1 /* 2 * Copyright 2014, Paweł Dziepak, pdziepak@quarnos.org. 3 * Copyright 2008-2016, Ingo Weinhold, ingo_weinhold@gmx.de. 4 * Copyright 2002-2010, Axel Dörfler, axeld@pinc-software.de. 5 * Distributed under the terms of the MIT License. 6 * 7 * Copyright 2001-2002, Travis Geiselbrecht. All rights reserved. 8 * Distributed under the terms of the NewOS License. 9 */ 10 11 12 /*! Team functions */ 13 14 15 #include <team.h> 16 17 #include <errno.h> 18 #include <stdio.h> 19 #include <stdlib.h> 20 #include <string.h> 21 #include <sys/wait.h> 22 23 #include <OS.h> 24 25 #include <AutoDeleter.h> 26 #include <FindDirectory.h> 27 28 #include <extended_system_info_defs.h> 29 30 #include <commpage.h> 31 #include <boot_device.h> 32 #include <elf.h> 33 #include <file_cache.h> 34 #include <find_directory_private.h> 35 #include <fs/KPath.h> 36 #include <heap.h> 37 #include <int.h> 38 #include <kernel.h> 39 #include <kimage.h> 40 #include <kscheduler.h> 41 #include <ksignal.h> 42 #include <Notifications.h> 43 #include <port.h> 44 #include <posix/realtime_sem.h> 45 #include <posix/xsi_semaphore.h> 46 #include <sem.h> 47 #include <syscall_process_info.h> 48 #include <syscall_restart.h> 49 #include <syscalls.h> 50 #include <tls.h> 51 #include <tracing.h> 52 #include <user_runtime.h> 53 #include <user_thread.h> 54 #include <usergroup.h> 55 #include <vfs.h> 56 #include <vm/vm.h> 57 #include <vm/VMAddressSpace.h> 58 #include <util/AutoLock.h> 59 60 #include "TeamThreadTables.h" 61 62 63 //#define TRACE_TEAM 64 #ifdef TRACE_TEAM 65 # define TRACE(x) dprintf x 66 #else 67 # define TRACE(x) ; 68 #endif 69 70 71 struct team_key { 72 team_id id; 73 }; 74 75 struct team_arg { 76 char *path; 77 char **flat_args; 78 size_t flat_args_size; 79 uint32 arg_count; 80 uint32 env_count; 81 mode_t umask; 82 uint32 flags; 83 port_id error_port; 84 uint32 error_token; 85 }; 86 87 #define TEAM_ARGS_FLAG_NO_ASLR 0x01 88 89 90 namespace { 91 92 93 class TeamNotificationService : public DefaultNotificationService { 94 public: 95 TeamNotificationService(); 96 97 void Notify(uint32 eventCode, Team* team); 98 }; 99 100 101 // #pragma mark - TeamTable 102 103 104 typedef BKernel::TeamThreadTable<Team> TeamTable; 105 106 107 // #pragma mark - ProcessGroupHashDefinition 108 109 110 struct ProcessGroupHashDefinition { 111 typedef pid_t KeyType; 112 typedef ProcessGroup ValueType; 113 114 size_t HashKey(pid_t key) const 115 { 116 return key; 117 } 118 119 size_t Hash(ProcessGroup* value) const 120 { 121 return HashKey(value->id); 122 } 123 124 bool Compare(pid_t key, ProcessGroup* value) const 125 { 126 return value->id == key; 127 } 128 129 ProcessGroup*& GetLink(ProcessGroup* value) const 130 { 131 return value->next; 132 } 133 }; 134 135 typedef BOpenHashTable<ProcessGroupHashDefinition> ProcessGroupHashTable; 136 137 138 } // unnamed namespace 139 140 141 // #pragma mark - 142 143 144 // the team_id -> Team hash table and the lock protecting it 145 static TeamTable sTeamHash; 146 static spinlock sTeamHashLock = B_SPINLOCK_INITIALIZER; 147 148 // the pid_t -> ProcessGroup hash table and the lock protecting it 149 static ProcessGroupHashTable sGroupHash; 150 static spinlock sGroupHashLock = B_SPINLOCK_INITIALIZER; 151 152 static Team* sKernelTeam = NULL; 153 154 // A list of process groups of children of dying session leaders that need to 155 // be signalled, if they have become orphaned and contain stopped processes. 156 static ProcessGroupList sOrphanedCheckProcessGroups; 157 static mutex sOrphanedCheckLock 158 = MUTEX_INITIALIZER("orphaned process group check"); 159 160 // some arbitrarily chosen limits -- should probably depend on the available 161 // memory (the limit is not yet enforced) 162 static int32 sMaxTeams = 2048; 163 static int32 sUsedTeams = 1; 164 165 static TeamNotificationService sNotificationService; 166 167 static const size_t kTeamUserDataReservedSize = 128 * B_PAGE_SIZE; 168 static const size_t kTeamUserDataInitialSize = 4 * B_PAGE_SIZE; 169 170 171 // #pragma mark - TeamListIterator 172 173 174 TeamListIterator::TeamListIterator() 175 { 176 // queue the entry 177 InterruptsSpinLocker locker(sTeamHashLock); 178 sTeamHash.InsertIteratorEntry(&fEntry); 179 } 180 181 182 TeamListIterator::~TeamListIterator() 183 { 184 // remove the entry 185 InterruptsSpinLocker locker(sTeamHashLock); 186 sTeamHash.RemoveIteratorEntry(&fEntry); 187 } 188 189 190 Team* 191 TeamListIterator::Next() 192 { 193 // get the next team -- if there is one, get reference for it 194 InterruptsSpinLocker locker(sTeamHashLock); 195 Team* team = sTeamHash.NextElement(&fEntry); 196 if (team != NULL) 197 team->AcquireReference(); 198 199 return team; 200 } 201 202 203 // #pragma mark - Tracing 204 205 206 #if TEAM_TRACING 207 namespace TeamTracing { 208 209 class TeamForked : public AbstractTraceEntry { 210 public: 211 TeamForked(thread_id forkedThread) 212 : 213 fForkedThread(forkedThread) 214 { 215 Initialized(); 216 } 217 218 virtual void AddDump(TraceOutput& out) 219 { 220 out.Print("team forked, new thread %" B_PRId32, fForkedThread); 221 } 222 223 private: 224 thread_id fForkedThread; 225 }; 226 227 228 class ExecTeam : public AbstractTraceEntry { 229 public: 230 ExecTeam(const char* path, int32 argCount, const char* const* args, 231 int32 envCount, const char* const* env) 232 : 233 fArgCount(argCount), 234 fArgs(NULL) 235 { 236 fPath = alloc_tracing_buffer_strcpy(path, B_PATH_NAME_LENGTH, 237 false); 238 239 // determine the buffer size we need for the args 240 size_t argBufferSize = 0; 241 for (int32 i = 0; i < argCount; i++) 242 argBufferSize += strlen(args[i]) + 1; 243 244 // allocate a buffer 245 fArgs = (char*)alloc_tracing_buffer(argBufferSize); 246 if (fArgs) { 247 char* buffer = fArgs; 248 for (int32 i = 0; i < argCount; i++) { 249 size_t argSize = strlen(args[i]) + 1; 250 memcpy(buffer, args[i], argSize); 251 buffer += argSize; 252 } 253 } 254 255 // ignore env for the time being 256 (void)envCount; 257 (void)env; 258 259 Initialized(); 260 } 261 262 virtual void AddDump(TraceOutput& out) 263 { 264 out.Print("team exec, \"%p\", args:", fPath); 265 266 if (fArgs != NULL) { 267 char* args = fArgs; 268 for (int32 i = 0; !out.IsFull() && i < fArgCount; i++) { 269 out.Print(" \"%s\"", args); 270 args += strlen(args) + 1; 271 } 272 } else 273 out.Print(" <too long>"); 274 } 275 276 private: 277 char* fPath; 278 int32 fArgCount; 279 char* fArgs; 280 }; 281 282 283 static const char* 284 job_control_state_name(job_control_state state) 285 { 286 switch (state) { 287 case JOB_CONTROL_STATE_NONE: 288 return "none"; 289 case JOB_CONTROL_STATE_STOPPED: 290 return "stopped"; 291 case JOB_CONTROL_STATE_CONTINUED: 292 return "continued"; 293 case JOB_CONTROL_STATE_DEAD: 294 return "dead"; 295 default: 296 return "invalid"; 297 } 298 } 299 300 301 class SetJobControlState : public AbstractTraceEntry { 302 public: 303 SetJobControlState(team_id team, job_control_state newState, Signal* signal) 304 : 305 fTeam(team), 306 fNewState(newState), 307 fSignal(signal != NULL ? signal->Number() : 0) 308 { 309 Initialized(); 310 } 311 312 virtual void AddDump(TraceOutput& out) 313 { 314 out.Print("team set job control state, team %" B_PRId32 ", " 315 "new state: %s, signal: %d", 316 fTeam, job_control_state_name(fNewState), fSignal); 317 } 318 319 private: 320 team_id fTeam; 321 job_control_state fNewState; 322 int fSignal; 323 }; 324 325 326 class WaitForChild : public AbstractTraceEntry { 327 public: 328 WaitForChild(pid_t child, uint32 flags) 329 : 330 fChild(child), 331 fFlags(flags) 332 { 333 Initialized(); 334 } 335 336 virtual void AddDump(TraceOutput& out) 337 { 338 out.Print("team wait for child, child: %" B_PRId32 ", " 339 "flags: %#" B_PRIx32, fChild, fFlags); 340 } 341 342 private: 343 pid_t fChild; 344 uint32 fFlags; 345 }; 346 347 348 class WaitForChildDone : public AbstractTraceEntry { 349 public: 350 WaitForChildDone(const job_control_entry& entry) 351 : 352 fState(entry.state), 353 fTeam(entry.thread), 354 fStatus(entry.status), 355 fReason(entry.reason), 356 fSignal(entry.signal) 357 { 358 Initialized(); 359 } 360 361 WaitForChildDone(status_t error) 362 : 363 fTeam(error) 364 { 365 Initialized(); 366 } 367 368 virtual void AddDump(TraceOutput& out) 369 { 370 if (fTeam >= 0) { 371 out.Print("team wait for child done, team: %" B_PRId32 ", " 372 "state: %s, status: %#" B_PRIx32 ", reason: %#x, signal: %d\n", 373 fTeam, job_control_state_name(fState), fStatus, fReason, 374 fSignal); 375 } else { 376 out.Print("team wait for child failed, error: " 377 "%#" B_PRIx32 ", ", fTeam); 378 } 379 } 380 381 private: 382 job_control_state fState; 383 team_id fTeam; 384 status_t fStatus; 385 uint16 fReason; 386 uint16 fSignal; 387 }; 388 389 } // namespace TeamTracing 390 391 # define T(x) new(std::nothrow) TeamTracing::x; 392 #else 393 # define T(x) ; 394 #endif 395 396 397 // #pragma mark - TeamNotificationService 398 399 400 TeamNotificationService::TeamNotificationService() 401 : DefaultNotificationService("teams") 402 { 403 } 404 405 406 void 407 TeamNotificationService::Notify(uint32 eventCode, Team* team) 408 { 409 char eventBuffer[128]; 410 KMessage event; 411 event.SetTo(eventBuffer, sizeof(eventBuffer), TEAM_MONITOR); 412 event.AddInt32("event", eventCode); 413 event.AddInt32("team", team->id); 414 event.AddPointer("teamStruct", team); 415 416 DefaultNotificationService::Notify(event, eventCode); 417 } 418 419 420 // #pragma mark - Team 421 422 423 Team::Team(team_id id, bool kernel) 424 { 425 // allocate an ID 426 this->id = id; 427 visible = true; 428 serial_number = -1; 429 430 // init mutex 431 if (kernel) { 432 mutex_init(&fLock, "Team:kernel"); 433 } else { 434 char lockName[16]; 435 snprintf(lockName, sizeof(lockName), "Team:%" B_PRId32, id); 436 mutex_init_etc(&fLock, lockName, MUTEX_FLAG_CLONE_NAME); 437 } 438 439 hash_next = siblings_next = children = parent = NULL; 440 fName[0] = '\0'; 441 fArgs[0] = '\0'; 442 num_threads = 0; 443 io_context = NULL; 444 address_space = NULL; 445 realtime_sem_context = NULL; 446 xsi_sem_context = NULL; 447 thread_list = NULL; 448 main_thread = NULL; 449 loading_info = NULL; 450 state = TEAM_STATE_BIRTH; 451 flags = 0; 452 death_entry = NULL; 453 user_data_area = -1; 454 user_data = 0; 455 used_user_data = 0; 456 user_data_size = 0; 457 free_user_threads = NULL; 458 459 commpage_address = NULL; 460 461 supplementary_groups = NULL; 462 supplementary_group_count = 0; 463 464 dead_threads_kernel_time = 0; 465 dead_threads_user_time = 0; 466 cpu_clock_offset = 0; 467 468 // dead threads 469 list_init(&dead_threads); 470 dead_threads_count = 0; 471 472 // dead children 473 dead_children.count = 0; 474 dead_children.kernel_time = 0; 475 dead_children.user_time = 0; 476 477 // job control entry 478 job_control_entry = new(nothrow) ::job_control_entry; 479 if (job_control_entry != NULL) { 480 job_control_entry->state = JOB_CONTROL_STATE_NONE; 481 job_control_entry->thread = id; 482 job_control_entry->team = this; 483 } 484 485 // exit status -- setting initialized to false suffices 486 exit.initialized = false; 487 488 list_init(&sem_list); 489 list_init_etc(&port_list, port_team_link_offset()); 490 list_init(&image_list); 491 list_init(&watcher_list); 492 493 clear_team_debug_info(&debug_info, true); 494 495 // init dead/stopped/continued children condition vars 496 dead_children.condition_variable.Init(&dead_children, "team children"); 497 498 B_INITIALIZE_SPINLOCK(&time_lock); 499 B_INITIALIZE_SPINLOCK(&signal_lock); 500 501 fQueuedSignalsCounter = new(std::nothrow) BKernel::QueuedSignalsCounter( 502 kernel ? -1 : MAX_QUEUED_SIGNALS); 503 memset(fSignalActions, 0, sizeof(fSignalActions)); 504 505 fUserDefinedTimerCount = 0; 506 507 fCoreDumpCondition = NULL; 508 } 509 510 511 Team::~Team() 512 { 513 // get rid of all associated data 514 PrepareForDeletion(); 515 516 if (io_context != NULL) 517 vfs_put_io_context(io_context); 518 delete_owned_ports(this); 519 sem_delete_owned_sems(this); 520 521 DeleteUserTimers(false); 522 523 fPendingSignals.Clear(); 524 525 if (fQueuedSignalsCounter != NULL) 526 fQueuedSignalsCounter->ReleaseReference(); 527 528 while (thread_death_entry* threadDeathEntry 529 = (thread_death_entry*)list_remove_head_item(&dead_threads)) { 530 free(threadDeathEntry); 531 } 532 533 while (::job_control_entry* entry = dead_children.entries.RemoveHead()) 534 delete entry; 535 536 while (free_user_thread* entry = free_user_threads) { 537 free_user_threads = entry->next; 538 free(entry); 539 } 540 541 malloc_referenced_release(supplementary_groups); 542 543 delete job_control_entry; 544 // usually already NULL and transferred to the parent 545 546 mutex_destroy(&fLock); 547 } 548 549 550 /*static*/ Team* 551 Team::Create(team_id id, const char* name, bool kernel) 552 { 553 // create the team object 554 Team* team = new(std::nothrow) Team(id, kernel); 555 if (team == NULL) 556 return NULL; 557 ObjectDeleter<Team> teamDeleter(team); 558 559 if (name != NULL) 560 team->SetName(name); 561 562 // check initialization 563 if (team->job_control_entry == NULL || team->fQueuedSignalsCounter == NULL) 564 return NULL; 565 566 // finish initialization (arch specifics) 567 if (arch_team_init_team_struct(team, kernel) != B_OK) 568 return NULL; 569 570 if (!kernel) { 571 status_t error = user_timer_create_team_timers(team); 572 if (error != B_OK) 573 return NULL; 574 } 575 576 // everything went fine 577 return teamDeleter.Detach(); 578 } 579 580 581 /*! \brief Returns the team with the given ID. 582 Returns a reference to the team. 583 Team and thread spinlock must not be held. 584 */ 585 /*static*/ Team* 586 Team::Get(team_id id) 587 { 588 if (id == B_CURRENT_TEAM) { 589 Team* team = thread_get_current_thread()->team; 590 team->AcquireReference(); 591 return team; 592 } 593 594 InterruptsSpinLocker locker(sTeamHashLock); 595 Team* team = sTeamHash.Lookup(id); 596 if (team != NULL) 597 team->AcquireReference(); 598 return team; 599 } 600 601 602 /*! \brief Returns the team with the given ID in a locked state. 603 Returns a reference to the team. 604 Team and thread spinlock must not be held. 605 */ 606 /*static*/ Team* 607 Team::GetAndLock(team_id id) 608 { 609 // get the team 610 Team* team = Get(id); 611 if (team == NULL) 612 return NULL; 613 614 // lock it 615 team->Lock(); 616 617 // only return the team, when it isn't already dying 618 if (team->state >= TEAM_STATE_SHUTDOWN) { 619 team->Unlock(); 620 team->ReleaseReference(); 621 return NULL; 622 } 623 624 return team; 625 } 626 627 628 /*! Locks the team and its parent team (if any). 629 The caller must hold a reference to the team or otherwise make sure that 630 it won't be deleted. 631 If the team doesn't have a parent, only the team itself is locked. If the 632 team's parent is the kernel team and \a dontLockParentIfKernel is \c true, 633 only the team itself is locked. 634 635 \param dontLockParentIfKernel If \c true, the team's parent team is only 636 locked, if it is not the kernel team. 637 */ 638 void 639 Team::LockTeamAndParent(bool dontLockParentIfKernel) 640 { 641 // The locking order is parent -> child. Since the parent can change as long 642 // as we don't lock the team, we need to do a trial and error loop. 643 Lock(); 644 645 while (true) { 646 // If the team doesn't have a parent, we're done. Otherwise try to lock 647 // the parent.This will succeed in most cases, simplifying things. 