team, 2491 JOB_CONTROL_STATE_NONE, NULL); 2492 } 2493 } 2494 } 2495 2496 // If we haven't got anything yet, prepare for waiting for the 2497 // condition variable. 2498 ConditionVariableEntry deadWaitEntry; 2499 2500 if (status == B_WOULD_BLOCK && (flags & WNOHANG) == 0) 2501 team->dead_children.condition_variable.Add(&deadWaitEntry); 2502 2503 teamLocker.Unlock(); 2504 2505 // we got our entry and can return to our caller 2506 if (status == B_OK) { 2507 if (ignoreFoundEntries) { 2508 // ... unless we shall ignore found entries 2509 delete freeDeathEntry; 2510 freeDeathEntry = NULL; 2511 continue; 2512 } 2513 2514 break; 2515 } 2516 2517 if (status != B_WOULD_BLOCK || (flags & WNOHANG) != 0) { 2518 T(WaitForChildDone(status)); 2519 return status; 2520 } 2521 2522 status = deadWaitEntry.Wait(B_CAN_INTERRUPT); 2523 if (status == B_INTERRUPTED) { 2524 T(WaitForChildDone(status)); 2525 return status; 2526 } 2527 2528 // If SA_NOCLDWAIT is set or SIGCHLD is ignored, we shall wait until 2529 // all our children are dead and fail with ECHILD. We check the 2530 // condition at this point. 2531 if (!ignoreFoundEntriesChecked) { 2532 teamLocker.Lock(); 2533 2534 struct sigaction& handler = team->SignalActionFor(SIGCHLD); 2535 if ((handler.sa_flags & SA_NOCLDWAIT) != 0 2536 || handler.sa_handler == SIG_IGN) { 2537 ignoreFoundEntries = true; 2538 } 2539 2540 teamLocker.Unlock(); 2541 2542 ignoreFoundEntriesChecked = true; 2543 } 2544 } 2545 2546 delete freeDeathEntry; 2547 2548 // When we got here, we have a valid death entry, and already got 2549 // unregistered from the team or group. Fill in the returned info. 2550 memset(&_info, 0, sizeof(_info)); 2551 _info.si_signo = SIGCHLD; 2552 _info.si_pid = foundEntry.thread; 2553 _info.si_uid = foundEntry.signaling_user; 2554 // TODO: Fill in si_errno? 2555 2556 switch (foundEntry.state) { 2557 case JOB_CONTROL_STATE_DEAD: 2558 _info.si_code = foundEntry.reason; 2559 _info.si_status = foundEntry.reason == CLD_EXITED 2560 ? foundEntry.status : foundEntry.signal; 2561 _usage_info.user_time = foundEntry.user_time; 2562 _usage_info.kernel_time = foundEntry.kernel_time; 2563 break; 2564 case JOB_CONTROL_STATE_STOPPED: 2565 _info.si_code = CLD_STOPPED; 2566 _info.si_status = foundEntry.signal; 2567 break; 2568 case JOB_CONTROL_STATE_CONTINUED: 2569 _info.si_code = CLD_CONTINUED; 2570 _info.si_status = 0; 2571 break; 2572 case JOB_CONTROL_STATE_NONE: 2573 // can't happen 2574 break; 2575 } 2576 2577 // If SIGCHLD is blocked, we shall clear pending SIGCHLDs, if no other child 2578 // status is available. 2579 TeamLocker teamLocker(team); 2580 InterruptsSpinLocker signalLocker(team->signal_lock); 2581 SpinLocker threadCreationLocker(gThreadCreationLock); 2582 2583 if (is_team_signal_blocked(team, SIGCHLD)) { 2584 if (get_job_control_entry(team, child, flags) == NULL) 2585 team->RemovePendingSignals(SIGNAL_TO_MASK(SIGCHLD)); 2586 } 2587 2588 threadCreationLocker.Unlock(); 2589 signalLocker.Unlock(); 2590 teamLocker.Unlock(); 2591 2592 // When the team is dead, the main thread continues to live in the kernel 2593 // team for a very short time. To avoid surprises for the caller we rather 2594 // wait until the thread is really gone. 2595 if (foundEntry.state == JOB_CONTROL_STATE_DEAD) 2596 wait_for_thread(foundEntry.thread, NULL); 2597 2598 T(WaitForChildDone(foundEntry)); 2599 2600 return foundEntry.thread; 2601 } 2602 2603 2604 /*! Fills the team_info structure with information from the specified team. 2605 Interrupts must be enabled. The team must not be locked. 2606 */ 2607 static status_t 2608 fill_team_info(Team* team, team_info* info, size_t size) 2609 { 2610 if (size != sizeof(team_info)) 2611 return B_BAD_VALUE; 2612 2613 // TODO: Set more informations for team_info 2614 memset(info, 0, size); 2615 2616 info->team = team->id; 2617 // immutable 2618 info->image_count = count_images(team); 2619 // protected by sImageMutex 2620 2621 TeamLocker teamLocker(team); 2622 InterruptsSpinLocker debugInfoLocker(team->debug_info.lock); 2623 2624 info->thread_count = team->num_threads; 2625 //info->area_count = 2626 info->debugger_nub_thread = team->debug_info.nub_thread; 2627 info->debugger_nub_port = team->debug_info.nub_port; 2628 info->uid = team->effective_uid; 2629 info->gid = team->effective_gid; 2630 2631 strlcpy(info->args, team->Args(), sizeof(info->args)); 2632 info->argc = 1; 2633 2634 return B_OK; 2635 } 2636 2637 2638 /*! Returns whether the process group contains stopped processes. 2639 The caller must hold the process group's lock. 2640 */ 2641 static bool 2642 process_group_has_stopped_processes(ProcessGroup* group) 2643 { 2644 Team* team = group->teams; 2645 while (team != NULL) { 2646 // the parent team's lock guards the job control entry -- acquire it 2647 team->LockTeamAndParent(false); 2648 2649 if (team->job_control_entry != NULL 2650 && team->job_control_entry->state == JOB_CONTROL_STATE_STOPPED) { 2651 team->UnlockTeamAndParent(); 2652 return true; 2653 } 2654 2655 team->UnlockTeamAndParent(); 2656 2657 team = team->group_next; 2658 } 2659 2660 return false; 2661 } 2662 2663 2664 /*! Iterates through all process groups queued in team_remove_team() and signals 2665 those that are orphaned and have stopped processes. 2666 The caller must not hold any team or process group locks. 2667 */ 2668 static void 2669 orphaned_process_group_check() 2670 { 2671 // process as long as there are groups in the list 2672 while (true) { 2673 // remove the head from the list 2674 MutexLocker orphanedCheckLocker(sOrphanedCheckLock); 2675 2676 ProcessGroup* group = sOrphanedCheckProcessGroups.RemoveHead(); 2677 if (group == NULL) 2678 return; 2679 2680 group->UnsetOrphanedCheck(); 2681 BReference<ProcessGroup> groupReference(group); 2682 2683 orphanedCheckLocker.Unlock(); 2684 2685 AutoLocker<ProcessGroup> groupLocker(group); 2686 2687 // If the group is orphaned and contains stopped processes, we're 2688 // supposed to send SIGHUP + SIGCONT. 2689 if (group->IsOrphaned() && process_group_has_stopped_processes(group)) { 2690 Thread* currentThread = thread_get_current_thread(); 2691 2692 Signal signal(SIGHUP, SI_USER, B_OK, currentThread->team->id); 2693 send_signal_to_process_group_locked(group, signal, 0); 2694 2695 signal.SetNumber(SIGCONT); 2696 send_signal_to_process_group_locked(group, signal, 0); 2697 } 2698 } 2699 } 2700 2701 2702 static status_t 2703 common_get_team_usage_info(team_id id, int32 who, team_usage_info* info, 2704 uint32 flags) 2705 { 2706 if (who != B_TEAM_USAGE_SELF && who != B_TEAM_USAGE_CHILDREN) 2707 return B_BAD_VALUE; 2708 2709 // get the team 2710 Team* team = Team::GetAndLock(id); 2711 if (team == NULL) 2712 return B_BAD_TEAM_ID; 2713 BReference<Team> teamReference(team, true); 2714 TeamLocker teamLocker(team, true); 2715 2716 if ((flags & B_CHECK_PERMISSION) != 0) { 2717 uid_t uid = geteuid(); 2718 if (uid != 0 && uid != team->effective_uid) 2719 return B_NOT_ALLOWED; 2720 } 2721 2722 bigtime_t kernelTime = 0; 2723 bigtime_t userTime = 0; 2724 2725 switch (who) { 2726 case B_TEAM_USAGE_SELF: 