xref: /haiku/src/system/kernel/team.cpp (revision 2423ba84701f064cb78a40010113a8a45cc02a92)
1 /*
2  * Copyright 2014, Paweł Dziepak, pdziepak@quarnos.org.
3  * Copyright 2008-2016, Ingo Weinhold, ingo_weinhold@gmx.de.
4  * Copyright 2002-2010, Axel Dörfler, axeld@pinc-software.de.
5  * Distributed under the terms of the MIT License.
6  *
7  * Copyright 2001-2002, Travis Geiselbrecht. All rights reserved.
8  * Distributed under the terms of the NewOS License.
9  */
10 
11 
12 /*!	Team functions */
13 
14 
15 #include <team.h>
16 
17 #include <errno.h>
18 #include <stdio.h>
19 #include <stdlib.h>
20 #include <string.h>
21 #include <sys/wait.h>
22 
23 #include <OS.h>
24 
25 #include <AutoDeleter.h>
26 #include <FindDirectory.h>
27 
28 #include <extended_system_info_defs.h>
29 
30 #include <commpage.h>
31 #include <boot_device.h>
32 #include <elf.h>
33 #include <file_cache.h>
34 #include <find_directory_private.h>
35 #include <fs/KPath.h>
36 #include <heap.h>
37 #include <int.h>
38 #include <kernel.h>
39 #include <kimage.h>
40 #include <kscheduler.h>
41 #include <ksignal.h>
42 #include <Notifications.h>
43 #include <port.h>
44 #include <posix/realtime_sem.h>
45 #include <posix/xsi_semaphore.h>
46 #include <sem.h>
47 #include <syscall_process_info.h>
48 #include <syscall_restart.h>
49 #include <syscalls.h>
50 #include <tls.h>
51 #include <tracing.h>
52 #include <user_runtime.h>
53 #include <user_thread.h>
54 #include <usergroup.h>
55 #include <vfs.h>
56 #include <vm/vm.h>
57 #include <vm/VMAddressSpace.h>
58 #include <util/AutoLock.h>
59 
60 #include "TeamThreadTables.h"
61 
62 
63 //#define TRACE_TEAM
64 #ifdef TRACE_TEAM
65 #	define TRACE(x) dprintf x
66 #else
67 #	define TRACE(x) ;
68 #endif
69 
70 
71 struct team_key {
72 	team_id id;
73 };
74 
75 struct team_arg {
76 	char	*path;
77 	char	**flat_args;
78 	size_t	flat_args_size;
79 	uint32	arg_count;
80 	uint32	env_count;
81 	mode_t	umask;
82 	uint32	flags;
83 	port_id	error_port;
84 	uint32	error_token;
85 };
86 
87 #define TEAM_ARGS_FLAG_NO_ASLR	0x01
88 
89 
90 namespace {
91 
92 
93 class TeamNotificationService : public DefaultNotificationService {
94 public:
95 							TeamNotificationService();
96 
97 			void			Notify(uint32 eventCode, Team* team);
98 };
99 
100 
101 // #pragma mark - TeamTable
102 
103 
104 typedef BKernel::TeamThreadTable<Team> TeamTable;
105 
106 
107 // #pragma mark - ProcessGroupHashDefinition
108 
109 
110 struct ProcessGroupHashDefinition {
111 	typedef pid_t			KeyType;
112 	typedef	ProcessGroup	ValueType;
113 
114 	size_t HashKey(pid_t key) const
115 	{
116 		return key;
117 	}
118 
119 	size_t Hash(ProcessGroup* value) const
120 	{
121 		return HashKey(value->id);
122 	}
123 
124 	bool Compare(pid_t key, ProcessGroup* value) const
125 	{
126 		return value->id == key;
127 	}
128 
129 	ProcessGroup*& GetLink(ProcessGroup* value) const
130 	{
131 		return value->next;
132 	}
133 };
134 
135 typedef BOpenHashTable<ProcessGroupHashDefinition> ProcessGroupHashTable;
136 
137 
138 }	// unnamed namespace
139 
140 
141 // #pragma mark -
142 
143 
144 // the team_id -> Team hash table and the lock protecting it
145 static TeamTable sTeamHash;
146 static spinlock sTeamHashLock = B_SPINLOCK_INITIALIZER;
147 
148 // the pid_t -> ProcessGroup hash table and the lock protecting it
149 static ProcessGroupHashTable sGroupHash;
150 static spinlock sGroupHashLock = B_SPINLOCK_INITIALIZER;
151 
152 static Team* sKernelTeam = NULL;
153 
154 // A list of process groups of children of dying session leaders that need to
155 // be signalled, if they have become orphaned and contain stopped processes.
156 static ProcessGroupList sOrphanedCheckProcessGroups;
157 static mutex sOrphanedCheckLock
158 	= MUTEX_INITIALIZER("orphaned process group check");
159 
160 // some arbitrarily chosen limits -- should probably depend on the available
161 // memory (the limit is not yet enforced)
162 static int32 sMaxTeams = 2048;
163 static int32 sUsedTeams = 1;
164 
165 static TeamNotificationService sNotificationService;
166 
167 static const size_t kTeamUserDataReservedSize	= 128 * B_PAGE_SIZE;
168 static const size_t kTeamUserDataInitialSize	= 4 * B_PAGE_SIZE;
169 
170 
171 // #pragma mark - TeamListIterator
172 
173 
174 TeamListIterator::TeamListIterator()
175 {
176 	// queue the entry
177 	InterruptsSpinLocker locker(sTeamHashLock);
178 	sTeamHash.InsertIteratorEntry(&fEntry);
179 }
180 
181 
182 TeamListIterator::~TeamListIterator()
183 {
184 	// remove the entry
185 	InterruptsSpinLocker locker(sTeamHashLock);
186 	sTeamHash.RemoveIteratorEntry(&fEntry);
187 }
188 
189 
190 Team*
191 TeamListIterator::Next()
192 {
193 	// get the next team -- if there is one, get reference for it
194 	InterruptsSpinLocker locker(sTeamHashLock);
195 	Team* team = sTeamHash.NextElement(&fEntry);
196 	if (team != NULL)
197 		team->AcquireReference();
198 
199 	return team;
200 }
201 
202 
203 // #pragma mark - Tracing
204 
205 
206 #if TEAM_TRACING
207 namespace TeamTracing {
208 
209 class TeamForked : public AbstractTraceEntry {
210 public:
211 	TeamForked(thread_id forkedThread)
212 		:
213 		fForkedThread(forkedThread)
214 	{
215 		Initialized();
216 	}
217 
218 	virtual void AddDump(TraceOutput& out)
219 	{
220 		out.Print("team forked, new thread %" B_PRId32, fForkedThread);
221 	}
222 
223 private:
224 	thread_id			fForkedThread;
225 };
226 
227 
228 class ExecTeam : public AbstractTraceEntry {
229 public:
230 	ExecTeam(const char* path, int32 argCount, const char* const* args,
231 			int32 envCount, const char* const* env)
232 		:
233 		fArgCount(argCount),
234 		fArgs(NULL)
235 	{
236 		fPath = alloc_tracing_buffer_strcpy(path, B_PATH_NAME_LENGTH,
237 			false);
238 
239 		// determine the buffer size we need for the args
240 		size_t argBufferSize = 0;
241 		for (int32 i = 0; i < argCount; i++)
242 			argBufferSize += strlen(args[i]) + 1;
243 
244 		// allocate a buffer
245 		fArgs = (char*)alloc_tracing_buffer(argBufferSize);
246 		if (fArgs) {
247 			char* buffer = fArgs;
248 			for (int32 i = 0; i < argCount; i++) {
249 				size_t argSize = strlen(args[i]) + 1;
250 				memcpy(buffer, args[i], argSize);
251 				buffer += argSize;
252 			}
253 		}
254 
255 		// ignore env for the time being
256 		(void)envCount;
257 		(void)env;
258 
259 		Initialized();
260 	}
261 
262 	virtual void AddDump(TraceOutput& out)
263 	{
264 		out.Print("team exec, \"%p\", args:", fPath);
265 
266 		if (fArgs != NULL) {
267 			char* args = fArgs;
268 			for (int32 i = 0; !out.IsFull() && i < fArgCount; i++) {
269 				out.Print(" \"%s\"", args);
270 				args += strlen(args) + 1;
271 			}
272 		} else
273 			out.Print(" <too long>");
274 	}
275 
276 private:
277 	char*	fPath;
278 	int32	fArgCount;
279 	char*	fArgs;
280 };
281 
282 
283 static const char*
284 job_control_state_name(job_control_state state)
285 {
286 	switch (state) {
287 		case JOB_CONTROL_STATE_NONE:
288 			return "none";
289 		case JOB_CONTROL_STATE_STOPPED:
290 			return "stopped";
291 		case JOB_CONTROL_STATE_CONTINUED:
292 			return "continued";
293 		case JOB_CONTROL_STATE_DEAD:
294 			return "dead";
295 		default:
296 			return "invalid";
297 	}
298 }
299 
300 
301 class SetJobControlState : public AbstractTraceEntry {
302 public:
303 	SetJobControlState(team_id team, job_control_state newState, Signal* signal)
304 		:
305 		fTeam(team),
306 		fNewState(newState),
307 		fSignal(signal != NULL ? signal->Number() : 0)
308 	{
309 		Initialized();
310 	}
311 
312 	virtual void AddDump(TraceOutput& out)
313 	{
314 		out.Print("team set job control state, team %" B_PRId32 ", "
315 			"new state: %s, signal: %d",
316 			fTeam, job_control_state_name(fNewState), fSignal);
317 	}
318 
319 private:
320 	team_id				fTeam;
321 	job_control_state	fNewState;
322 	int					fSignal;
323 };
324 
325 
326 class WaitForChild : public AbstractTraceEntry {
327 public:
328 	WaitForChild(pid_t child, uint32 flags)
329 		:
330 		fChild(child),
331 		fFlags(flags)
332 	{
333 		Initialized();
334 	}
335 
336 	virtual void AddDump(TraceOutput& out)
337 	{
338 		out.Print("team wait for child, child: %" B_PRId32 ", "
339 			"flags: %#" B_PRIx32, fChild, fFlags);
340 	}
341 
342 private:
343 	pid_t	fChild;
344 	uint32	fFlags;
345 };
346 
347 
348 class WaitForChildDone : public AbstractTraceEntry {
349 public:
350 	WaitForChildDone(const job_control_entry& entry)
351 		:
352 		fState(entry.state),
353 		fTeam(entry.thread),
354 		fStatus(entry.status),
355 		fReason(entry.reason),
356 		fSignal(entry.signal)
357 	{
358 		Initialized();
359 	}
360 
361 	WaitForChildDone(status_t error)
362 		:
363 		fTeam(error)
364 	{
365 		Initialized();
366 	}
367 
368 	virtual void AddDump(TraceOutput& out)
369 	{
370 		if (fTeam >= 0) {
371 			out.Print("team wait for child done, team: %" B_PRId32 ", "
372 				"state: %s, status: %#" B_PRIx32 ", reason: %#x, signal: %d\n",
373 				fTeam, job_control_state_name(fState), fStatus, fReason,
374 				fSignal);
375 		} else {
376 			out.Print("team wait for child failed, error: "
377 				"%#" B_PRIx32 ", ", fTeam);
378 		}
379 	}
380 
381 private:
382 	job_control_state	fState;
383 	team_id				fTeam;
384 	status_t			fStatus;
385 	uint16				fReason;
386 	uint16				fSignal;
387 };
388 
389 }	// namespace TeamTracing
390 
391 #	define T(x) new(std::nothrow) TeamTracing::x;
392 #else
393 #	define T(x) ;
394 #endif
395 
396 
397 //	#pragma mark - TeamNotificationService
398 
399 
400 TeamNotificationService::TeamNotificationService()
401 	: DefaultNotificationService("teams")
402 {
403 }
404 
405 
406 void
407 TeamNotificationService::Notify(uint32 eventCode, Team* team)
408 {
409 	char eventBuffer[128];
410 	KMessage event;
411 	event.SetTo(eventBuffer, sizeof(eventBuffer), TEAM_MONITOR);
412 	event.AddInt32("event", eventCode);
413 	event.AddInt32("team", team->id);
414 	event.AddPointer("teamStruct", team);
415 
416 	DefaultNotificationService::Notify(event, eventCode);
417 }
418 
419 
420 //	#pragma mark - Team
421 
422 
423 Team::Team(team_id id, bool kernel)
424 {
425 	// allocate an ID
426 	this->id = id;
427 	visible = true;
428 	serial_number = -1;
429 
430 	// init mutex
431 	if (kernel) {
432 		mutex_init(&fLock, "Team:kernel");
433 	} else {
434 		char lockName[16];
435 		snprintf(lockName, sizeof(lockName), "Team:%" B_PRId32, id);
436 		mutex_init_etc(&fLock, lockName, MUTEX_FLAG_CLONE_NAME);
437 	}
438 
439 	hash_next = siblings_next = children = parent = NULL;
440 	fName[0] = '\0';
441 	fArgs[0] = '\0';
442 	num_threads = 0;
443 	io_context = NULL;
444 	address_space = NULL;
445 	realtime_sem_context = NULL;
446 	xsi_sem_context = NULL;
447 	thread_list = NULL;
448 	main_thread = NULL;
449 	loading_info = NULL;
450 	state = TEAM_STATE_BIRTH;
451 	flags = 0;
452 	death_entry = NULL;
453 	user_data_area = -1;
454 	user_data = 0;
455 	used_user_data = 0;
456 	user_data_size = 0;
457 	free_user_threads = NULL;
458 
459 	commpage_address = NULL;
460 
461 	supplementary_groups = NULL;
462 	supplementary_group_count = 0;
463 
464 	dead_threads_kernel_time = 0;
465 	dead_threads_user_time = 0;
466 	cpu_clock_offset = 0;
467 
468 	// dead threads
469 	list_init(&dead_threads);
470 	dead_threads_count = 0;
471 
472 	// dead children
473 	dead_children.count = 0;
474 	dead_children.kernel_time = 0;
475 	dead_children.user_time = 0;
476 
477 	// job control entry
478 	job_control_entry = new(nothrow) ::job_control_entry;
479 	if (job_control_entry != NULL) {
480 		job_control_entry->state = JOB_CONTROL_STATE_NONE;
481 		job_control_entry->thread = id;
482 		job_control_entry->team = this;
483 	}
484 
485 	// exit status -- setting initialized to false suffices
486 	exit.initialized = false;
487 
488 	list_init(&sem_list);
489 	list_init_etc(&port_list, port_team_link_offset());
490 	list_init(&image_list);
491 	list_init(&watcher_list);
492 
493 	clear_team_debug_info(&debug_info, true);
494 
495 	// init dead/stopped/continued children condition vars
496 	dead_children.condition_variable.Init(&dead_children, "team children");
497 
498 	B_INITIALIZE_SPINLOCK(&time_lock);
499 	B_INITIALIZE_SPINLOCK(&signal_lock);
500 
501 	fQueuedSignalsCounter = new(std::nothrow) BKernel::QueuedSignalsCounter(
502 		kernel ? -1 : MAX_QUEUED_SIGNALS);
503 	memset(fSignalActions, 0, sizeof(fSignalActions));
504 
505 	fUserDefinedTimerCount = 0;
506 
507 	fCoreDumpCondition = NULL;
508 }
509 
510 
511 Team::~Team()
512 {
513 	// get rid of all associated data
514 	PrepareForDeletion();
515 
516 	if (io_context != NULL)
517 		vfs_put_io_context(io_context);
518 	delete_owned_ports(this);
519 	sem_delete_owned_sems(this);
520 
521 	DeleteUserTimers(false);
522 
523 	fPendingSignals.Clear();
524 
525 	if (fQueuedSignalsCounter != NULL)
526 		fQueuedSignalsCounter->ReleaseReference();
527 
528 	while (thread_death_entry* threadDeathEntry
529 			= (thread_death_entry*)list_remove_head_item(&dead_threads)) {
530 		free(threadDeathEntry);
531 	}
532 
533 	while (::job_control_entry* entry = dead_children.entries.RemoveHead())
534 		delete entry;
535 
536 	while (free_user_thread* entry = free_user_threads) {
537 		free_user_threads = entry->next;
538 		free(entry);
539 	}
540 
541 	malloc_referenced_release(supplementary_groups);
542 
543 	delete job_control_entry;
544 		// usually already NULL and transferred to the parent
545 
546 	mutex_destroy(&fLock);
547 }
548 
549 
550 /*static*/ Team*
551 Team::Create(team_id id, const char* name, bool kernel)
552 {
553 	// create the team object
554 	Team* team = new(std::nothrow) Team(id, kernel);
555 	if (team == NULL)
556 		return NULL;
557 	ObjectDeleter<Team> teamDeleter(team);
558 
559 	if (name != NULL)
560 		team->SetName(name);
561 
562 	// check initialization
563 	if (team->job_control_entry == NULL || team->fQueuedSignalsCounter == NULL)
564 		return NULL;
565 
566 	// finish initialization (arch specifics)
567 	if (arch_team_init_team_struct(team, kernel) != B_OK)
568 		return NULL;
569 
570 	if (!kernel) {
571 		status_t error = user_timer_create_team_timers(team);
572 		if (error != B_OK)
573 			return NULL;
574 	}
575 
576 	// everything went fine
577 	return teamDeleter.Detach();
578 }
579 
580 
581 /*!	\brief Returns the team with the given ID.