648 Team* parent = this->parent; 649 if (parent == NULL || (dontLockParentIfKernel && parent == sKernelTeam) 650 || parent->TryLock()) { 651 return; 652 } 653 654 // get a temporary reference to the parent, unlock this team, lock the 655 // parent, and re-lock this team 656 BReference<Team> parentReference(parent); 657 658 Unlock(); 659 parent->Lock(); 660 Lock(); 661 662 // If the parent hasn't changed in the meantime, we're done. 663 if (this->parent == parent) 664 return; 665 666 // The parent has changed -- unlock and retry. 667 parent->Unlock(); 668 } 669 } 670 671 672 /*! Unlocks the team and its parent team (if any). 673 */ 674 void 675 Team::UnlockTeamAndParent() 676 { 677 if (parent != NULL) 678 parent->Unlock(); 679 680 Unlock(); 681 } 682 683 684 /*! Locks the team, its parent team (if any), and the team's process group. 685 The caller must hold a reference to the team or otherwise make sure that 686 it won't be deleted. 687 If the team doesn't have a parent, only the team itself is locked. 688 */ 689 void 690 Team::LockTeamParentAndProcessGroup() 691 { 692 LockTeamAndProcessGroup(); 693 694 // We hold the group's and the team's lock, but not the parent team's lock. 695 // If we have a parent, try to lock it. 696 if (this->parent == NULL || this->parent->TryLock()) 697 return; 698 699 // No success -- unlock the team and let LockTeamAndParent() do the rest of 700 // the job. 701 Unlock(); 702 LockTeamAndParent(false); 703 } 704 705 706 /*! Unlocks the team, its parent team (if any), and the team's process group. 707 */ 708 void 709 Team::UnlockTeamParentAndProcessGroup() 710 { 711 group->Unlock(); 712 713 if (parent != NULL) 714 parent->Unlock(); 715 716 Unlock(); 717 } 718 719 720 void 721 Team::LockTeamAndProcessGroup() 722 { 723 // The locking order is process group -> child. Since the process group can 724 // change as long as we don't lock the team, we need to do a trial and error 725 // loop. 726 Lock(); 727 728 while (true) { 729 // Try to lock the group. This will succeed in most cases, simplifying 730 // things. 731 ProcessGroup* group = this->group; 732 if (group->TryLock()) 733 return; 734 735 // get a temporary reference to the group, unlock this team, lock the 736 // group, and re-lock this team 737 BReference<ProcessGroup> groupReference(group); 738 739 Unlock(); 740 group->Lock(); 741 Lock(); 742 743 // If the group hasn't changed in the meantime, we're done. 744 if (this->group == group) 745 return; 746 747 // The group has changed -- unlock and retry. 748 group->Unlock(); 749 } 750 } 751 752 753 void 754 Team::UnlockTeamAndProcessGroup() 755 { 756 group->Unlock(); 757 Unlock(); 758 } 759 760 761 void 762 Team::SetName(const char* name) 763 { 764 if (const char* lastSlash = strrchr(name, '/')) 765 name = lastSlash + 1; 766 767 strlcpy(fName, name, B_OS_NAME_LENGTH); 768 } 769 770 771 void 772 Team::SetArgs(const char* args) 773 { 774 strlcpy(fArgs, args, sizeof(fArgs)); 775 } 776 777 778 void 779 Team::SetArgs(const char* path, const char* const* otherArgs, int otherArgCount) 780 { 781 fArgs[0] = '\0'; 782 strlcpy(fArgs, path, sizeof(fArgs)); 783 for (int i = 0; i < otherArgCount; i++) { 784 strlcat(fArgs, " ", sizeof(fArgs)); 785 strlcat(fArgs, otherArgs[i], sizeof(fArgs)); 786 } 787 } 788 789 790 void 791 Team::ResetSignalsOnExec() 792 { 793 // We are supposed to keep pending signals. Signal actions shall be reset 794 // partially: SIG_IGN and SIG_DFL dispositions shall be kept as they are 795 // (for SIGCHLD it's implementation-defined). Others shall be reset to 796 // SIG_DFL. SA_ONSTACK shall be cleared. There's no mention of the other 797 // flags, but since there aren't any handlers, they make little sense, so 798 // we clear them. 799 800 for (uint32 i = 1; i <= MAX_SIGNAL_NUMBER; i++) { 801 struct sigaction& action = SignalActionFor(i); 802 if (action.sa_handler != SIG_IGN && action.sa_handler != SIG_DFL) 803 action.sa_handler = SIG_DFL; 804 805 action.sa_mask = 0; 806 action.sa_flags = 0; 807 action.sa_userdata = NULL; 808 } 809 } 810 811 812 void 813 Team::InheritSignalActions(Team* parent) 814 { 815 memcpy(fSignalActions, parent->fSignalActions, sizeof(fSignalActions)); 816 } 817 818 819 /*! Adds the given user timer to the team and, if user-defined, assigns it an 820 ID. 821 822 The caller must hold the team's lock. 823 824 \param timer The timer to be added. If it doesn't have an ID yet, it is 825 considered user-defined and will be assigned an ID. 826 \return \c B_OK, if the timer was added successfully, another error code 827 otherwise. 828 */ 829 status_t 830 Team::AddUserTimer(UserTimer* timer) 831 { 832 // don't allow addition of timers when already shutting the team down 833 if (state >= TEAM_STATE_SHUTDOWN) 834 return B_BAD_TEAM_ID; 835 836 // If the timer is user-defined, check timer limit and increment 837 // user-defined count. 838 if (timer->ID() < 0 && !CheckAddUserDefinedTimer()) 839 return EAGAIN; 840 841 fUserTimers.AddTimer(timer); 842 843 return B_OK; 844 } 845 846 847 /*! Removes the given user timer from the team. 848 849 The caller must hold the team's lock. 850 851 \param timer The timer to be removed. 852 853 */ 854 void 855 Team::RemoveUserTimer(UserTimer* timer) 856 { 857 fUserTimers.RemoveTimer(timer); 858 859 if (timer->ID() >= USER_TIMER_FIRST_USER_DEFINED_ID) 860 UserDefinedTimersRemoved(1); 861 } 862 863 864 /*! Deletes all (or all user-defined) user timers of the team. 865 866 Timer's belonging to the team's threads are not affected. 867 The caller must hold the team's lock. 868 869 \param userDefinedOnly If \c true, only the user-defined timers are deleted, 870 otherwise all timers are deleted. 871 */ 872 void 873 Team::DeleteUserTimers(bool userDefinedOnly) 874 { 875 int32 count = fUserTimers.DeleteTimers(userDefinedOnly); 876 UserDefinedTimersRemoved(count); 877 } 878 879 880 /*! If not at the limit yet, increments the team's user-defined timer count. 881 \return \c true, if the limit wasn't reached yet, \c false otherwise. 882 */ 883 bool 884 Team::CheckAddUserDefinedTimer() 885 { 886 int32 oldCount = atomic_add(&fUserDefinedTimerCount, 1); 887 if (oldCount >= MAX_USER_TIMERS_PER_TEAM) { 888 atomic_add(&fUserDefinedTimerCount, -1); 889 return false; 890 } 891 892 return true; 893 } 894 895 896 /*! Subtracts the given count for the team's user-defined timer count. 897 \param count The count to subtract. 898 */ 899 void 900 Team::UserDefinedTimersRemoved(int32 count) 901 { 902 atomic_add(&fUserDefinedTimerCount, -count); 903 } 904 905 906 void 907 Team::DeactivateCPUTimeUserTimers() 908 { 909 while (TeamTimeUserTimer* timer = fCPUTimeUserTimers.Head()) 910 timer->Deactivate(); 911 912 while (TeamUserTimeUserTimer* timer = fUserTimeUserTimers.Head()) 913 timer->Deactivate(); 914 } 915 916 917 /*! Returns the team's current total CPU time (kernel + user + offset). 918 919 The caller must hold \c time_lock. 920 921 \param ignoreCurrentRun If \c true and the current thread is one team's 922 threads, don't add the time since the last time \c last_time was 923 updated. Should be used in "thread unscheduled" scheduler callbacks, 924 since although the thread is still running at that time, its time has 925 already been stopped. 926 \return The team's current total CPU time. 927 */ 928 bigtime_t 929 Team::CPUTime(bool ignoreCurrentRun, Thread* lockedThread) const 930 { 931 bigtime_t time = cpu_clock_offset + dead_threads_kernel_time 932 + dead_threads_user_time; 933 934 Thread* currentThread = thread_get_current_thread(); 935 bigtime_t now = system_time(); 936 937 for (Thread* thread = thread_list; thread != NULL; 938 thread = thread->team_next) { 939 bool alreadyLocked = thread == lockedThread; 940 SpinLocker threadTimeLocker(thread->time_lock, alreadyLocked); 941 time += thread->kernel_time + thread->user_time; 942 943 if (thread->last_time != 0) { 944 if (!ignoreCurrentRun || thread != currentThread) 945 time += now - thread->last_time; 946 } 947 948 if (alreadyLocked) 949 threadTimeLocker.Detach(); 950 } 951 952 return time; 953 } 954 955 956 /*! Returns the team's current user CPU time. 957 958 The caller must hold \c time_lock. 959 960 \return The team's current user CPU time. 961 */ 962 bigtime_t 963 Team::UserCPUTime() const 964 { 965 bigtime_t time = dead_threads_user_time; 966 967 bigtime_t now = system_time(); 968 969 for (Thread* thread = thread_list; thread != NULL; 970 thread = thread->team_next) { 971 SpinLocker threadTimeLocker(thread->time_lock); 972 time += thread->user_time; 973 974 if (thread->last_time != 0 && !thread->in_kernel) 975 time += now - thread->last_time; 976 } 977 978 return time; 979 } 980 981 982 // #pragma mark - ProcessGroup 983 984 985 ProcessGroup::ProcessGroup(pid_t id) 986 : 987 id(id), 988 teams(NULL), 989 fSession(NULL), 990 fInOrphanedCheckList(false) 991 { 992 char lockName[32]; 993 snprintf(lockName, sizeof(lockName), "Group:%" B_PRId32, id); 994 mutex_init_etc(&fLock, lockName, MUTEX_FLAG_CLONE_NAME); 995 } 996 997 998 ProcessGroup::~ProcessGroup() 999 { 1000 TRACE(("ProcessGroup::~ProcessGroup(): id = %" B_PRId32 "\n", id)); 1001 1002 // If the group is in the orphaned check list, remove it. 1003 MutexLocker orphanedCheckLocker(sOrphanedCheckLock); 1004 1005 if (fInOrphanedCheckList) 1006 sOrphanedCheckProcessGroups.Remove(this); 1007 1008 orphanedCheckLocker.Unlock(); 1009 1010 // remove group from the hash table and from the session 1011 if (fSession != NULL) { 1012 InterruptsSpinLocker groupHashLocker(sGroupHashLock); 1013 sGroupHash.RemoveUnchecked(this); 1014 groupHashLocker.Unlock(); 1015 1016 fSession->ReleaseReference(); 1017 } 1018 1019 mutex_destroy(&fLock); 1020 } 1021 1022 1023 /*static*/ ProcessGroup* 1024 ProcessGroup::Get(pid_t id) 1025 { 1026 InterruptsSpinLocker groupHashLocker(sGroupHashLock); 1027 ProcessGroup* group = sGroupHash.Lookup(id); 1028 if (group != NULL) 1029 group->AcquireReference(); 1030 return group; 1031 } 1032 1033 1034 /*! Adds the group the given session and makes it publicly accessible. 1035 The caller must not hold the process group hash lock. 1036 */ 1037 void 1038 ProcessGroup::Publish(ProcessSession* session) 1039 { 1040 InterruptsSpinLocker groupHashLocker(sGroupHashLock); 1041 PublishLocked(session); 1042 } 1043 1044 1045 /*! Adds the group to the given session and makes it publicly accessible. 1046 The caller must hold the process group hash lock. 1047 */ 1048 void 1049 ProcessGroup::PublishLocked(ProcessSession* session) 1050 { 1051 ASSERT(sGroupHash.Lookup(this->id) == NULL); 1052 1053 fSession = session; 1054 fSession->AcquireReference(); 1055 1056 sGroupHash.InsertUnchecked(this); 1057 } 1058 1059 1060 /*! Checks whether the process group is orphaned. 1061 The caller must hold the group's lock. 1062 \return \c true, if the group is orphaned, \c false otherwise. 1063 */ 1064 bool 1065 ProcessGroup::IsOrphaned() const 1066 { 1067 // Orphaned Process Group: "A process group in which the parent of every 1068 // member is either itself a member of the group or is not a member of the 1069 // group's session." (Open Group Base Specs Issue 7) 1070 bool orphaned = true; 1071 1072 Team* team = teams; 1073 while (orphaned && team != NULL) { 1074 team->LockTeamAndParent(false); 1075 1076 Team* parent = team->parent; 1077 if (parent != NULL && parent->group_id != id 1078 && parent->session_id == fSession->id) { 1079 orphaned = false; 1080 } 1081 1082 team->UnlockTeamAndParent(); 1083 1084 team = team->group_next; 1085 } 1086 1087 return orphaned; 1088 } 1089 1090 1091 void 1092 ProcessGroup::ScheduleOrphanedCheck() 1093 { 1094 MutexLocker orphanedCheckLocker(sOrphanedCheckLock); 1095 1096 if (!fInOrphanedCheckList) { 1097 sOrphanedCheckProcessGroups.Add(this); 1098 fInOrphanedCheckList = true; 1099 } 1100 } 1101 1102 1103 void 1104 ProcessGroup::UnsetOrphanedCheck() 1105 { 1106 fInOrphanedCheckList = false; 1107 } 1108 1109 1110 // #pragma mark - ProcessSession 1111 1112 1113 ProcessSession::ProcessSession(pid_t id) 1114 : 1115 id(id), 1116 controlling_tty(-1), 1117 foreground_group(-1) 1118 { 1119 char lockName[32]; 1120 snprintf(lockName, sizeof(lockName), "Session:%" B_PRId32, id); 1121 mutex_init_etc(&fLock, lockName, MUTEX_FLAG_CLONE_NAME); 1122 } 1123 1124 1125 ProcessSession::~ProcessSession() 1126 { 1127 mutex_destroy(&fLock); 1128 } 1129 1130 1131 // #pragma mark - KDL functions 1132 1133 1134 static void 1135 _dump_team_info(Team* team) 1136 { 1137 kprintf("TEAM: %p\n", team); 1138 kprintf("id: %" B_PRId32 " (%#" B_PRIx32 ")\n", team->id, 1139 team->id); 1140 kprintf("serial_number: %" B_PRId64 "\n", team->serial_number); 1141 kprintf("name: '%s'\n", team->Name()); 1142 kprintf("args: '%s'\n", team->Args()); 1143 kprintf("hash_next: %p\n", team->hash_next); 1144 kprintf("parent: %p", team->parent); 1145 if (team->parent != NULL) { 1146 kprintf(" (id = %" B_PRId32 ")\n", team->parent->id); 1147 } else 1148 kprintf("\n"); 1149 1150 kprintf("children: %p\n", team->children); 1151 kprintf("num_threads: %d\n", team->num_threads); 1152 kprintf("state: %d\n", team->state); 1153 kprintf("flags: 0x%" B_PRIx32 "\n", team->flags); 1154 kprintf("io_context: %p\n", team->io_context); 1155 if (team->address_space) 1156 kprintf("address_space: %p\n", team->address_space); 1157 kprintf("user data: %p (area %" B_PRId32 ")\n", 1158 (void*)team->user_data, team->user_data_area); 1159 kprintf("free user thread: %p\n", team->free_user_threads); 1160 kprintf("main_thread: %p\n", team->main_thread); 1161 kprintf("thread_list: %p\n", team->thread_list); 1162 kprintf("group_id: %" B_PRId32 "\n", team->group_id); 1163 kprintf("session_id: %" B_PRId32 "\n", team->session_id); 1164 } 1165 1166 1167 static int 1168 dump_team_info(int argc, char** argv) 1169 { 1170 ulong arg; 1171 bool found = false; 1172 1173 if (argc < 2) { 1174 Thread* thread = thread_get_current_thread(); 1175 if (thread != NULL && thread->team != NULL) 1176 _dump_team_info(thread->team); 1177 else 1178 kprintf("No current team!\n"); 1179 return 0; 1180 } 1181 1182 arg = strtoul(argv[1], NULL, 0); 1183 if (IS_KERNEL_ADDRESS(arg)) { 1184 // semi-hack 1185 _dump_team_info((Team*)arg); 1186 return 0; 1187 } 1188 1189 // walk through the thread list, trying to match name or id 1190 for (TeamTable::Iterator it = sTeamHash.GetIterator(); 1191 Team* team = it.Next();) { 1192 if ((team->Name() && strcmp(argv[1], team->Name()) == 0) 1193 || team->id == (team_id)arg) { 1194 _dump_team_info(team); 1195 found = true; 1196 break; 1197 } 1198 } 1199 1200 if (!found) 1201 kprintf("team \"%s\" (%" B_PRId32 ") doesn't exist!\n", argv[1], (team_id)arg); 1202 return 0; 1203 } 1204 1205 1206 static int 1207 dump_teams(int argc, char** argv) 1208 { 1209 kprintf("%-*s id %-*s name\n", B_PRINTF_POINTER_WIDTH, "team", 1210 B_PRINTF_POINTER_WIDTH, "parent"); 1211 1212 for (TeamTable::Iterator it = sTeamHash.GetIterator(); 1213 Team* team = it.Next();) { 1214 kprintf("%p%7" B_PRId32 " %p %s\n", team, team->id, team->parent, team->Name()); 1215 } 1216 1217 return 0; 1218 } 1219 1220 1221 // #pragma mark - Private functions 1222 1223 1224 /*! Inserts team \a team into the child list of team \a parent. 1225 1226 The caller must hold the lock of both \a parent and \a team. 1227 1228 \param parent The parent team. 1229 \param team The team to be inserted into \a parent's child list. 1230 */ 1231 static void 1232 insert_team_into_parent(Team* parent, Team* team) 1233 { 1234 ASSERT(parent != NULL); 1235 1236 team->siblings_next = parent->children; 1237 parent->children = team; 1238 team->parent = parent; 1239 } 1240 1241 1242 /*! Removes team \a team from the child list of team \a parent. 