2727 { 2728 Thread* thread = team->thread_list; 2729 2730 for (; thread != NULL; thread = thread->team_next) { 2731 InterruptsSpinLocker threadTimeLocker(thread->time_lock); 2732 kernelTime += thread->kernel_time; 2733 userTime += thread->user_time; 2734 } 2735 2736 kernelTime += team->dead_threads_kernel_time; 2737 userTime += team->dead_threads_user_time; 2738 break; 2739 } 2740 2741 case B_TEAM_USAGE_CHILDREN: 2742 { 2743 Team* child = team->children; 2744 for (; child != NULL; child = child->siblings_next) { 2745 TeamLocker childLocker(child); 2746 2747 Thread* thread = team->thread_list; 2748 2749 for (; thread != NULL; thread = thread->team_next) { 2750 InterruptsSpinLocker threadTimeLocker(thread->time_lock); 2751 kernelTime += thread->kernel_time; 2752 userTime += thread->user_time; 2753 } 2754 2755 kernelTime += child->dead_threads_kernel_time; 2756 userTime += child->dead_threads_user_time; 2757 } 2758 2759 kernelTime += team->dead_children.kernel_time; 2760 userTime += team->dead_children.user_time; 2761 break; 2762 } 2763 } 2764 2765 info->kernel_time = kernelTime; 2766 info->user_time = userTime; 2767 2768 return B_OK; 2769 } 2770 2771 2772 // #pragma mark - Private kernel API 2773 2774 2775 status_t 2776 team_init(kernel_args* args) 2777 { 2778 // create the team hash table 2779 new(&sTeamHash) TeamTable; 2780 if (sTeamHash.Init(64) != B_OK) 2781 panic("Failed to init team hash table!"); 2782 2783 new(&sGroupHash) ProcessGroupHashTable; 2784 if (sGroupHash.Init() != B_OK) 2785 panic("Failed to init process group hash table!"); 2786 2787 // create initial session and process groups 2788 2789 ProcessSession* session = new(std::nothrow) ProcessSession(1); 2790 if (session == NULL) 2791 panic("Could not create initial session.\n"); 2792 BReference<ProcessSession> sessionReference(session, true); 2793 2794 ProcessGroup* group = new(std::nothrow) ProcessGroup(1); 2795 if (group == NULL) 2796 panic("Could not create initial process group.\n"); 2797 BReference<ProcessGroup> groupReference(group, true); 2798 2799 group->Publish(session); 2800 2801 // create the kernel team 2802 sKernelTeam = Team::Create(1, "kernel_team", true); 2803 if (sKernelTeam == NULL) 2804 panic("could not create kernel team!\n"); 2805 sKernelTeam->SetArgs(sKernelTeam->Name()); 2806 sKernelTeam->state = TEAM_STATE_NORMAL; 2807 2808 sKernelTeam->saved_set_uid = 0; 2809 sKernelTeam->real_uid = 0; 2810 sKernelTeam->effective_uid = 0; 2811 sKernelTeam->saved_set_gid = 0; 2812 sKernelTeam->real_gid = 0; 2813 sKernelTeam->effective_gid = 0; 2814 sKernelTeam->supplementary_groups = NULL; 2815 sKernelTeam->supplementary_group_count = 0; 2816 2817 insert_team_into_group(group, sKernelTeam); 2818 2819 sKernelTeam->io_context = vfs_new_io_context(NULL, false); 2820 if (sKernelTeam->io_context == NULL) 2821 panic("could not create io_context for kernel team!\n"); 2822 2823 if (vfs_resize_fd_table(sKernelTeam->io_context, 4096) != B_OK) 2824 dprintf("Failed to resize FD table for kernel team!\n"); 2825 2826 // stick it in the team hash 2827 sTeamHash.Insert(sKernelTeam); 2828 2829 add_debugger_command_etc("team", &dump_team_info, 2830 "Dump info about a particular team", 2831 "[ <id> | <address> | <name> ]\n" 2832 "Prints information about the specified team. If no argument is given\n" 2833 "the current team is selected.\n" 2834 " <id> - The ID of the team.\n" 2835 " <address> - The address of the team structure.\n" 2836 " <name> - The team's name.\n", 0); 2837 add_debugger_command_etc("teams", &dump_teams, "List all teams", 2838 "\n" 2839 "Prints a list of all existing teams.\n", 0); 2840 2841 new(&sNotificationService) TeamNotificationService(); 2842 2843 sNotificationService.Register(); 2844 2845 return B_OK; 2846 } 2847 2848 2849 int32 2850 team_max_teams(void) 2851 { 2852 return sMaxTeams; 2853 } 2854 2855 2856 int32 2857 team_used_teams(void) 2858 { 2859 InterruptsSpinLocker teamsLocker(sTeamHashLock); 2860 return sUsedTeams; 2861 } 2862 2863 2864 /*! Returns a death entry of a child team specified by ID (if any). 2865 The caller must hold the team's lock. 2866 2867 \param team The team whose dead children list to check. 2868 \param child The ID of the child for whose death entry to lock. Must be > 0. 2869 \param _deleteEntry Return variable, indicating whether the caller needs to 2870 delete the returned entry. 2871 \return The death entry of the matching team, or \c NULL, if no death entry 2872 for the team was found. 2873 */ 2874 job_control_entry* 2875 team_get_death_entry(Team* team, thread_id child, bool* _deleteEntry) 2876 { 2877 if (child <= 0) 2878 return NULL; 2879 2880 job_control_entry* entry = get_job_control_entry(team->dead_children, 2881 child); 2882 if (entry) { 2883 // remove the entry only, if the caller is the parent of the found team 2884 if (team_get_current_team_id() == entry->thread) { 2885 team->dead_children.entries.Remove(entry); 2886 team->dead_children.count--; 2887 *_deleteEntry = true; 2888 } else { 2889 *_deleteEntry = false; 2890 } 2891 } 2892 2893 return entry; 2894 } 2895 2896 2897 /*! Quick check to see if we have a valid team ID. */ 2898 bool 2899 team_is_valid(team_id id) 2900 { 2901 if (id <= 0) 2902 return false; 2903 2904 InterruptsSpinLocker teamsLocker(sTeamHashLock); 2905 2906 return team_get_team_struct_locked(id) != NULL; 2907 } 2908 2909 2910 Team* 2911 team_get_team_struct_locked(team_id id) 2912 { 2913 return sTeamHash.Lookup(id); 2914 } 2915 2916 2917 void 2918 team_set_controlling_tty(int32 ttyIndex) 2919 { 2920 // lock the team, so its session won't change while we're playing with it 2921 Team* team = thread_get_current_thread()->team; 2922 TeamLocker teamLocker(team); 2923 2924 // get and lock the session 2925 ProcessSession* session = team->group->Session(); 2926 AutoLocker<ProcessSession> sessionLocker(session); 2927 2928 // set the session's fields 2929 session->controlling_tty = ttyIndex; 2930 session->foreground_group = -1; 2931 } 2932 2933 2934 int32 2935 team_get_controlling_tty() 2936 { 2937 // lock the team, so its session won't change while we're playing with it 2938 Team* team = thread_get_current_thread()->team; 2939 TeamLocker teamLocker(team); 2940 2941 // get and lock the session 2942 ProcessSession* session = team->group->Session(); 2943 AutoLocker<ProcessSession> sessionLocker(session); 2944 2945 // get the session's field 2946 return session->controlling_tty; 2947 } 2948 2949 2950 status_t 2951 team_set_foreground_process_group(int32 ttyIndex, pid_t processGroupID) 2952 { 2953 // lock the team, so its session won't change while we're playing with it 2954 Thread* thread = thread_get_current_thread(); 2955 Team* team = thread->team; 2956 TeamLocker teamLocker(team); 2957 2958 // get and lock the session 2959 ProcessSession* session = team->group->Session(); 2960 AutoLocker<ProcessSession> sessionLocker(session); 2961 2962 // check given TTY -- must be the controlling tty of the calling process 2963 if (session->controlling_tty != ttyIndex) 2964 return ENOTTY; 2965 2966 // check given process group -- must belong to our session 2967 { 2968 InterruptsSpinLocker groupHashLocker(sGroupHashLock); 2969 ProcessGroup* group = sGroupHash.Lookup(processGroupID); 2970 if (group == NULL || group->Session() != session) 2971 return B_BAD_VALUE; 2972 } 2973 2974 // If we are a background group, we can do that unharmed only when we 2975 // ignore or block SIGTTOU. Otherwise the group gets a SIGTTOU. 