582 	Returns a reference to the team.
583 	Team and thread spinlock must not be held.
584 */
585 /*static*/ Team*
586 Team::Get(team_id id)
587 {
588 	if (id == B_CURRENT_TEAM) {
589 		Team* team = thread_get_current_thread()->team;
590 		team->AcquireReference();
591 		return team;
592 	}
593 
594 	InterruptsSpinLocker locker(sTeamHashLock);
595 	Team* team = sTeamHash.Lookup(id);
596 	if (team != NULL)
597 		team->AcquireReference();
598 	return team;
599 }
600 
601 
602 /*!	\brief Returns the team with the given ID in a locked state.
603 	Returns a reference to the team.
604 	Team and thread spinlock must not be held.
605 */
606 /*static*/ Team*
607 Team::GetAndLock(team_id id)
608 {
609 	// get the team
610 	Team* team = Get(id);
611 	if (team == NULL)
612 		return NULL;
613 
614 	// lock it
615 	team->Lock();
616 
617 	// only return the team, when it isn't already dying
618 	if (team->state >= TEAM_STATE_SHUTDOWN) {
619 		team->Unlock();
620 		team->ReleaseReference();
621 		return NULL;
622 	}
623 
624 	return team;
625 }
626 
627 
628 /*!	Locks the team and its parent team (if any).
629 	The caller must hold a reference to the team or otherwise make sure that
630 	it won't be deleted.
631 	If the team doesn't have a parent, only the team itself is locked. If the
632 	team's parent is the kernel team and \a dontLockParentIfKernel is \c true,
633 	only the team itself is locked.
634 
635 	\param dontLockParentIfKernel If \c true, the team's parent team is only
636 		locked, if it is not the kernel team.
637 */
638 void
639 Team::LockTeamAndParent(bool dontLockParentIfKernel)
640 {
641 	// The locking order is parent -> child. Since the parent can change as long
642 	// as we don't lock the team, we need to do a trial and error loop.
643 	Lock();
644 
645 	while (true) {
646 		// If the team doesn't have a parent, we're done. Otherwise try to lock
647 		// the parent.This will succeed in most cases, simplifying things.
648 		Team* parent = this->parent;
649 		if (parent == NULL || (dontLockParentIfKernel && parent == sKernelTeam)
650 			|| parent->TryLock()) {
651 			return;
652 		}
653 
654 		// get a temporary reference to the parent, unlock this team, lock the
655 		// parent, and re-lock this team
656 		BReference<Team> parentReference(parent);
657 
658 		Unlock();
659 		parent->Lock();
660 		Lock();
661 
662 		// If the parent hasn't changed in the meantime, we're done.
663 		if (this->parent == parent)
664 			return;
665 
666 		// The parent has changed -- unlock and retry.
667 		parent->Unlock();
668 	}
669 }
670 
671 
672 /*!	Unlocks the team and its parent team (if any).
673 */
674 void
675 Team::UnlockTeamAndParent()
676 {
677 	if (parent != NULL)
678 		parent->Unlock();
679 
680 	Unlock();
681 }
682 
683 
684 /*!	Locks the team, its parent team (if any), and the team's process group.
685 	The caller must hold a reference to the team or otherwise make sure that
686 	it won't be deleted.
687 	If the team doesn't have a parent, only the team itself is locked.
688 */
689 void
690 Team::LockTeamParentAndProcessGroup()
691 {
692 	LockTeamAndProcessGroup();
693 
694 	// We hold the group's and the team's lock, but not the parent team's lock.
695 	// If we have a parent, try to lock it.
696 	if (this->parent == NULL || this->parent->TryLock())
697 		return;
698 
699 	// No success -- unlock the team and let LockTeamAndParent() do the rest of
700 	// the job.
701 	Unlock();
702 	LockTeamAndParent(false);
703 }
704 
705 
706 /*!	Unlocks the team, its parent team (if any), and the team's process group.
707 */
708 void
709 Team::UnlockTeamParentAndProcessGroup()
710 {
711 	group->Unlock();
712 
713 	if (parent != NULL)
714 		parent->Unlock();
715 
716 	Unlock();
717 }
718 
719 
720 void
721 Team::LockTeamAndProcessGroup()
722 {
723 	// The locking order is process group -> child. Since the process group can
724 	// change as long as we don't lock the team, we need to do a trial and error
725 	// loop.
726 	Lock();
727 
728 	while (true) {
729 		// Try to lock the group. This will succeed in most cases, simplifying
730 		// things.
731 		ProcessGroup* group = this->group;
732 		if (group->TryLock())
733 			return;
734 
735 		// get a temporary reference to the group, unlock this team, lock the
736 		// group, and re-lock this team
737 		BReference<ProcessGroup> groupReference(group);
738 
739 		Unlock();
740 		group->Lock();
741 		Lock();
742 
743 		// If the group hasn't changed in the meantime, we're done.
744 		if (this->group == group)
745 			return;
746 
747 		// The group has changed -- unlock and retry.
748 		group->Unlock();
749 	}
750 }
751 
752 
753 void
754 Team::UnlockTeamAndProcessGroup()
755 {
756 	group->Unlock();
757 	Unlock();
758 }
759 
760 
761 void
762 Team::SetName(const char* name)
763 {
764 	if (const char* lastSlash = strrchr(name, '/'))
765 		name = lastSlash + 1;
766 
767 	strlcpy(fName, name, B_OS_NAME_LENGTH);
768 }
769 
770 
771 void
772 Team::SetArgs(const char* args)
773 {
774 	strlcpy(fArgs, args, sizeof(fArgs));
775 }
776 
777 
778 void
779 Team::SetArgs(const char* path, const char* const* otherArgs, int otherArgCount)
780 {
781 	fArgs[0] = '\0';
782 	strlcpy(fArgs, path, sizeof(fArgs));
783 	for (int i = 0; i < otherArgCount; i++) {
784 		strlcat(fArgs, " ", sizeof(fArgs));
785 		strlcat(fArgs, otherArgs[i], sizeof(fArgs));
786 	}
787 }
788 
789 
790 void
791 Team::ResetSignalsOnExec()
792 {
793 	// We are supposed to keep pending signals. Signal actions shall be reset
794 	// partially: SIG_IGN and SIG_DFL dispositions shall be kept as they are
795 	// (for SIGCHLD it's implementation-defined). Others shall be reset to
796 	// SIG_DFL. SA_ONSTACK shall be cleared. There's no mention of the other
797 	// flags, but since there aren't any handlers, they make little sense, so
798 	// we clear them.
799 
800 	for (uint32 i = 1; i <= MAX_SIGNAL_NUMBER; i++) {
801 		struct sigaction& action = SignalActionFor(i);
802 		if (action.sa_handler != SIG_IGN && action.sa_handler != SIG_DFL)
803 			action.sa_handler = SIG_DFL;
804 
805 		action.sa_mask = 0;
806 		action.sa_flags = 0;
807 		action.sa_userdata = NULL;
808 	}
809 }
810 
811 
812 void
813 Team::InheritSignalActions(Team* parent)
814 {
815 	memcpy(fSignalActions, parent->fSignalActions, sizeof(fSignalActions));
816 }
817 
818 
819 /*!	Adds the given user timer to the team and, if user-defined, assigns it an
820 	ID.
821 
822 	The caller must hold the team's lock.
823 
824 	\param timer The timer to be added. If it doesn't have an ID yet, it is
825 		considered user-defined and will be assigned an ID.
826 	\return \c B_OK, if the timer was added successfully, another error code
827 		otherwise.
828 */
829 status_t
830 Team::AddUserTimer(UserTimer* timer)
831 {
832 	// don't allow addition of timers when already shutting the team down
833 	if (state >= TEAM_STATE_SHUTDOWN)
834 		return B_BAD_TEAM_ID;
835 
836 	// If the timer is user-defined, check timer limit and increment
837 	// user-defined count.
838 	if (timer->ID() < 0 && !CheckAddUserDefinedTimer())
839 		return EAGAIN;
840 
841 	fUserTimers.AddTimer(timer);
842 
843 	return B_OK;
844 }
845 
846 
847 /*!	Removes the given user timer from the team.
848 
849 	The caller must hold the team's lock.
850 
851 	\param timer The timer to be removed.
852 
853 */
854 void
855 Team::RemoveUserTimer(UserTimer* timer)
856 {
857 	fUserTimers.RemoveTimer(timer);
858 
859 	if (timer->ID() >= USER_TIMER_FIRST_USER_DEFINED_ID)
860 		UserDefinedTimersRemoved(1);
861 }
862 
863 
864 /*!	Deletes all (or all user-defined) user timers of the team.
865 
866 	Timer's belonging to the team's threads are not affected.
867 	The caller must hold the team's lock.
868 
869 	\param userDefinedOnly If \c true, only the user-defined timers are deleted,
870 		otherwise all timers are deleted.
871 */
872 void
873 Team::DeleteUserTimers(bool userDefinedOnly)
874 {
875 	int32 count = fUserTimers.DeleteTimers(userDefinedOnly);
876 	UserDefinedTimersRemoved(count);
877 }
878 
879 
880 /*!	If not at the limit yet, increments the team's user-defined timer count.
881 	\return \c true, if the limit wasn't reached yet, \c false otherwise.
882 */
883 bool
884 Team::CheckAddUserDefinedTimer()
885 {
886 	int32 oldCount = atomic_add(&fUserDefinedTimerCount, 1);
887 	if (oldCount >= MAX_USER_TIMERS_PER_TEAM) {
888 		atomic_add(&fUserDefinedTimerCount, -1);
889 		return false;
890 	}
891 
892 	return true;
893 }
894 
895 
896 /*!	Subtracts the given count for the team's user-defined timer count.
897 	\param count The count to subtract.
898 */
899 void
900 Team::UserDefinedTimersRemoved(int32 count)
901 {
902 	atomic_add(&fUserDefinedTimerCount, -count);
903 }
904 
905 
906 void
907 Team::DeactivateCPUTimeUserTimers()
908 {
909 	while (TeamTimeUserTimer* timer = fCPUTimeUserTimers.Head())
910 		timer->Deactivate();
911 
912 	while (TeamUserTimeUserTimer* timer = fUserTimeUserTimers.Head())
913 		timer->Deactivate();
914 }
915 
916 
917 /*!	Returns the team's current total CPU time (kernel + user + offset).
918 
919 	The caller must hold \c time_lock.
920 
921 	\param ignoreCurrentRun If \c true and the current thread is one team's
922 		threads, don't add the time since the last time \c last_time was
923 		updated. Should be used in "thread unscheduled" scheduler callbacks,
924 		since although the thread is still running at that time, its time has
925 		already been stopped.
926 	\return The team's current total CPU time.
927 */
928 bigtime_t
929 Team::CPUTime(bool ignoreCurrentRun, Thread* lockedThread) const
930 {
931 	bigtime_t time = cpu_clock_offset + dead_threads_kernel_time
932 		+ dead_threads_user_time;
933 
934 	Thread* currentThread = thread_get_current_thread();
935 	bigtime_t now = system_time();
936 
937 	for (Thread* thread = thread_list; thread != NULL;
938 			thread = thread->team_next) {
939 		bool alreadyLocked = thread == lockedThread;
940 		SpinLocker threadTimeLocker(thread->time_lock, alreadyLocked);
941 		time += thread->kernel_time + thread->user_time;
942 
943 		if (thread->last_time != 0) {
944 			if (!ignoreCurrentRun || thread != currentThread)
945 				time += now - thread->last_time;
946 		}
947 
948 		if (alreadyLocked)
949 			threadTimeLocker.Detach();
950 	}
951 
952 	return time;
953 }
954 
955 
956 /*!	Returns the team's current user CPU time.
957 
958 	The caller must hold \c time_lock.
959 
960 	\return The team's current user CPU time.
961 */
962 bigtime_t
963 Team::UserCPUTime() const
964 {
965 	bigtime_t time = dead_threads_user_time;
966 
967 	bigtime_t now = system_time();
968 
969 	for (Thread* thread = thread_list; thread != NULL;
970 			thread = thread->team_next) {
971 		SpinLocker threadTimeLocker(thread->time_lock);
972 		time += thread->user_time;
973 
974 		if (thread->last_time != 0 && !thread->in_kernel)
975 			time += now - thread->last_time;
976 	}
977 
978 	return time;
979 }
980 
981 
982 //	#pragma mark - ProcessGroup
983 
984 
985 ProcessGroup::ProcessGroup(pid_t id)
986 	:
987 	id(id),
988 	teams(NULL),
989 	fSession(NULL),
990 	fInOrphanedCheckList(false)
991 {
992 	char lockName[32];
993 	snprintf(lockName, sizeof(lockName), "Group:%" B_PRId32, id);
994 	mutex_init_etc(&fLock, lockName, MUTEX_FLAG_CLONE_NAME);
995 }
996 
997 
998 ProcessGroup::~ProcessGroup()
999 {
1000 	TRACE(("ProcessGroup::~ProcessGroup(): id = %" B_PRId32 "\n", id));
1001 
1002 	// If the group is in the orphaned check list, remove it.
1003 	MutexLocker orphanedCheckLocker(sOrphanedCheckLock);
1004 
1005 	if (fInOrphanedCheckList)
1006 		sOrphanedCheckProcessGroups.Remove(this);
1007 
1008 	orphanedCheckLocker.Unlock();
1009 
1010 	// remove group from the hash table and from the session
1011 	if (fSession != NULL) {
1012 		InterruptsSpinLocker groupHashLocker(sGroupHashLock);
1013 		sGroupHash.RemoveUnchecked(this);
1014 		groupHashLocker.Unlock();
1015 
1016 		fSession->ReleaseReference();
1017 	}
1018 
1019 	mutex_destroy(&fLock);
1020 }
1021 
1022 
1023 /*static*/ ProcessGroup*
1024 ProcessGroup::Get(pid_t id)
1025 {
1026 	InterruptsSpinLocker groupHashLocker(sGroupHashLock);
1027 	ProcessGroup* group = sGroupHash.Lookup(id);
1028 	if (group != NULL)
1029 		group->AcquireReference();
1030 	return group;
1031 }
1032 
1033 
1034 /*!	Adds the group the given session and makes it publicly accessible.
1035 	The caller must not hold the process group hash lock.
1036 */
1037 void
1038 ProcessGroup::Publish(ProcessSession* session)
1039 {
1040 	InterruptsSpinLocker groupHashLocker(sGroupHashLock);
1041 	PublishLocked(session);
1042 }
1043 
1044 
1045 /*!	Adds the group to the given session and makes it publicly accessible.
1046 	The caller must hold the process group hash lock.
1047 */
1048 void
1049 ProcessGroup::PublishLocked(ProcessSession* session)
1050 {
1051 	ASSERT(sGroupHash.Lookup(this->id) == NULL);
1052 
1053 	fSession = session;
1054 	fSession->AcquireReference();
1055 
1056 	sGroupHash.InsertUnchecked(this);
1057 }
1058 
1059 
1060 /*!	Checks whether the process group is orphaned.