1243 1244 The caller must hold the lock of both \a parent and \a team. 1245 1246 \param parent The parent team. 1247 \param team The team to be removed from \a parent's child list. 1248 */ 1249 static void 1250 remove_team_from_parent(Team* parent, Team* team) 1251 { 1252 Team* child; 1253 Team* last = NULL; 1254 1255 for (child = parent->children; child != NULL; 1256 child = child->siblings_next) { 1257 if (child == team) { 1258 if (last == NULL) 1259 parent->children = child->siblings_next; 1260 else 1261 last->siblings_next = child->siblings_next; 1262 1263 team->parent = NULL; 1264 break; 1265 } 1266 last = child; 1267 } 1268 } 1269 1270 1271 /*! Returns whether the given team is a session leader. 1272 The caller must hold the team's lock or its process group's lock. 1273 */ 1274 static bool 1275 is_session_leader(Team* team) 1276 { 1277 return team->session_id == team->id; 1278 } 1279 1280 1281 /*! Returns whether the given team is a process group leader. 1282 The caller must hold the team's lock or its process group's lock. 1283 */ 1284 static bool 1285 is_process_group_leader(Team* team) 1286 { 1287 return team->group_id == team->id; 1288 } 1289 1290 1291 /*! Inserts the given team into the given process group. 1292 The caller must hold the process group's lock, the team's lock, and the 1293 team's parent's lock. 1294 */ 1295 static void 1296 insert_team_into_group(ProcessGroup* group, Team* team) 1297 { 1298 team->group = group; 1299 team->group_id = group->id; 1300 team->session_id = group->Session()->id; 1301 1302 team->group_next = group->teams; 1303 group->teams = team; 1304 group->AcquireReference(); 1305 } 1306 1307 1308 /*! Removes the given team from its process group. 1309 1310 The caller must hold the process group's lock, the team's lock, and the 1311 team's parent's lock. Interrupts must be enabled. 1312 1313 \param team The team that'll be removed from its process group. 1314 */ 1315 static void 1316 remove_team_from_group(Team* team) 1317 { 1318 ProcessGroup* group = team->group; 1319 Team* current; 1320 Team* last = NULL; 1321 1322 // the team must be in a process group to let this function have any effect 1323 if (group == NULL) 1324 return; 1325 1326 for (current = group->teams; current != NULL; 1327 current = current->group_next) { 1328 if (current == team) { 1329 if (last == NULL) 1330 group->teams = current->group_next; 1331 else 1332 last->group_next = current->group_next; 1333 1334 team->group = NULL; 1335 break; 1336 } 1337 last = current; 1338 } 1339 1340 team->group = NULL; 1341 team->group_next = NULL; 1342 1343 group->ReleaseReference(); 1344 } 1345 1346 1347 static status_t 1348 create_team_user_data(Team* team, void* exactAddress = NULL) 1349 { 1350 void* address; 1351 uint32 addressSpec; 1352 1353 if (exactAddress != NULL) { 1354 address = exactAddress; 1355 addressSpec = B_EXACT_ADDRESS; 1356 } else { 1357 address = (void*)KERNEL_USER_DATA_BASE; 1358 addressSpec = B_RANDOMIZED_BASE_ADDRESS; 1359 } 1360 1361 status_t result = vm_reserve_address_range(team->id, &address, addressSpec, 1362 kTeamUserDataReservedSize, RESERVED_AVOID_BASE); 1363 1364 virtual_address_restrictions virtualRestrictions = {}; 1365 if (result == B_OK || exactAddress != NULL) { 1366 if (exactAddress != NULL) 1367 virtualRestrictions.address = exactAddress; 1368 else 1369 virtualRestrictions.address = address; 1370 virtualRestrictions.address_specification = B_EXACT_ADDRESS; 1371 } else { 1372 virtualRestrictions.address = (void*)KERNEL_USER_DATA_BASE; 1373 virtualRestrictions.address_specification = B_RANDOMIZED_BASE_ADDRESS; 1374 } 1375 1376 physical_address_restrictions physicalRestrictions = {}; 1377 team->user_data_area = create_area_etc(team->id, "user area", 1378 kTeamUserDataInitialSize, B_FULL_LOCK, B_READ_AREA | B_WRITE_AREA, 0, 0, 1379 &virtualRestrictions, &physicalRestrictions, &address); 1380 if (team->user_data_area < 0) 1381 return team->user_data_area; 1382 1383 team->user_data = (addr_t)address; 1384 team->used_user_data = 0; 1385 team->user_data_size = kTeamUserDataInitialSize; 1386 team->free_user_threads = NULL; 1387 1388 return B_OK; 1389 } 1390 1391 1392 static void 1393 delete_team_user_data(Team* team) 1394 { 1395 if (team->user_data_area >= 0) { 1396 vm_delete_area(team->id, team->user_data_area, true); 1397 vm_unreserve_address_range(team->id, (void*)team->user_data, 1398 kTeamUserDataReservedSize); 1399 1400 team->user_data = 0; 1401 team->used_user_data = 0; 1402 team->user_data_size = 0; 1403 team->user_data_area = -1; 1404 while (free_user_thread* entry = team->free_user_threads) { 1405 team->free_user_threads = entry->next; 1406 free(entry); 1407 } 1408 } 1409 } 1410 1411 1412 static status_t 1413 copy_user_process_args(const char* const* userFlatArgs, size_t flatArgsSize, 1414 int32 argCount, int32 envCount, char**& _flatArgs) 1415 { 1416 if (argCount < 0 || envCount < 0) 1417 return B_BAD_VALUE; 1418 1419 if (flatArgsSize > MAX_PROCESS_ARGS_SIZE) 1420 return B_TOO_MANY_ARGS; 1421 if ((argCount + envCount + 2) * sizeof(char*) > flatArgsSize) 1422 return B_BAD_VALUE; 1423 1424 if (!IS_USER_ADDRESS(userFlatArgs)) 1425 return B_BAD_ADDRESS; 1426 1427 // allocate kernel memory 1428 char** flatArgs = (char**)malloc(_ALIGN(flatArgsSize)); 1429 if (flatArgs == NULL) 1430 return B_NO_MEMORY; 1431 1432 if (user_memcpy(flatArgs, userFlatArgs, flatArgsSize) != B_OK) { 1433 free(flatArgs); 1434 return B_BAD_ADDRESS; 1435 } 1436 1437 // check and relocate the array 1438 status_t error = B_OK; 1439 const char* stringBase = (char*)flatArgs + argCount + envCount + 2; 1440 const char* stringEnd = (char*)flatArgs + flatArgsSize; 1441 for (int32 i = 0; i < argCount + envCount + 2; i++) { 1442 if (i == argCount || i == argCount + envCount + 1) { 1443 // check array null termination 1444 if (flatArgs[i] != NULL) { 1445 error = B_BAD_VALUE; 1446 break; 1447 } 1448 } else { 1449 // check string 1450 char* arg = (char*)flatArgs + (flatArgs[i] - (char*)userFlatArgs); 1451 size_t maxLen = stringEnd - arg; 1452 if (arg < stringBase || arg >= stringEnd 1453 || strnlen(arg, maxLen) == maxLen) { 1454 error = B_BAD_VALUE; 1455 break; 1456 } 1457 1458 flatArgs[i] = arg; 1459 } 1460 } 1461 1462 if (error == B_OK) 1463 _flatArgs = flatArgs; 1464 else 1465 free(flatArgs); 1466 1467 return error; 1468 } 1469 1470 1471 static void 1472 free_team_arg(struct team_arg* teamArg) 1473 { 1474 if (teamArg != NULL) { 1475 free(teamArg->flat_args); 1476 free(teamArg->path); 1477 free(teamArg); 1478 } 1479 } 1480 1481 1482 static status_t 1483 create_team_arg(struct team_arg** _teamArg, const char* path, char** flatArgs, 1484 size_t flatArgsSize, int32 argCount, int32 envCount, mode_t umask, 1485 port_id port, uint32 token) 1486 { 1487 struct team_arg* teamArg = (struct team_arg*)malloc(sizeof(team_arg)); 1488 if (teamArg == NULL) 1489 return B_NO_MEMORY; 1490 1491 teamArg->path = strdup(path); 1492 if (teamArg->path == NULL) { 1493 free(teamArg); 1494 return B_NO_MEMORY; 1495 } 1496 1497 // copy the args over 1498 teamArg->flat_args = flatArgs; 1499 teamArg->flat_args_size = flatArgsSize; 1500 teamArg->arg_count = argCount; 1501 teamArg->env_count = envCount; 1502 teamArg->flags = 0; 1503 teamArg->umask = umask; 1504 teamArg->error_port = port; 1505 teamArg->error_token = token; 1506 1507 // determine the flags from the environment 1508 const char* const* env = flatArgs + argCount + 1; 1509 for (int32 i = 0; i < envCount; i++) { 1510 if (strcmp(env[i], "DISABLE_ASLR=1") == 0) { 1511 teamArg->flags |= TEAM_ARGS_FLAG_NO_ASLR; 1512 break; 1513 } 1514 } 1515 1516 *_teamArg = teamArg; 1517 return B_OK; 1518 } 1519 1520 1521 static status_t 1522 team_create_thread_start_internal(void* args) 1523 { 1524 status_t err; 1525 Thread* thread; 1526 Team* team; 1527 struct team_arg* teamArgs = (struct team_arg*)args; 1528 const char* path; 1529 addr_t entry; 1530 char** userArgs; 1531 char** userEnv; 1532 struct user_space_program_args* programArgs; 1533 uint32 argCount, envCount; 1534 1535 thread = thread_get_current_thread(); 1536 team = thread->team; 1537 cache_node_launched(teamArgs->arg_count, teamArgs->flat_args); 1538 1539 TRACE(("team_create_thread_start: entry thread %" B_PRId32 "\n", 1540 thread->id)); 1541 1542 // Main stack area layout is currently as follows (starting from 0): 1543 // 1544 // size | usage 1545 // ---------------------------------+-------------------------------- 1546 // USER_MAIN_THREAD_STACK_SIZE | actual stack 1547 // TLS_SIZE | TLS data 1548 // sizeof(user_space_program_args) | argument structure for the runtime 1549 // | loader 1550 // flat arguments size | flat process arguments and environment 1551 1552 // TODO: ENV_SIZE is a) limited, and b) not used after libroot copied it to 1553 // the heap 1554 // TODO: we could reserve the whole USER_STACK_REGION upfront... 1555 1556 argCount = teamArgs->arg_count; 1557 envCount = teamArgs->env_count; 1558 1559 programArgs = (struct user_space_program_args*)(thread->user_stack_base 1560 + thread->user_stack_size + TLS_SIZE); 1561 1562 userArgs = (char**)(programArgs + 1); 1563 userEnv = userArgs + argCount + 1; 1564 path = teamArgs->path; 1565 1566 if (user_strlcpy(programArgs->program_path, path, 1567 sizeof(programArgs->program_path)) < B_OK 1568 || user_memcpy(&programArgs->arg_count, &argCount, sizeof(int32)) < B_OK 1569 || user_memcpy(&programArgs->args, &userArgs, sizeof(char**)) < B_OK 1570 || user_memcpy(&programArgs->env_count, &envCount, sizeof(int32)) < B_OK 1571 || user_memcpy(&programArgs->env, &userEnv, sizeof(char**)) < B_OK 1572 || user_memcpy(&programArgs->error_port, &teamArgs->error_port, 1573 sizeof(port_id)) < B_OK 1574 || user_memcpy(&programArgs->error_token, &teamArgs->error_token, 1575 sizeof(uint32)) < B_OK 1576 || user_memcpy(&programArgs->umask, &teamArgs->umask, sizeof(mode_t)) < B_OK 1577 || user_memcpy(userArgs, teamArgs->flat_args, 1578 teamArgs->flat_args_size) < B_OK) { 1579 // the team deletion process will clean this mess 1580 free_team_arg(teamArgs); 1581 return B_BAD_ADDRESS; 1582 } 1583 1584 TRACE(("team_create_thread_start: loading elf binary '%s'\n", path)); 1585 1586 // set team args and update state 1587 team->Lock(); 1588 team->SetArgs(path, teamArgs->flat_args + 1, argCount - 1); 1589 team->state = TEAM_STATE_NORMAL; 1590 team->Unlock(); 1591 1592 free_team_arg(teamArgs); 1593 // the arguments are already on the user stack, we no longer need 1594 // them in this form 1595 1596 // Clone commpage area 1597 area_id commPageArea = clone_commpage_area(team->id, 1598 &team->commpage_address); 1599 if (commPageArea < B_OK) { 1600 TRACE(("team_create_thread_start: clone_commpage_area() failed: %s\n", 1601 strerror(commPageArea))); 1602 return commPageArea; 1603 } 1604 1605 // Register commpage image 1606 image_id commPageImage = get_commpage_image(); 1607 extended_image_info imageInfo; 1608 err = get_image_info(commPageImage, &imageInfo.basic_info); 1609 if (err != B_OK) { 1610 TRACE(("team_create_thread_start: get_image_info() failed: %s\n", 1611 strerror(err))); 1612 return err; 1613 } 1614 imageInfo.basic_info.text = team->commpage_address; 1615 imageInfo.text_delta = (ssize_t)(addr_t)team->commpage_address; 1616 imageInfo.symbol_table = NULL; 1617 imageInfo.symbol_hash = NULL; 1618 imageInfo.string_table = NULL; 1619 image_id image = register_image(team, &imageInfo, sizeof(imageInfo)); 1620 if (image < 0) { 1621 TRACE(("team_create_thread_start: register_image() failed: %s\n", 1622 strerror(image))); 1623 return image; 1624 } 1625 1626 // NOTE: Normally arch_thread_enter_userspace() never returns, that is 1627 // automatic variables with function scope will never be destroyed. 1628 { 1629 // find runtime_loader path 1630 KPath runtimeLoaderPath; 1631 err = __find_directory(B_SYSTEM_DIRECTORY, gBootDevice, false, 1632 runtimeLoaderPath.LockBuffer(), runtimeLoaderPath.BufferSize()); 1633 if (err < B_OK) { 1634 TRACE(("team_create_thread_start: find_directory() failed: %s\n", 1635 strerror(err))); 1636 return err; 1637 } 1638 runtimeLoaderPath.UnlockBuffer(); 1639 err = runtimeLoaderPath.Append("runtime_loader"); 1640 1641 if (err == B_OK) { 1642 err = elf_load_user_image(runtimeLoaderPath.Path(), team, 0, 1643 &entry); 1644 } 1645 } 1646 1647 if (err < B_OK) { 1648 // Luckily, we don't have to clean up the mess we created - that's 1649 // done for us by the normal team deletion process 1650 TRACE(("team_create_thread_start: elf_load_user_image() failed: " 1651 "%s\n", strerror(err))); 1652 return err; 1653 } 1654 1655 TRACE(("team_create_thread_start: loaded elf. entry = %#lx\n", entry)); 1656 1657 // enter userspace -- returns only in case of error 1658 return thread_enter_userspace_new_team(thread, (addr_t)entry, 1659 programArgs, team->commpage_address); 1660 } 1661 1662 1663 static status_t 1664 team_create_thread_start(void* args) 1665 { 1666 team_create_thread_start_internal(args); 1667 team_init_exit_info_on_error(thread_get_current_thread()->team); 1668 thread_exit(); 1669 // does not return 1670 return B_OK; 1671 } 1672 1673 1674 static thread_id 1675 load_image_internal(char**& _flatArgs, size_t flatArgsSize, int32 argCount, 1676 int32 envCount, int32 priority, team_id parentID, uint32 flags, 1677 port_id errorPort, uint32 errorToken) 1678 { 1679 char** flatArgs = _flatArgs; 1680 thread_id thread; 1681 status_t status; 1682 struct team_arg* teamArgs; 1683 struct team_loading_info loadingInfo; 1684 io_context* parentIOContext = NULL; 1685 team_id teamID; 1686 1687 if (flatArgs == NULL || argCount == 0) 1688 return B_BAD_VALUE; 1689 1690 const char* path = flatArgs[0]; 1691 1692 TRACE(("load_image_internal: name '%s', args = %p, argCount = %" B_PRId32 1693 "\n", path, flatArgs, argCount)); 1694 1695 // cut the path from the main thread name 1696 const char* threadName = strrchr(path, '/'); 1697 if (threadName != NULL) 1698 threadName++; 1699 else 1700 threadName = path; 1701 1702 // create the main thread object 1703 Thread* mainThread; 1704 status = Thread::Create(threadName, mainThread); 1705 if (status != B_OK) 1706 return status; 1707 BReference<Thread> mainThreadReference(mainThread, true); 1708 1709 // create team object 1710 Team* team = Team::Create(mainThread->id, path, false); 1711 if (team == NULL) 1712 return B_NO_MEMORY; 1713 BReference<Team> teamReference(team, true); 1714 1715 if (flags & B_WAIT_TILL_LOADED) { 1716 loadingInfo.thread = thread_get_current_thread(); 1717 loadingInfo.result = B_ERROR; 1718 loadingInfo.done = false; 1719 team->loading_info = &loadingInfo; 1720 } 1721 1722 // get the parent team 1723 Team* parent = Team::Get(parentID); 1724 if (parent == NULL) 1725 return B_BAD_TEAM_ID; 1726 BReference<Team> parentReference(parent, true); 1727 1728 parent->LockTeamAndProcessGroup(); 1729 team->Lock(); 1730 1731 // inherit the parent's user/group 1732 inherit_parent_user_and_group(team, parent); 1733 1734 InterruptsSpinLocker teamsLocker(sTeamHashLock); 1735 1736 sTeamHash.Insert(team); 1737 bool teamLimitReached = sUsedTeams >= sMaxTeams; 1738 if (!teamLimitReached) 1739 sUsedTeams++; 1740 1741 teamsLocker.Unlock(); 1742 1743 insert_team_into_parent(parent, team); 1744 insert_team_into_group(parent->group, team); 1745 1746 // get a reference to the parent's I/O context -- we need it to create ours 1747 parentIOContext = parent->io_context; 1748 vfs_get_io_context(parentIOContext); 1749 1750 team->Unlock(); 1751 parent->UnlockTeamAndProcessGroup(); 1752 1753 // notify team listeners 1754 sNotificationService.Notify(TEAM_ADDED, team); 1755 1756 // check the executable's set-user/group-id permission 1757 update_set_id_user_and_group(team, path); 1758 1759 if (teamLimitReached) { 1760 status = B_NO_MORE_TEAMS; 1761 goto err1; 1762 } 1763 1764 status = create_team_arg(&teamArgs, path, flatArgs, flatArgsSize, argCount, 1765 envCount, (mode_t)-1, errorPort, errorToken); 1766 if (status != B_OK) 1767 goto err1; 1768 1769 _flatArgs = NULL; 1770 // args are owned by the team_arg structure now 1771 1772 // create a new io_context for this team 1773 team->io_context = vfs_new_io_context(parentIOContext, true); 1774 if (!team->io_context) { 1775 status = B_NO_MEMORY; 1776 goto err2; 1777 } 1778 1779 // We don't need the parent's I/O context any longer. 