2976 if (session->foreground_group != -1 2977 && session->foreground_group != team->group_id 2978 && team->SignalActionFor(SIGTTOU).sa_handler != SIG_IGN 2979 && (thread->sig_block_mask & SIGNAL_TO_MASK(SIGTTOU)) == 0) { 2980 InterruptsSpinLocker signalLocker(team->signal_lock); 2981 2982 if (!is_team_signal_blocked(team, SIGTTOU)) { 2983 pid_t groupID = team->group_id; 2984 2985 signalLocker.Unlock(); 2986 sessionLocker.Unlock(); 2987 teamLocker.Unlock(); 2988 2989 Signal signal(SIGTTOU, SI_USER, B_OK, team->id); 2990 send_signal_to_process_group(groupID, signal, 0); 2991 return B_INTERRUPTED; 2992 } 2993 } 2994 2995 session->foreground_group = processGroupID; 2996 2997 return B_OK; 2998 } 2999 3000 3001 /*! Removes the specified team from the global team hash, from its process 3002 group, and from its parent. 3003 It also moves all of its children to the kernel team. 3004 3005 The caller must hold the following locks: 3006 - \a team's process group's lock, 3007 - the kernel team's lock, 3008 - \a team's parent team's lock (might be the kernel team), and 3009 - \a team's lock. 3010 */ 3011 void 3012 team_remove_team(Team* team, pid_t& _signalGroup) 3013 { 3014 Team* parent = team->parent; 3015 3016 // remember how long this team lasted 3017 parent->dead_children.kernel_time += team->dead_threads_kernel_time 3018 + team->dead_children.kernel_time; 3019 parent->dead_children.user_time += team->dead_threads_user_time 3020 + team->dead_children.user_time; 3021 3022 // remove the team from the hash table 3023 InterruptsSpinLocker teamsLocker(sTeamHashLock); 3024 sTeamHash.Remove(team); 3025 sUsedTeams--; 3026 teamsLocker.Unlock(); 3027 3028 // The team can no longer be accessed by ID. Navigation to it is still 3029 // possible from its process group and its parent and children, but that 3030 // will be rectified shortly. 3031 team->state = TEAM_STATE_DEATH; 3032 3033 // If we're a controlling process (i.e. a session leader with controlling 3034 // terminal), there's a bit of signalling we have to do. We can't do any of 3035 // the signaling here due to the bunch of locks we're holding, but we need 3036 // to determine, whom to signal. 3037 _signalGroup = -1; 3038 bool isSessionLeader = false; 3039 if (team->session_id == team->id 3040 && team->group->Session()->controlling_tty >= 0) { 3041 isSessionLeader = true; 3042 3043 ProcessSession* session = team->group->Session(); 3044 3045 AutoLocker<ProcessSession> sessionLocker(session); 3046 3047 session->controlling_tty = -1; 3048 _signalGroup = session->foreground_group; 3049 } 3050 3051 // remove us from our process group 3052 remove_team_from_group(team); 3053 3054 // move the team's children to the kernel team 3055 while (Team* child = team->children) { 3056 // remove the child from the current team and add it to the kernel team 3057 TeamLocker childLocker(child); 3058 3059 remove_team_from_parent(team, child); 3060 insert_team_into_parent(sKernelTeam, child); 3061 3062 // move job control entries too 3063 sKernelTeam->stopped_children.entries.MoveFrom( 3064 &team->stopped_children.entries); 3065 sKernelTeam->continued_children.entries.MoveFrom( 3066 &team->continued_children.entries); 3067 3068 // If the team was a session leader with controlling terminal, 3069 // we need to send SIGHUP + SIGCONT to all newly-orphaned process 3070 // groups with stopped processes. Due to locking complications we can't 3071 // do that here, so we only check whether we were a reason for the 3072 // child's process group not being an orphan and, if so, schedule a 3073 // later check (cf. orphaned_process_group_check()). 3074 if (isSessionLeader) { 3075 ProcessGroup* childGroup = child->group; 3076 if (childGroup->Session()->id == team->session_id 3077 && childGroup->id != team->group_id) { 3078 childGroup->ScheduleOrphanedCheck(); 3079 } 3080 } 3081 3082 // Note, we don't move the dead children entries. Those will be deleted 3083 // when the team structure is deleted. 3084 } 3085 3086 // remove us from our parent 3087 remove_team_from_parent(parent, team); 3088 } 3089 3090 3091 /*! Kills all threads but the main thread of the team and shuts down user 3092 debugging for it. 3093 To be called on exit of the team's main thread. No locks must be held. 3094 3095 \param team The team in question. 3096 \return The port of the debugger for the team, -1 if none. To be passed to 3097 team_delete_team(). 3098 */ 3099 port_id 3100 team_shutdown_team(Team* team) 3101 { 3102 ASSERT(thread_get_current_thread() == team->main_thread); 3103 3104 TeamLocker teamLocker(team); 3105 3106 // Make sure debugging changes won't happen anymore. 3107 port_id debuggerPort = -1; 3108 while (true) { 3109 // If a debugger change is in progress for the team, we'll have to 3110 // wait until it is done. 3111 ConditionVariableEntry waitForDebuggerEntry; 3112 bool waitForDebugger = false; 3113 3114 InterruptsSpinLocker debugInfoLocker(team->debug_info.lock); 3115 3116 if (team->debug_info.debugger_changed_condition != NULL) { 3117 team->debug_info.debugger_changed_condition->Add( 3118 &waitForDebuggerEntry); 3119 waitForDebugger = true; 3120 } else if (team->debug_info.flags & B_TEAM_DEBUG_DEBUGGER_INSTALLED) { 3121 // The team is being debugged. That will stop with the termination 3122 // of the nub thread. Since we set the team state to death, no one 3123 // can install a debugger anymore. We fetch the debugger's port to 3124 // send it a message at the bitter end. 3125 debuggerPort = team->debug_info.debugger_port; 3126 } 3127 3128 debugInfoLocker.Unlock(); 3129 3130 if (!waitForDebugger) 3131 break; 3132 3133 // wait for the debugger change to be finished 3134 teamLocker.Unlock(); 3135 3136 waitForDebuggerEntry.Wait(); 3137 3138 teamLocker.Lock(); 3139 } 3140 3141 // Mark the team as shutting down. That will prevent new threads from being 3142 // created and debugger changes from taking place. 3143 team->state = TEAM_STATE_SHUTDOWN; 3144 3145 // delete all timers 3146 team->DeleteUserTimers(false); 3147 3148 // deactivate CPU time user timers for the team 3149 InterruptsSpinLocker timeLocker(team->time_lock); 3150 3151 if (team->HasActiveCPUTimeUserTimers()) 3152 team->DeactivateCPUTimeUserTimers(); 3153 3154 timeLocker.Unlock(); 3155 3156 // kill all threads but the main thread 3157 team_death_entry deathEntry; 3158 deathEntry.condition.Init(team, "team death"); 3159 3160 while (true) { 3161 team->death_entry = &deathEntry; 3162 deathEntry.remaining_threads = 0; 3163 3164 Thread* thread = team->thread_list; 3165 while (thread != NULL) { 3166 if (thread != team->main_thread) { 3167 Signal signal(SIGKILLTHR, SI_USER, B_OK, team->id); 3168 send_signal_to_thread(thread, signal, B_DO_NOT_RESCHEDULE); 3169 deathEntry.remaining_threads++; 3170 } 3171 3172 thread = thread->team_next; 3173 } 3174 3175 if (deathEntry.remaining_threads == 0) 3176 break; 3177 3178 // there are threads to wait for 3179 ConditionVariableEntry entry; 3180 deathEntry.condition.Add(&entry); 3181 3182 teamLocker.Unlock(); 3183 3184 entry.Wait(); 3185 3186 teamLocker.Lock(); 3187 } 3188 3189 team->death_entry = NULL; 3190 3191 return debuggerPort; 3192 } 3193 3194 3195 /*! Called on team exit to notify threads waiting on the team and free most 3196 resources associated with it. 3197 The caller shouldn't hold any locks. 