1061 	The caller must hold the group's lock.
1062 	\return \c true, if the group is orphaned, \c false otherwise.
1063 */
1064 bool
1065 ProcessGroup::IsOrphaned() const
1066 {
1067 	// Orphaned Process Group: "A process group in which the parent of every
1068 	// member is either itself a member of the group or is not a member of the
1069 	// group's session." (Open Group Base Specs Issue 7)
1070 	bool orphaned = true;
1071 
1072 	Team* team = teams;
1073 	while (orphaned && team != NULL) {
1074 		team->LockTeamAndParent(false);
1075 
1076 		Team* parent = team->parent;
1077 		if (parent != NULL && parent->group_id != id
1078 			&& parent->session_id == fSession->id) {
1079 			orphaned = false;
1080 		}
1081 
1082 		team->UnlockTeamAndParent();
1083 
1084 		team = team->group_next;
1085 	}
1086 
1087 	return orphaned;
1088 }
1089 
1090 
1091 void
1092 ProcessGroup::ScheduleOrphanedCheck()
1093 {
1094 	MutexLocker orphanedCheckLocker(sOrphanedCheckLock);
1095 
1096 	if (!fInOrphanedCheckList) {
1097 		sOrphanedCheckProcessGroups.Add(this);
1098 		fInOrphanedCheckList = true;
1099 	}
1100 }
1101 
1102 
1103 void
1104 ProcessGroup::UnsetOrphanedCheck()
1105 {
1106 	fInOrphanedCheckList = false;
1107 }
1108 
1109 
1110 //	#pragma mark - ProcessSession
1111 
1112 
1113 ProcessSession::ProcessSession(pid_t id)
1114 	:
1115 	id(id),
1116 	controlling_tty(-1),
1117 	foreground_group(-1)
1118 {
1119 	char lockName[32];
1120 	snprintf(lockName, sizeof(lockName), "Session:%" B_PRId32, id);
1121 	mutex_init_etc(&fLock, lockName, MUTEX_FLAG_CLONE_NAME);
1122 }
1123 
1124 
1125 ProcessSession::~ProcessSession()
1126 {
1127 	mutex_destroy(&fLock);
1128 }
1129 
1130 
1131 //	#pragma mark - KDL functions
1132 
1133 
1134 static void
1135 _dump_team_info(Team* team)
1136 {
1137 	kprintf("TEAM: %p\n", team);
1138 	kprintf("id:               %" B_PRId32 " (%#" B_PRIx32 ")\n", team->id,
1139 		team->id);
1140 	kprintf("serial_number:    %" B_PRId64 "\n", team->serial_number);
1141 	kprintf("name:             '%s'\n", team->Name());
1142 	kprintf("args:             '%s'\n", team->Args());
1143 	kprintf("hash_next:        %p\n", team->hash_next);
1144 	kprintf("parent:           %p", team->parent);
1145 	if (team->parent != NULL) {
1146 		kprintf(" (id = %" B_PRId32 ")\n", team->parent->id);
1147 	} else
1148 		kprintf("\n");
1149 
1150 	kprintf("children:         %p\n", team->children);
1151 	kprintf("num_threads:      %d\n", team->num_threads);
1152 	kprintf("state:            %d\n", team->state);
1153 	kprintf("flags:            0x%" B_PRIx32 "\n", team->flags);
1154 	kprintf("io_context:       %p\n", team->io_context);
1155 	if (team->address_space)
1156 		kprintf("address_space:    %p\n", team->address_space);
1157 	kprintf("user data:        %p (area %" B_PRId32 ")\n",
1158 		(void*)team->user_data, team->user_data_area);
1159 	kprintf("free user thread: %p\n", team->free_user_threads);
1160 	kprintf("main_thread:      %p\n", team->main_thread);
1161 	kprintf("thread_list:      %p\n", team->thread_list);
1162 	kprintf("group_id:         %" B_PRId32 "\n", team->group_id);
1163 	kprintf("session_id:       %" B_PRId32 "\n", team->session_id);
1164 }
1165 
1166 
1167 static int
1168 dump_team_info(int argc, char** argv)
1169 {
1170 	ulong arg;
1171 	bool found = false;
1172 
1173 	if (argc < 2) {
1174 		Thread* thread = thread_get_current_thread();
1175 		if (thread != NULL && thread->team != NULL)
1176 			_dump_team_info(thread->team);
1177 		else
1178 			kprintf("No current team!\n");
1179 		return 0;
1180 	}
1181 
1182 	arg = strtoul(argv[1], NULL, 0);
1183 	if (IS_KERNEL_ADDRESS(arg)) {
1184 		// semi-hack
1185 		_dump_team_info((Team*)arg);
1186 		return 0;
1187 	}
1188 
1189 	// walk through the thread list, trying to match name or id
1190 	for (TeamTable::Iterator it = sTeamHash.GetIterator();
1191 		Team* team = it.Next();) {
1192 		if ((team->Name() && strcmp(argv[1], team->Name()) == 0)
1193 			|| team->id == (team_id)arg) {
1194 			_dump_team_info(team);
1195 			found = true;
1196 			break;
1197 		}
1198 	}
1199 
1200 	if (!found)
1201 		kprintf("team \"%s\" (%" B_PRId32 ") doesn't exist!\n", argv[1], (team_id)arg);
1202 	return 0;
1203 }
1204 
1205 
1206 static int
1207 dump_teams(int argc, char** argv)
1208 {
1209 	kprintf("%-*s       id  %-*s    name\n", B_PRINTF_POINTER_WIDTH, "team",
1210 		B_PRINTF_POINTER_WIDTH, "parent");
1211 
1212 	for (TeamTable::Iterator it = sTeamHash.GetIterator();
1213 		Team* team = it.Next();) {
1214 		kprintf("%p%7" B_PRId32 "  %p  %s\n", team, team->id, team->parent, team->Name());
1215 	}
1216 
1217 	return 0;
1218 }
1219 
1220 
1221 //	#pragma mark - Private functions
1222 
1223 
1224 /*!	Inserts team \a team into the child list of team \a parent.
1225 
1226 	The caller must hold the lock of both \a parent and \a team.
1227 
1228 	\param parent The parent team.
1229 	\param team The team to be inserted into \a parent's child list.
1230 */
1231 static void
1232 insert_team_into_parent(Team* parent, Team* team)
1233 {
1234 	ASSERT(parent != NULL);
1235 
1236 	team->siblings_next = parent->children;
1237 	parent->children = team;
1238 	team->parent = parent;
1239 }
1240 
1241 
1242 /*!	Removes team \a team from the child list of team \a parent.
1243 
1244 	The caller must hold the lock of both \a parent and \a team.
1245 
1246 	\param parent The parent team.
1247 	\param team The team to be removed from \a parent's child list.
1248 */
1249 static void
1250 remove_team_from_parent(Team* parent, Team* team)
1251 {
1252 	Team* child;
1253 	Team* last = NULL;
1254 
1255 	for (child = parent->children; child != NULL;
1256 			child = child->siblings_next) {
1257 		if (child == team) {
1258 			if (last == NULL)
1259 				parent->children = child->siblings_next;
1260 			else
1261 				last->siblings_next = child->siblings_next;
1262 
1263 			team->parent = NULL;
1264 			break;
1265 		}
1266 		last = child;
1267 	}
1268 }
1269 
1270 
1271 /*!	Returns whether the given team is a session leader.
1272 	The caller must hold the team's lock or its process group's lock.
1273 */
1274 static bool
1275 is_session_leader(Team* team)
1276 {
1277 	return team->session_id == team->id;
1278 }
1279 
1280 
1281 /*!	Returns whether the given team is a process group leader.
1282 	The caller must hold the team's lock or its process group's lock.
1283 */
1284 static bool
1285 is_process_group_leader(Team* team)
1286 {
1287 	return team->group_id == team->id;
1288 }
1289 
1290 
1291 /*!	Inserts the given team into the given process group.
1292 	The caller must hold the process group's lock, the team's lock, and the
1293 	team's parent's lock.
1294 */
1295 static void
1296 insert_team_into_group(ProcessGroup* group, Team* team)
1297 {
1298 	team->group = group;
1299 	team->group_id = group->id;
1300 	team->session_id = group->Session()->id;
1301 
1302 	team->group_next = group->teams;
1303 	group->teams = team;
1304 	group->AcquireReference();
1305 }
1306 
1307 
1308 /*!	Removes the given team from its process group.
1309 
1310 	The caller must hold the process group's lock, the team's lock, and the
1311 	team's parent's lock. Interrupts must be enabled.
1312 
1313 	\param team The team that'll be removed from its process group.
1314 */
1315 static void
1316 remove_team_from_group(Team* team)
1317 {
1318 	ProcessGroup* group = team->group;
1319 	Team* current;
1320 	Team* last = NULL;
1321 
1322 	// the team must be in a process group to let this function have any effect
1323 	if  (group == NULL)
1324 		return;
1325 
1326 	for (current = group->teams; current != NULL;
1327 			current = current->group_next) {
1328 		if (current == team) {
1329 			if (last == NULL)
1330 				group->teams = current->group_next;
1331 			else
1332 				last->group_next = current->group_next;
1333 
1334 			team->group = NULL;
1335 			break;
1336 		}
1337 		last = current;
1338 	}
1339 
1340 	team->group = NULL;
1341 	team->group_next = NULL;
1342 
1343 	group->ReleaseReference();
1344 }
1345 
1346 
1347 static status_t
1348 create_team_user_data(Team* team, void* exactAddress = NULL)
1349 {
1350 	void* address;
1351 	uint32 addressSpec;
1352 
1353 	if (exactAddress != NULL) {
1354 		address = exactAddress;
1355 		addressSpec = B_EXACT_ADDRESS;
1356 	} else {
1357 		address = (void*)KERNEL_USER_DATA_BASE;
1358 		addressSpec = B_RANDOMIZED_BASE_ADDRESS;
1359 	}
1360 
1361 	status_t result = vm_reserve_address_range(team->id, &address, addressSpec,
1362 		kTeamUserDataReservedSize, RESERVED_AVOID_BASE);
1363 
1364 	virtual_address_restrictions virtualRestrictions = {};
1365 	if (result == B_OK || exactAddress != NULL) {
1366 		if (exactAddress != NULL)
1367 			virtualRestrictions.address = exactAddress;
1368 		else
1369 			virtualRestrictions.address = address;
1370 		virtualRestrictions.address_specification = B_EXACT_ADDRESS;
1371 	} else {
1372 		virtualRestrictions.address = (void*)KERNEL_USER_DATA_BASE;
1373 		virtualRestrictions.address_specification = B_RANDOMIZED_BASE_ADDRESS;
1374 	}
1375 
1376 	physical_address_restrictions physicalRestrictions = {};
1377 	team->user_data_area = create_area_etc(team->id, "user area",
1378 		kTeamUserDataInitialSize, B_FULL_LOCK, B_READ_AREA | B_WRITE_AREA, 0, 0,
1379 		&virtualRestrictions, &physicalRestrictions, &address);
1380 	if (team->user_data_area < 0)
1381 		return team->user_data_area;
1382 
1383 	team->user_data = (addr_t)address;
1384 	team->used_user_data = 0;
1385 	team->user_data_size = kTeamUserDataInitialSize;
1386 	team->free_user_threads = NULL;
1387 
1388 	return B_OK;
1389 }
1390 
1391 
1392 static void
1393 delete_team_user_data(Team* team)
1394 {
1395 	if (team->user_data_area >= 0) {
1396 		vm_delete_area(team->id, team->user_data_area, true);
1397 		vm_unreserve_address_range(team->id, (void*)team->user_data,
1398 			kTeamUserDataReservedSize);
1399 
1400 		team->user_data = 0;
1401 		team->used_user_data = 0;
1402 		team->user_data_size = 0;
1403 		team->user_data_area = -1;
1404 		while (free_user_thread* entry = team->free_user_threads) {
1405 			team->free_user_threads = entry->next;
1406 			free(entry);
1407 		}
1408 	}
1409 }
1410 
1411 
1412 static status_t
1413 copy_user_process_args(const char* const* userFlatArgs, size_t flatArgsSize,
1414 	int32 argCount, int32 envCount, char**& _flatArgs)
1415 {
1416 	if (argCount < 0 || envCount < 0)
1417 		return B_BAD_VALUE;
1418 
1419 	if (flatArgsSize > MAX_PROCESS_ARGS_SIZE)
1420 		return B_TOO_MANY_ARGS;
1421 	if ((argCount + envCount + 2) * sizeof(char*) > flatArgsSize)
1422 		return B_BAD_VALUE;
1423 
1424 	if (!IS_USER_ADDRESS(userFlatArgs))
1425 		return B_BAD_ADDRESS;
1426 
1427 	// allocate kernel memory
1428 	char** flatArgs = (char**)malloc(_ALIGN(flatArgsSize));
1429 	if (flatArgs == NULL)
1430 		return B_NO_MEMORY;
1431 
1432 	if (user_memcpy(flatArgs, userFlatArgs, flatArgsSize) != B_OK) {
1433 		free(flatArgs);
1434 		return B_BAD_ADDRESS;
1435 	}
1436 
1437 	// check and relocate the array
1438 	status_t error = B_OK;
1439 	const char* stringBase = (char*)flatArgs + argCount + envCount + 2;
1440 	const char* stringEnd = (char*)flatArgs + flatArgsSize;
1441 	for (int32 i = 0; i < argCount + envCount + 2; i++) {
1442 		if (i == argCount || i == argCount + envCount + 1) {
1443 			// check array null termination
1444 			if (flatArgs[i] != NULL) {
1445 				error = B_BAD_VALUE;
1446 				break;
1447 			}
1448 		} else {
1449 			// check string
1450 			char* arg = (char*)flatArgs + (flatArgs[i] - (char*)userFlatArgs);
1451 			size_t maxLen = stringEnd - arg;
1452 			if (arg < stringBase || arg >= stringEnd
1453 					|| strnlen(arg, maxLen) == maxLen) {
1454 				error = B_BAD_VALUE;
1455 				break;
1456 			}
1457 
1458 			flatArgs[i] = arg;
1459 		}
1460 	}
1461 
1462 	if (error == B_OK)
1463 		_flatArgs = flatArgs;
1464 	else
1465 		free(flatArgs);
1466 
1467 	return error;
1468 }
1469 
1470 
1471 static void
1472 free_team_arg(struct team_arg* teamArg)
1473 {
1474 	if (teamArg != NULL) {
1475 		free(teamArg->flat_args);
1476 		free(teamArg->path);
1477 		free(teamArg);
1478 	}
1479 }
1480 
1481 
1482 static status_t
1483 create_team_arg(struct team_arg** _teamArg, const char* path, char** flatArgs,
1484 	size_t flatArgsSize, int32 argCount, int32 envCount, mode_t umask,
1485 	port_id port, uint32 token)
1486 {
1487 	struct team_arg* teamArg = (struct team_arg*)malloc(sizeof(team_arg));
1488 	if (teamArg == NULL)
1489 		return B_NO_MEMORY;
1490 
1491 	teamArg->path = strdup(path);
1492 	if (teamArg->path == NULL) {
1493 		free(teamArg);
1494 		return B_NO_MEMORY;
1495 	}
1496 
1497 	// copy the args over
1498 	teamArg->flat_args = flatArgs;
1499 	teamArg->flat_args_size = flatArgsSize;
1500 	teamArg->arg_count = argCount;
1501 	teamArg->env_count = envCount;
1502 	teamArg->flags = 0;
1503 	teamArg->umask = umask;
1504 	teamArg->error_port = port;
1505 	teamArg->error_token = token;
1506 
1507 	// determine the flags from the environment
1508 	const char* const* env = flatArgs + argCount + 1;
1509 	for (int32 i = 0; i < envCount; i++) {
1510 		if (strcmp(env[i], "DISABLE_ASLR=1") == 0) {
1511 			teamArg->flags |= TEAM_ARGS_FLAG_NO_ASLR;
1512 			break;
1513 		}
1514 	}
1515 
1516 	*_teamArg = teamArg;
1517 	return B_OK;
1518 }
1519 
1520 
1521 static status_t
1522 team_create_thread_start_internal(void* args)
1523 {
1524 	status_t err;
1525 	Thread* thread;
1526 	Team* team;
1527 	struct team_arg* teamArgs = (struct team_arg*)args;
1528 	const char* path;
1529 	addr_t entry;
1530 	char** userArgs;
1531 	char** userEnv;
1532 	struct user_space_program_args* programArgs;
1533 	uint32 argCount, envCount;
1534 
1535 	thread = thread_get_current_thread();
1536 	team = thread->team;
1537 	cache_node_launched(teamArgs->arg_count, teamArgs->flat_args);
1538 
1539 	TRACE(("team_create_thread_start: entry thread %" B_PRId32 "\n",
1540 		thread->id));
1541 
1542 	// Main stack area layout is currently as follows (starting from 0):
1543 	//
1544 	// size								| usage
1545 	// ---------------------------------+--------------------------------
1546 	// USER_MAIN_THREAD_STACK_SIZE		| actual stack
1547 	// TLS_SIZE							| TLS data
1548 	// sizeof(user_space_program_args)	| argument structure for the runtime
1549 	//									| loader
1550 	// flat arguments size				| flat process arguments and environment
1551 
1552 	// TODO: ENV_SIZE is a) limited, and b) not used after libroot copied it to
1553 	// the heap
1554 	// TODO: we could reserve the whole USER_STACK_REGION upfront...