1780 vfs_put_io_context(parentIOContext); 1781 parentIOContext = NULL; 1782 1783 // remove any fds that have the CLOEXEC flag set (emulating BeOS behaviour) 1784 vfs_exec_io_context(team->io_context); 1785 1786 // create an address space for this team 1787 status = VMAddressSpace::Create(team->id, USER_BASE, USER_SIZE, false, 1788 &team->address_space); 1789 if (status != B_OK) 1790 goto err2; 1791 1792 team->address_space->SetRandomizingEnabled( 1793 (teamArgs->flags & TEAM_ARGS_FLAG_NO_ASLR) == 0); 1794 1795 // create the user data area 1796 status = create_team_user_data(team); 1797 if (status != B_OK) 1798 goto err4; 1799 1800 // In case we start the main thread, we shouldn't access the team object 1801 // afterwards, so cache the team's ID. 1802 teamID = team->id; 1803 1804 // Create a kernel thread, but under the context of the new team 1805 // The new thread will take over ownership of teamArgs. 1806 { 1807 ThreadCreationAttributes threadAttributes(team_create_thread_start, 1808 threadName, B_NORMAL_PRIORITY, teamArgs, teamID, mainThread); 1809 threadAttributes.additional_stack_size = sizeof(user_space_program_args) 1810 + teamArgs->flat_args_size; 1811 thread = thread_create_thread(threadAttributes, false); 1812 if (thread < 0) { 1813 status = thread; 1814 goto err5; 1815 } 1816 } 1817 1818 // The team has been created successfully, so we keep the reference. Or 1819 // more precisely: It's owned by the team's main thread, now. 1820 teamReference.Detach(); 1821 1822 // wait for the loader of the new team to finish its work 1823 if ((flags & B_WAIT_TILL_LOADED) != 0) { 1824 if (mainThread != NULL) { 1825 // resume the team's main thread 1826 thread_continue(mainThread); 1827 } 1828 1829 // Now suspend ourselves until loading is finished. We will be woken 1830 // either by the thread, when it finished or aborted loading, or when 1831 // the team is going to die (e.g. is killed). In either case the one 1832 // setting `loadingInfo.done' is responsible for removing the info from 1833 // the team structure. 1834 while (!loadingInfo.done) 1835 thread_suspend(); 1836 1837 if (loadingInfo.result < B_OK) 1838 return loadingInfo.result; 1839 } 1840 1841 // notify the debugger 1842 user_debug_team_created(teamID); 1843 1844 return thread; 1845 1846 err5: 1847 delete_team_user_data(team); 1848 err4: 1849 team->address_space->Put(); 1850 err2: 1851 free_team_arg(teamArgs); 1852 err1: 1853 if (parentIOContext != NULL) 1854 vfs_put_io_context(parentIOContext); 1855 1856 // Remove the team structure from the process group, the parent team, and 1857 // the team hash table and delete the team structure. 1858 parent->LockTeamAndProcessGroup(); 1859 team->Lock(); 1860 1861 remove_team_from_group(team); 1862 remove_team_from_parent(team->parent, team); 1863 1864 team->Unlock(); 1865 parent->UnlockTeamAndProcessGroup(); 1866 1867 teamsLocker.Lock(); 1868 sTeamHash.Remove(team); 1869 if (!teamLimitReached) 1870 sUsedTeams--; 1871 teamsLocker.Unlock(); 1872 1873 sNotificationService.Notify(TEAM_REMOVED, team); 1874 1875 return status; 1876 } 1877 1878 1879 /*! Almost shuts down the current team and loads a new image into it. 1880 If successful, this function does not return and will takeover ownership of 1881 the arguments provided. 1882 This function may only be called in a userland team (caused by one of the 1883 exec*() syscalls). 1884 */ 1885 static status_t 1886 exec_team(const char* path, char**& _flatArgs, size_t flatArgsSize, 1887 int32 argCount, int32 envCount, mode_t umask) 1888 { 1889 // NOTE: Since this function normally doesn't return, don't use automatic 1890 // variables that need destruction in the function scope. 1891 char** flatArgs = _flatArgs; 1892 Team* team = thread_get_current_thread()->team; 1893 struct team_arg* teamArgs; 1894 const char* threadName; 1895 thread_id nubThreadID = -1; 1896 1897 TRACE(("exec_team(path = \"%s\", argc = %" B_PRId32 ", envCount = %" 1898 B_PRId32 "): team %" B_PRId32 "\n", path, argCount, envCount, 1899 team->id)); 1900 1901 T(ExecTeam(path, argCount, flatArgs, envCount, flatArgs + argCount + 1)); 1902 1903 // switching the kernel at run time is probably not a good idea :) 1904 if (team == team_get_kernel_team()) 1905 return B_NOT_ALLOWED; 1906 1907 // we currently need to be single threaded here 1908 // TODO: maybe we should just kill all other threads and 1909 // make the current thread the team's main thread? 1910 Thread* currentThread = thread_get_current_thread(); 1911 if (currentThread != team->main_thread) 1912 return B_NOT_ALLOWED; 1913 1914 // The debug nub thread, a pure kernel thread, is allowed to survive. 1915 // We iterate through the thread list to make sure that there's no other 1916 // thread. 1917 TeamLocker teamLocker(team); 1918 InterruptsSpinLocker debugInfoLocker(team->debug_info.lock); 1919 1920 if (team->debug_info.flags & B_TEAM_DEBUG_DEBUGGER_INSTALLED) 1921 nubThreadID = team->debug_info.nub_thread; 1922 1923 debugInfoLocker.Unlock(); 1924 1925 for (Thread* thread = team->thread_list; thread != NULL; 1926 thread = thread->team_next) { 1927 if (thread != team->main_thread && thread->id != nubThreadID) 1928 return B_NOT_ALLOWED; 1929 } 1930 1931 team->DeleteUserTimers(true); 1932 team->ResetSignalsOnExec(); 1933 1934 teamLocker.Unlock(); 1935 1936 status_t status = create_team_arg(&teamArgs, path, flatArgs, flatArgsSize, 1937 argCount, envCount, umask, -1, 0); 1938 if (status != B_OK) 1939 return status; 1940 1941 _flatArgs = NULL; 1942 // args are owned by the team_arg structure now 1943 1944 // TODO: remove team resources if there are any left 1945 // thread_atkernel_exit() might not be called at all 1946 1947 thread_reset_for_exec(); 1948 1949 user_debug_prepare_for_exec(); 1950 1951 delete_team_user_data(team); 1952 vm_delete_areas(team->address_space, false); 1953 xsi_sem_undo(team); 1954 delete_owned_ports(team); 1955 sem_delete_owned_sems(team); 1956 remove_images(team); 1957 vfs_exec_io_context(team->io_context); 1958 delete_realtime_sem_context(team->realtime_sem_context); 1959 team->realtime_sem_context = NULL; 1960 1961 // update ASLR 1962 team->address_space->SetRandomizingEnabled( 1963 (teamArgs->flags & TEAM_ARGS_FLAG_NO_ASLR) == 0); 1964 1965 status = create_team_user_data(team); 1966 if (status != B_OK) { 1967 // creating the user data failed -- we're toast 1968 free_team_arg(teamArgs); 1969 exit_thread(status); 1970 return status; 1971 } 1972 1973 user_debug_finish_after_exec(); 1974 1975 // rename the team 1976 1977 team->Lock(); 1978 team->SetName(path); 1979 team->Unlock(); 1980 1981 // cut the path from the team name and rename the main thread, too 1982 threadName = strrchr(path, '/'); 1983 if (threadName != NULL) 1984 threadName++; 1985 else 1986 threadName = path; 1987 rename_thread(thread_get_current_thread_id(), threadName); 1988 1989 atomic_or(&team->flags, TEAM_FLAG_EXEC_DONE); 1990 1991 // Update user/group according to the executable's set-user/group-id 1992 // permission. 1993 update_set_id_user_and_group(team, path); 1994 1995 user_debug_team_exec(); 1996 1997 // notify team listeners 1998 sNotificationService.Notify(TEAM_EXEC, team); 1999 2000 // get a user thread for the thread 2001 user_thread* userThread = team_allocate_user_thread(team); 2002 // cannot fail (the allocation for the team would have failed already) 2003 ThreadLocker currentThreadLocker(currentThread); 2004 currentThread->user_thread = userThread; 2005 currentThreadLocker.Unlock(); 2006 2007 // create the user stack for the thread 2008 status = thread_create_user_stack(currentThread->team, currentThread, NULL, 2009 0, sizeof(user_space_program_args) + teamArgs->flat_args_size); 2010 if (status == B_OK) { 2011 // prepare the stack, load the runtime loader, and enter userspace 2012 team_create_thread_start(teamArgs); 2013 // does never return 2014 } else 2015 free_team_arg(teamArgs); 2016 2017 // Sorry, we have to kill ourselves, there is no way out anymore 2018 // (without any areas left and all that). 2019 exit_thread(status); 2020 2021 // We return a status here since the signal that is sent by the 2022 // call above is not immediately handled. 2023 return B_ERROR; 2024 } 2025 2026 2027 static thread_id 2028 fork_team(void) 2029 { 2030 Thread* parentThread = thread_get_current_thread(); 2031 Team* parentTeam = parentThread->team; 2032 Team* team; 2033 arch_fork_arg* forkArgs; 2034 struct area_info info; 2035 thread_id threadID; 2036 status_t status; 2037 ssize_t areaCookie; 2038 2039 TRACE(("fork_team(): team %" B_PRId32 "\n", parentTeam->id)); 2040 2041 if (parentTeam == team_get_kernel_team()) 2042 return B_NOT_ALLOWED; 2043 2044 // create a new team 2045 // TODO: this is very similar to load_image_internal() - maybe we can do 2046 // something about it :) 2047 2048 // create the main thread object 2049 Thread* thread; 2050 status = Thread::Create(parentThread->name, thread); 2051 if (status != B_OK) 2052 return status; 2053 BReference<Thread> threadReference(thread, true); 2054 2055 // create the team object 2056 team = Team::Create(thread->id, NULL, false); 2057 if (team == NULL) 2058 return B_NO_MEMORY; 2059 2060 parentTeam->LockTeamAndProcessGroup(); 2061 team->Lock(); 2062 2063 team->SetName(parentTeam->Name()); 2064 team->SetArgs(parentTeam->Args()); 2065 2066 team->commpage_address = parentTeam->commpage_address; 2067 2068 // Inherit the parent's user/group. 2069 inherit_parent_user_and_group(team, parentTeam); 2070 2071 // inherit signal handlers 2072 team->InheritSignalActions(parentTeam); 2073 2074 InterruptsSpinLocker teamsLocker(sTeamHashLock); 2075 2076 sTeamHash.Insert(team); 2077 bool teamLimitReached = sUsedTeams >= sMaxTeams; 2078 if (!teamLimitReached) 2079 sUsedTeams++; 2080 2081 teamsLocker.Unlock(); 2082 2083 insert_team_into_parent(parentTeam, team); 2084 insert_team_into_group(parentTeam->group, team); 2085 2086 team->Unlock(); 2087 parentTeam->UnlockTeamAndProcessGroup(); 2088 2089 // notify team listeners 2090 sNotificationService.Notify(TEAM_ADDED, team); 2091 2092 // inherit some team debug flags 2093 team->debug_info.flags |= atomic_get(&parentTeam->debug_info.flags) 2094 & B_TEAM_DEBUG_INHERITED_FLAGS; 2095 2096 if (teamLimitReached) { 2097 status = B_NO_MORE_TEAMS; 2098 goto err1; 2099 } 2100 2101 forkArgs = (arch_fork_arg*)malloc(sizeof(arch_fork_arg)); 2102 if (forkArgs == NULL) { 2103 status = B_NO_MEMORY; 2104 goto err1; 2105 } 2106 2107 // create a new io_context for this team 2108 team->io_context = vfs_new_io_context(parentTeam->io_context, false); 2109 if (!team->io_context) { 2110 status = B_NO_MEMORY; 2111 goto err2; 2112 } 2113 2114 // duplicate the realtime sem context 2115 if (parentTeam->realtime_sem_context) { 2116 team->realtime_sem_context = clone_realtime_sem_context( 2117 parentTeam->realtime_sem_context); 2118 if (team->realtime_sem_context == NULL) { 2119 status = B_NO_MEMORY; 2120 goto err2; 2121 } 2122 } 2123 2124 // create an address space for this team 2125 status = VMAddressSpace::Create(team->id, USER_BASE, USER_SIZE, false, 2126 &team->address_space); 2127 if (status < B_OK) 2128 goto err3; 2129 2130 // copy all areas of the team 2131 // TODO: should be able to handle stack areas differently (ie. don't have 2132 // them copy-on-write) 2133 2134 areaCookie = 0; 2135 while (get_next_area_info(B_CURRENT_TEAM, &areaCookie, &info) == B_OK) { 2136 if (info.area == parentTeam->user_data_area) { 2137 // don't clone the user area; just create a new one 2138 status = create_team_user_data(team, info.address); 2139 if (status != B_OK) 2140 break; 2141 2142 thread->user_thread = team_allocate_user_thread(team); 2143 } else { 2144 void* address; 2145 area_id area = vm_copy_area(team->address_space->ID(), info.name, 2146 &address, B_CLONE_ADDRESS, info.protection, info.area); 2147 if (area < B_OK) { 2148 status = area; 2149 break; 2150 } 2151 2152 if (info.area == parentThread->user_stack_area) 2153 thread->user_stack_area = area; 2154 } 2155 } 2156 2157 if (status < B_OK) 2158 goto err4; 2159 2160 if (thread->user_thread == NULL) { 2161 #if KDEBUG 2162 panic("user data area not found, parent area is %" B_PRId32, 2163 parentTeam->user_data_area); 2164 #endif 2165 status = B_ERROR; 2166 goto err4; 2167 } 2168 2169 thread->user_stack_base = parentThread->user_stack_base; 2170 thread->user_stack_size = parentThread->user_stack_size; 2171 thread->user_local_storage = parentThread->user_local_storage; 2172 thread->sig_block_mask = parentThread->sig_block_mask; 2173 thread->signal_stack_base = parentThread->signal_stack_base; 2174 thread->signal_stack_size = parentThread->signal_stack_size; 2175 thread->signal_stack_enabled = parentThread->signal_stack_enabled; 2176 2177 arch_store_fork_frame(forkArgs); 2178 2179 // copy image list 2180 if (copy_images(parentTeam->id, team) != B_OK) 2181 goto err5; 2182 2183 // create the main thread 2184 { 2185 ThreadCreationAttributes threadCreationAttributes(NULL, 2186 parentThread->name, parentThread->priority, NULL, team->id, thread); 2187 threadCreationAttributes.forkArgs = forkArgs; 2188 threadCreationAttributes.flags |= THREAD_CREATION_FLAG_DEFER_SIGNALS; 2189 threadID = thread_create_thread(threadCreationAttributes, false); 2190 if (threadID < 0) { 2191 status = threadID; 2192 goto err5; 2193 } 2194 } 2195 2196 // notify the debugger 2197 user_debug_team_created(team->id); 2198 2199 T(TeamForked(threadID)); 2200 2201 resume_thread(threadID); 2202 return threadID; 2203 2204 err5: 2205 remove_images(team); 2206 err4: 2207 team->address_space->RemoveAndPut(); 2208 err3: 2209 delete_realtime_sem_context(team->realtime_sem_context); 2210 err2: 2211 free(forkArgs); 2212 err1: 2213 // Remove the team structure from the process group, the parent team, and 2214 // the team hash table and delete the team structure. 2215 parentTeam->LockTeamAndProcessGroup(); 2216 team->Lock(); 2217 2218 remove_team_from_group(team); 2219 remove_team_from_parent(team->parent, team); 2220 2221 team->Unlock(); 2222 parentTeam->UnlockTeamAndProcessGroup(); 2223 2224 teamsLocker.Lock(); 2225 sTeamHash.Remove(team); 2226 if (!teamLimitReached) 2227 sUsedTeams--; 2228 teamsLocker.Unlock(); 2229 2230 sNotificationService.Notify(TEAM_REMOVED, team); 2231 2232 team->ReleaseReference(); 2233 2234 return status; 2235 } 2236 2237 2238 /*! Returns if the specified team \a parent has any children belonging to the 2239 process group with the specified ID \a groupID. 2240 The caller must hold \a parent's lock. 2241 */ 2242 static bool 2243 has_children_in_group(Team* parent, pid_t groupID) 2244 { 2245 for (Team* child = parent->children; child != NULL; 2246 child = child->siblings_next) { 2247 TeamLocker childLocker(child); 2248 if (child->group_id == groupID) 2249 return true; 2250 } 2251 2252 return false; 2253 } 2254 2255 2256 /*! Returns the first job control entry from \a children, which matches \a id. 2257 \a id can be: 2258 - \code > 0 \endcode: Matching an entry with that team ID. 2259 - \code == -1 \endcode: Matching any entry. 