3198 */ 3199 void 3200 team_delete_team(Team* team, port_id debuggerPort) 3201 { 3202 // Not quite in our job description, but work that has been left by 3203 // team_remove_team() and that can be done now that we're not holding any 3204 // locks. 3205 orphaned_process_group_check(); 3206 3207 team_id teamID = team->id; 3208 3209 ASSERT(team->num_threads == 0); 3210 3211 // If someone is waiting for this team to be loaded, but it dies 3212 // unexpectedly before being done, we need to notify the waiting 3213 // thread now. 3214 3215 TeamLocker teamLocker(team); 3216 3217 if (team->loading_info) { 3218 // there's indeed someone waiting 3219 struct team_loading_info* loadingInfo = team->loading_info; 3220 team->loading_info = NULL; 3221 3222 loadingInfo->result = B_ERROR; 3223 loadingInfo->done = true; 3224 3225 // wake up the waiting thread 3226 thread_continue(loadingInfo->thread); 3227 } 3228 3229 // notify team watchers 3230 3231 { 3232 // we're not reachable from anyone anymore at this point, so we 3233 // can safely access the list without any locking 3234 struct team_watcher* watcher; 3235 while ((watcher = (struct team_watcher*)list_remove_head_item( 3236 &team->watcher_list)) != NULL) { 3237 watcher->hook(teamID, watcher->data); 3238 free(watcher); 3239 } 3240 } 3241 3242 teamLocker.Unlock(); 3243 3244 sNotificationService.Notify(TEAM_REMOVED, team); 3245 3246 // free team resources 3247 3248 delete_realtime_sem_context(team->realtime_sem_context); 3249 xsi_sem_undo(team); 3250 remove_images(team); 3251 team->address_space->RemoveAndPut(); 3252 3253 team->ReleaseReference(); 3254 3255 // notify the debugger, that the team is gone 3256 user_debug_team_deleted(teamID, debuggerPort); 3257 } 3258 3259 3260 Team* 3261 team_get_kernel_team(void) 3262 { 3263 return sKernelTeam; 3264 } 3265 3266 3267 team_id 3268 team_get_kernel_team_id(void) 3269 { 3270 if (!sKernelTeam) 3271 return 0; 3272 3273 return sKernelTeam->id; 3274 } 3275 3276 3277 team_id 3278 team_get_current_team_id(void) 3279 { 3280 return thread_get_current_thread()->team->id; 3281 } 3282 3283 3284 status_t 3285 team_get_address_space(team_id id, VMAddressSpace** _addressSpace) 3286 { 3287 if (id == sKernelTeam->id) { 3288 // we're the kernel team, so we don't have to go through all 3289 // the hassle (locking and hash lookup) 3290 *_addressSpace = VMAddressSpace::GetKernel(); 3291 return B_OK; 3292 } 3293 3294 InterruptsSpinLocker teamsLocker(sTeamHashLock); 3295 3296 Team* team = team_get_team_struct_locked(id); 3297 if (team == NULL) 3298 return B_BAD_VALUE; 3299 3300 team->address_space->Get(); 3301 *_addressSpace = team->address_space; 3302 return B_OK; 3303 } 3304 3305 3306 /*! Sets the team's job control state. 3307 The caller must hold the parent team's lock. Interrupts are allowed to be 3308 enabled or disabled. 3309 \a team The team whose job control state shall be set. 3310 \a newState The new state to be set. 3311 \a signal The signal the new state was caused by. Can \c NULL, if none. Then 3312 the caller is responsible for filling in the following fields of the 3313 entry before releasing the parent team's lock, unless the new state is 3314 \c JOB_CONTROL_STATE_NONE: 3315 - \c signal: The number of the signal causing the state change. 3316 - \c signaling_user: The real UID of the user sending the signal. 3317 */ 3318 void 3319 team_set_job_control_state(Team* team, job_control_state newState, 3320 Signal* signal) 3321 { 3322 if (team == NULL || team->job_control_entry == NULL) 3323 return; 3324 3325 // don't touch anything, if the state stays the same or the team is already 3326 // dead 3327 job_control_entry* entry = team->job_control_entry; 3328 if (entry->state == newState || entry->state == JOB_CONTROL_STATE_DEAD) 3329 return; 3330 3331 T(SetJobControlState(team->id, newState, signal)); 3332 3333 // remove from the old list 3334 switch (entry->state) { 3335 case JOB_CONTROL_STATE_NONE: 3336 // entry is in no list ATM 3337 break; 3338 case JOB_CONTROL_STATE_DEAD: 3339 // can't get here 3340 break; 3341 case JOB_CONTROL_STATE_STOPPED: 3342 team->parent->stopped_children.entries.Remove(entry); 3343 break; 3344 case JOB_CONTROL_STATE_CONTINUED: 3345 team->parent->continued_children.entries.Remove(entry); 3346 break; 3347 } 3348 3349 entry->state = newState; 3350 3351 if (signal != NULL) { 3352 entry->signal = signal->Number(); 3353 entry->signaling_user = signal->SendingUser(); 3354 } 3355 3356 // add to new list 3357 team_job_control_children* childList = NULL; 3358 switch (entry->state) { 3359 case JOB_CONTROL_STATE_NONE: 3360 // entry doesn't get into any list 3361 break; 3362 case JOB_CONTROL_STATE_DEAD: 3363 childList = &team->parent->dead_children; 3364 team->parent->dead_children.count++; 3365 break; 3366 case JOB_CONTROL_STATE_STOPPED: 3367 childList = &team->parent->stopped_children; 3368 break; 3369 case JOB_CONTROL_STATE_CONTINUED: 3370 childList = &team->parent->continued_children; 3371 break; 3372 } 3373 3374 if (childList != NULL) { 3375 childList->entries.Add(entry); 3376 team->parent->dead_children.condition_variable.NotifyAll(); 3377 } 3378 } 3379 3380 3381 /*! Inits the given team's exit information, if not yet initialized, to some 3382 generic "killed" status. 3383 The caller must not hold the team's lock. Interrupts must be enabled. 3384 3385 \param team The team whose exit info shall be initialized. 3386 */ 3387 void 3388 team_init_exit_info_on_error(Team* team) 3389 { 3390 TeamLocker teamLocker(team); 3391 3392 if (!team->exit.initialized) { 3393 team->exit.reason = CLD_KILLED; 3394 team->exit.signal = SIGKILL; 3395 team->exit.signaling_user = geteuid(); 3396 team->exit.status = 0; 3397 team->exit.initialized = true; 3398 } 3399 } 3400 3401 3402 /*! Adds a hook to the team that is called as soon as this team goes away. 3403 This call might get public in the future. 