1555 
1556 	argCount = teamArgs->arg_count;
1557 	envCount = teamArgs->env_count;
1558 
1559 	programArgs = (struct user_space_program_args*)(thread->user_stack_base
1560 		+ thread->user_stack_size + TLS_SIZE);
1561 
1562 	userArgs = (char**)(programArgs + 1);
1563 	userEnv = userArgs + argCount + 1;
1564 	path = teamArgs->path;
1565 
1566 	if (user_strlcpy(programArgs->program_path, path,
1567 				sizeof(programArgs->program_path)) < B_OK
1568 		|| user_memcpy(&programArgs->arg_count, &argCount, sizeof(int32)) < B_OK
1569 		|| user_memcpy(&programArgs->args, &userArgs, sizeof(char**)) < B_OK
1570 		|| user_memcpy(&programArgs->env_count, &envCount, sizeof(int32)) < B_OK
1571 		|| user_memcpy(&programArgs->env, &userEnv, sizeof(char**)) < B_OK
1572 		|| user_memcpy(&programArgs->error_port, &teamArgs->error_port,
1573 				sizeof(port_id)) < B_OK
1574 		|| user_memcpy(&programArgs->error_token, &teamArgs->error_token,
1575 				sizeof(uint32)) < B_OK
1576 		|| user_memcpy(&programArgs->umask, &teamArgs->umask, sizeof(mode_t)) < B_OK
1577 		|| user_memcpy(userArgs, teamArgs->flat_args,
1578 				teamArgs->flat_args_size) < B_OK) {
1579 		// the team deletion process will clean this mess
1580 		free_team_arg(teamArgs);
1581 		return B_BAD_ADDRESS;
1582 	}
1583 
1584 	TRACE(("team_create_thread_start: loading elf binary '%s'\n", path));
1585 
1586 	// set team args and update state
1587 	team->Lock();
1588 	team->SetArgs(path, teamArgs->flat_args + 1, argCount - 1);
1589 	team->state = TEAM_STATE_NORMAL;
1590 	team->Unlock();
1591 
1592 	free_team_arg(teamArgs);
1593 		// the arguments are already on the user stack, we no longer need
1594 		// them in this form
1595 
1596 	// Clone commpage area
1597 	area_id commPageArea = clone_commpage_area(team->id,
1598 		&team->commpage_address);
1599 	if (commPageArea  < B_OK) {
1600 		TRACE(("team_create_thread_start: clone_commpage_area() failed: %s\n",
1601 			strerror(commPageArea)));
1602 		return commPageArea;
1603 	}
1604 
1605 	// Register commpage image
1606 	image_id commPageImage = get_commpage_image();
1607 	extended_image_info imageInfo;
1608 	err = get_image_info(commPageImage, &imageInfo.basic_info);
1609 	if (err != B_OK) {
1610 		TRACE(("team_create_thread_start: get_image_info() failed: %s\n",
1611 			strerror(err)));
1612 		return err;
1613 	}
1614 	imageInfo.basic_info.text = team->commpage_address;
1615 	imageInfo.text_delta = (ssize_t)(addr_t)team->commpage_address;
1616 	imageInfo.symbol_table = NULL;
1617 	imageInfo.symbol_hash = NULL;
1618 	imageInfo.string_table = NULL;
1619 	image_id image = register_image(team, &imageInfo, sizeof(imageInfo));
1620 	if (image < 0) {
1621 		TRACE(("team_create_thread_start: register_image() failed: %s\n",
1622 			strerror(image)));
1623 		return image;
1624 	}
1625 
1626 	// NOTE: Normally arch_thread_enter_userspace() never returns, that is
1627 	// automatic variables with function scope will never be destroyed.
1628 	{
1629 		// find runtime_loader path
1630 		KPath runtimeLoaderPath;
1631 		err = __find_directory(B_SYSTEM_DIRECTORY, gBootDevice, false,
1632 			runtimeLoaderPath.LockBuffer(), runtimeLoaderPath.BufferSize());
1633 		if (err < B_OK) {
1634 			TRACE(("team_create_thread_start: find_directory() failed: %s\n",
1635 				strerror(err)));
1636 			return err;
1637 		}
1638 		runtimeLoaderPath.UnlockBuffer();
1639 		err = runtimeLoaderPath.Append("runtime_loader");
1640 
1641 		if (err == B_OK) {
1642 			err = elf_load_user_image(runtimeLoaderPath.Path(), team, 0,
1643 				&entry);
1644 		}
1645 	}
1646 
1647 	if (err < B_OK) {
1648 		// Luckily, we don't have to clean up the mess we created - that's
1649 		// done for us by the normal team deletion process
1650 		TRACE(("team_create_thread_start: elf_load_user_image() failed: "
1651 			"%s\n", strerror(err)));
1652 		return err;
1653 	}
1654 
1655 	TRACE(("team_create_thread_start: loaded elf. entry = %#lx\n", entry));
1656 
1657 	// enter userspace -- returns only in case of error
1658 	return thread_enter_userspace_new_team(thread, (addr_t)entry,
1659 		programArgs, team->commpage_address);
1660 }
1661 
1662 
1663 static status_t
1664 team_create_thread_start(void* args)
1665 {
1666 	team_create_thread_start_internal(args);
1667 	team_init_exit_info_on_error(thread_get_current_thread()->team);
1668 	thread_exit();
1669 		// does not return
1670 	return B_OK;
1671 }
1672 
1673 
1674 static thread_id
1675 load_image_internal(char**& _flatArgs, size_t flatArgsSize, int32 argCount,
1676 	int32 envCount, int32 priority, team_id parentID, uint32 flags,
1677 	port_id errorPort, uint32 errorToken)
1678 {
1679 	char** flatArgs = _flatArgs;
1680 	thread_id thread;
1681 	status_t status;
1682 	struct team_arg* teamArgs;
1683 	struct team_loading_info loadingInfo;
1684 	io_context* parentIOContext = NULL;
1685 	team_id teamID;
1686 
1687 	if (flatArgs == NULL || argCount == 0)
1688 		return B_BAD_VALUE;
1689 
1690 	const char* path = flatArgs[0];
1691 
1692 	TRACE(("load_image_internal: name '%s', args = %p, argCount = %" B_PRId32
1693 		"\n", path, flatArgs, argCount));
1694 
1695 	// cut the path from the main thread name
1696 	const char* threadName = strrchr(path, '/');
1697 	if (threadName != NULL)
1698 		threadName++;
1699 	else
1700 		threadName = path;
1701 
1702 	// create the main thread object
1703 	Thread* mainThread;
1704 	status = Thread::Create(threadName, mainThread);
1705 	if (status != B_OK)
1706 		return status;
1707 	BReference<Thread> mainThreadReference(mainThread, true);
1708 
1709 	// create team object
1710 	Team* team = Team::Create(mainThread->id, path, false);
1711 	if (team == NULL)
1712 		return B_NO_MEMORY;
1713 	BReference<Team> teamReference(team, true);
1714 
1715 	if (flags & B_WAIT_TILL_LOADED) {
1716 		loadingInfo.thread = thread_get_current_thread();
1717 		loadingInfo.result = B_ERROR;
1718 		loadingInfo.done = false;
1719 		team->loading_info = &loadingInfo;
1720 	}
1721 
1722 	// get the parent team
1723 	Team* parent = Team::Get(parentID);
1724 	if (parent == NULL)
1725 		return B_BAD_TEAM_ID;
1726 	BReference<Team> parentReference(parent, true);
1727 
1728 	parent->LockTeamAndProcessGroup();
1729 	team->Lock();
1730 
1731 	// inherit the parent's user/group
1732 	inherit_parent_user_and_group(team, parent);
1733 
1734  	InterruptsSpinLocker teamsLocker(sTeamHashLock);
1735 
1736 	sTeamHash.Insert(team);
1737 	bool teamLimitReached = sUsedTeams >= sMaxTeams;
1738 	if (!teamLimitReached)
1739 		sUsedTeams++;
1740 
1741 	teamsLocker.Unlock();
1742 
1743 	insert_team_into_parent(parent, team);
1744 	insert_team_into_group(parent->group, team);
1745 
1746 	// get a reference to the parent's I/O context -- we need it to create ours
1747 	parentIOContext = parent->io_context;
1748 	vfs_get_io_context(parentIOContext);
1749 
1750 	team->Unlock();
1751 	parent->UnlockTeamAndProcessGroup();
1752 
1753 	// notify team listeners
1754 	sNotificationService.Notify(TEAM_ADDED, team);
1755 
1756 	// check the executable's set-user/group-id permission
1757 	update_set_id_user_and_group(team, path);
1758 
1759 	if (teamLimitReached) {
1760 		status = B_NO_MORE_TEAMS;
1761 		goto err1;
1762 	}
1763 
1764 	status = create_team_arg(&teamArgs, path, flatArgs, flatArgsSize, argCount,
1765 		envCount, (mode_t)-1, errorPort, errorToken);
1766 	if (status != B_OK)
1767 		goto err1;
1768 
1769 	_flatArgs = NULL;
1770 		// args are owned by the team_arg structure now
1771 
1772 	// create a new io_context for this team
1773 	team->io_context = vfs_new_io_context(parentIOContext, true);
1774 	if (!team->io_context) {
1775 		status = B_NO_MEMORY;
1776 		goto err2;
1777 	}
1778 
1779 	// We don't need the parent's I/O context any longer.
1780 	vfs_put_io_context(parentIOContext);
1781 	parentIOContext = NULL;
1782 
1783 	// remove any fds that have the CLOEXEC flag set (emulating BeOS behaviour)
1784 	vfs_exec_io_context(team->io_context);
1785 
1786 	// create an address space for this team
1787 	status = VMAddressSpace::Create(team->id, USER_BASE, USER_SIZE, false,
1788 		&team->address_space);
1789 	if (status != B_OK)
1790 		goto err2;
1791 
1792 	team->address_space->SetRandomizingEnabled(
1793 		(teamArgs->flags & TEAM_ARGS_FLAG_NO_ASLR) == 0);
1794 
1795 	// create the user data area
1796 	status = create_team_user_data(team);
1797 	if (status != B_OK)
1798 		goto err4;
1799 
1800 	// In case we start the main thread, we shouldn't access the team object
1801 	// afterwards, so cache the team's ID.
1802 	teamID = team->id;
1803 
1804 	// Create a kernel thread, but under the context of the new team
1805 	// The new thread will take over ownership of teamArgs.
1806 	{
1807 		ThreadCreationAttributes threadAttributes(team_create_thread_start,
1808 			threadName, B_NORMAL_PRIORITY, teamArgs, teamID, mainThread);
1809 		threadAttributes.additional_stack_size = sizeof(user_space_program_args)
1810 			+ teamArgs->flat_args_size;
1811 		thread = thread_create_thread(threadAttributes, false);
1812 		if (thread < 0) {
1813 			status = thread;
1814 			goto err5;
1815 		}
1816 	}
1817 
1818 	// The team has been created successfully, so we keep the reference. Or
1819 	// more precisely: It's owned by the team's main thread, now.
1820 	teamReference.Detach();
1821 
1822 	// wait for the loader of the new team to finish its work
1823 	if ((flags & B_WAIT_TILL_LOADED) != 0) {
1824 		if (mainThread != NULL) {
1825 			// resume the team's main thread
1826 			thread_continue(mainThread);
1827 		}
1828 
1829 		// Now suspend ourselves until loading is finished. We will be woken
1830 		// either by the thread, when it finished or aborted loading, or when
1831 		// the team is going to die (e.g. is killed). In either case the one
1832 		// setting `loadingInfo.done' is responsible for removing the info from
1833 		// the team structure.
1834 		while (!loadingInfo.done)
1835 			thread_suspend();
1836 
1837 		if (loadingInfo.result < B_OK)
1838 			return loadingInfo.result;
1839 	}
1840 
1841 	// notify the debugger
1842 	user_debug_team_created(teamID);
1843 
1844 	return thread;
1845 
1846 err5:
1847 	delete_team_user_data(team);
1848 err4:
1849 	team->address_space->Put();
1850 err2:
1851 	free_team_arg(teamArgs);
1852 err1:
1853 	if (parentIOContext != NULL)
1854 		vfs_put_io_context(parentIOContext);
1855 
1856 	// Remove the team structure from the process group, the parent team, and
1857 	// the team hash table and delete the team structure.
1858 	parent->LockTeamAndProcessGroup();
1859 	team->Lock();
1860 
1861 	remove_team_from_group(team);
1862 	remove_team_from_parent(team->parent, team);
1863 
1864 	team->Unlock();
1865 	parent->UnlockTeamAndProcessGroup();
1866 
1867 	teamsLocker.Lock();
1868 	sTeamHash.Remove(team);
1869 	if (!teamLimitReached)
1870 		sUsedTeams--;
1871 	teamsLocker.Unlock();
1872 
1873 	sNotificationService.Notify(TEAM_REMOVED, team);
1874 
1875 	return status;
1876 }
1877 
1878 
1879 /*!	Almost shuts down the current team and loads a new image into it.
1880 	If successful, this function does not return and will takeover ownership of
1881 	the arguments provided.
1882 	This function may only be called in a userland team (caused by one of the
1883 	exec*() syscalls).
1884 */
1885 static status_t
1886 exec_team(const char* path, char**& _flatArgs, size_t flatArgsSize,
1887 	int32 argCount, int32 envCount, mode_t umask)
1888 {
1889 	// NOTE: Since this function normally doesn't return, don't use automatic
1890 	// variables that need destruction in the function scope.
1891 	char** flatArgs = _flatArgs;
1892 	Team* team = thread_get_current_thread()->team;
1893 	struct team_arg* teamArgs;
1894 	const char* threadName;
1895 	thread_id nubThreadID = -1;
1896 
1897 	TRACE(("exec_team(path = \"%s\", argc = %" B_PRId32 ", envCount = %"
1898 		B_PRId32 "): team %" B_PRId32 "\n", path, argCount, envCount,
1899 		team->id));
1900 
1901 	T(ExecTeam(path, argCount, flatArgs, envCount, flatArgs + argCount + 1));
1902 
1903 	// switching the kernel at run time is probably not a good idea :)
1904 	if (team == team_get_kernel_team())
1905 		return B_NOT_ALLOWED;
1906 
1907 	// we currently need to be single threaded here
1908 	// TODO: maybe we should just kill all other threads and
1909 	//	make the current thread the team's main thread?
1910 	Thread* currentThread = thread_get_current_thread();
1911 	if (currentThread != team->main_thread)
1912 		return B_NOT_ALLOWED;
1913 
1914 	// The debug nub thread, a pure kernel thread, is allowed to survive.
1915 	// We iterate through the thread list to make sure that there's no other
1916 	// thread.