2260 - \code < -1 \endcode: Matching any entry with a process group ID of \c -id. 2261 \c 0 is an invalid value for \a id. 2262 2263 The caller must hold the lock of the team that \a children belongs to. 2264 2265 \param children The job control entry list to check. 2266 \param id The match criterion. 2267 \return The first matching entry or \c NULL, if none matches. 2268 */ 2269 static job_control_entry* 2270 get_job_control_entry(team_job_control_children& children, pid_t id) 2271 { 2272 for (JobControlEntryList::Iterator it = children.entries.GetIterator(); 2273 job_control_entry* entry = it.Next();) { 2274 2275 if (id > 0) { 2276 if (entry->thread == id) 2277 return entry; 2278 } else if (id == -1) { 2279 return entry; 2280 } else { 2281 pid_t processGroup 2282 = (entry->team ? entry->team->group_id : entry->group_id); 2283 if (processGroup == -id) 2284 return entry; 2285 } 2286 } 2287 2288 return NULL; 2289 } 2290 2291 2292 /*! Returns the first job control entry from one of team's dead, continued, or 2293 stopped children which matches \a id. 2294 \a id can be: 2295 - \code > 0 \endcode: Matching an entry with that team ID. 2296 - \code == -1 \endcode: Matching any entry. 2297 - \code < -1 \endcode: Matching any entry with a process group ID of \c -id. 2298 \c 0 is an invalid value for \a id. 2299 2300 The caller must hold \a team's lock. 2301 2302 \param team The team whose dead, stopped, and continued child lists shall be 2303 checked. 2304 \param id The match criterion. 2305 \param flags Specifies which children shall be considered. Dead children 2306 always are. Stopped children are considered when \a flags is ORed 2307 bitwise with \c WUNTRACED, continued children when \a flags is ORed 2308 bitwise with \c WCONTINUED. 2309 \return The first matching entry or \c NULL, if none matches. 2310 */ 2311 static job_control_entry* 2312 get_job_control_entry(Team* team, pid_t id, uint32 flags) 2313 { 2314 job_control_entry* entry = get_job_control_entry(team->dead_children, id); 2315 2316 if (entry == NULL && (flags & WCONTINUED) != 0) 2317 entry = get_job_control_entry(team->continued_children, id); 2318 2319 if (entry == NULL && (flags & WUNTRACED) != 0) 2320 entry = get_job_control_entry(team->stopped_children, id); 2321 2322 return entry; 2323 } 2324 2325 2326 job_control_entry::job_control_entry() 2327 : 2328 has_group_ref(false) 2329 { 2330 } 2331 2332 2333 job_control_entry::~job_control_entry() 2334 { 2335 if (has_group_ref) { 2336 InterruptsSpinLocker groupHashLocker(sGroupHashLock); 2337 2338 ProcessGroup* group = sGroupHash.Lookup(group_id); 2339 if (group == NULL) { 2340 panic("job_control_entry::~job_control_entry(): unknown group " 2341 "ID: %" B_PRId32, group_id); 2342 return; 2343 } 2344 2345 groupHashLocker.Unlock(); 2346 2347 group->ReleaseReference(); 2348 } 2349 } 2350 2351 2352 /*! Invoked when the owning team is dying, initializing the entry according to 2353 the dead state. 2354 2355 The caller must hold the owning team's lock and the scheduler lock. 2356 */ 2357 void 2358 job_control_entry::InitDeadState() 2359 { 2360 if (team != NULL) { 2361 ASSERT(team->exit.initialized); 2362 2363 group_id = team->group_id; 2364 team->group->AcquireReference(); 2365 has_group_ref = true; 2366 2367 thread = team->id; 2368 status = team->exit.status; 2369 reason = team->exit.reason; 2370 signal = team->exit.signal; 2371 signaling_user = team->exit.signaling_user; 2372 2373 team = NULL; 2374 } 2375 } 2376 2377 2378 job_control_entry& 2379 job_control_entry::operator=(const job_control_entry& other) 2380 { 2381 state = other.state; 2382 thread = other.thread; 2383 signal = other.signal; 2384 has_group_ref = false; 2385 signaling_user = other.signaling_user; 2386 team = other.team; 2387 group_id = other.group_id; 2388 status = other.status; 2389 reason = other.reason; 2390 2391 return *this; 2392 } 2393 2394 2395 /*! This is the kernel backend for waitid(). 2396 */ 2397 static thread_id 2398 wait_for_child(pid_t child, uint32 flags, siginfo_t& _info) 2399 { 2400 Thread* thread = thread_get_current_thread(); 2401 Team* team = thread->team; 2402 struct job_control_entry foundEntry; 2403 struct job_control_entry* freeDeathEntry = NULL; 2404 status_t status = B_OK; 2405 2406 TRACE(("wait_for_child(child = %" B_PRId32 ", flags = %" B_PRId32 ")\n", 2407 child, flags)); 2408 2409 T(WaitForChild(child, flags)); 2410 2411 pid_t originalChild = child; 2412 2413 bool ignoreFoundEntries = false; 2414 bool ignoreFoundEntriesChecked = false; 2415 2416 while (true) { 2417 // lock the team 2418 TeamLocker teamLocker(team); 2419 2420 // A 0 child argument means to wait for all children in the process 2421 // group of the calling team. 2422 child = originalChild == 0 ? -team->group_id : originalChild; 2423 2424 // check whether any condition holds 2425 job_control_entry* entry = get_job_control_entry(team, child, flags); 2426 2427 // If we don't have an entry yet, check whether there are any children 2428 // complying to the process group specification at all. 2429 if (entry == NULL) { 2430 // No success yet -- check whether there are any children complying 2431 // to the process group specification at all. 2432 bool childrenExist = false; 2433 if (child == -1) { 2434 childrenExist = team->children != NULL; 2435 } else if (child < -1) { 2436 childrenExist = has_children_in_group(team, -child); 2437 } else { 2438 if (Team* childTeam = Team::Get(child)) { 2439 BReference<Team> childTeamReference(childTeam, true); 2440 TeamLocker childTeamLocker(childTeam); 2441 childrenExist = childTeam->parent == team; 2442 } 2443 } 2444 2445 if (!childrenExist) { 2446 // there is no child we could wait for 2447 status = ECHILD; 2448 } else { 2449 // the children we're waiting for are still running 2450 status = B_WOULD_BLOCK; 2451 } 2452 } else { 2453 // got something 2454 foundEntry = *entry; 2455 2456 // unless WNOWAIT has been specified, "consume" the wait state 2457 if ((flags & WNOWAIT) == 0 || ignoreFoundEntries) { 2458 if (entry->state == JOB_CONTROL_STATE_DEAD) { 2459 // The child is dead. Reap its death entry. 2460 freeDeathEntry = entry; 2461 team->dead_children.entries.Remove(entry); 2462 team->dead_children.count--; 2463 } else { 2464 // The child is well. Reset its job control state. 2465 team_set_job_control_state(entry->team, 2466 JOB_CONTROL_STATE_NONE, NULL); 2467 } 2468 } 2469 } 2470 2471 // If we haven't got anything yet, prepare for waiting for the 2472 // condition variable. 2473 ConditionVariableEntry deadWaitEntry; 2474 2475 if (status == B_WOULD_BLOCK && (flags & WNOHANG) == 0) 2476 team->dead_children.condition_variable.Add(&deadWaitEntry); 2477 2478 teamLocker.Unlock(); 2479 2480 // we got our entry and can return to our caller 2481 if (status == B_OK) { 2482 if (ignoreFoundEntries) { 2483 // ... unless we shall ignore found entries 2484 delete freeDeathEntry; 2485 freeDeathEntry = NULL; 2486 continue; 2487 } 2488 2489 break; 2490 } 2491 2492 if (status != B_WOULD_BLOCK || (flags & WNOHANG) != 0) { 2493 T(WaitForChildDone(status)); 2494 return status; 2495 } 2496 2497 status = deadWaitEntry.Wait(B_CAN_INTERRUPT); 2498 if (status == B_INTERRUPTED) { 2499 T(WaitForChildDone(status)); 2500 return status; 2501 } 2502 2503 // If SA_NOCLDWAIT is set or SIGCHLD is ignored, we shall wait until 2504 // all our children are dead and fail with ECHILD. We check the 2505 // condition at this point. 2506 if (!ignoreFoundEntriesChecked) { 2507 teamLocker.Lock(); 2508 2509 struct sigaction& handler = team->SignalActionFor(SIGCHLD); 2510 if ((handler.sa_flags & SA_NOCLDWAIT) != 0 2511 || handler.sa_handler == SIG_IGN) { 2512 ignoreFoundEntries = true; 2513 } 2514 2515 teamLocker.Unlock(); 2516 2517 ignoreFoundEntriesChecked = true; 2518 } 2519 } 2520 2521 delete freeDeathEntry; 2522 2523 // When we got here, we have a valid death entry, and already got 2524 // unregistered from the team or group. Fill in the returned info. 2525 memset(&_info, 0, sizeof(_info)); 2526 _info.si_signo = SIGCHLD; 2527 _info.si_pid = foundEntry.thread; 2528 _info.si_uid = foundEntry.signaling_user; 2529 // TODO: Fill in si_errno? 2530 2531 switch (foundEntry.state) { 2532 case JOB_CONTROL_STATE_DEAD: 2533 _info.si_code = foundEntry.reason; 2534 _info.si_status = foundEntry.reason == CLD_EXITED 2535 ? foundEntry.status : foundEntry.signal; 2536 break; 2537 case JOB_CONTROL_STATE_STOPPED: 2538 _info.si_code = CLD_STOPPED; 2539 _info.si_status = foundEntry.signal; 2540 break; 2541 case JOB_CONTROL_STATE_CONTINUED: 2542 _info.si_code = CLD_CONTINUED; 2543 _info.si_status = 0; 2544 break; 2545 case JOB_CONTROL_STATE_NONE: 2546 // can't happen 2547 break; 2548 } 2549 2550 // If SIGCHLD is blocked, we shall clear pending SIGCHLDs, if no other child 2551 // status is available. 2552 TeamLocker teamLocker(team); 2553 InterruptsSpinLocker signalLocker(team->signal_lock); 2554 SpinLocker threadCreationLocker(gThreadCreationLock); 2555 2556 if (is_team_signal_blocked(team, SIGCHLD)) { 2557 if (get_job_control_entry(team, child, flags) == NULL) 2558 team->RemovePendingSignals(SIGNAL_TO_MASK(SIGCHLD)); 2559 } 2560 2561 threadCreationLocker.Unlock(); 2562 signalLocker.Unlock(); 2563 teamLocker.Unlock(); 2564 2565 // When the team is dead, the main thread continues to live in the kernel 2566 // team for a very short time. To avoid surprises for the caller we rather 2567 // wait until the thread is really gone. 2568 if (foundEntry.state == JOB_CONTROL_STATE_DEAD) 2569 wait_for_thread(foundEntry.thread, NULL); 2570 2571 T(WaitForChildDone(foundEntry)); 2572 2573 return foundEntry.thread; 2574 } 2575 2576 2577 /*! Fills the team_info structure with information from the specified team. 2578 Interrupts must be enabled. The team must not be locked. 2579 */ 2580 static status_t 2581 fill_team_info(Team* team, team_info* info, size_t size) 2582 { 2583 if (size != sizeof(team_info)) 2584 return B_BAD_VALUE; 2585 2586 // TODO: Set more informations for team_info 2587 memset(info, 0, size); 2588 2589 info->team = team->id; 2590 // immutable 2591 info->image_count = count_images(team); 2592 // protected by sImageMutex 2593 2594 TeamLocker teamLocker(team); 2595 InterruptsSpinLocker debugInfoLocker(team->debug_info.lock); 2596 2597 info->thread_count = team->num_threads; 2598 //info->area_count = 2599 info->debugger_nub_thread = team->debug_info.nub_thread; 2600 info->debugger_nub_port = team->debug_info.nub_port; 2601 info->uid = team->effective_uid; 2602 info->gid = team->effective_gid; 2603 2604 strlcpy(info->args, team->Args(), sizeof(info->args)); 2605 info->argc = 1; 2606 2607 return B_OK; 2608 } 2609 2610 2611 /*! Returns whether the process group contains stopped processes. 2612 The caller must hold the process group's lock. 2613 */ 2614 static bool 2615 process_group_has_stopped_processes(ProcessGroup* group) 2616 { 2617 Team* team = group->teams; 2618 while (team != NULL) { 2619 // the parent team's lock guards the job control entry -- acquire it 2620 team->LockTeamAndParent(false); 2621 2622 if (team->job_control_entry != NULL 2623 && team->job_control_entry->state == JOB_CONTROL_STATE_STOPPED) { 2624 team->UnlockTeamAndParent(); 2625 return true; 2626 } 2627 2628 team->UnlockTeamAndParent(); 2629 2630 team = team->group_next; 2631 } 2632 2633 return false; 2634 } 2635 2636 2637 /*! Iterates through all process groups queued in team_remove_team() and signals 2638 those that are orphaned and have stopped processes. 2639 The caller must not hold any team or process group locks. 2640 */ 2641 static void 2642 orphaned_process_group_check() 2643 { 2644 // process as long as there are groups in the list 2645 while (true) { 2646 // remove the head from the list 2647 MutexLocker orphanedCheckLocker(sOrphanedCheckLock); 2648 2649 ProcessGroup* group = sOrphanedCheckProcessGroups.RemoveHead(); 2650 if (group == NULL) 2651 return; 2652 2653 group->UnsetOrphanedCheck(); 2654 BReference<ProcessGroup> groupReference(group); 2655 2656 orphanedCheckLocker.Unlock(); 2657 2658 AutoLocker<ProcessGroup> groupLocker(group); 2659 2660 // If the group is orphaned and contains stopped processes, we're 2661 // supposed to send SIGHUP + SIGCONT. 2662 if (group->IsOrphaned() && process_group_has_stopped_processes(group)) { 2663 Thread* currentThread = thread_get_current_thread(); 2664 2665 Signal signal(SIGHUP, SI_USER, B_OK, currentThread->team->id); 2666 send_signal_to_process_group_locked(group, signal, 0); 2667 2668 signal.SetNumber(SIGCONT); 2669 send_signal_to_process_group_locked(group, signal, 0); 2670 } 2671 } 2672 } 2673 2674 2675 static status_t 2676 common_get_team_usage_info(team_id id, int32 who, team_usage_info* info, 2677 uint32 flags) 2678 { 2679 if (who != B_TEAM_USAGE_SELF && who != B_TEAM_USAGE_CHILDREN) 2680 return B_BAD_VALUE; 2681 2682 // get the team 2683 Team* team = Team::GetAndLock(id); 2684 if (team == NULL) 2685 return B_BAD_TEAM_ID; 2686 BReference<Team> teamReference(team, true); 2687 TeamLocker teamLocker(team, true); 2688 2689 if ((flags & B_CHECK_PERMISSION) != 0) { 2690 uid_t uid = geteuid(); 2691 if (uid != 0 && uid != team->effective_uid) 2692 return B_NOT_ALLOWED; 2693 } 2694 2695 bigtime_t kernelTime = 0; 2696 bigtime_t userTime = 0; 2697 2698 switch (who) { 2699 case B_TEAM_USAGE_SELF: 2700 { 2701 Thread* thread = team->thread_list; 2702 2703 for (; thread != NULL; thread = thread->team_next) { 2704 InterruptsSpinLocker threadTimeLocker(thread->time_lock); 2705 kernelTime += thread->kernel_time; 2706 userTime += thread->user_time; 2707 } 2708 2709 kernelTime += team->dead_threads_kernel_time; 2710 userTime += team->dead_threads_user_time; 2711 break; 2712 } 2713 2714 case B_TEAM_USAGE_CHILDREN: 2715 { 2716 Team* child = team->children; 2717 for (; child != NULL; child = child->siblings_next) { 2718 TeamLocker childLocker(child); 2719 2720 Thread* thread = team->thread_list; 2721 2722 for (; thread != NULL; thread = thread->team_next) { 2723 InterruptsSpinLocker threadTimeLocker(thread->time_lock); 2724 kernelTime += thread->kernel_time; 2725 userTime += thread->user_time; 2726 } 2727 2728 kernelTime += child->dead_threads_kernel_time; 2729 userTime += child->dead_threads_user_time; 2730 } 2731 2732 kernelTime += team->dead_children.kernel_time; 2733 userTime += team->dead_children.user_time; 2734 break; 2735 } 2736 } 2737 2738 info->kernel_time = kernelTime; 2739 info->user_time = userTime; 2740 2741 return B_OK; 2742 } 2743 2744 2745 // #pragma mark - Private kernel API 2746 2747 2748 status_t 2749 team_init(kernel_args* args) 2750 { 2751 // create the team hash table 2752 new(&sTeamHash) TeamTable; 2753 if (sTeamHash.Init(64) != B_OK) 2754 panic("Failed to init team hash table!"); 2755 2756 new(&sGroupHash) ProcessGroupHashTable; 2757 if (sGroupHash.Init() != B_OK) 2758 panic("Failed to init process group hash table!"); 2759 2760 // create initial session and process groups 2761 2762 ProcessSession* session = new(std::nothrow) ProcessSession(1); 2763 if (session == NULL) 2764 panic("Could not create initial session.\n"); 2765 BReference<ProcessSession> sessionReference(session, true); 2766 2767 ProcessGroup* group = new(std::nothrow) ProcessGroup(1); 2768 if (group == NULL) 2769 panic("Could not create initial process group.\n"); 2770 BReference<ProcessGroup> groupReference(group, true); 2771 2772 group->Publish(session); 2773 2774 // create the kernel team 2775 sKernelTeam = Team::Create(1, "kernel_team", true); 2776 if (sKernelTeam == NULL) 2777 panic("could not create kernel team!