3404 */ 3405 status_t 3406 start_watching_team(team_id teamID, void (*hook)(team_id, void*), void* data) 3407 { 3408 if (hook == NULL || teamID < B_OK) 3409 return B_BAD_VALUE; 3410 3411 // create the watcher object 3412 team_watcher* watcher = (team_watcher*)malloc(sizeof(team_watcher)); 3413 if (watcher == NULL) 3414 return B_NO_MEMORY; 3415 3416 watcher->hook = hook; 3417 watcher->data = data; 3418 3419 // add watcher, if the team isn't already dying 3420 // get the team 3421 Team* team = Team::GetAndLock(teamID); 3422 if (team == NULL) { 3423 free(watcher); 3424 return B_BAD_TEAM_ID; 3425 } 3426 3427 list_add_item(&team->watcher_list, watcher); 3428 3429 team->UnlockAndReleaseReference(); 3430 3431 return B_OK; 3432 } 3433 3434 3435 status_t 3436 stop_watching_team(team_id teamID, void (*hook)(team_id, void*), void* data) 3437 { 3438 if (hook == NULL || teamID < 0) 3439 return B_BAD_VALUE; 3440 3441 // get team and remove watcher (if present) 3442 Team* team = Team::GetAndLock(teamID); 3443 if (team == NULL) 3444 return B_BAD_TEAM_ID; 3445 3446 // search for watcher 3447 team_watcher* watcher = NULL; 3448 while ((watcher = (team_watcher*)list_get_next_item( 3449 &team->watcher_list, watcher)) != NULL) { 3450 if (watcher->hook == hook && watcher->data == data) { 3451 // got it! 3452 list_remove_item(&team->watcher_list, watcher); 3453 break; 3454 } 3455 } 3456 3457 team->UnlockAndReleaseReference(); 3458 3459 if (watcher == NULL) 3460 return B_ENTRY_NOT_FOUND; 3461 3462 free(watcher); 3463 return B_OK; 3464 } 3465 3466 3467 /*! Allocates a user_thread structure from the team. 3468 The team lock must be held, unless the function is called for the team's 3469 main thread. Interrupts must be enabled. 3470 */ 3471 struct user_thread* 3472 team_allocate_user_thread(Team* team) 3473 { 3474 if (team->user_data == 0) 3475 return NULL; 3476 3477 // take an entry from the free list, if any 3478 if (struct free_user_thread* entry = team->free_user_threads) { 3479 user_thread* thread = entry->thread; 3480 team->free_user_threads = entry->next; 3481 free(entry); 3482 return thread; 3483 } 3484 3485 while (true) { 3486 // enough space left? 3487 size_t needed = ROUNDUP(sizeof(user_thread), CACHE_LINE_SIZE); 3488 if (team->user_data_size - team->used_user_data < needed) { 3489 // try to resize the area 3490 if (resize_area(team->user_data_area, 3491 team->user_data_size + B_PAGE_SIZE) != B_OK) { 3492 return NULL; 3493 } 3494 3495 // resized user area successfully -- try to allocate the user_thread 3496 // again 3497 team->user_data_size += B_PAGE_SIZE; 3498 continue; 3499 } 3500 3501 // allocate the user_thread 3502 user_thread* thread 3503 = (user_thread*)(team->user_data + team->used_user_data); 3504 team->used_user_data += needed; 3505 3506 return thread; 3507 } 3508 } 3509 3510 3511 /*! Frees the given user_thread structure. 3512 The team's lock must not be held. Interrupts must be enabled. 3513 \param team The team the user thread was allocated from. 3514 \param userThread The user thread to free. 3515 */ 3516 void 3517 team_free_user_thread(Team* team, struct user_thread* userThread) 3518 { 3519 if (userThread == NULL) 3520 return; 3521 3522 // create a free list entry 3523 free_user_thread* entry 3524 = (free_user_thread*)malloc(sizeof(free_user_thread)); 3525 if (entry == NULL) { 3526 // we have to leak the user thread :-/ 3527 return; 3528 } 3529 3530 // add to free list 3531 TeamLocker teamLocker(team); 3532 3533 entry->thread = userThread; 3534 entry->next = team->free_user_threads; 3535 team->free_user_threads = entry; 3536 } 3537 3538 3539 // #pragma mark - Associated data interface 3540 3541 3542 AssociatedData::AssociatedData() 3543 : 3544 fOwner(NULL) 3545 { 3546 } 3547 3548 3549 AssociatedData::~AssociatedData() 3550 { 3551 } 3552 3553 3554 void 3555 AssociatedData::OwnerDeleted(AssociatedDataOwner* owner) 3556 { 3557 } 3558 3559 3560 AssociatedDataOwner::AssociatedDataOwner() 3561 { 3562 mutex_init(&fLock, "associated data owner"); 3563 } 3564 3565 3566 AssociatedDataOwner::~AssociatedDataOwner() 3567 { 3568 mutex_destroy(&fLock); 3569 } 3570 3571 3572 bool 3573 AssociatedDataOwner::AddData(AssociatedData* data) 3574 { 3575 MutexLocker locker(fLock); 3576 3577 if (data->Owner() != NULL) 3578 return false; 3579 3580 data->AcquireReference(); 3581 fList.Add(data); 3582 data->SetOwner(this); 3583 3584 return true; 3585 } 3586 3587 3588 bool 3589 AssociatedDataOwner::RemoveData(AssociatedData* data) 3590 { 3591 MutexLocker locker(fLock); 3592 3593 if (data->Owner() != this) 3594 return false; 3595 3596 data->SetOwner(NULL); 3597 fList.Remove(data); 3598 3599 locker.Unlock(); 3600 3601 data->ReleaseReference(); 3602 3603 return true; 3604 } 3605 3606 3607 void 3608 AssociatedDataOwner::PrepareForDeletion() 3609 { 3610 MutexLocker locker(fLock); 3611 3612 // move all data to a temporary list and unset the owner 3613 DataList list; 3614 list.MoveFrom(&fList); 3615 3616 for (DataList::Iterator it = list.GetIterator(); 3617 AssociatedData* data = it.Next();) { 3618 data->SetOwner(NULL); 3619 } 3620 3621 locker.Unlock(); 3622 3623 // call the notification hooks and release our references 3624 while (AssociatedData* data = list.RemoveHead()) { 3625 data->OwnerDeleted(this); 3626 data->ReleaseReference(); 3627 } 3628 } 3629 3630 3631 /*! Associates data with the current team. 3632 When the team is deleted, the data object is notified. 3633 The team acquires a reference to the object. 3634 3635 \param data The data object. 3636 \return \c true on success, \c false otherwise. Fails only when the supplied 3637 data object is already associated with another owner. 3638 */ 3639 bool 3640 team_associate_data(AssociatedData* data) 3641 { 3642 return thread_get_current_thread()->team->AddData(data); 3643 } 3644 3645 3646 /*! Dissociates data from the current team. 3647 Balances an earlier call to team_associate_data(). 3648 3649 \param data The data object. 3650 \return \c true on success, \c false otherwise. Fails only when the data 3651 object is not associated with the current team. 3652 */ 3653 bool 3654 team_dissociate_data(AssociatedData* data) 3655 { 3656 return thread_get_current_thread()->team->RemoveData(data); 3657 } 3658 3659 3660 // #pragma mark - Public kernel API 3661 3662 3663 thread_id 3664 load_image(int32 argCount, const char** args, const char** env) 3665 { 3666 return load_image_etc(argCount, args, env, B_NORMAL_PRIORITY, 3667 B_CURRENT_TEAM, B_WAIT_TILL_LOADED); 3668 } 3669 3670 3671 thread_id 3672 load_image_etc(int32 argCount, const char* const* args, 3673 const char* const* env, int32 priority, team_id parentID, uint32 flags) 3674 { 3675 // we need to flatten the args and environment 3676 3677 if (args == NULL) 3678 return B_BAD_VALUE; 3679 3680 // determine total needed size 3681 int32 argSize = 0; 3682 for (int32 i = 0; i < argCount; i++) 3683 argSize += strlen(args[i]) + 1; 3684 3685 int32 envCount = 0; 3686 int32 envSize = 0; 3687 while (env != NULL && env[envCount] != NULL) 3688 envSize += strlen(env[envCount++]) + 1; 3689 3690 int32 size = (argCount + envCount + 2) * sizeof(char*) + argSize + envSize; 3691 if (size > MAX_PROCESS_ARGS_SIZE) 3692 return B_TOO_MANY_ARGS; 3693 3694 // allocate space 3695 char** flatArgs = (char**)malloc(size); 3696 if (flatArgs == NULL) 3697 return B_NO_MEMORY; 3698 3699 char** slot = flatArgs; 3700 char* stringSpace = (char*)(flatArgs + argCount + envCount + 2); 3701 3702 // copy arguments and environment 3703 for (int32 i = 0; i < argCount; i++) { 3704 int32 argSize = strlen(args[i]) + 1; 3705 memcpy(stringSpace, args[i], argSize); 