1917 	TeamLocker teamLocker(team);
1918 	InterruptsSpinLocker debugInfoLocker(team->debug_info.lock);
1919 
1920 	if (team->debug_info.flags & B_TEAM_DEBUG_DEBUGGER_INSTALLED)
1921 		nubThreadID = team->debug_info.nub_thread;
1922 
1923 	debugInfoLocker.Unlock();
1924 
1925 	for (Thread* thread = team->thread_list; thread != NULL;
1926 			thread = thread->team_next) {
1927 		if (thread != team->main_thread && thread->id != nubThreadID)
1928 			return B_NOT_ALLOWED;
1929 	}
1930 
1931 	team->DeleteUserTimers(true);
1932 	team->ResetSignalsOnExec();
1933 
1934 	teamLocker.Unlock();
1935 
1936 	status_t status = create_team_arg(&teamArgs, path, flatArgs, flatArgsSize,
1937 		argCount, envCount, umask, -1, 0);
1938 	if (status != B_OK)
1939 		return status;
1940 
1941 	_flatArgs = NULL;
1942 		// args are owned by the team_arg structure now
1943 
1944 	// TODO: remove team resources if there are any left
1945 	// thread_atkernel_exit() might not be called at all
1946 
1947 	thread_reset_for_exec();
1948 
1949 	user_debug_prepare_for_exec();
1950 
1951 	delete_team_user_data(team);
1952 	vm_delete_areas(team->address_space, false);
1953 	xsi_sem_undo(team);
1954 	delete_owned_ports(team);
1955 	sem_delete_owned_sems(team);
1956 	remove_images(team);
1957 	vfs_exec_io_context(team->io_context);
1958 	delete_realtime_sem_context(team->realtime_sem_context);
1959 	team->realtime_sem_context = NULL;
1960 
1961 	// update ASLR
1962 	team->address_space->SetRandomizingEnabled(
1963 		(teamArgs->flags & TEAM_ARGS_FLAG_NO_ASLR) == 0);
1964 
1965 	status = create_team_user_data(team);
1966 	if (status != B_OK) {
1967 		// creating the user data failed -- we're toast
1968 		free_team_arg(teamArgs);
1969 		exit_thread(status);
1970 		return status;
1971 	}
1972 
1973 	user_debug_finish_after_exec();
1974 
1975 	// rename the team
1976 
1977 	team->Lock();
1978 	team->SetName(path);
1979 	team->Unlock();
1980 
1981 	// cut the path from the team name and rename the main thread, too
1982 	threadName = strrchr(path, '/');
1983 	if (threadName != NULL)
1984 		threadName++;
1985 	else
1986 		threadName = path;
1987 	rename_thread(thread_get_current_thread_id(), threadName);
1988 
1989 	atomic_or(&team->flags, TEAM_FLAG_EXEC_DONE);
1990 
1991 	// Update user/group according to the executable's set-user/group-id
1992 	// permission.
1993 	update_set_id_user_and_group(team, path);
1994 
1995 	user_debug_team_exec();
1996 
1997 	// notify team listeners
1998 	sNotificationService.Notify(TEAM_EXEC, team);
1999 
2000 	// get a user thread for the thread
2001 	user_thread* userThread = team_allocate_user_thread(team);
2002 		// cannot fail (the allocation for the team would have failed already)
2003 	ThreadLocker currentThreadLocker(currentThread);
2004 	currentThread->user_thread = userThread;
2005 	currentThreadLocker.Unlock();
2006 
2007 	// create the user stack for the thread
2008 	status = thread_create_user_stack(currentThread->team, currentThread, NULL,
2009 		0, sizeof(user_space_program_args) + teamArgs->flat_args_size);
2010 	if (status == B_OK) {
2011 		// prepare the stack, load the runtime loader, and enter userspace
2012 		team_create_thread_start(teamArgs);
2013 			// does never return
2014 	} else
2015 		free_team_arg(teamArgs);
2016 
2017 	// Sorry, we have to kill ourselves, there is no way out anymore
2018 	// (without any areas left and all that).
2019 	exit_thread(status);
2020 
2021 	// We return a status here since the signal that is sent by the
2022 	// call above is not immediately handled.
2023 	return B_ERROR;
2024 }
2025 
2026 
2027 static thread_id
2028 fork_team(void)
2029 {
2030 	Thread* parentThread = thread_get_current_thread();
2031 	Team* parentTeam = parentThread->team;
2032 	Team* team;
2033 	arch_fork_arg* forkArgs;
2034 	struct area_info info;
2035 	thread_id threadID;
2036 	status_t status;
2037 	ssize_t areaCookie;
2038 
2039 	TRACE(("fork_team(): team %" B_PRId32 "\n", parentTeam->id));
2040 
2041 	if (parentTeam == team_get_kernel_team())
2042 		return B_NOT_ALLOWED;
2043 
2044 	// create a new team
2045 	// TODO: this is very similar to load_image_internal() - maybe we can do
2046 	// something about it :)
2047 
2048 	// create the main thread object
2049 	Thread* thread;
2050 	status = Thread::Create(parentThread->name, thread);
2051 	if (status != B_OK)
2052 		return status;
2053 	BReference<Thread> threadReference(thread, true);
2054 
2055 	// create the team object
2056 	team = Team::Create(thread->id, NULL, false);
2057 	if (team == NULL)
2058 		return B_NO_MEMORY;
2059 
2060 	parentTeam->LockTeamAndProcessGroup();
2061 	team->Lock();
2062 
2063 	team->SetName(parentTeam->Name());
2064 	team->SetArgs(parentTeam->Args());
2065 
2066 	team->commpage_address = parentTeam->commpage_address;
2067 
2068 	// Inherit the parent's user/group.
2069 	inherit_parent_user_and_group(team, parentTeam);
2070 
2071 	// inherit signal handlers
2072 	team->InheritSignalActions(parentTeam);
2073 
2074 	InterruptsSpinLocker teamsLocker(sTeamHashLock);
2075 
2076 	sTeamHash.Insert(team);
2077 	bool teamLimitReached = sUsedTeams >= sMaxTeams;
2078 	if (!teamLimitReached)
2079 		sUsedTeams++;
2080 
2081 	teamsLocker.Unlock();
2082 
2083 	insert_team_into_parent(parentTeam, team);
2084 	insert_team_into_group(parentTeam->group, team);
2085 
2086 	team->Unlock();
2087 	parentTeam->UnlockTeamAndProcessGroup();
2088 
2089 	// notify team listeners
2090 	sNotificationService.Notify(TEAM_ADDED, team);
2091 
2092 	// inherit some team debug flags
2093 	team->debug_info.flags |= atomic_get(&parentTeam->debug_info.flags)
2094 		& B_TEAM_DEBUG_INHERITED_FLAGS;
2095 
2096 	if (teamLimitReached) {
2097 		status = B_NO_MORE_TEAMS;
2098 		goto err1;
2099 	}
2100 
2101 	forkArgs = (arch_fork_arg*)malloc(sizeof(arch_fork_arg));
2102 	if (forkArgs == NULL) {
2103 		status = B_NO_MEMORY;
2104 		goto err1;
2105 	}
2106 
2107 	// create a new io_context for this team
2108 	team->io_context = vfs_new_io_context(parentTeam->io_context, false);
2109 	if (!team->io_context) {
2110 		status = B_NO_MEMORY;
2111 		goto err2;
2112 	}
2113 
2114 	// duplicate the realtime sem context
2115 	if (parentTeam->realtime_sem_context) {
2116 		team->realtime_sem_context = clone_realtime_sem_context(
2117 			parentTeam->realtime_sem_context);
2118 		if (team->realtime_sem_context == NULL) {
2119 			status = B_NO_MEMORY;
2120 			goto err2;
2121 		}
2122 	}
2123 
2124 	// create an address space for this team
2125 	status = VMAddressSpace::Create(team->id, USER_BASE, USER_SIZE, false,
2126 		&team->address_space);
2127 	if (status < B_OK)
2128 		goto err3;
2129 
2130 	// copy all areas of the team
2131 	// TODO: should be able to handle stack areas differently (ie. don't have
2132 	// them copy-on-write)
2133 
2134 	areaCookie = 0;
2135 	while (get_next_area_info(B_CURRENT_TEAM, &areaCookie, &info) == B_OK) {
2136 		if (info.area == parentTeam->user_data_area) {
2137 			// don't clone the user area; just create a new one
2138 			status = create_team_user_data(team, info.address);
2139 			if (status != B_OK)
2140 				break;
2141 
2142 			thread->user_thread = team_allocate_user_thread(team);
2143 		} else {
2144 			void* address;
2145 			area_id area = vm_copy_area(team->address_space->ID(), info.name,
2146 				&address, B_CLONE_ADDRESS, info.protection, info.area);
2147 			if (area < B_OK) {
2148 				status = area;
2149 				break;
2150 			}
2151 
2152 			if (info.area == parentThread->user_stack_area)
2153 				thread->user_stack_area = area;
2154 		}
2155 	}
2156 
2157 	if (status < B_OK)
2158 		goto err4;
2159 
2160 	if (thread->user_thread == NULL) {
2161 #if KDEBUG
2162 		panic("user data area not found, parent area is %" B_PRId32,
2163 			parentTeam->user_data_area);
2164 #endif
2165 		status = B_ERROR;
2166 		goto err4;
2167 	}
2168 
2169 	thread->user_stack_base = parentThread->user_stack_base;
2170 	thread->user_stack_size = parentThread->user_stack_size;
2171 	thread->user_local_storage = parentThread->user_local_storage;
2172 	thread->sig_block_mask = parentThread->sig_block_mask;
2173 	thread->signal_stack_base = parentThread->signal_stack_base;
2174 	thread->signal_stack_size = parentThread->signal_stack_size;
2175 	thread->signal_stack_enabled = parentThread->signal_stack_enabled;
2176 
2177 	arch_store_fork_frame(forkArgs);
2178 
2179 	// copy image list
2180 	if (copy_images(parentTeam->id, team) != B_OK)
2181 		goto err5;
2182 
2183 	// create the main thread
2184 	{
2185 		ThreadCreationAttributes threadCreationAttributes(NULL,
2186 			parentThread->name, parentThread->priority, NULL, team->id, thread);
2187 		threadCreationAttributes.forkArgs = forkArgs;
2188 		threadCreationAttributes.flags |= THREAD_CREATION_FLAG_DEFER_SIGNALS;
2189 		threadID = thread_create_thread(threadCreationAttributes, false);
2190 		if (threadID < 0) {
2191 			status = threadID;
2192 			goto err5;
2193 		}
2194 	}
2195 
2196 	// notify the debugger
2197 	user_debug_team_created(team->id);
2198 
2199 	T(TeamForked(threadID));
2200 
2201 	resume_thread(threadID);
2202 	return threadID;
2203 
2204 err5:
2205 	remove_images(team);
2206 err4:
2207 	team->address_space->RemoveAndPut();
2208 err3:
2209 	delete_realtime_sem_context(team->realtime_sem_context);
2210 err2:
2211 	free(forkArgs);
2212 err1:
2213 	// Remove the team structure from the process group, the parent team, and
2214 	// the team hash table and delete the team structure.
2215 	parentTeam->LockTeamAndProcessGroup();
2216 	team->Lock();
2217 
2218 	remove_team_from_group(team);
2219 	remove_team_from_parent(team->parent, team);
2220 
2221 	team->Unlock();
2222 	parentTeam->UnlockTeamAndProcessGroup();
2223 
2224 	teamsLocker.Lock();
2225 	sTeamHash.Remove(team);
2226 	if (!teamLimitReached)
2227 		sUsedTeams--;
2228 	teamsLocker.Unlock();
2229 
2230 	sNotificationService.Notify(TEAM_REMOVED, team);
2231 
2232 	team->ReleaseReference();
2233 
2234 	return status;
2235 }
2236 
2237 
2238 /*!	Returns if the specified team \a parent has any children belonging to the
2239 	process group with the specified ID \a groupID.
2240 	The caller must hold \a parent's lock.
2241 */
2242 static bool
2243 has_children_in_group(Team* parent, pid_t groupID)
2244 {
2245 	for (Team* child = parent->children; child != NULL;
2246 			child = child->siblings_next) {
2247 		TeamLocker childLocker(child);
2248 		if (child->group_id == groupID)
2249 			return true;
2250 	}
2251 
2252 	return false;
2253 }
2254 
2255 
2256 /*!	Returns the first job control entry from \a children, which matches \a id.
2257 	\a id can be:
2258 	- \code > 0 \endcode: Matching an entry with that team ID.
2259 	- \code == -1 \endcode: Matching any entry.
2260 	- \code < -1 \endcode: Matching any entry with a process group ID of \c -id.
2261 	\c 0 is an invalid value for \a id.
2262 
2263 	The caller must hold the lock of the team that \a children belongs to.
2264 
2265 	\param children The job control entry list to check.
2266 	\param id The match criterion.
2267 	\return The first matching entry or \c NULL, if none matches.
2268 */
2269 static job_control_entry*
2270 get_job_control_entry(team_job_control_children& children, pid_t id)
2271 {
2272 	for (JobControlEntryList::Iterator it = children.entries.GetIterator();
2273 		 job_control_entry* entry = it.Next();) {
2274 
2275 		if (id > 0) {
2276 			if (entry->thread == id)
2277 				return entry;
2278 		} else if (id == -1) {
2279 			return entry;
2280 		} else {
2281 			pid_t processGroup
2282 				= (entry->team ? entry->team->group_id : entry->group_id);
2283 			if (processGroup == -id)
2284 				return entry;
2285 		}
2286 	}
2287 
2288 	return NULL;
2289 }
2290 
2291 
2292 /*!	Returns the first job control entry from one of team's dead, continued, or
2293     stopped children which matches \a id.
2294 	\a id can be:
2295 	- \code > 0 \endcode: Matching an entry with that team ID.
2296 	- \code == -1 \endcode: Matching any entry.
2297 	- \code < -1 \endcode: Matching any entry with a process group ID of \c -id.
2298 	\c 0 is an invalid value for \a id.
2299 
2300 	The caller must hold \a team's lock.
2301 
2302 	\param team The team whose dead, stopped, and continued child lists shall be
2303 		checked.
2304 	\param id The match criterion.
2305 	\param flags Specifies which children shall be considered. Dead children
2306 		always are. Stopped children are considered when \a flags is ORed
2307 		bitwise with \c WUNTRACED, continued children when \a flags is ORed
2308 		bitwise with \c WCONTINUED.
2309 	\return The first matching entry or \c NULL, if none matches.
2310 */
2311 static job_control_entry*
2312 get_job_control_entry(Team* team, pid_t id, uint32 flags)
2313 {
2314 	job_control_entry* entry = get_job_control_entry(team->dead_children, id);
2315 
2316 	if (entry == NULL && (flags & WCONTINUED) != 0)
2317 		entry = get_job_control_entry(team->continued_children, id);
2318 
2319 	if (entry == NULL && (flags & WUNTRACED) != 0)
2320 		entry = get_job_control_entry(team->stopped_children, id);
2321 
2322 	return entry;
2323 }
2324 
2325 
2326 job_control_entry::job_control_entry()
2327 	:
2328 	has_group_ref(false)
2329 {
2330 }
2331 
2332 
2333 job_control_entry::~job_control_entry()
2334 {
2335 	if (has_group_ref) {
2336 		InterruptsSpinLocker groupHashLocker(sGroupHashLock);
2337 
2338 		ProcessGroup* group = sGroupHash.Lookup(group_id);
2339 		if (group == NULL) {
2340 			panic("job_control_entry::~job_control_entry(): unknown group "
2341 				"ID: %" B_PRId32, group_id);
2342 			return;
2343 		}
2344 
2345 		groupHashLocker.Unlock();
2346 
2347 		group->ReleaseReference();
2348 	}
2349 }
2350 
2351 
2352 /*!	Invoked when the owning team is dying, initializing the entry according to
2353 	the dead state.
2354 
2355 	The caller must hold the owning team's lock and the scheduler lock.
2356 */
2357 void
2358 job_control_entry::InitDeadState()
2359 {
2360 	if (team != NULL) {
2361 		ASSERT(team->exit.initialized);
2362 
2363 		group_id = team->group_id;
2364 		team->group->AcquireReference();
2365 		has_group_ref = true;
2366 
2367 		thread = team->id;
2368 		status = team->exit.status;
2369 		reason = team->exit.reason;
2370 		signal = team->exit.signal;
2371 		signaling_user = team->exit.signaling_user;
2372 
2373 		team = NULL;
2374 	}
2375 }
2376 
2377 
2378 job_control_entry&
2379 job_control_entry::operator=(const job_control_entry& other)
2380 {
2381 	state = other.state;
2382 	thread = other.thread;
2383 	signal = other.signal;
2384 	has_group_ref = false;
2385 	signaling_user = other.signaling_user;
2386 	team = other.team;
2387 	group_id = other.group_id;
2388 	status = other.status;
2389 	reason = other.reason;
2390 
2391 	return *this;
2392 }
2393 
2394 
2395 /*! This is the kernel backend for waitid().