\n"); 2778 sKernelTeam->SetArgs(sKernelTeam->Name()); 2779 sKernelTeam->state = TEAM_STATE_NORMAL; 2780 2781 sKernelTeam->saved_set_uid = 0; 2782 sKernelTeam->real_uid = 0; 2783 sKernelTeam->effective_uid = 0; 2784 sKernelTeam->saved_set_gid = 0; 2785 sKernelTeam->real_gid = 0; 2786 sKernelTeam->effective_gid = 0; 2787 sKernelTeam->supplementary_groups = NULL; 2788 sKernelTeam->supplementary_group_count = 0; 2789 2790 insert_team_into_group(group, sKernelTeam); 2791 2792 sKernelTeam->io_context = vfs_new_io_context(NULL, false); 2793 if (sKernelTeam->io_context == NULL) 2794 panic("could not create io_context for kernel team!\n"); 2795 2796 if (vfs_resize_fd_table(sKernelTeam->io_context, 4096) != B_OK) 2797 dprintf("Failed to resize FD table for kernel team!\n"); 2798 2799 // stick it in the team hash 2800 sTeamHash.Insert(sKernelTeam); 2801 2802 add_debugger_command_etc("team", &dump_team_info, 2803 "Dump info about a particular team", 2804 "[ <id> | <address> | <name> ]\n" 2805 "Prints information about the specified team. If no argument is given\n" 2806 "the current team is selected.\n" 2807 " <id> - The ID of the team.\n" 2808 " <address> - The address of the team structure.\n" 2809 " <name> - The team's name.\n", 0); 2810 add_debugger_command_etc("teams", &dump_teams, "List all teams", 2811 "\n" 2812 "Prints a list of all existing teams.\n", 0); 2813 2814 new(&sNotificationService) TeamNotificationService(); 2815 2816 sNotificationService.Register(); 2817 2818 return B_OK; 2819 } 2820 2821 2822 int32 2823 team_max_teams(void) 2824 { 2825 return sMaxTeams; 2826 } 2827 2828 2829 int32 2830 team_used_teams(void) 2831 { 2832 InterruptsSpinLocker teamsLocker(sTeamHashLock); 2833 return sUsedTeams; 2834 } 2835 2836 2837 /*! Returns a death entry of a child team specified by ID (if any). 2838 The caller must hold the team's lock. 2839 2840 \param team The team whose dead children list to check. 2841 \param child The ID of the child for whose death entry to lock. Must be > 0. 2842 \param _deleteEntry Return variable, indicating whether the caller needs to 2843 delete the returned entry. 2844 \return The death entry of the matching team, or \c NULL, if no death entry 2845 for the team was found. 2846 */ 2847 job_control_entry* 2848 team_get_death_entry(Team* team, thread_id child, bool* _deleteEntry) 2849 { 2850 if (child <= 0) 2851 return NULL; 2852 2853 job_control_entry* entry = get_job_control_entry(team->dead_children, 2854 child); 2855 if (entry) { 2856 // remove the entry only, if the caller is the parent of the found team 2857 if (team_get_current_team_id() == entry->thread) { 2858 team->dead_children.entries.Remove(entry); 2859 team->dead_children.count--; 2860 *_deleteEntry = true; 2861 } else { 2862 *_deleteEntry = false; 2863 } 2864 } 2865 2866 return entry; 2867 } 2868 2869 2870 /*! Quick check to see if we have a valid team ID. */ 2871 bool 2872 team_is_valid(team_id id) 2873 { 2874 if (id <= 0) 2875 return false; 2876 2877 InterruptsSpinLocker teamsLocker(sTeamHashLock); 2878 2879 return team_get_team_struct_locked(id) != NULL; 2880 } 2881 2882 2883 Team* 2884 team_get_team_struct_locked(team_id id) 2885 { 2886 return sTeamHash.Lookup(id); 2887 } 2888 2889 2890 void 2891 team_set_controlling_tty(int32 ttyIndex) 2892 { 2893 // lock the team, so its session won't change while we're playing with it 2894 Team* team = thread_get_current_thread()->team; 2895 TeamLocker teamLocker(team); 2896 2897 // get and lock the session 2898 ProcessSession* session = team->group->Session(); 2899 AutoLocker<ProcessSession> sessionLocker(session); 2900 2901 // set the session's fields 2902 session->controlling_tty = ttyIndex; 2903 session->foreground_group = -1; 2904 } 2905 2906 2907 int32 2908 team_get_controlling_tty() 2909 { 2910 // lock the team, so its session won't change while we're playing with it 2911 Team* team = thread_get_current_thread()->team; 2912 TeamLocker teamLocker(team); 2913 2914 // get and lock the session 2915 ProcessSession* session = team->group->Session(); 2916 AutoLocker<ProcessSession> sessionLocker(session); 2917 2918 // get the session's field 2919 return session->controlling_tty; 2920 } 2921 2922 2923 status_t 2924 team_set_foreground_process_group(int32 ttyIndex, pid_t processGroupID) 2925 { 2926 // lock the team, so its session won't change while we're playing with it 2927 Thread* thread = thread_get_current_thread(); 2928 Team* team = thread->team; 2929 TeamLocker teamLocker(team); 2930 2931 // get and lock the session 2932 ProcessSession* session = team->group->Session(); 2933 AutoLocker<ProcessSession> sessionLocker(session); 2934 2935 // check given TTY -- must be the controlling tty of the calling process 2936 if (session->controlling_tty != ttyIndex) 2937 return ENOTTY; 2938 2939 // check given process group -- must belong to our session 2940 { 2941 InterruptsSpinLocker groupHashLocker(sGroupHashLock); 2942 ProcessGroup* group = sGroupHash.Lookup(processGroupID); 2943 if (group == NULL || group->Session() != session) 2944 return B_BAD_VALUE; 2945 } 2946 2947 // If we are a background group, we can do that unharmed only when we 2948 // ignore or block SIGTTOU. Otherwise the group gets a SIGTTOU. 2949 if (session->foreground_group != -1 2950 && session->foreground_group != team->group_id 2951 && team->SignalActionFor(SIGTTOU).sa_handler != SIG_IGN 2952 && (thread->sig_block_mask & SIGNAL_TO_MASK(SIGTTOU)) == 0) { 2953 InterruptsSpinLocker signalLocker(team->signal_lock); 2954 2955 if (!is_team_signal_blocked(team, SIGTTOU)) { 2956 pid_t groupID = team->group_id; 2957 2958 signalLocker.Unlock(); 2959 sessionLocker.Unlock(); 2960 teamLocker.Unlock(); 2961 2962 Signal signal(SIGTTOU, SI_USER, B_OK, team->id); 2963 send_signal_to_process_group(groupID, signal, 0); 2964 return B_INTERRUPTED; 2965 } 2966 } 2967 2968 session->foreground_group = processGroupID; 2969 2970 return B_OK; 2971 } 2972 2973 2974 /*! Removes the specified team from the global team hash, from its process 2975 group, and from its parent. 2976 It also moves all of its children to the kernel team. 2977 2978 The caller must hold the following locks: 2979 - \a team's process group's lock, 2980 - the kernel team's lock, 2981 - \a team's parent team's lock (might be the kernel team), and 2982 - \a team's lock. 2983 */ 2984 void 2985 team_remove_team(Team* team, pid_t& _signalGroup) 2986 { 2987 Team* parent = team->parent; 2988 2989 // remember how long this team lasted 2990 parent->dead_children.kernel_time += team->dead_threads_kernel_time 2991 + team->dead_children.kernel_time; 2992 parent->dead_children.user_time += team->dead_threads_user_time 2993 + team->dead_children.user_time; 2994 2995 // remove the team from the hash table 2996 InterruptsSpinLocker teamsLocker(sTeamHashLock); 2997 sTeamHash.Remove(team); 2998 sUsedTeams--; 2999 teamsLocker.Unlock(); 3000 3001 // The team can no longer be accessed by ID. Navigation to it is still 3002 // possible from its process group and its parent and children, but that 3003 // will be rectified shortly. 3004 team->state = TEAM_STATE_DEATH; 3005 3006 // If we're a controlling process (i.e. a session leader with controlling 3007 // terminal), there's a bit of signalling we have to do. We can't do any of 3008 // the signaling here due to the bunch of locks we're holding, but we need 3009 // to determine, whom to signal. 3010 _signalGroup = -1; 3011 bool isSessionLeader = false; 3012 if (team->session_id == team->id 3013 && team->group->Session()->controlling_tty >= 0) { 3014 isSessionLeader = true; 3015 3016 ProcessSession* session = team->group->Session(); 3017 3018 AutoLocker<ProcessSession> sessionLocker(session); 3019 3020 session->controlling_tty = -1; 3021 _signalGroup = session->foreground_group; 3022 } 3023 3024 // remove us from our process group 3025 remove_team_from_group(team); 3026 3027 // move the team's children to the kernel team 3028 while (Team* child = team->children) { 3029 // remove the child from the current team and add it to the kernel team 3030 TeamLocker childLocker(child); 3031 3032 remove_team_from_parent(team, child); 3033 insert_team_into_parent(sKernelTeam, child); 3034 3035 // move job control entries too 3036 sKernelTeam->stopped_children.entries.MoveFrom( 3037 &team->stopped_children.entries); 3038 sKernelTeam->continued_children.entries.MoveFrom( 3039 &team->continued_children.entries); 3040 3041 // If the team was a session leader with controlling terminal, 3042 // we need to send SIGHUP + SIGCONT to all newly-orphaned process 3043 // groups with stopped processes. Due to locking complications we can't 3044 // do that here, so we only check whether we were a reason for the 3045 // child's process group not being an orphan and, if so, schedule a 3046 // later check (cf. orphaned_process_group_check()). 3047 if (isSessionLeader) { 3048 ProcessGroup* childGroup = child->group; 3049 if (childGroup->Session()->id == team->session_id 3050 && childGroup->id != team->group_id) { 3051 childGroup->ScheduleOrphanedCheck(); 3052 } 3053 } 3054 3055 // Note, we don't move the dead children entries. Those will be deleted 3056 // when the team structure is deleted. 3057 } 3058 3059 // remove us from our parent 3060 remove_team_from_parent(parent, team); 3061 } 3062 3063 3064 /*! Kills all threads but the main thread of the team and shuts down user 3065 debugging for it. 3066 To be called on exit of the team's main thread. No locks must be held. 3067 3068 \param team The team in question. 3069 \return The port of the debugger for the team, -1 if none. To be passed to 3070 team_delete_team(). 3071 */ 3072 port_id 3073 team_shutdown_team(Team* team) 3074 { 3075 ASSERT(thread_get_current_thread() == team->main_thread); 3076 3077 TeamLocker teamLocker(team); 3078 3079 // Make sure debugging changes won't happen anymore. 3080 port_id debuggerPort = -1; 3081 while (true) { 3082 // If a debugger change is in progress for the team, we'll have to 3083 // wait until it is done. 3084 ConditionVariableEntry waitForDebuggerEntry; 3085 bool waitForDebugger = false; 3086 3087 InterruptsSpinLocker debugInfoLocker(team->debug_info.lock); 3088 3089 if (team->debug_info.debugger_changed_condition != NULL) { 3090 team->debug_info.debugger_changed_condition->Add( 3091 &waitForDebuggerEntry); 3092 waitForDebugger = true; 3093 } else if (team->debug_info.flags & B_TEAM_DEBUG_DEBUGGER_INSTALLED) { 3094 // The team is being debugged. That will stop with the termination 3095 // of the nub thread. Since we set the team state to death, no one 3096 // can install a debugger anymore. We fetch the debugger's port to 3097 // send it a message at the bitter end. 3098 debuggerPort = team->debug_info.debugger_port; 3099 } 3100 3101 debugInfoLocker.Unlock(); 3102 3103 if (!waitForDebugger) 3104 break; 3105 3106 // wait for the debugger change to be finished 3107 teamLocker.Unlock(); 3108 3109 waitForDebuggerEntry.Wait(); 3110 3111 teamLocker.Lock(); 3112 } 3113 3114 // Mark the team as shutting down. That will prevent new threads from being 3115 // created and debugger changes from taking place. 3116 team->state = TEAM_STATE_SHUTDOWN; 3117 3118 // delete all timers 3119 team->DeleteUserTimers(false); 3120 3121 // deactivate CPU time user timers for the team 3122 InterruptsSpinLocker timeLocker(team->time_lock); 3123 3124 if (team->HasActiveCPUTimeUserTimers()) 3125 team->DeactivateCPUTimeUserTimers(); 3126 3127 timeLocker.Unlock(); 3128 3129 // kill all threads but the main thread 3130 team_death_entry deathEntry; 3131 deathEntry.condition.Init(team, "team death"); 3132 3133 while (true) { 3134 team->death_entry = &deathEntry; 3135 deathEntry.remaining_threads = 0; 3136 3137 Thread* thread = team->thread_list; 3138 while (thread != NULL) { 3139 if (thread != team->main_thread) { 3140 Signal signal(SIGKILLTHR, SI_USER, B_OK, team->id); 3141 send_signal_to_thread(thread, signal, B_DO_NOT_RESCHEDULE); 3142 deathEntry.remaining_threads++; 3143 } 3144 3145 thread = thread->team_next; 3146 } 3147 3148 if (deathEntry.remaining_threads == 0) 3149 break; 3150 3151 // there are threads to wait for 3152 ConditionVariableEntry entry; 3153 deathEntry.condition.Add(&entry); 3154 3155 teamLocker.Unlock(); 3156 3157 entry.Wait(); 3158 3159 teamLocker.Lock(); 3160 } 3161 3162 team->death_entry = NULL; 3163 3164 return debuggerPort; 3165 } 3166 3167 3168 /*! Called on team exit to notify threads waiting on the team and free most 3169 resources associated with it. 3170 The caller shouldn't hold any locks. 3171 */ 3172 void 3173 team_delete_team(Team* team, port_id debuggerPort) 3174 { 3175 // Not quite in our job description, but work that has been left by 3176 // team_remove_team() and that can be done now that we're not holding any 3177 // locks. 3178 orphaned_process_group_check(); 3179 3180 team_id teamID = team->id; 3181 3182 ASSERT(team->num_threads == 0); 3183 3184 // If someone is waiting for this team to be loaded, but it dies 3185 // unexpectedly before being done, we need to notify the waiting 3186 // thread now. 3187 3188 TeamLocker teamLocker(team); 3189 3190 if (team->loading_info) { 3191 // there's indeed someone waiting 3192 struct team_loading_info* loadingInfo = team->loading_info; 3193 team->loading_info = NULL; 3194 3195 loadingInfo->result = B_ERROR; 3196 loadingInfo->done = true; 3197 3198 // wake up the waiting thread 3199 thread_continue(loadingInfo->thread); 3200 } 3201 3202 // notify team watchers 3203 3204 { 3205 // we're not reachable from anyone anymore at this point, so we 3206 // can safely access the list without any locking 3207 struct team_watcher* watcher; 3208 while ((watcher = (struct team_watcher*)list_remove_head_item( 3209 &team->watcher_list)) != NULL) { 3210 watcher->hook(teamID, watcher->data); 3211 free(watcher); 3212 } 3213 } 3214 3215 teamLocker.Unlock(); 3216 3217 sNotificationService.Notify(TEAM_REMOVED, team); 3218 3219 // free team resources 3220 3221 delete_realtime_sem_context(team->realtime_sem_context); 3222 xsi_sem_undo(team); 3223 remove_images(team); 3224 team->address_space->RemoveAndPut(); 3225 3226 team->ReleaseReference(); 3227 3228 // notify the debugger, that the team is gone 3229 user_debug_team_deleted(teamID, debuggerPort); 3230 } 3231 3232 3233 Team* 3234 team_get_kernel_team(void) 3235 { 3236 return sKernelTeam; 3237 } 3238 3239 3240 team_id 3241 team_get_kernel_team_id(void) 3242 { 3243 if (!sKernelTeam) 3244 return 0; 3245 3246 return sKernelTeam->id; 3247 } 3248 3249 3250 team_id 3251 team_get_current_team_id(void) 3252 { 3253 return thread_get_current_thread()->team->id; 3254 } 3255 3256 3257 status_t 3258 team_get_address_space(team_id id, VMAddressSpace** _addressSpace) 3259 { 3260 if (id == sKernelTeam->id) { 3261 // we're the kernel team, so we don't have to go through all 3262 // the hassle (locking and hash lookup) 3263 *_addressSpace = VMAddressSpace::GetKernel(); 3264 return B_OK; 3265 } 3266 3267 InterruptsSpinLocker teamsLocker(sTeamHashLock); 3268 3269 Team* team = team_get_team_struct_locked(id); 3270 if (team == NULL) 3271 return B_BAD_VALUE; 3272 3273 team->address_space->Get(); 3274 *_addressSpace = team->address_space; 3275 return B_OK; 3276 } 3277 3278 3279 /*! Sets the team's job control state. 3280 The caller must hold the parent team's lock. Interrupts are allowed to be 3281 enabled or disabled. 3282 \a team The team whose job control state shall be set. 3283 \a newState The new state to be set. 3284 \a signal The signal the new state was caused by. Can \c NULL, if none. Then 3285 the caller is responsible for filling in the following fields of the 3286 entry before releasing the parent team's lock, unless the new state is 3287 \c JOB_CONTROL_STATE_NONE: 3288 - \c signal: The number of the signal causing the state change. 