3706 *slot++ = stringSpace; 3707 stringSpace += argSize; 3708 } 3709 3710 *slot++ = NULL; 3711 3712 for (int32 i = 0; i < envCount; i++) { 3713 int32 envSize = strlen(env[i]) + 1; 3714 memcpy(stringSpace, env[i], envSize); 3715 *slot++ = stringSpace; 3716 stringSpace += envSize; 3717 } 3718 3719 *slot++ = NULL; 3720 3721 thread_id thread = load_image_internal(flatArgs, size, argCount, envCount, 3722 B_NORMAL_PRIORITY, parentID, B_WAIT_TILL_LOADED, -1, 0); 3723 3724 free(flatArgs); 3725 // load_image_internal() unset our variable if it took over ownership 3726 3727 return thread; 3728 } 3729 3730 3731 status_t 3732 wait_for_team(team_id id, status_t* _returnCode) 3733 { 3734 // check whether the team exists 3735 InterruptsSpinLocker teamsLocker(sTeamHashLock); 3736 3737 Team* team = team_get_team_struct_locked(id); 3738 if (team == NULL) 3739 return B_BAD_TEAM_ID; 3740 3741 id = team->id; 3742 3743 teamsLocker.Unlock(); 3744 3745 // wait for the main thread (it has the same ID as the team) 3746 return wait_for_thread(id, _returnCode); 3747 } 3748 3749 3750 status_t 3751 kill_team(team_id id) 3752 { 3753 InterruptsSpinLocker teamsLocker(sTeamHashLock); 3754 3755 Team* team = team_get_team_struct_locked(id); 3756 if (team == NULL) 3757 return B_BAD_TEAM_ID; 3758 3759 id = team->id; 3760 3761 teamsLocker.Unlock(); 3762 3763 if (team == sKernelTeam) 3764 return B_NOT_ALLOWED; 3765 3766 // Just kill the team's main thread (it has same ID as the team). The 3767 // cleanup code there will take care of the team. 3768 return kill_thread(id); 3769 } 3770 3771 3772 status_t 3773 _get_team_info(team_id id, team_info* info, size_t size) 3774 { 3775 // get the team 3776 Team* team = Team::Get(id); 3777 if (team == NULL) 3778 return B_BAD_TEAM_ID; 3779 BReference<Team> teamReference(team, true); 3780 3781 // fill in the info 3782 return fill_team_info(team, info, size); 3783 } 3784 3785 3786 status_t 3787 _get_next_team_info(int32* cookie, team_info* info, size_t size) 3788 { 3789 int32 slot = *cookie; 3790 if (slot < 1) 3791 slot = 1; 3792 3793 InterruptsSpinLocker locker(sTeamHashLock); 3794 3795 team_id lastTeamID = peek_next_thread_id(); 3796 // TODO: This is broken, since the id can wrap around! 3797 3798 // get next valid team 3799 Team* team = NULL; 3800 while (slot < lastTeamID && !(team = team_get_team_struct_locked(slot))) 3801 slot++; 3802 3803 if (team == NULL) 3804 return B_BAD_TEAM_ID; 3805 3806 // get a reference to the team and unlock 3807 BReference<Team> teamReference(team); 3808 locker.Unlock(); 3809 3810 // fill in the info 3811 *cookie = ++slot; 3812 return fill_team_info(team, info, size); 3813 } 3814 3815 3816 status_t 3817 _get_team_usage_info(team_id id, int32 who, team_usage_info* info, size_t size) 3818 { 3819 if (size != sizeof(team_usage_info)) 3820 return B_BAD_VALUE; 3821 3822 return common_get_team_usage_info(id, who, info, 0); 3823 } 3824 3825 3826 pid_t 3827 getpid(void) 3828 { 3829 return thread_get_current_thread()->team->id; 3830 } 3831 3832 3833 pid_t 3834 getppid(void) 3835 { 3836 Team* team = thread_get_current_thread()->team; 3837 3838 TeamLocker teamLocker(team); 3839 3840 return team->parent->id; 3841 } 3842 3843 3844 pid_t 3845 getpgid(pid_t id) 3846 { 3847 if (id < 0) { 3848 errno = EINVAL; 3849 return -1; 3850 } 3851 3852 if (id == 0) { 3853 // get process group of the calling process 3854 Team* team = thread_get_current_thread()->team; 3855 TeamLocker teamLocker(team); 3856 return team->group_id; 3857 } 3858 3859 // get the team 3860 Team* team = Team::GetAndLock(id); 3861 if (team == NULL) { 3862 errno = ESRCH; 3863 return -1; 3864 } 3865 3866 // get the team's process group ID 3867 pid_t groupID = team->group_id; 3868 3869 team->UnlockAndReleaseReference(); 3870 3871 return groupID; 3872 } 3873 3874 3875 pid_t 3876 getsid(pid_t id) 3877 { 3878 if (id < 0) { 3879 errno = EINVAL; 3880 return -1; 3881 } 3882 3883 if (id == 0) { 3884 // get session of the calling process 3885 Team* team = thread_get_current_thread()->team; 3886 TeamLocker teamLocker(team); 3887 return team->session_id; 3888 } 3889 3890 // get the team 3891 Team* team = Team::GetAndLock(id); 3892 if (team == NULL) { 3893 errno = ESRCH; 3894 return -1; 3895 } 3896 3897 // get the team's session ID 3898 pid_t sessionID = team->session_id; 3899 3900 team->UnlockAndReleaseReference(); 3901 3902 return sessionID; 3903 } 3904 3905 3906 // #pragma mark - User syscalls 3907 3908 3909 status_t 3910 _user_exec(const char* userPath, const char* const* userFlatArgs, 3911 size_t flatArgsSize, int32 argCount, int32 envCount, mode_t umask) 3912 { 3913 // NOTE: Since this function normally doesn't return, don't use automatic 3914 // variables that need destruction in the function scope. 3915 char path[B_PATH_NAME_LENGTH]; 3916 3917 if (!IS_USER_ADDRESS(userPath) || !IS_USER_ADDRESS(userFlatArgs) 3918 || user_strlcpy(path, userPath, sizeof(path)) < B_OK) 3919 return B_BAD_ADDRESS; 3920 3921 // copy and relocate the flat arguments 3922 char** flatArgs; 3923 status_t error = copy_user_process_args(userFlatArgs, flatArgsSize, 3924 argCount, envCount, flatArgs); 3925 3926 if (error == B_OK) { 3927 error = exec_team(path, flatArgs, _ALIGN(flatArgsSize), argCount, 3928 envCount, umask); 3929 // this one only returns in case of error 3930 } 3931 3932 free(flatArgs); 3933 return error; 3934 } 3935 3936 3937 thread_id 3938 _user_fork(void) 3939 { 3940 return fork_team(); 3941 } 3942 3943 3944 pid_t 3945 _user_wait_for_child(thread_id child, uint32 flags, siginfo_t* userInfo, 3946 team_usage_info* usageInfo) 3947 { 3948 if (userInfo != NULL && !IS_USER_ADDRESS(userInfo)) 3949 return B_BAD_ADDRESS; 3950 if (usageInfo != NULL && !IS_USER_ADDRESS(usageInfo)) 3951 return B_BAD_ADDRESS; 3952 3953 siginfo_t info; 3954 team_usage_info usage_info; 3955 pid_t foundChild = wait_for_child(child, flags, info, usage_info); 3956 if (foundChild < 0) 3957 return syscall_restart_handle_post(foundChild); 3958 3959 // copy info back to userland 3960 if (userInfo != NULL && user_memcpy(userInfo, &info, sizeof(info)) != B_OK) 3961 return B_BAD_ADDRESS; 3962 // copy usage_info back to userland 3963 if (usageInfo != NULL && user_memcpy(usageInfo, &usage_info, 3964 sizeof(usage_info)) != B_OK) { 3965 return B_BAD_ADDRESS; 3966 } 3967 3968 return foundChild; 3969 } 3970 3971 3972 pid_t 3973 _user_process_info(pid_t process, int32 which) 3974 { 3975 // we only allow to return the parent of the current process 3976 if (which == PARENT_ID 3977 && process != 0 && process != thread_get_current_thread()->team->id) 3978 return B_BAD_VALUE; 3979 3980 pid_t result; 3981 switch (which) { 3982 case SESSION_ID: 3983 result = getsid(process); 3984 break; 3985 case GROUP_ID: 3986 result = getpgid(process); 3987 break; 3988 case PARENT_ID: 3989 result = getppid(); 3990 break; 3991 default: 3992 return B_BAD_VALUE; 3993 } 3994 3995 return result >= 0 ? result : errno; 3996 } 3997 3998 3999 pid_t 4000 _user_setpgid(pid_t processID, pid_t groupID) 4001 { 4002 // setpgid() can be called either by the parent of the target process or 4003 // by the process itself to do one of two things: 4004 // * Create a new process group with the target process' ID and the target 4005 // process as group leader. 