2396 */
2397 static thread_id
2398 wait_for_child(pid_t child, uint32 flags, siginfo_t& _info)
2399 {
2400 	Thread* thread = thread_get_current_thread();
2401 	Team* team = thread->team;
2402 	struct job_control_entry foundEntry;
2403 	struct job_control_entry* freeDeathEntry = NULL;
2404 	status_t status = B_OK;
2405 
2406 	TRACE(("wait_for_child(child = %" B_PRId32 ", flags = %" B_PRId32 ")\n",
2407 		child, flags));
2408 
2409 	T(WaitForChild(child, flags));
2410 
2411 	pid_t originalChild = child;
2412 
2413 	bool ignoreFoundEntries = false;
2414 	bool ignoreFoundEntriesChecked = false;
2415 
2416 	while (true) {
2417 		// lock the team
2418 		TeamLocker teamLocker(team);
2419 
2420 		// A 0 child argument means to wait for all children in the process
2421 		// group of the calling team.
2422 		child = originalChild == 0 ? -team->group_id : originalChild;
2423 
2424 		// check whether any condition holds
2425 		job_control_entry* entry = get_job_control_entry(team, child, flags);
2426 
2427 		// If we don't have an entry yet, check whether there are any children
2428 		// complying to the process group specification at all.
2429 		if (entry == NULL) {
2430 			// No success yet -- check whether there are any children complying
2431 			// to the process group specification at all.
2432 			bool childrenExist = false;
2433 			if (child == -1) {
2434 				childrenExist = team->children != NULL;
2435 			} else if (child < -1) {
2436 				childrenExist = has_children_in_group(team, -child);
2437 			} else {
2438 				if (Team* childTeam = Team::Get(child)) {
2439 					BReference<Team> childTeamReference(childTeam, true);
2440 					TeamLocker childTeamLocker(childTeam);
2441 					childrenExist = childTeam->parent == team;
2442 				}
2443 			}
2444 
2445 			if (!childrenExist) {
2446 				// there is no child we could wait for
2447 				status = ECHILD;
2448 			} else {
2449 				// the children we're waiting for are still running
2450 				status = B_WOULD_BLOCK;
2451 			}
2452 		} else {
2453 			// got something
2454 			foundEntry = *entry;
2455 
2456 			// unless WNOWAIT has been specified, "consume" the wait state
2457 			if ((flags & WNOWAIT) == 0 || ignoreFoundEntries) {
2458 				if (entry->state == JOB_CONTROL_STATE_DEAD) {
2459 					// The child is dead. Reap its death entry.
2460 					freeDeathEntry = entry;
2461 					team->dead_children.entries.Remove(entry);
2462 					team->dead_children.count--;
2463 				} else {
2464 					// The child is well. Reset its job control state.
2465 					team_set_job_control_state(entry->team,
2466 						JOB_CONTROL_STATE_NONE, NULL);
2467 				}
2468 			}
2469 		}
2470 
2471 		// If we haven't got anything yet, prepare for waiting for the
2472 		// condition variable.
2473 		ConditionVariableEntry deadWaitEntry;
2474 
2475 		if (status == B_WOULD_BLOCK && (flags & WNOHANG) == 0)
2476 			team->dead_children.condition_variable.Add(&deadWaitEntry);
2477 
2478 		teamLocker.Unlock();
2479 
2480 		// we got our entry and can return to our caller
2481 		if (status == B_OK) {
2482 			if (ignoreFoundEntries) {
2483 				// ... unless we shall ignore found entries
2484 				delete freeDeathEntry;
2485 				freeDeathEntry = NULL;
2486 				continue;
2487 			}
2488 
2489 			break;
2490 		}
2491 
2492 		if (status != B_WOULD_BLOCK || (flags & WNOHANG) != 0) {
2493 			T(WaitForChildDone(status));
2494 			return status;
2495 		}
2496 
2497 		status = deadWaitEntry.Wait(B_CAN_INTERRUPT);
2498 		if (status == B_INTERRUPTED) {
2499 			T(WaitForChildDone(status));
2500 			return status;
2501 		}
2502 
2503 		// If SA_NOCLDWAIT is set or SIGCHLD is ignored, we shall wait until
2504 		// all our children are dead and fail with ECHILD. We check the
2505 		// condition at this point.
2506 		if (!ignoreFoundEntriesChecked) {
2507 			teamLocker.Lock();
2508 
2509 			struct sigaction& handler = team->SignalActionFor(SIGCHLD);
2510 			if ((handler.sa_flags & SA_NOCLDWAIT) != 0
2511 				|| handler.sa_handler == SIG_IGN) {
2512 				ignoreFoundEntries = true;
2513 			}
2514 
2515 			teamLocker.Unlock();
2516 
2517 			ignoreFoundEntriesChecked = true;
2518 		}
2519 	}
2520 
2521 	delete freeDeathEntry;
2522 
2523 	// When we got here, we have a valid death entry, and already got
2524 	// unregistered from the team or group. Fill in the returned info.
2525 	memset(&_info, 0, sizeof(_info));
2526 	_info.si_signo = SIGCHLD;
2527 	_info.si_pid = foundEntry.thread;
2528 	_info.si_uid = foundEntry.signaling_user;
2529 	// TODO: Fill in si_errno?
2530 
2531 	switch (foundEntry.state) {
2532 		case JOB_CONTROL_STATE_DEAD:
2533 			_info.si_code = foundEntry.reason;
2534 			_info.si_status = foundEntry.reason == CLD_EXITED
2535 				? foundEntry.status : foundEntry.signal;
2536 			break;
2537 		case JOB_CONTROL_STATE_STOPPED:
2538 			_info.si_code = CLD_STOPPED;
2539 			_info.si_status = foundEntry.signal;
2540 			break;
2541 		case JOB_CONTROL_STATE_CONTINUED:
2542 			_info.si_code = CLD_CONTINUED;
2543 			_info.si_status = 0;
2544 			break;
2545 		case JOB_CONTROL_STATE_NONE:
2546 			// can't happen
2547 			break;
2548 	}
2549 
2550 	// If SIGCHLD is blocked, we shall clear pending SIGCHLDs, if no other child
2551 	// status is available.
2552 	TeamLocker teamLocker(team);
2553 	InterruptsSpinLocker signalLocker(team->signal_lock);
2554 	SpinLocker threadCreationLocker(gThreadCreationLock);
2555 
2556 	if (is_team_signal_blocked(team, SIGCHLD)) {
2557 		if (get_job_control_entry(team, child, flags) == NULL)
2558 			team->RemovePendingSignals(SIGNAL_TO_MASK(SIGCHLD));
2559 	}
2560 
2561 	threadCreationLocker.Unlock();
2562 	signalLocker.Unlock();
2563 	teamLocker.Unlock();
2564 
2565 	// When the team is dead, the main thread continues to live in the kernel
2566 	// team for a very short time. To avoid surprises for the caller we rather
2567 	// wait until the thread is really gone.
2568 	if (foundEntry.state == JOB_CONTROL_STATE_DEAD)
2569 		wait_for_thread(foundEntry.thread, NULL);
2570 
2571 	T(WaitForChildDone(foundEntry));
2572 
2573 	return foundEntry.thread;
2574 }
2575 
2576 
2577 /*! Fills the team_info structure with information from the specified team.
2578 	Interrupts must be enabled. The team must not be locked.
2579 */
2580 static status_t
2581 fill_team_info(Team* team, team_info* info, size_t size)
2582 {
2583 	if (size != sizeof(team_info))
2584 		return B_BAD_VALUE;
2585 
2586 	// TODO: Set more informations for team_info
2587 	memset(info, 0, size);
2588 
2589 	info->team = team->id;
2590 		// immutable
2591 	info->image_count = count_images(team);
2592 		// protected by sImageMutex
2593 
2594 	TeamLocker teamLocker(team);
2595 	InterruptsSpinLocker debugInfoLocker(team->debug_info.lock);
2596 
2597 	info->thread_count = team->num_threads;
2598 	//info->area_count =
2599 	info->debugger_nub_thread = team->debug_info.nub_thread;
2600 	info->debugger_nub_port = team->debug_info.nub_port;
2601 	info->uid = team->effective_uid;
2602 	info->gid = team->effective_gid;
2603 
2604 	strlcpy(info->args, team->Args(), sizeof(info->args));
2605 	info->argc = 1;
2606 
2607 	return B_OK;
2608 }
2609 
2610 
2611 /*!	Returns whether the process group contains stopped processes.
2612 	The caller must hold the process group's lock.
2613 */
2614 static bool
2615 process_group_has_stopped_processes(ProcessGroup* group)
2616 {
2617 	Team* team = group->teams;
2618 	while (team != NULL) {
2619 		// the parent team's lock guards the job control entry -- acquire it
2620 		team->LockTeamAndParent(false);
2621 
2622 		if (team->job_control_entry != NULL
2623 			&& team->job_control_entry->state == JOB_CONTROL_STATE_STOPPED) {
2624 			team->UnlockTeamAndParent();
2625 			return true;
2626 		}
2627 
2628 		team->UnlockTeamAndParent();
2629 
2630 		team = team->group_next;
2631 	}
2632 
2633 	return false;
2634 }
2635 
2636 
2637 /*!	Iterates through all process groups queued in team_remove_team() and signals
2638 	those that are orphaned and have stopped processes.
2639 	The caller must not hold any team or process group locks.
2640 */
2641 static void
2642 orphaned_process_group_check()
2643 {
2644 	// process as long as there are groups in the list
2645 	while (true) {
2646 		// remove the head from the list
2647 		MutexLocker orphanedCheckLocker(sOrphanedCheckLock);
2648 
2649 		ProcessGroup* group = sOrphanedCheckProcessGroups.RemoveHead();
2650 		if (group == NULL)
2651 			return;
2652 
2653 		group->UnsetOrphanedCheck();
2654 		BReference<ProcessGroup> groupReference(group);
2655 
2656 		orphanedCheckLocker.Unlock();
2657 
2658 		AutoLocker<ProcessGroup> groupLocker(group);
2659 
2660 		// If the group is orphaned and contains stopped processes, we're
2661 		// supposed to send SIGHUP + SIGCONT.
2662 		if (group->IsOrphaned() && process_group_has_stopped_processes(group)) {
2663 			Thread* currentThread = thread_get_current_thread();
2664 
2665 			Signal signal(SIGHUP, SI_USER, B_OK, currentThread->team->id);
2666 			send_signal_to_process_group_locked(group, signal, 0);
2667 
2668 			signal.SetNumber(SIGCONT);
2669 			send_signal_to_process_group_locked(group, signal, 0);
2670 		}
2671 	}
2672 }
2673 
2674 
2675 static status_t
2676 common_get_team_usage_info(team_id id, int32 who, team_usage_info* info,
2677 	uint32 flags)
2678 {
2679 	if (who != B_TEAM_USAGE_SELF && who != B_TEAM_USAGE_CHILDREN)
2680 		return B_BAD_VALUE;
2681 
2682 	// get the team
2683 	Team* team = Team::GetAndLock(id);
2684 	if (team == NULL)
2685 		return B_BAD_TEAM_ID;
2686 	BReference<Team> teamReference(team, true);
2687 	TeamLocker teamLocker(team, true);
2688 
2689 	if ((flags & B_CHECK_PERMISSION) != 0) {
2690 		uid_t uid = geteuid();
2691 		if (uid != 0 && uid != team->effective_uid)
2692 			return B_NOT_ALLOWED;
2693 	}
2694 
2695 	bigtime_t kernelTime = 0;
2696 	bigtime_t userTime = 0;
2697 
2698 	switch (who) {
2699 		case B_TEAM_USAGE_SELF:
2700 		{
2701 			Thread* thread = team->thread_list;
2702 
2703 			for (; thread != NULL; thread = thread->team_next) {
2704 				InterruptsSpinLocker threadTimeLocker(thread->time_lock);
2705 				kernelTime += thread->kernel_time;
2706 				userTime += thread->user_time;
2707 			}
2708 
2709 			kernelTime += team->dead_threads_kernel_time;
2710 			userTime += team->dead_threads_user_time;
2711 			break;
2712 		}
2713 
2714 		case B_TEAM_USAGE_CHILDREN:
2715 		{
2716 			Team* child = team->children;
2717 			for (; child != NULL; child = child->siblings_next) {
2718 				TeamLocker childLocker(child);
2719 
2720 				Thread* thread = team->thread_list;
2721 
2722 				for (; thread != NULL; thread = thread->team_next) {
2723 					InterruptsSpinLocker threadTimeLocker(thread->time_lock);
2724 					kernelTime += thread->kernel_time;
2725 					userTime += thread->user_time;
2726 				}
2727 
2728 				kernelTime += child->dead_threads_kernel_time;
2729 				userTime += child->dead_threads_user_time;
2730 			}
2731 
2732 			kernelTime += team->dead_children.kernel_time;
2733 			userTime += team->dead_children.user_time;
2734 			break;
2735 		}
2736 	}
2737 
2738 	info->kernel_time = kernelTime;
2739 	info->user_time = userTime;
2740 
2741 	return B_OK;
2742 }
2743 
2744 
2745 //	#pragma mark - Private kernel API
2746 
2747 
2748 status_t
2749 team_init(kernel_args* args)
2750 {
2751 	// create the team hash table
2752 	new(&sTeamHash) TeamTable;
2753 	if (sTeamHash.Init(64) != B_OK)
2754 		panic("Failed to init team hash table!");
2755 
2756 	new(&sGroupHash) ProcessGroupHashTable;
2757 	if (sGroupHash.Init() != B_OK)
2758 		panic("Failed to init process group hash table!");
2759 
2760 	// create initial session and process groups
2761 
2762 	ProcessSession* session = new(std::nothrow) ProcessSession(1);
2763 	if (session == NULL)
2764 		panic("Could not create initial session.\n");
2765 	BReference<ProcessSession> sessionReference(session, true);
2766 
2767 	ProcessGroup* group = new(std::nothrow) ProcessGroup(1);
2768 	if (group == NULL)
2769 		panic("Could not create initial process group.\n");
2770 	BReference<ProcessGroup> groupReference(group, true);
2771 
2772 	group->Publish(session);
2773 
2774 	// create the kernel team
2775 	sKernelTeam = Team::Create(1, "kernel_team", true);
2776 	if (sKernelTeam == NULL)
2777 		panic("could not create kernel team!\n");
2778 	sKernelTeam->SetArgs(sKernelTeam->Name());
2779 	sKernelTeam->state = TEAM_STATE_NORMAL;
2780 
2781 	sKernelTeam->saved_set_uid = 0;
2782 	sKernelTeam->real_uid = 0;
2783 	sKernelTeam->effective_uid = 0;
2784 	sKernelTeam->saved_set_gid = 0;
2785 	sKernelTeam->real_gid = 0;
2786 	sKernelTeam->effective_gid = 0;
2787 	sKernelTeam->supplementary_groups = NULL;
2788 	sKernelTeam->supplementary_group_count = 0;
2789 
2790 	insert_team_into_group(group, sKernelTeam);
2791 
2792 	sKernelTeam->io_context = vfs_new_io_context(NULL, false);
2793 	if (sKernelTeam->io_context == NULL)
2794 		panic("could not create io_context for kernel team!\n");
2795 
2796 	if (vfs_resize_fd_table(sKernelTeam->io_context, 4096) != B_OK)
2797 		dprintf("Failed to resize FD table for kernel team!\n");
2798 
2799 	// stick it in the team hash
2800 	sTeamHash.Insert(sKernelTeam);
2801 
2802 	add_debugger_command_etc("team", &dump_team_info,
2803 		"Dump info about a particular team",
2804 		"[ <id> | <address> | <name> ]\n"
2805 		"Prints information about the specified team. If no argument is given\n"
2806 		"the current team is selected.\n"
2807 		"  <id>       - The ID of the team.\n"
2808 		"  <address>  - The address of the team structure.\n"
2809 		"  <name>     - The team's name.\n", 0);
2810 	add_debugger_command_etc("teams", &dump_teams, "List all teams",
2811 		"\n"
2812 		"Prints a list of all existing teams.\n", 0);
2813 
2814 	new(&sNotificationService) TeamNotificationService();
2815 
2816 	sNotificationService.Register();
2817 
2818 	return B_OK;
2819 }
2820 
2821 
2822 int32
2823 team_max_teams(void)
2824 {
2825 	return sMaxTeams;
2826 }
2827 
2828 
2829 int32
2830 team_used_teams(void)
2831 {
2832 	InterruptsSpinLocker teamsLocker(sTeamHashLock);
2833 	return sUsedTeams;
2834 }
2835 
2836 
2837 /*! Returns a death entry of a child team specified by ID (if any).