3289 - \c signaling_user: The real UID of the user sending the signal. 3290 */ 3291 void 3292 team_set_job_control_state(Team* team, job_control_state newState, 3293 Signal* signal) 3294 { 3295 if (team == NULL || team->job_control_entry == NULL) 3296 return; 3297 3298 // don't touch anything, if the state stays the same or the team is already 3299 // dead 3300 job_control_entry* entry = team->job_control_entry; 3301 if (entry->state == newState || entry->state == JOB_CONTROL_STATE_DEAD) 3302 return; 3303 3304 T(SetJobControlState(team->id, newState, signal)); 3305 3306 // remove from the old list 3307 switch (entry->state) { 3308 case JOB_CONTROL_STATE_NONE: 3309 // entry is in no list ATM 3310 break; 3311 case JOB_CONTROL_STATE_DEAD: 3312 // can't get here 3313 break; 3314 case JOB_CONTROL_STATE_STOPPED: 3315 team->parent->stopped_children.entries.Remove(entry); 3316 break; 3317 case JOB_CONTROL_STATE_CONTINUED: 3318 team->parent->continued_children.entries.Remove(entry); 3319 break; 3320 } 3321 3322 entry->state = newState; 3323 3324 if (signal != NULL) { 3325 entry->signal = signal->Number(); 3326 entry->signaling_user = signal->SendingUser(); 3327 } 3328 3329 // add to new list 3330 team_job_control_children* childList = NULL; 3331 switch (entry->state) { 3332 case JOB_CONTROL_STATE_NONE: 3333 // entry doesn't get into any list 3334 break; 3335 case JOB_CONTROL_STATE_DEAD: 3336 childList = &team->parent->dead_children; 3337 team->parent->dead_children.count++; 3338 break; 3339 case JOB_CONTROL_STATE_STOPPED: 3340 childList = &team->parent->stopped_children; 3341 break; 3342 case JOB_CONTROL_STATE_CONTINUED: 3343 childList = &team->parent->continued_children; 3344 break; 3345 } 3346 3347 if (childList != NULL) { 3348 childList->entries.Add(entry); 3349 team->parent->dead_children.condition_variable.NotifyAll(); 3350 } 3351 } 3352 3353 3354 /*! Inits the given team's exit information, if not yet initialized, to some 3355 generic "killed" status. 3356 The caller must not hold the team's lock. Interrupts must be enabled. 3357 3358 \param team The team whose exit info shall be initialized. 3359 */ 3360 void 3361 team_init_exit_info_on_error(Team* team) 3362 { 3363 TeamLocker teamLocker(team); 3364 3365 if (!team->exit.initialized) { 3366 team->exit.reason = CLD_KILLED; 3367 team->exit.signal = SIGKILL; 3368 team->exit.signaling_user = geteuid(); 3369 team->exit.status = 0; 3370 team->exit.initialized = true; 3371 } 3372 } 3373 3374 3375 /*! Adds a hook to the team that is called as soon as this team goes away. 3376 This call might get public in the future. 3377 */ 3378 status_t 3379 start_watching_team(team_id teamID, void (*hook)(team_id, void*), void* data) 3380 { 3381 if (hook == NULL || teamID < B_OK) 3382 return B_BAD_VALUE; 3383 3384 // create the watcher object 3385 team_watcher* watcher = (team_watcher*)malloc(sizeof(team_watcher)); 3386 if (watcher == NULL) 3387 return B_NO_MEMORY; 3388 3389 watcher->hook = hook; 3390 watcher->data = data; 3391 3392 // add watcher, if the team isn't already dying 3393 // get the team 3394 Team* team = Team::GetAndLock(teamID); 3395 if (team == NULL) { 3396 free(watcher); 3397 return B_BAD_TEAM_ID; 3398 } 3399 3400 list_add_item(&team->watcher_list, watcher); 3401 3402 team->UnlockAndReleaseReference(); 3403 3404 return B_OK; 3405 } 3406 3407 3408 status_t 3409 stop_watching_team(team_id teamID, void (*hook)(team_id, void*), void* data) 3410 { 3411 if (hook == NULL || teamID < 0) 3412 return B_BAD_VALUE; 3413 3414 // get team and remove watcher (if present) 3415 Team* team = Team::GetAndLock(teamID); 3416 if (team == NULL) 3417 return B_BAD_TEAM_ID; 3418 3419 // search for watcher 3420 team_watcher* watcher = NULL; 3421 while ((watcher = (team_watcher*)list_get_next_item( 3422 &team->watcher_list, watcher)) != NULL) { 3423 if (watcher->hook == hook && watcher->data == data) { 3424 // got it! 3425 list_remove_item(&team->watcher_list, watcher); 3426 break; 3427 } 3428 } 3429 3430 team->UnlockAndReleaseReference(); 3431 3432 if (watcher == NULL) 3433 return B_ENTRY_NOT_FOUND; 3434 3435 free(watcher); 3436 return B_OK; 3437 } 3438 3439 3440 /*! Allocates a user_thread structure from the team. 3441 The team lock must be held, unless the function is called for the team's 3442 main thread. Interrupts must be enabled. 3443 */ 3444 struct user_thread* 3445 team_allocate_user_thread(Team* team) 3446 { 3447 if (team->user_data == 0) 3448 return NULL; 3449 3450 // take an entry from the free list, if any 3451 if (struct free_user_thread* entry = team->free_user_threads) { 3452 user_thread* thread = entry->thread; 3453 team->free_user_threads = entry->next; 3454 free(entry); 3455 return thread; 3456 } 3457 3458 while (true) { 3459 // enough space left? 3460 size_t needed = ROUNDUP(sizeof(user_thread), CACHE_LINE_SIZE); 3461 if (team->user_data_size - team->used_user_data < needed) { 3462 // try to resize the area 3463 if (resize_area(team->user_data_area, 3464 team->user_data_size + B_PAGE_SIZE) != B_OK) { 3465 return NULL; 3466 } 3467 3468 // resized user area successfully -- try to allocate the user_thread 3469 // again 3470 team->user_data_size += B_PAGE_SIZE; 3471 continue; 3472 } 3473 3474 // allocate the user_thread 3475 user_thread* thread 3476 = (user_thread*)(team->user_data + team->used_user_data); 3477 team->used_user_data += needed; 3478 3479 return thread; 3480 } 3481 } 3482 3483 3484 /*! Frees the given user_thread structure. 3485 The team's lock must not be held. Interrupts must be enabled. 3486 \param team The team the user thread was allocated from. 3487 \param userThread The user thread to free. 3488 */ 3489 void 3490 team_free_user_thread(Team* team, struct user_thread* userThread) 3491 { 3492 if (userThread == NULL) 3493 return; 3494 3495 // create a free list entry 3496 free_user_thread* entry 3497 = (free_user_thread*)malloc(sizeof(free_user_thread)); 3498 if (entry == NULL) { 3499 // we have to leak the user thread :-/ 3500 return; 3501 } 3502 3503 // add to free list 3504 TeamLocker teamLocker(team); 3505 3506 entry->thread = userThread; 3507 entry->next = team->free_user_threads; 3508 team->free_user_threads = entry; 3509 } 3510 3511 3512 // #pragma mark - Associated data interface 3513 3514 3515 AssociatedData::AssociatedData() 3516 : 3517 fOwner(NULL) 3518 { 3519 } 3520 3521 3522 AssociatedData::~AssociatedData() 3523 { 3524 } 3525 3526 3527 void 3528 AssociatedData::OwnerDeleted(AssociatedDataOwner* owner) 3529 { 3530 } 3531 3532 3533 AssociatedDataOwner::AssociatedDataOwner() 3534 { 3535 mutex_init(&fLock, "associated data owner"); 3536 } 3537 3538 3539 AssociatedDataOwner::~AssociatedDataOwner() 3540 { 3541 mutex_destroy(&fLock); 3542 } 3543 3544 3545 bool 3546 AssociatedDataOwner::AddData(AssociatedData* data) 3547 { 3548 MutexLocker locker(fLock); 3549 3550 if (data->Owner() != NULL) 3551 return false; 3552 3553 data->AcquireReference(); 3554 fList.Add(data); 3555 data->SetOwner(this); 3556 3557 return true; 3558 } 3559 3560 3561 bool 3562 AssociatedDataOwner::RemoveData(AssociatedData* data) 3563 { 3564 MutexLocker locker(fLock); 3565 3566 if (data->Owner() != this) 3567 return false; 3568 3569 data->SetOwner(NULL); 3570 fList.Remove(data); 3571 3572 locker.Unlock(); 3573 3574 data->ReleaseReference(); 3575 3576 return true; 3577 } 3578 3579 3580 void 3581 AssociatedDataOwner::PrepareForDeletion() 3582 { 3583 MutexLocker locker(fLock); 3584 3585 // move all data to a temporary list and unset the owner 3586 DataList list; 3587 list.MoveFrom(&fList); 3588 3589 for (DataList::Iterator it = list.GetIterator(); 3590 AssociatedData* data = it.Next();) { 3591 data->SetOwner(NULL); 3592 } 3593 3594 locker.Unlock(); 3595 3596 // call the notification hooks and release our references 3597 while (AssociatedData* data = list.RemoveHead()) { 3598 data->OwnerDeleted(this); 3599 data->ReleaseReference(); 3600 } 3601 } 3602 3603 3604 /*! Associates data with the current team. 3605 When the team is deleted, the data object is notified. 3606 The team acquires a reference to the object. 3607 3608 \param data The data object. 3609 \return \c true on success, \c false otherwise. Fails only when the supplied 3610 data object is already associated with another owner. 3611 */ 3612 bool 3613 team_associate_data(AssociatedData* data) 3614 { 3615 return thread_get_current_thread()->team->AddData(data); 3616 } 3617 3618 3619 /*! Dissociates data from the current team. 3620 Balances an earlier call to team_associate_data(). 3621 3622 \param data The data object. 3623 \return \c true on success, \c false otherwise. Fails only when the data 3624 object is not associated with the current team. 3625 */ 3626 bool 3627 team_dissociate_data(AssociatedData* data) 3628 { 3629 return thread_get_current_thread()->team->RemoveData(data); 3630 } 3631 3632 3633 // #pragma mark - Public kernel API 3634 3635 3636 thread_id 3637 load_image(int32 argCount, const char** args, const char** env) 3638 { 3639 return load_image_etc(argCount, args, env, B_NORMAL_PRIORITY, 3640 B_CURRENT_TEAM, B_WAIT_TILL_LOADED); 3641 } 3642 3643 3644 thread_id 3645 load_image_etc(int32 argCount, const char* const* args, 3646 const char* const* env, int32 priority, team_id parentID, uint32 flags) 3647 { 3648 // we need to flatten the args and environment 3649 3650 if (args == NULL) 3651 return B_BAD_VALUE; 3652 3653 // determine total needed size 3654 int32 argSize = 0; 3655 for (int32 i = 0; i < argCount; i++) 3656 argSize += strlen(args[i]) + 1; 3657 3658 int32 envCount = 0; 3659 int32 envSize = 0; 3660 while (env != NULL && env[envCount] != NULL) 3661 envSize += strlen(env[envCount++]) + 1; 3662 3663 int32 size = (argCount + envCount + 2) * sizeof(char*) + argSize + envSize; 3664 if (size > MAX_PROCESS_ARGS_SIZE) 3665 return B_TOO_MANY_ARGS; 3666 3667 // allocate space 3668 char** flatArgs = (char**)malloc(size); 3669 if (flatArgs == NULL) 3670 return B_NO_MEMORY; 3671 3672 char** slot = flatArgs; 3673 char* stringSpace = (char*)(flatArgs + argCount + envCount + 2); 3674 3675 // copy arguments and environment 3676 for (int32 i = 0; i < argCount; i++) { 3677 int32 argSize = strlen(args[i]) + 1; 3678 memcpy(stringSpace, args[i], argSize); 3679 *slot++ = stringSpace; 3680 stringSpace += argSize; 3681 } 3682 3683 *slot++ = NULL; 3684 3685 for (int32 i = 0; i < envCount; i++) { 3686 int32 envSize = strlen(env[i]) + 1; 3687 memcpy(stringSpace, env[i], envSize); 3688 *slot++ = stringSpace; 3689 stringSpace += envSize; 3690 } 3691 3692 *slot++ = NULL; 3693 3694 thread_id thread = load_image_internal(flatArgs, size, argCount, envCount, 3695 B_NORMAL_PRIORITY, parentID, B_WAIT_TILL_LOADED, -1, 0); 3696 3697 free(flatArgs); 3698 // load_image_internal() unset our variable if it took over ownership 3699 3700 return thread; 3701 } 3702 3703 3704 status_t 3705 wait_for_team(team_id id, status_t* _returnCode) 3706 { 3707 // check whether the team exists 3708 InterruptsSpinLocker teamsLocker(sTeamHashLock); 3709 3710 Team* team = team_get_team_struct_locked(id); 3711 if (team == NULL) 3712 return B_BAD_TEAM_ID; 3713 3714 id = team->id; 3715 3716 teamsLocker.Unlock(); 3717 3718 // wait for the main thread (it has the same ID as the team) 3719 return wait_for_thread(id, _returnCode); 3720 } 3721 3722 3723 status_t 3724 kill_team(team_id id) 3725 { 3726 InterruptsSpinLocker teamsLocker(sTeamHashLock); 3727 3728 Team* team = team_get_team_struct_locked(id); 3729 if (team == NULL) 3730 return B_BAD_TEAM_ID; 3731 3732 id = team->id; 3733 3734 teamsLocker.Unlock(); 3735 3736 if (team == sKernelTeam) 3737 return B_NOT_ALLOWED; 3738 3739 // Just kill the team's main thread (it has same ID as the team). The 3740 // cleanup code there will take care of the team. 3741 return kill_thread(id); 3742 } 3743 3744 3745 status_t 3746 _get_team_info(team_id id, team_info* info, size_t size) 3747 { 3748 // get the team 3749 Team* team = Team::Get(id); 3750 if (team == NULL) 3751 return B_BAD_TEAM_ID; 3752 BReference<Team> teamReference(team, true); 3753 3754 // fill in the info 3755 return fill_team_info(team, info, size); 3756 } 3757 3758 3759 status_t 3760 _get_next_team_info(int32* cookie, team_info* info, size_t size) 3761 { 3762 int32 slot = *cookie; 3763 if (slot < 1) 3764 slot = 1; 3765 3766 InterruptsSpinLocker locker(sTeamHashLock); 3767 3768 team_id lastTeamID = peek_next_thread_id(); 3769 // TODO: This is broken, since the id can wrap around! 3770 3771 // get next valid team 3772 Team* team = NULL; 3773 while (slot < lastTeamID && !(team = team_get_team_struct_locked(slot))) 3774 slot++; 3775 3776 if (team == NULL) 3777 return B_BAD_TEAM_ID; 3778 3779 // get a reference to the team and unlock 3780 BReference<Team> teamReference(team); 3781 locker.Unlock(); 3782 3783 // fill in the info 3784 *cookie = ++slot; 3785 return fill_team_info(team, info, size); 3786 } 3787 3788 3789 status_t 3790 _get_team_usage_info(team_id id, int32 who, team_usage_info* info, size_t size) 3791 { 3792 if (size != sizeof(team_usage_info)) 3793 return B_BAD_VALUE; 3794 3795 return common_get_team_usage_info(id, who, info, 0); 3796 } 3797 3798 3799 pid_t 3800 getpid(void) 3801 { 3802 return thread_get_current_thread()->team->id; 3803 } 3804 3805 3806 pid_t 3807 getppid(void) 3808 { 3809 Team* team = thread_get_current_thread()->team; 3810 3811 TeamLocker teamLocker(team); 3812 3813 return team->parent->id; 3814 } 3815 3816 3817 pid_t 3818 getpgid(pid_t id) 3819 { 3820 if (id < 0) { 3821 errno = EINVAL; 3822 return -1; 3823 } 3824 3825 if (id == 0) { 3826 // get process group of the calling process 3827 Team* team = thread_get_current_thread()->team; 3828 TeamLocker teamLocker(team); 3829 return team->group_id; 3830 } 3831 3832 // get the team 3833 Team* team = Team::GetAndLock(id); 3834 if (team == NULL) { 3835 errno = ESRCH; 3836 return -1; 3837 } 3838 3839 // get the team's process group ID 3840 pid_t groupID = team->group_id; 3841 3842 team->UnlockAndReleaseReference(); 3843 3844 return groupID; 3845 } 3846 3847 3848 pid_t 3849 getsid(pid_t id) 3850 { 3851 if (id < 0) { 3852 errno = EINVAL; 3853 return -1; 3854 } 3855 3856 if (id == 0) { 3857 // get session of the calling process 3858 Team* team = thread_get_current_thread()->team; 3859 TeamLocker teamLocker(team); 3860 return team->session_id; 3861 } 3862 3863 // get the team 3864 Team* team = Team::GetAndLock(id); 3865 if (team == NULL) { 3866 errno = ESRCH; 3867 return -1; 3868 } 3869 3870 // get the team's session ID 3871 pid_t sessionID = team->session_id; 3872 3873 team->UnlockAndReleaseReference(); 3874 3875 return sessionID; 3876 } 3877 3878 3879 // #pragma mark - User syscalls 3880 3881 3882 status_t 3883 _user_exec(const char* userPath, const char* const* userFlatArgs, 3884 size_t flatArgsSize, int32 argCount, int32 envCount, mode_t umask) 3885 { 3886 // NOTE: Since this function normally doesn't return, don't use automatic 3887 // variables that need destruction in the function scope. 