4006 // * Set the target process' process group to an already existing one in the 4007 // same session. 4008 4009 if (groupID < 0) 4010 return B_BAD_VALUE; 4011 4012 Team* currentTeam = thread_get_current_thread()->team; 4013 if (processID == 0) 4014 processID = currentTeam->id; 4015 4016 // if the group ID is not specified, use the target process' ID 4017 if (groupID == 0) 4018 groupID = processID; 4019 4020 // We loop when running into the following race condition: We create a new 4021 // process group, because there isn't one with that ID yet, but later when 4022 // trying to publish it, we find that someone else created and published 4023 // a group with that ID in the meantime. In that case we just restart the 4024 // whole action. 4025 while (true) { 4026 // Look up the process group by ID. If it doesn't exist yet and we are 4027 // allowed to create a new one, do that. 4028 ProcessGroup* group = ProcessGroup::Get(groupID); 4029 bool newGroup = false; 4030 if (group == NULL) { 4031 if (groupID != processID) 4032 return B_NOT_ALLOWED; 4033 4034 group = new(std::nothrow) ProcessGroup(groupID); 4035 if (group == NULL) 4036 return B_NO_MEMORY; 4037 4038 newGroup = true; 4039 } 4040 BReference<ProcessGroup> groupReference(group, true); 4041 4042 // get the target team 4043 Team* team = Team::Get(processID); 4044 if (team == NULL) 4045 return ESRCH; 4046 BReference<Team> teamReference(team, true); 4047 4048 // lock the new process group and the team's current process group 4049 while (true) { 4050 // lock the team's current process group 4051 team->LockProcessGroup(); 4052 4053 ProcessGroup* oldGroup = team->group; 4054 if (oldGroup == group) { 4055 // it's the same as the target group, so just bail out 4056 oldGroup->Unlock(); 4057 return group->id; 4058 } 4059 4060 oldGroup->AcquireReference(); 4061 4062 // lock the target process group, if locking order allows it 4063 if (newGroup || group->id > oldGroup->id) { 4064 group->Lock(); 4065 break; 4066 } 4067 4068 // try to lock 4069 if (group->TryLock()) 4070 break; 4071 4072 // no dice -- unlock the team's current process group and relock in 4073 // the correct order 4074 oldGroup->Unlock(); 4075 4076 group->Lock(); 4077 oldGroup->Lock(); 4078 4079 // check whether things are still the same 4080 TeamLocker teamLocker(team); 4081 if (team->group == oldGroup) 4082 break; 4083 4084 // something changed -- unlock everything and retry 4085 teamLocker.Unlock(); 4086 oldGroup->Unlock(); 4087 group->Unlock(); 4088 oldGroup->ReleaseReference(); 4089 } 4090 4091 // we now have references and locks of both new and old process group 4092 BReference<ProcessGroup> oldGroupReference(team->group, true); 4093 AutoLocker<ProcessGroup> oldGroupLocker(team->group, true); 4094 AutoLocker<ProcessGroup> groupLocker(group, true); 4095 4096 // also lock the target team and its parent 4097 team->LockTeamAndParent(false); 4098 TeamLocker parentLocker(team->parent, true); 4099 TeamLocker teamLocker(team, true); 4100 4101 // perform the checks 4102 if (team == currentTeam) { 4103 // we set our own group 4104 4105 // we must not change our process group ID if we're a session leader 4106 if (is_session_leader(currentTeam)) 4107 return B_NOT_ALLOWED; 4108 } else { 4109 // Calling team != target team. The target team must be a child of 4110 // the calling team and in the same session. (If that's the case it 4111 // isn't a session leader either.) 4112 if (team->parent != currentTeam 4113 || team->session_id != currentTeam->session_id) { 4114 return B_NOT_ALLOWED; 4115 } 4116 4117 // The call is also supposed to fail on a child, when the child has 4118 // already executed exec*() [EACCES]. 4119 if ((team->flags & TEAM_FLAG_EXEC_DONE) != 0) 4120 return EACCES; 4121 } 4122 4123 // If we created a new process group, publish it now. 4124 if (newGroup) { 4125 InterruptsSpinLocker groupHashLocker(sGroupHashLock); 4126 if (sGroupHash.Lookup(groupID)) { 4127 // A group with the group ID appeared since we first checked. 4128 // Back to square one. 4129 continue; 4130 } 4131 4132 group->PublishLocked(team->group->Session()); 4133 } else if (group->Session()->id != team->session_id) { 4134 // The existing target process group belongs to a different session. 4135 // That's not allowed. 4136 return B_NOT_ALLOWED; 4137 } 4138 4139 // Everything is ready -- set the group. 4140 remove_team_from_group(team); 4141 insert_team_into_group(group, team); 4142 4143 // Changing the process group might have changed the situation for a 4144 // parent waiting in wait_for_child(). Hence we notify it. 4145 team->parent->dead_children.condition_variable.NotifyAll(); 4146 4147 return group->id; 4148 } 4149 } 4150 4151 4152 pid_t 4153 _user_setsid(void) 4154 { 4155 Team* team = thread_get_current_thread()->team; 4156 4157 // create a new process group and session 4158 ProcessGroup* group = new(std::nothrow) ProcessGroup(team->id); 4159 if (group == NULL) 4160 return B_NO_MEMORY; 4161 BReference<ProcessGroup> groupReference(group, true); 4162 AutoLocker<ProcessGroup> groupLocker(group); 4163 4164 ProcessSession* session = new(std::nothrow) ProcessSession(group->id); 4165 if (session == NULL) 4166 return B_NO_MEMORY; 4167 BReference<ProcessSession> sessionReference(session, true); 4168 4169 // lock the team's current process group, parent, and the team itself 4170 team->LockTeamParentAndProcessGroup(); 4171 BReference<ProcessGroup> oldGroupReference(team->group); 4172 AutoLocker<ProcessGroup> oldGroupLocker(team->group, true); 4173 TeamLocker parentLocker(team->parent, true); 4174 TeamLocker teamLocker(team, true); 4175 4176 // the team must not already be a process group leader 4177 if (is_process_group_leader(team)) 4178 return B_NOT_ALLOWED; 4179 4180 // remove the team from the old and add it to the new process group 4181 remove_team_from_group(team); 4182 group->Publish(session); 4183 insert_team_into_group(group, team); 4184 4185 // Changing the process group might have changed the situation for a 4186 // parent waiting in wait_for_child(). Hence we notify it. 4187 team->parent->dead_children.condition_variable.NotifyAll(); 4188 4189 return group->id; 4190 } 4191 4192 4193 status_t 4194 _user_wait_for_team(team_id id, status_t* _userReturnCode) 4195 { 4196 status_t returnCode; 4197 status_t status; 4198 4199 if (_userReturnCode != NULL && !IS_USER_ADDRESS(_userReturnCode)) 4200 return B_BAD_ADDRESS; 4201 4202 status = wait_for_team(id, &returnCode); 4203 if (status >= B_OK && _userReturnCode != NULL) { 4204 if (user_memcpy(_userReturnCode, &returnCode, sizeof(returnCode)) 4205 != B_OK) 4206 return B_BAD_ADDRESS; 4207 return B_OK; 4208 } 4209 4210 return syscall_restart_handle_post(status); 4211 } 4212 4213 4214 thread_id 4215 _user_load_image(const char* const* userFlatArgs, size_t flatArgsSize, 4216 int32 argCount, int32 envCount, int32 