2838 	The caller must hold the team's lock.
2839 
2840 	\param team The team whose dead children list to check.
2841 	\param child The ID of the child for whose death entry to lock. Must be > 0.
2842 	\param _deleteEntry Return variable, indicating whether the caller needs to
2843 		delete the returned entry.
2844 	\return The death entry of the matching team, or \c NULL, if no death entry
2845 		for the team was found.
2846 */
2847 job_control_entry*
2848 team_get_death_entry(Team* team, thread_id child, bool* _deleteEntry)
2849 {
2850 	if (child <= 0)
2851 		return NULL;
2852 
2853 	job_control_entry* entry = get_job_control_entry(team->dead_children,
2854 		child);
2855 	if (entry) {
2856 		// remove the entry only, if the caller is the parent of the found team
2857 		if (team_get_current_team_id() == entry->thread) {
2858 			team->dead_children.entries.Remove(entry);
2859 			team->dead_children.count--;
2860 			*_deleteEntry = true;
2861 		} else {
2862 			*_deleteEntry = false;
2863 		}
2864 	}
2865 
2866 	return entry;
2867 }
2868 
2869 
2870 /*! Quick check to see if we have a valid team ID. */
2871 bool
2872 team_is_valid(team_id id)
2873 {
2874 	if (id <= 0)
2875 		return false;
2876 
2877 	InterruptsSpinLocker teamsLocker(sTeamHashLock);
2878 
2879 	return team_get_team_struct_locked(id) != NULL;
2880 }
2881 
2882 
2883 Team*
2884 team_get_team_struct_locked(team_id id)
2885 {
2886 	return sTeamHash.Lookup(id);
2887 }
2888 
2889 
2890 void
2891 team_set_controlling_tty(int32 ttyIndex)
2892 {
2893 	// lock the team, so its session won't change while we're playing with it
2894 	Team* team = thread_get_current_thread()->team;
2895 	TeamLocker teamLocker(team);
2896 
2897 	// get and lock the session
2898 	ProcessSession* session = team->group->Session();
2899 	AutoLocker<ProcessSession> sessionLocker(session);
2900 
2901 	// set the session's fields
2902 	session->controlling_tty = ttyIndex;
2903 	session->foreground_group = -1;
2904 }
2905 
2906 
2907 int32
2908 team_get_controlling_tty()
2909 {
2910 	// lock the team, so its session won't change while we're playing with it
2911 	Team* team = thread_get_current_thread()->team;
2912 	TeamLocker teamLocker(team);
2913 
2914 	// get and lock the session
2915 	ProcessSession* session = team->group->Session();
2916 	AutoLocker<ProcessSession> sessionLocker(session);
2917 
2918 	// get the session's field
2919 	return session->controlling_tty;
2920 }
2921 
2922 
2923 status_t
2924 team_set_foreground_process_group(int32 ttyIndex, pid_t processGroupID)
2925 {
2926 	// lock the team, so its session won't change while we're playing with it
2927 	Thread* thread = thread_get_current_thread();
2928 	Team* team = thread->team;
2929 	TeamLocker teamLocker(team);
2930 
2931 	// get and lock the session
2932 	ProcessSession* session = team->group->Session();
2933 	AutoLocker<ProcessSession> sessionLocker(session);
2934 
2935 	// check given TTY -- must be the controlling tty of the calling process
2936 	if (session->controlling_tty != ttyIndex)
2937 		return ENOTTY;
2938 
2939 	// check given process group -- must belong to our session
2940 	{
2941 		InterruptsSpinLocker groupHashLocker(sGroupHashLock);
2942 		ProcessGroup* group = sGroupHash.Lookup(processGroupID);
2943 		if (group == NULL || group->Session() != session)
2944 			return B_BAD_VALUE;
2945 	}
2946 
2947 	// If we are a background group, we can do that unharmed only when we
2948 	// ignore or block SIGTTOU. Otherwise the group gets a SIGTTOU.
2949 	if (session->foreground_group != -1
2950 		&& session->foreground_group != team->group_id
2951 		&& team->SignalActionFor(SIGTTOU).sa_handler != SIG_IGN
2952 		&& (thread->sig_block_mask & SIGNAL_TO_MASK(SIGTTOU)) == 0) {
2953 		InterruptsSpinLocker signalLocker(team->signal_lock);
2954 
2955 		if (!is_team_signal_blocked(team, SIGTTOU)) {
2956 			pid_t groupID = team->group_id;
2957 
2958 			signalLocker.Unlock();
2959 			sessionLocker.Unlock();
2960 			teamLocker.Unlock();
2961 
2962 			Signal signal(SIGTTOU, SI_USER, B_OK, team->id);
2963 			send_signal_to_process_group(groupID, signal, 0);
2964 			return B_INTERRUPTED;
2965 		}
2966 	}
2967 
2968 	session->foreground_group = processGroupID;
2969 
2970 	return B_OK;
2971 }
2972 
2973 
2974 /*!	Removes the specified team from the global team hash, from its process
2975 	group, and from its parent.
2976 	It also moves all of its children to the kernel team.
2977 
2978 	The caller must hold the following locks:
2979 	- \a team's process group's lock,
2980 	- the kernel team's lock,
2981 	- \a team's parent team's lock (might be the kernel team), and
2982 	- \a team's lock.
2983 */
2984 void
2985 team_remove_team(Team* team, pid_t& _signalGroup)
2986 {
2987 	Team* parent = team->parent;
2988 
2989 	// remember how long this team lasted
2990 	parent->dead_children.kernel_time += team->dead_threads_kernel_time
2991 		+ team->dead_children.kernel_time;
2992 	parent->dead_children.user_time += team->dead_threads_user_time
2993 		+ team->dead_children.user_time;
2994 
2995 	// remove the team from the hash table
2996 	InterruptsSpinLocker teamsLocker(sTeamHashLock);
2997 	sTeamHash.Remove(team);
2998 	sUsedTeams--;
2999 	teamsLocker.Unlock();
3000 
3001 	// The team can no longer be accessed by ID. Navigation to it is still
3002 	// possible from its process group and its parent and children, but that
3003 	// will be rectified shortly.
3004 	team->state = TEAM_STATE_DEATH;
3005 
3006 	// If we're a controlling process (i.e. a session leader with controlling
3007 	// terminal), there's a bit of signalling we have to do. We can't do any of
3008 	// the signaling here due to the bunch of locks we're holding, but we need
3009 	// to determine, whom to signal.
3010 	_signalGroup = -1;
3011 	bool isSessionLeader = false;
3012 	if (team->session_id == team->id
3013 		&& team->group->Session()->controlling_tty >= 0) {
3014 		isSessionLeader = true;
3015 
3016 		ProcessSession* session = team->group->Session();
3017 
3018 		AutoLocker<ProcessSession> sessionLocker(session);
3019 
3020 		session->controlling_tty = -1;
3021 		_signalGroup = session->foreground_group;
3022 	}
3023 
3024 	// remove us from our process group
3025 	remove_team_from_group(team);
3026 
3027 	// move the team's children to the kernel team
3028 	while (Team* child = team->children) {
3029 		// remove the child from the current team and add it to the kernel team
3030 		TeamLocker childLocker(child);
3031 
3032 		remove_team_from_parent(team, child);
3033 		insert_team_into_parent(sKernelTeam, child);
3034 
3035 		// move job control entries too
3036 		sKernelTeam->stopped_children.entries.MoveFrom(
3037 			&team->stopped_children.entries);
3038 		sKernelTeam->continued_children.entries.MoveFrom(
3039 			&team->continued_children.entries);
3040 
3041 		// If the team was a session leader with controlling terminal,
3042 		// we need to send SIGHUP + SIGCONT to all newly-orphaned process
3043 		// groups with stopped processes. Due to locking complications we can't
3044 		// do that here, so we only check whether we were a reason for the
3045 		// child's process group not being an orphan and, if so, schedule a
3046 		// later check (cf. orphaned_process_group_check()).
3047 		if (isSessionLeader) {
3048 			ProcessGroup* childGroup = child->group;
3049 			if (childGroup->Session()->id == team->session_id
3050 				&& childGroup->id != team->group_id) {
3051 				childGroup->ScheduleOrphanedCheck();
3052 			}
3053 		}
3054 
3055 		// Note, we don't move the dead children entries. Those will be deleted
3056 		// when the team structure is deleted.
3057 	}
3058 
3059 	// remove us from our parent
3060 	remove_team_from_parent(parent, team);
3061 }
3062 
3063 
3064 /*!	Kills all threads but the main thread of the team and shuts down user
3065 	debugging for it.
3066 	To be called on exit of the team's main thread. No locks must be held.
3067 
3068 	\param team The team in question.
3069 	\return The port of the debugger for the team, -1 if none. To be passed to
3070 		team_delete_team().
3071 */
3072 port_id
3073 team_shutdown_team(Team* team)
3074 {
3075 	ASSERT(thread_get_current_thread() == team->main_thread);
3076 
3077 	TeamLocker teamLocker(team);
3078 
3079 	// Make sure debugging changes won't happen anymore.
3080 	port_id debuggerPort = -1;
3081 	while (true) {
3082 		// If a debugger change is in progress for the team, we'll have to
3083 		// wait until it is done.
3084 		ConditionVariableEntry waitForDebuggerEntry;
3085 		bool waitForDebugger = false;
3086 
3087 		InterruptsSpinLocker debugInfoLocker(team->debug_info.lock);
3088 
3089 		if (team->debug_info.debugger_changed_condition != NULL) {
3090 			team->debug_info.debugger_changed_condition->Add(
3091 				&waitForDebuggerEntry);
3092 			waitForDebugger = true;
3093 		} else if (team->debug_info.flags & B_TEAM_DEBUG_DEBUGGER_INSTALLED) {
3094 			// The team is being debugged. That will stop with the termination
3095 			// of the nub thread. Since we set the team state to death, no one
3096 			// can install a debugger anymore. We fetch the debugger's port to
3097 			// send it a message at the bitter end.
3098 			debuggerPort = team->debug_info.debugger_port;
3099 		}
3100 
3101 		debugInfoLocker.Unlock();
3102 
3103 		if (!waitForDebugger)
3104 			break;
3105 
3106 		// wait for the debugger change to be finished
3107 		teamLocker.Unlock();
3108 
3109 		waitForDebuggerEntry.Wait();
3110 
3111 		teamLocker.Lock();
3112 	}
3113 
3114 	// Mark the team as shutting down. That will prevent new threads from being
3115 	// created and debugger changes from taking place.
3116 	team->state = TEAM_STATE_SHUTDOWN;
3117 
3118 	// delete all timers
3119 	team->DeleteUserTimers(false);
3120 
3121 	// deactivate CPU time user timers for the team
3122 	InterruptsSpinLocker timeLocker(team->time_lock);
3123 
3124 	if (team->HasActiveCPUTimeUserTimers())
3125 		team->DeactivateCPUTimeUserTimers();
3126 
3127 	timeLocker.Unlock();
3128 
3129 	// kill all threads but the main thread
3130 	team_death_entry deathEntry;
3131 	deathEntry.condition.Init(team, "team death");
3132 
3133 	while (true) {
3134 		team->death_entry = &deathEntry;
3135 		deathEntry.remaining_threads = 0;
3136 
3137 		Thread* thread = team->thread_list;
3138 		while (thread != NULL) {
3139 			if (thread != team->main_thread) {
3140 				Signal signal(SIGKILLTHR, SI_USER, B_OK, team->id);
3141 				send_signal_to_thread(thread, signal, B_DO_NOT_RESCHEDULE);
3142 				deathEntry.remaining_threads++;
3143 			}
3144 
3145 			thread = thread->team_next;
3146 		}
3147 
3148 		if (deathEntry.remaining_threads == 0)
3149 			break;
3150 
3151 		// there are threads to wait for
3152 		ConditionVariableEntry entry;
3153 		deathEntry.condition.Add(&entry);
3154 
3155 		teamLocker.Unlock();
3156 
3157 		entry.Wait();
3158 
3159 		teamLocker.Lock();
3160 	}
3161 
3162 	team->death_entry = NULL;
3163 
3164 	return debuggerPort;
3165 }
3166 
3167 
3168 /*!	Called on team exit to notify threads waiting on the team and free most
3169 	resources associated with it.
3170 	The caller shouldn't hold any locks.
3171 */
3172 void
3173 team_delete_team(Team* team, port_id debuggerPort)
3174 {
3175 	// Not quite in our job description, but work that has been left by
3176 	// team_remove_team() and that can be done now that we're not holding any
3177 	// locks.
3178 	orphaned_process_group_check();
3179 
3180 	team_id teamID = team->id;
3181 
3182 	ASSERT(team->num_threads == 0);
3183 
3184 	// If someone is waiting for this team to be loaded, but it dies
3185 	// unexpectedly before being done, we need to notify the waiting
3186 	// thread now.
3187 
3188 	TeamLocker teamLocker(team);
3189 
3190 	if (team->loading_info) {
3191 		// there's indeed someone waiting
3192 		struct team_loading_info* loadingInfo = team->loading_info;
3193 		team->loading_info = NULL;
3194 
3195 		loadingInfo->result = B_ERROR;
3196 		loadingInfo->done = true;
3197 
3198 		// wake up the waiting thread
3199 		thread_continue(loadingInfo->thread);
3200 	}
3201 
3202 	// notify team watchers
3203 
3204 	{
3205 		// we're not reachable from anyone anymore at this point, so we
3206 		// can safely access the list without any locking
3207 		struct team_watcher* watcher;
3208 		while ((watcher = (struct team_watcher*)list_remove_head_item(
3209 				&team->watcher_list)) != NULL) {
3210 			watcher->hook(teamID, watcher->data);
3211 			free(watcher);
3212 		}
3213 	}
3214 
3215 	teamLocker.Unlock();
3216 
3217 	sNotificationService.Notify(TEAM_REMOVED, team);
3218 
3219 	// free team resources
3220 
3221 	delete_realtime_sem_context(team->realtime_sem_context);
3222 	xsi_sem_undo(team);
3223 	remove_images(team);
3224 	team->address_space->RemoveAndPut();
3225 
3226 	team->ReleaseReference();
3227 
3228 	// notify the debugger, that the team is gone
3229 	user_debug_team_deleted(teamID, debuggerPort);
3230 }
3231 
3232 
3233 Team*
3234 team_get_kernel_team(void)
3235 {
3236 	return sKernelTeam;
3237 }
3238 
3239 
3240 team_id
3241 team_get_kernel_team_id(void)
3242 {
3243 	if (!sKernelTeam)
3244 		return 0;
3245 
3246 	return sKernelTeam->id;
3247 }
3248 
3249 
3250 team_id
3251 team_get_current_team_id(void)
3252 {
3253 	return thread_get_current_thread()->team->id;
3254 }
3255 
3256 
3257 status_t
3258 team_get_address_space(team_id id, VMAddressSpace** _addressSpace)
3259 {
3260 	if (id == sKernelTeam->id) {
3261 		// we're the kernel team, so we don't have to go through all
3262 		// the hassle (locking and hash lookup)
3263 		*_addressSpace = VMAddressSpace::GetKernel();
3264 		return B_OK;
3265 	}
3266 
3267 	InterruptsSpinLocker teamsLocker(sTeamHashLock);
3268 
3269 	Team* team = team_get_team_struct_locked(id);
3270 	if (team == NULL)
3271 		return B_BAD_VALUE;
3272 
3273 	team->address_space->Get();
3274 	*_addressSpace = team->address_space;
3275 	return B_OK;
3276 }
3277 
3278 
3279 /*!	Sets the team's job control state.