3888 char path[B_PATH_NAME_LENGTH]; 3889 3890 if (!IS_USER_ADDRESS(userPath) || !IS_USER_ADDRESS(userFlatArgs) 3891 || user_strlcpy(path, userPath, sizeof(path)) < B_OK) 3892 return B_BAD_ADDRESS; 3893 3894 // copy and relocate the flat arguments 3895 char** flatArgs; 3896 status_t error = copy_user_process_args(userFlatArgs, flatArgsSize, 3897 argCount, envCount, flatArgs); 3898 3899 if (error == B_OK) { 3900 error = exec_team(path, flatArgs, _ALIGN(flatArgsSize), argCount, 3901 envCount, umask); 3902 // this one only returns in case of error 3903 } 3904 3905 free(flatArgs); 3906 return error; 3907 } 3908 3909 3910 thread_id 3911 _user_fork(void) 3912 { 3913 return fork_team(); 3914 } 3915 3916 3917 pid_t 3918 _user_wait_for_child(thread_id child, uint32 flags, siginfo_t* userInfo) 3919 { 3920 if (userInfo != NULL && !IS_USER_ADDRESS(userInfo)) 3921 return B_BAD_ADDRESS; 3922 3923 siginfo_t info; 3924 pid_t foundChild = wait_for_child(child, flags, info); 3925 if (foundChild < 0) 3926 return syscall_restart_handle_post(foundChild); 3927 3928 // copy info back to userland 3929 if (userInfo != NULL && user_memcpy(userInfo, &info, sizeof(info)) != B_OK) 3930 return B_BAD_ADDRESS; 3931 3932 return foundChild; 3933 } 3934 3935 3936 pid_t 3937 _user_process_info(pid_t process, int32 which) 3938 { 3939 // we only allow to return the parent of the current process 3940 if (which == PARENT_ID 3941 && process != 0 && process != thread_get_current_thread()->team->id) 3942 return B_BAD_VALUE; 3943 3944 pid_t result; 3945 switch (which) { 3946 case SESSION_ID: 3947 result = getsid(process); 3948 break; 3949 case GROUP_ID: 3950 result = getpgid(process); 3951 break; 3952 case PARENT_ID: 3953 result = getppid(); 3954 break; 3955 default: 3956 return B_BAD_VALUE; 3957 } 3958 3959 return result >= 0 ? result : errno; 3960 } 3961 3962 3963 pid_t 3964 _user_setpgid(pid_t processID, pid_t groupID) 3965 { 3966 // setpgid() can be called either by the parent of the target process or 3967 // by the process itself to do one of two things: 3968 // * Create a new process group with the target process' ID and the target 3969 // process as group leader. 3970 // * Set the target process' process group to an already existing one in the 3971 // same session. 3972 3973 if (groupID < 0) 3974 return B_BAD_VALUE; 3975 3976 Team* currentTeam = thread_get_current_thread()->team; 3977 if (processID == 0) 3978 processID = currentTeam->id; 3979 3980 // if the group ID is not specified, use the target process' ID 3981 if (groupID == 0) 3982 groupID = processID; 3983 3984 // We loop when running into the following race condition: We create a new 3985 // process group, because there isn't one with that ID yet, but later when 3986 // trying to publish it, we find that someone else created and published 3987 // a group with that ID in the meantime. In that case we just restart the 3988 // whole action. 3989 while (true) { 3990 // Look up the process group by ID. If it doesn't exist yet and we are 3991 // allowed to create a new one, do that. 3992 ProcessGroup* group = ProcessGroup::Get(groupID); 3993 bool newGroup = false; 3994 if (group == NULL) { 3995 if (groupID != processID) 3996 return B_NOT_ALLOWED; 3997 3998 group = new(std::nothrow) ProcessGroup(groupID); 3999 if (group == NULL) 4000 return B_NO_MEMORY; 4001 4002 newGroup = true; 4003 } 4004 BReference<ProcessGroup> groupReference(group, true); 4005 4006 // get the target team 4007 Team* team = Team::Get(processID); 4008 if (team == NULL) 4009 return ESRCH; 4010 BReference<Team> teamReference(team, true); 4011 4012 // lock the new process group and the team's current process group 4013 while (true) { 4014 // lock the team's current process group 4015 team->LockProcessGroup(); 4016 4017 ProcessGroup* oldGroup = team->group; 4018 if (oldGroup == group) { 4019 // it's the same as the target group, so just bail out 4020 oldGroup->Unlock(); 4021 return group->id; 4022 } 4023 4024 oldGroup->AcquireReference(); 4025 4026 // lock the target process group, if locking order allows it 4027 if (newGroup || group->id > oldGroup->id) { 4028 group->Lock(); 4029 break; 4030 } 4031 4032 // try to lock 4033 if (group->TryLock()) 4034 break; 4035 4036 // no dice -- unlock the team's current process group and relock in 4037 // the correct order 4038 oldGroup->Unlock(); 4039 4040 group->Lock(); 4041 oldGroup->Lock(); 4042 4043 // check whether things are still the same 4044 TeamLocker teamLocker(team); 4045 if (team->group == oldGroup) 4046 break; 4047 4048 // something changed -- unlock everything and retry 4049 teamLocker.Unlock(); 4050 oldGroup->Unlock(); 4051 group->Unlock(); 4052 oldGroup->ReleaseReference(); 4053 } 4054 4055 // we now have references and locks of both new and old process group 4056 BReference<ProcessGroup> oldGroupReference(team->group, true); 4057 AutoLocker<ProcessGroup> oldGroupLocker(team->group, true); 4058 AutoLocker<ProcessGroup> groupLocker(group, true); 4059 4060 // also lock the target team and its parent 4061 team->LockTeamAndParent(false); 4062 TeamLocker parentLocker(team->parent, true); 4063 TeamLocker teamLocker(team, true); 4064 4065 // perform the checks 4066 if (team == currentTeam) { 4067 // we set our own group 4068 4069 // we must not change our process group ID if we're a session leader 4070 if (is_session_leader(currentTeam)) 4071 return B_NOT_ALLOWED; 4072 } else { 4073 // Calling team != target team. The target team must be a child of 4074 // the calling team and in the same session. (If that's the case it 4075 // isn't a session leader either.) 4076 if (team->parent != currentTeam 4077 || team->session_id != currentTeam->session_id) { 4078 return B_NOT_ALLOWED; 4079 } 4080 4081 // The call is also supposed to fail on a child, when the child has 4082 // already executed exec*() [EACCES]. 4083 if ((team->flags & TEAM_FLAG_EXEC_DONE) != 0) 4084 return EACCES; 4085 } 4086 4087 // If we created a new process group, publish it now. 4088 if (newGroup) { 4089 InterruptsSpinLocker groupHashLocker(sGroupHashLock); 4090 if (sGroupHash.Lookup(groupID)) { 4091 // A group with the group ID appeared since we first checked. 4092 // Back to square one. 4093 continue; 4094 } 4095 4096 group->PublishLocked(team->group->Session()); 4097 } else if (group->Session()->id != team->session_id) { 4098 // The existing target process group belongs to a different session. 4099 // That's not allowed. 4100 return B_NOT_ALLOWED; 4101 } 4102 4103 // Everything is ready -- set the group. 4104 remove_team_from_group(team); 4105 insert_team_into_group(group, team); 4106 4107 // Changing the process group might have changed the situation for a 4108 // parent waiting in wait_for_child(). Hence we notify it. 4109 team->parent->dead_children.condition_variable.NotifyAll(); 4110 4111 return group->id; 4112 } 4113 } 4114 4115 4116 pid_t 4117 _user_setsid(void) 4118 { 4119 Team* team = thread_get_current_thread()->team; 4120 4121 // create a new process group and session 4122 ProcessGroup* group = new(std::nothrow) ProcessGroup(team->id); 4123 if (group == NULL) 4124 return B_NO_MEMORY; 4125 BReference<ProcessGroup> groupReference(group, true); 4126 AutoLocker<ProcessGroup> groupLocker(group); 4127 4128 ProcessSession* session = new(std::nothrow) ProcessSession(group->id); 4129 if (session == NULL) 4130 return B_NO_MEMORY; 4131 BReference<ProcessSession> sessionReference(session, true); 4132 4133 // lock the team's current process group, parent, and the team itself 4134 team->LockTeamParentAndProcessGroup(); 4135 BReference<ProcessGroup> oldGroupReference(team->group); 4136 AutoLocker<ProcessGroup> oldGroupLocker(team->group, true); 4137 TeamLocker parentLocker(team->parent, true); 4138 TeamLocker teamLocker(team, true); 4139 4140 // the team must not already be a process group leader 4141 if (is_process_group_leader(team)) 4142 return B_NOT_ALLOWED; 4143 4144 // remove the team from the old and add it to the new process group 4145 remove_team_from_group(team); 4146 group->Publish(session); 4147 insert_team_into_group(group, team); 4148 4149 // Changing the process group might have changed the situation for a 4150 // parent waiting in wait_for_child(). Hence we notify it. 4151 team->parent->dead_children.condition_variable.NotifyAll(); 4152 4153 return group->id; 4154 } 4155 4156 4157 status_t 4158 _user_wait_for_team(team_id id, status_t* _userReturnCode) 4159 { 4160 status_t returnCode; 4161 status_t status; 4162 4163 if (_userReturnCode != NULL && !IS_USER_ADDRESS(_userReturnCode)) 4164 return B_BAD_ADDRESS; 4165 4166 status = wait_for_team(id, &returnCode); 4167 if (status >= B_OK && _userReturnCode != NULL) { 4168 if (user_memcpy(_userReturnCode, &returnCode, sizeof(returnCode)) 4169 != B_OK) 4170 return B_BAD_ADDRESS; 4171 return B_OK; 4172 } 4173 4174 return syscall_restart_handle_post(status); 4175 } 4176 4177 4178 thread_id 4179 _user_load_image(const char* const* userFlatArgs, size_t flatArgsSize, 4180 int32 argCount, int32 envCount, int32 priority, uint32 flags, 4181 port_id errorPort, uint32 errorToken) 4182 { 4183 TRACE(("_user_load_image: argc = %" B_PRId32 "\n", argCount)); 4184 4185 if (argCount < 1) 4186 return B_BAD_VALUE; 4187 4188 // copy and relocate the flat arguments 4189 char** flatArgs; 4190 status_t error = copy_user_process_args(userFlatArgs, flatArgsSize, 4191 argCount, envCount, flatArgs); 4192 if (error != B_OK) 4193 return error; 4194 4195 thread_id thread = load_image_internal(flatArgs, _ALIGN(flatArgsSize), 4196 argCount, envCount, priority, B_CURRENT_TEAM, flags, errorPort, 4197 errorToken); 4198 4199 free(flatArgs); 4200 // load_image_internal() unset our variable if it took over ownership 4201 4202 return thread; 4203 } 4204 4205 4206 void 4207 _user_exit_team(status_t returnValue) 4208 { 4209 Thread* thread = thread_get_current_thread(); 4210 Team* team = thread->team; 4211 4212 // set this thread's exit status 4213 thread->exit.status = returnValue; 4214 4215 // set the team exit status 4216 TeamLocker teamLocker(team); 4217 4218 if (!team->exit.initialized) { 4219 team->exit.reason = CLD_EXITED; 4220 team->exit.signal = 0; 4221 team->exit.signaling_user = 0; 4222 team->exit.status = returnValue; 4223 team->exit.initialized = true; 4224 } 4225 4226 teamLocker.Unlock(); 4227 4228 // Stop the thread, if the team is being debugged and that has been 4229 // requested. 4230 if ((atomic_get(&team->debug_info.flags) & B_TEAM_DEBUG_PREVENT_EXIT) != 0) 4231 user_debug_stop_thread(); 4232 4233 // Send this thread a SIGKILL. This makes sure the thread will not return to 4234 // userland. The signal handling code forwards the signal to the main 4235 // thread (if that's not already this one), which will take the team down. 4236 Signal signal(SIGKILL, SI_USER, B_OK, team->id); 4237 send_signal_to_thread(thread, signal, 0); 4238 } 4239 4240 4241 status_t 4242 _user_kill_team(team_id team) 4243 { 4244 return kill_team(team); 4245 } 4246 4247 4248 status_t 4249 _user_get_team_info(team_id id, team_info* userInfo) 4250 { 4251 status_t status; 4252 team_info info; 4253 4254 if (!IS_USER_ADDRESS(userInfo)) 4255 return B_BAD_ADDRESS; 4256 4257 status = _get_team_info(id, &info, sizeof(team_info)); 4258 if (status == B_OK) { 4259 if (user_memcpy(userInfo, &info, sizeof(team_info)) < B_OK) 4260 return B_BAD_ADDRESS; 4261 } 4262 4263 return status; 4264 } 4265 4266 4267 status_t 4268 _user_get_next_team_info(int32* userCookie, team_info* userInfo) 4269 { 4270 status_t status; 4271 team_info info; 4272 int32 cookie; 4273 4274 if (!IS_USER_ADDRESS(userCookie) 4275 || !IS_USER_ADDRESS(userInfo) 4276 || user_memcpy(&cookie, userCookie, sizeof(int32)) < B_OK) 4277 return B_BAD_ADDRESS; 4278 4279 status = _get_next_team_info(&cookie, &info, sizeof(team_info)); 4280 if (status != B_OK) 4281 return status; 4282 4283 if (user_memcpy(userCookie, &cookie, sizeof(int32)) < B_OK 4284 || user_memcpy(userInfo, &info, sizeof(team_info)) < B_OK) 4285 return B_BAD_ADDRESS; 4286 4287 return status; 4288 } 4289 4290 4291 team_id 4292 _user_get_current_team(void) 4293 { 4294 return team_get_current_team_id(); 4295 } 4296 4297 4298 status_t 4299 _user_get_team_usage_info(team_id team, int32 who, team_usage_info* userInfo, 4300 size_t size) 4301 { 4302 if (size != sizeof(team_usage_info)) 4303 return B_BAD_VALUE; 4304 4305 team_usage_info info; 4306 status_t status = common_get_team_usage_info(team, who, &info, 4307 B_CHECK_PERMISSION); 4308 4309 if (userInfo == NULL || !IS_USER_ADDRESS(userInfo) 4310 || user_memcpy(userInfo, &info, size) != B_OK) { 4311 return B_BAD_ADDRESS; 4312 } 4313 4314 return status; 4315 } 4316 4317 4318 status_t 4319 _user_get_extended_team_info(team_id teamID, uint32 flags, void* buffer, 4320 size_t size, size_t* _sizeNeeded) 4321 { 4322 // check parameters 4323 if ((buffer != NULL && !IS_USER_ADDRESS(buffer)) 4324 || (buffer == NULL && size > 0) 4325 || _sizeNeeded == NULL || !IS_USER_ADDRESS(_sizeNeeded)) { 4326 return B_BAD_ADDRESS; 4327 } 4328 4329 KMessage info; 4330 4331 if ((flags & B_TEAM_INFO_BASIC) != 0) { 4332 // allocate memory for a copy of the needed team data 4333 struct ExtendedTeamData { 4334 team_id id; 4335 pid_t group_id; 4336 pid_t session_id; 4337 uid_t real_uid; 4338 gid_t real_gid; 4339 uid_t effective_uid; 4340 gid_t effective_gid; 4341 char name[B_OS_NAME_LENGTH]; 4342 }; 4343 4344 ExtendedTeamData* teamClone 4345 = (ExtendedTeamData*)malloc(sizeof(ExtendedTeamData)); 4346 // It would be nicer to use new, but then we'd have to use 4347 // ObjectDeleter and declare the structure outside of the function 4348 // due to template parameter restrictions. 4349 if (teamClone == NULL) 4350 return B_NO_MEMORY; 4351 MemoryDeleter teamCloneDeleter(teamClone); 4352 4353 io_context* ioContext; 4354 { 4355 // get the team structure 4356 Team* team = Team::GetAndLock(teamID); 4357 if (team == NULL) 4358 return B_BAD_TEAM_ID; 4359 BReference<Team> teamReference(team, true); 4360 TeamLocker teamLocker(team, true); 4361 4362 // copy the data 4363 teamClone->id = team->id; 4364 strlcpy(teamClone->name, team->Name(), sizeof(teamClone->name)); 4365 teamClone->group_id = team->group_id; 4366 teamClone->session_id = team->session_id; 4367 teamClone->real_uid = team->real_uid; 4368 teamClone->real_gid = team->real_gid; 4369 teamClone->effective_uid = team->effective_uid; 4370 teamClone->effective_gid = team->effective_gid; 4371 4372 // also fetch a reference to the I/O context 4373 ioContext = team->io_context; 4374 vfs_get_io_context(ioContext); 4375 } 4376 CObjectDeleter<io_context> ioContextPutter(ioContext, 4377 &vfs_put_io_context); 4378 4379 // add the basic data to the info message 4380 if (info.AddInt32("id", teamClone->id) != B_OK 4381 || info.AddString("name", teamClone->name) != B_OK 4382 || info.AddInt32("process group", teamClone->group_id) != B_OK 4383 || info.AddInt32("session", teamClone->session_id) != B_OK 4384 || info.AddInt32("uid", teamClone->real_uid) != B_OK 4385 || info.AddInt32("gid", teamClone->real_gid) != B_OK 4386 || info.AddInt32("euid", teamClone->effective_uid) != B_OK 4387 || info.AddInt32("egid", teamClone->effective_gid) != B_OK) { 4388 return B_NO_MEMORY; 4389 } 4390 4391 // get the current working directory from the I/O context 4392 dev_t cwdDevice; 4393 ino_t cwdDirectory; 4394 { 4395 MutexLocker ioContextLocker(ioContext->io_mutex); 4396 vfs_vnode_to_node_ref(ioContext->cwd, &cwdDevice, &cwdDirectory); 4397 } 4398 4399 if (info.AddInt32("cwd device", cwdDevice) != B_OK 4400 || info.AddInt64("cwd directory", cwdDirectory) != B_OK) { 4401 return B_NO_MEMORY; 4402 } 4403 } 4404 4405 // TODO: Support the other flags! 4406 4407 // copy the needed size and, if it fits, the message back to userland 4408 size_t sizeNeeded = info.ContentSize(); 4409 if (user_memcpy(_sizeNeeded, &sizeNeeded, sizeof(sizeNeeded)) != B_OK) 4410 return B_BAD_ADDRESS; 4411 4412 if (sizeNeeded > size) 4413 return B_BUFFER_OVERFLOW; 4414 4415 if (user_memcpy(buffer, info.Buffer(), sizeNeeded) != B_OK) 4416 return B_BAD_ADDRESS; 4417 4418 return B_OK; 4419 } 4420