priority, uint32 flags, 4217 port_id errorPort, uint32 errorToken) 4218 { 4219 TRACE(("_user_load_image: argc = %" B_PRId32 "\n", argCount)); 4220 4221 if (argCount < 1) 4222 return B_BAD_VALUE; 4223 4224 // copy and relocate the flat arguments 4225 char** flatArgs; 4226 status_t error = copy_user_process_args(userFlatArgs, flatArgsSize, 4227 argCount, envCount, flatArgs); 4228 if (error != B_OK) 4229 return error; 4230 4231 thread_id thread = load_image_internal(flatArgs, _ALIGN(flatArgsSize), 4232 argCount, envCount, priority, B_CURRENT_TEAM, flags, errorPort, 4233 errorToken); 4234 4235 free(flatArgs); 4236 // load_image_internal() unset our variable if it took over ownership 4237 4238 return thread; 4239 } 4240 4241 4242 void 4243 _user_exit_team(status_t returnValue) 4244 { 4245 Thread* thread = thread_get_current_thread(); 4246 Team* team = thread->team; 4247 4248 // set this thread's exit status 4249 thread->exit.status = returnValue; 4250 4251 // set the team exit status 4252 TeamLocker teamLocker(team); 4253 4254 if (!team->exit.initialized) { 4255 team->exit.reason = CLD_EXITED; 4256 team->exit.signal = 0; 4257 team->exit.signaling_user = 0; 4258 team->exit.status = returnValue; 4259 team->exit.initialized = true; 4260 } 4261 4262 teamLocker.Unlock(); 4263 4264 // Stop the thread, if the team is being debugged and that has been 4265 // requested. 4266 if ((atomic_get(&team->debug_info.flags) & B_TEAM_DEBUG_PREVENT_EXIT) != 0) 4267 user_debug_stop_thread(); 4268 4269 // Send this thread a SIGKILL. This makes sure the thread will not return to 4270 // userland. The signal handling code forwards the signal to the main 4271 // thread (if that's not already this one), which will take the team down. 4272 Signal signal(SIGKILL, SI_USER, B_OK, team->id); 4273 send_signal_to_thread(thread, signal, 0); 4274 } 4275 4276 4277 status_t 4278 _user_kill_team(team_id team) 4279 { 4280 return kill_team(team); 4281 } 4282 4283 4284 status_t 4285 _user_get_team_info(team_id id, team_info* userInfo) 4286 { 4287 status_t status; 4288 team_info info; 4289 4290 if (!IS_USER_ADDRESS(userInfo)) 4291 return B_BAD_ADDRESS; 4292 4293 status = _get_team_info(id, &info, sizeof(team_info)); 4294 if (status == B_OK) { 4295 if (user_memcpy(userInfo, &info, sizeof(team_info)) < B_OK) 4296 return B_BAD_ADDRESS; 4297 } 4298 4299 return status; 4300 } 4301 4302 4303 status_t 4304 _user_get_next_team_info(int32* userCookie, team_info* userInfo) 4305 { 4306 status_t status; 4307 team_info info; 4308 int32 cookie; 4309 4310 if (!IS_USER_ADDRESS(userCookie) 4311 || !IS_USER_ADDRESS(userInfo) 4312 || user_memcpy(&cookie, userCookie, sizeof(int32)) < B_OK) 4313 return B_BAD_ADDRESS; 4314 4315 status = _get_next_team_info(&cookie, &info, sizeof(team_info)); 4316 if (status != B_OK) 4317 return status; 4318 4319 if (user_memcpy(userCookie, &cookie, sizeof(int32)) < B_OK 4320 || user_memcpy(userInfo, &info, sizeof(team_info)) < B_OK) 4321 return B_BAD_ADDRESS; 4322 4323 return status; 4324 } 4325 4326 4327 team_id 4328 _user_get_current_team(void) 4329 { 4330 return team_get_current_team_id(); 4331 } 4332 4333 4334 status_t 4335 _user_get_team_usage_info(team_id team, int32 who, team_usage_info* userInfo, 4336 size_t size) 4337 { 4338 if (size != sizeof(team_usage_info)) 4339 return B_BAD_VALUE; 4340 4341 team_usage_info info; 4342 status_t status = common_get_team_usage_info(team, who, &info, 4343 B_CHECK_PERMISSION); 4344 4345 if (userInfo == NULL || !IS_USER_ADDRESS(userInfo) 4346 || user_memcpy(userInfo, &info, size) != B_OK) { 4347 return B_BAD_ADDRESS; 4348 } 4349 4350 return status; 4351 } 4352 4353 4354 status_t 4355 _user_get_extended_team_info(team_id teamID, uint32 flags, void* buffer, 4356 size_t size, size_t* _sizeNeeded) 4357 { 4358 // check parameters 4359 if ((buffer != NULL && !IS_USER_ADDRESS(buffer)) 4360 || (buffer == NULL && size > 0) 4361 || _sizeNeeded == NULL || !IS_USER_ADDRESS(_sizeNeeded)) { 4362 return B_BAD_ADDRESS; 4363 } 4364 4365 KMessage info; 4366 4367 if ((flags & B_TEAM_INFO_BASIC) != 0) { 4368 // allocate memory for a copy of the needed team data 4369 struct ExtendedTeamData { 4370 team_id id; 4371 pid_t group_id; 4372 pid_t session_id; 4373 uid_t real_uid; 4374 gid_t real_gid; 4375 uid_t effective_uid; 4376 gid_t effective_gid; 4377 char name[B_OS_NAME_LENGTH]; 4378 }; 4379 4380 ExtendedTeamData* teamClone 4381 = (ExtendedTeamData*)malloc(sizeof(ExtendedTeamData)); 4382 // It would be nicer to use new, but then we'd have to use 4383 // ObjectDeleter and declare the structure outside of the function 4384 // due to template parameter restrictions. 4385 if (teamClone == NULL) 4386 return B_NO_MEMORY; 4387 MemoryDeleter teamCloneDeleter(teamClone); 4388 4389 io_context* ioContext; 4390 { 4391 // get the team structure 4392 Team* team = Team::GetAndLock(teamID); 4393 if (team == NULL) 4394 return B_BAD_TEAM_ID; 4395 BReference<Team> teamReference(team, true); 4396 TeamLocker teamLocker(team, true); 4397 4398 // copy the data 4399 teamClone->id = team->id; 4400 strlcpy(teamClone->name, team->Name(), sizeof(teamClone->name)); 4401 teamClone->group_id = team->group_id; 4402 teamClone->session_id = team->session_id; 4403 teamClone->real_uid = team->real_uid; 4404 teamClone->real_gid = team->real_gid; 4405 teamClone->effective_uid = team->effective_uid; 4406 teamClone->effective_gid = team->effective_gid; 4407 4408 // also fetch a reference to the I/O context 4409 ioContext = team->io_context; 4410 vfs_get_io_context(ioContext); 4411 } 4412 CObjectDeleter<io_context> ioContextPutter(ioContext, 4413 &vfs_put_io_context); 4414 4415 // add the basic data to the info message 4416 if (info.AddInt32("id", teamClone->id) != B_OK 4417 || info.AddString("name", teamClone->name) != B_OK 4418 || info.AddInt32("process group", teamClone->group_id) != B_OK 4419 || info.AddInt32("session", teamClone->session_id) != B_OK 4420 || info.AddInt32("uid", teamClone->real_uid) != B_OK 4421 || info.AddInt32("gid", teamClone->real_gid) != B_OK 4422 || info.AddInt32("euid", teamClone->effective_uid) != B_OK 4423 || info.AddInt32("egid", teamClone->effective_gid) != B_OK) { 4424 return B_NO_MEMORY; 4425 } 4426 4427 // get the current working directory from the I/O context 4428 dev_t cwdDevice; 4429 ino_t cwdDirectory; 4430 { 4431 MutexLocker ioContextLocker(ioContext->io_mutex); 4432 vfs_vnode_to_node_ref(ioContext->cwd, &cwdDevice, &cwdDirectory); 4433 } 4434 4435 if (info.AddInt32("cwd device", cwdDevice) != B_OK 4436 || info.AddInt64("cwd directory", cwdDirectory) != B_OK) { 4437 return B_NO_MEMORY; 4438 } 4439 } 4440 4441 // TODO: Support the other flags! 4442 4443 // copy the needed size and, if it fits, the message back to userland 4444 size_t sizeNeeded = info.ContentSize(); 4445 if (user_memcpy(_sizeNeeded, &sizeNeeded, sizeof(sizeNeeded)) != B_OK) 4446 return B_BAD_ADDRESS; 4447 4448 if (sizeNeeded > size) 4449 return B_BUFFER_OVERFLOW; 4450 4451 if (user_memcpy(buffer, info.Buffer(), sizeNeeded) != B_OK) 4452 return B_BAD_ADDRESS; 4453 4454 return B_OK; 4455 } 4456