3280 	The caller must hold the parent team's lock. Interrupts are allowed to be
3281 	enabled or disabled.
3282 	\a team The team whose job control state shall be set.
3283 	\a newState The new state to be set.
3284 	\a signal The signal the new state was caused by. Can \c NULL, if none. Then
3285 		the caller is responsible for filling in the following fields of the
3286 		entry before releasing the parent team's lock, unless the new state is
3287 		\c JOB_CONTROL_STATE_NONE:
3288 		- \c signal: The number of the signal causing the state change.
3289 		- \c signaling_user: The real UID of the user sending the signal.
3290 */
3291 void
3292 team_set_job_control_state(Team* team, job_control_state newState,
3293 	Signal* signal)
3294 {
3295 	if (team == NULL || team->job_control_entry == NULL)
3296 		return;
3297 
3298 	// don't touch anything, if the state stays the same or the team is already
3299 	// dead
3300 	job_control_entry* entry = team->job_control_entry;
3301 	if (entry->state == newState || entry->state == JOB_CONTROL_STATE_DEAD)
3302 		return;
3303 
3304 	T(SetJobControlState(team->id, newState, signal));
3305 
3306 	// remove from the old list
3307 	switch (entry->state) {
3308 		case JOB_CONTROL_STATE_NONE:
3309 			// entry is in no list ATM
3310 			break;
3311 		case JOB_CONTROL_STATE_DEAD:
3312 			// can't get here
3313 			break;
3314 		case JOB_CONTROL_STATE_STOPPED:
3315 			team->parent->stopped_children.entries.Remove(entry);
3316 			break;
3317 		case JOB_CONTROL_STATE_CONTINUED:
3318 			team->parent->continued_children.entries.Remove(entry);
3319 			break;
3320 	}
3321 
3322 	entry->state = newState;
3323 
3324 	if (signal != NULL) {
3325 		entry->signal = signal->Number();
3326 		entry->signaling_user = signal->SendingUser();
3327 	}
3328 
3329 	// add to new list
3330 	team_job_control_children* childList = NULL;
3331 	switch (entry->state) {
3332 		case JOB_CONTROL_STATE_NONE:
3333 			// entry doesn't get into any list
3334 			break;
3335 		case JOB_CONTROL_STATE_DEAD:
3336 			childList = &team->parent->dead_children;
3337 			team->parent->dead_children.count++;
3338 			break;
3339 		case JOB_CONTROL_STATE_STOPPED:
3340 			childList = &team->parent->stopped_children;
3341 			break;
3342 		case JOB_CONTROL_STATE_CONTINUED:
3343 			childList = &team->parent->continued_children;
3344 			break;
3345 	}
3346 
3347 	if (childList != NULL) {
3348 		childList->entries.Add(entry);
3349 		team->parent->dead_children.condition_variable.NotifyAll();
3350 	}
3351 }
3352 
3353 
3354 /*!	Inits the given team's exit information, if not yet initialized, to some
3355 	generic "killed" status.
3356 	The caller must not hold the team's lock. Interrupts must be enabled.
3357 
3358 	\param team The team whose exit info shall be initialized.
3359 */
3360 void
3361 team_init_exit_info_on_error(Team* team)
3362 {
3363 	TeamLocker teamLocker(team);
3364 
3365 	if (!team->exit.initialized) {
3366 		team->exit.reason = CLD_KILLED;
3367 		team->exit.signal = SIGKILL;
3368 		team->exit.signaling_user = geteuid();
3369 		team->exit.status = 0;
3370 		team->exit.initialized = true;
3371 	}
3372 }
3373 
3374 
3375 /*! Adds a hook to the team that is called as soon as this team goes away.
3376 	This call might get public in the future.
3377 */
3378 status_t
3379 start_watching_team(team_id teamID, void (*hook)(team_id, void*), void* data)
3380 {
3381 	if (hook == NULL || teamID < B_OK)
3382 		return B_BAD_VALUE;
3383 
3384 	// create the watcher object
3385 	team_watcher* watcher = (team_watcher*)malloc(sizeof(team_watcher));
3386 	if (watcher == NULL)
3387 		return B_NO_MEMORY;
3388 
3389 	watcher->hook = hook;
3390 	watcher->data = data;
3391 
3392 	// add watcher, if the team isn't already dying
3393 	// get the team
3394 	Team* team = Team::GetAndLock(teamID);
3395 	if (team == NULL) {
3396 		free(watcher);
3397 		return B_BAD_TEAM_ID;
3398 	}
3399 
3400 	list_add_item(&team->watcher_list, watcher);
3401 
3402 	team->UnlockAndReleaseReference();
3403 
3404 	return B_OK;
3405 }
3406 
3407 
3408 status_t
3409 stop_watching_team(team_id teamID, void (*hook)(team_id, void*), void* data)
3410 {
3411 	if (hook == NULL || teamID < 0)
3412 		return B_BAD_VALUE;
3413 
3414 	// get team and remove watcher (if present)
3415 	Team* team = Team::GetAndLock(teamID);
3416 	if (team == NULL)
3417 		return B_BAD_TEAM_ID;
3418 
3419 	// search for watcher
3420 	team_watcher* watcher = NULL;
3421 	while ((watcher = (team_watcher*)list_get_next_item(
3422 			&team->watcher_list, watcher)) != NULL) {
3423 		if (watcher->hook == hook && watcher->data == data) {
3424 			// got it!
3425 			list_remove_item(&team->watcher_list, watcher);
3426 			break;
3427 		}
3428 	}
3429 
3430 	team->UnlockAndReleaseReference();
3431 
3432 	if (watcher == NULL)
3433 		return B_ENTRY_NOT_FOUND;
3434 
3435 	free(watcher);
3436 	return B_OK;
3437 }
3438 
3439 
3440 /*!	Allocates a user_thread structure from the team.
3441 	The team lock must be held, unless the function is called for the team's
3442 	main thread. Interrupts must be enabled.
3443 */
3444 struct user_thread*
3445 team_allocate_user_thread(Team* team)
3446 {
3447 	if (team->user_data == 0)
3448 		return NULL;
3449 
3450 	// take an entry from the free list, if any
3451 	if (struct free_user_thread* entry = team->free_user_threads) {
3452 		user_thread* thread = entry->thread;
3453 		team->free_user_threads = entry->next;
3454 		free(entry);
3455 		return thread;
3456 	}
3457 
3458 	while (true) {
3459 		// enough space left?
3460 		size_t needed = ROUNDUP(sizeof(user_thread), CACHE_LINE_SIZE);
3461 		if (team->user_data_size - team->used_user_data < needed) {
3462 			// try to resize the area
3463 			if (resize_area(team->user_data_area,
3464 					team->user_data_size + B_PAGE_SIZE) != B_OK) {
3465 				return NULL;
3466 			}
3467 
3468 			// resized user area successfully -- try to allocate the user_thread
3469 			// again
3470 			team->user_data_size += B_PAGE_SIZE;
3471 			continue;
3472 		}
3473 
3474 		// allocate the user_thread
3475 		user_thread* thread
3476 			= (user_thread*)(team->user_data + team->used_user_data);
3477 		team->used_user_data += needed;
3478 
3479 		return thread;
3480 	}
3481 }
3482 
3483 
3484 /*!	Frees the given user_thread structure.
3485 	The team's lock must not be held. Interrupts must be enabled.
3486 	\param team The team the user thread was allocated from.
3487 	\param userThread The user thread to free.
3488 */
3489 void
3490 team_free_user_thread(Team* team, struct user_thread* userThread)
3491 {
3492 	if (userThread == NULL)
3493 		return;
3494 
3495 	// create a free list entry
3496 	free_user_thread* entry
3497 		= (free_user_thread*)malloc(sizeof(free_user_thread));
3498 	if (entry == NULL) {
3499 		// we have to leak the user thread :-/
3500 		return;
3501 	}
3502 
3503 	// add to free list
3504 	TeamLocker teamLocker(team);
3505 
3506 	entry->thread = userThread;
3507 	entry->next = team->free_user_threads;
3508 	team->free_user_threads = entry;
3509 }
3510 
3511 
3512 //	#pragma mark - Associated data interface
3513 
3514 
3515 AssociatedData::AssociatedData()
3516 	:
3517 	fOwner(NULL)
3518 {
3519 }
3520 
3521 
3522 AssociatedData::~AssociatedData()
3523 {
3524 }
3525 
3526 
3527 void
3528 AssociatedData::OwnerDeleted(AssociatedDataOwner* owner)
3529 {
3530 }
3531 
3532 
3533 AssociatedDataOwner::AssociatedDataOwner()
3534 {
3535 	mutex_init(&fLock, "associated data owner");
3536 }
3537 
3538 
3539 AssociatedDataOwner::~AssociatedDataOwner()
3540 {
3541 	mutex_destroy(&fLock);
3542 }
3543 
3544 
3545 bool
3546 AssociatedDataOwner::AddData(AssociatedData* data)
3547 {
3548 	MutexLocker locker(fLock);
3549 
3550 	if (data->Owner() != NULL)
3551 		return false;
3552 
3553 	data->AcquireReference();
3554 	fList.Add(data);
3555 	data->SetOwner(this);
3556 
3557 	return true;
3558 }
3559 
3560 
3561 bool
3562 AssociatedDataOwner::RemoveData(AssociatedData* data)
3563 {
3564 	MutexLocker locker(fLock);
3565 
3566 	if (data->Owner() != this)
3567 		return false;
3568 
3569 	data->SetOwner(NULL);
3570 	fList.Remove(data);
3571 
3572 	locker.Unlock();
3573 
3574 	data->ReleaseReference();
3575 
3576 	return true;
3577 }
3578 
3579 
3580 void
3581 AssociatedDataOwner::PrepareForDeletion()
3582 {
3583 	MutexLocker locker(fLock);
3584 
3585 	// move all data to a temporary list and unset the owner
3586 	DataList list;
3587 	list.MoveFrom(&fList);
3588 
3589 	for (DataList::Iterator it = list.GetIterator();
3590 		AssociatedData* data = it.Next();) {
3591 		data->SetOwner(NULL);
3592 	}
3593 
3594 	locker.Unlock();
3595 
3596 	// call the notification hooks and release our references
3597 	while (AssociatedData* data = list.RemoveHead()) {
3598 		data->OwnerDeleted(this);
3599 		data->ReleaseReference();
3600 	}
3601 }
3602 
3603 
3604 /*!	Associates data with the current team.
3605 	When the team is deleted, the data object is notified.
3606 	The team acquires a reference to the object.
3607 
3608 	\param data The data object.
3609 	\return \c true on success, \c false otherwise. Fails only when the supplied
3610 		data object is already associated with another owner.
3611 */
3612 bool
3613 team_associate_data(AssociatedData* data)
3614 {
3615 	return thread_get_current_thread()->team->AddData(data);
3616 }
3617 
3618 
3619 /*!	Dissociates data from the current team.
3620 	Balances an earlier call to team_associate_data().
3621 
3622 	\param data The data object.
3623 	\return \c true on success, \c false otherwise. Fails only when the data
3624 		object is not associated with the current team.
3625 */
3626 bool
3627 team_dissociate_data(AssociatedData* data)
3628 {
3629 	return thread_get_current_thread()->team->RemoveData(data);
3630 }
3631 
3632 
3633 //	#pragma mark - Public kernel API
3634 
3635 
3636 thread_id
3637 load_image(int32 argCount, const char** args, const char** env)
3638 {
3639 	return load_image_etc(argCount, args, env, B_NORMAL_PRIORITY,
3640 		B_CURRENT_TEAM, B_WAIT_TILL_LOADED);
3641 }
3642 
3643 
3644 thread_id
3645 load_image_etc(int32 argCount, const char* const* args,
3646 	const char* const* env, int32 priority, team_id parentID, uint32 flags)
3647 {
3648 	// we need to flatten the args and environment
3649 
3650 	if (args == NULL)
3651 		return B_BAD_VALUE;
3652 
3653 	// determine total needed size
3654 	int32 argSize = 0;
3655 	for (int32 i = 0; i < argCount; i++)
3656 		argSize += strlen(args[i]) + 1;
3657 
3658 	int32 envCount = 0;
3659 	int32 envSize = 0;
3660 	while (env != NULL && env[envCount] != NULL)
3661 		envSize += strlen(env[envCount++]) + 1;
3662 
3663 	int32 size = (argCount + envCount + 2) * sizeof(char*) + argSize + envSize;
3664 	if (size > MAX_PROCESS_ARGS_SIZE)
3665 		return B_TOO_MANY_ARGS;
3666 
3667 	// allocate space
3668 	char** flatArgs = (char**)malloc(size);
3669 	if (flatArgs == NULL)
3670 		return B_NO_MEMORY;
3671 
3672 	char** slot = flatArgs;
3673 	char* stringSpace = (char*)(flatArgs + argCount + envCount + 2);
3674 
3675 	// copy arguments and environment
3676 	for (int32 i = 0; i < argCount; i++) {
3677 		int32 argSize = strlen(args[i]) + 1;
3678 		memcpy(stringSpace, args[i], argSize);
3679 		*slot++ = stringSpace;
3680 		stringSpace += argSize;
3681 	}
3682 
3683 	*slot++ = NULL;
3684 
3685 	for (int32 i = 0; i < envCount; i++) {
3686 		int32 envSize = strlen(env[i]) + 1;
3687 		memcpy(stringSpace, env[i], envSize);
3688 		*slot++ = stringSpace;
3689 		stringSpace += envSize;
3690 	}
3691 
3692 	*slot++ = NULL;
3693 
3694 	thread_id thread = load_image_internal(flatArgs, size, argCount, envCount,
3695 		B_NORMAL_PRIORITY, parentID, B_WAIT_TILL_LOADED, -1, 0);
3696 
3697 	free(flatArgs);
3698 		// load_image_internal() unset our variable if it took over ownership
3699 
3700 	return thread;
3701 }
3702 
3703 
3704 status_t
3705 wait_for_team(team_id id, status_t* _returnCode)
3706 {
3707 	// check whether the team exists
3708 	InterruptsSpinLocker teamsLocker(sTeamHashLock);
3709 
3710 	Team* team = team_get_team_struct_locked(id);
3711 	if (team == NULL)
3712 		return B_BAD_TEAM_ID;
3713 
3714 	id = team->id;
3715 
3716 	teamsLocker.Unlock();
3717 
3718 	// wait for the main thread (it has the same ID as the team)
3719 	return wait_for_thread(id, _returnCode);
3720 }
3721 
3722 
3723 status_t
3724 kill_team(team_id id)
3725 {
3726 	InterruptsSpinLocker teamsLocker(sTeamHashLock);
3727 
3728 	Team* team = team_get_team_struct_locked(id);
3729 	if (team == NULL)
3730 		return B_BAD_TEAM_ID;
3731 
3732 	id = team->id;
3733 
3734 	teamsLocker.Unlock();
3735 
3736 	if (team == sKernelTeam)
3737 		return B_NOT_ALLOWED;
3738 
3739 	// Just kill the team's main thread (it has same ID as the team). The
3740 	// cleanup code there will take care of the team.
3741 	return kill_thread(id);
3742 }
3743 
3744 
3745 status_t
3746 _get_team_info(team_id id, team_info* info, size_t size)
3747 {
3748 	// get the team
3749 	Team* team = Team::Get(id);
3750 	if (team == NULL)
3751 		return B_BAD_TEAM_ID;
3752 	BReference<Team> teamReference(team, true);
3753 
3754 	// fill in the info
3755 	return fill_team_info(team, info, size);
3756 }
3757 
3758 
3759 status_t
3760 _get_next_team_info(int32* cookie, team_info* info, size_t size)
3761 {
3762 	int32 slot = *cookie;
3763 	if (slot < 1)
3764 		slot = 1;
3765 
3766 	InterruptsSpinLocker locker(sTeamHashLock);
3767 
3768 	team_id lastTeamID = peek_next_thread_id();
3769 		// TODO: This is broken, since the id can wrap around!
3770 
3771 	// get next valid team
3772 	Team* team = NULL;
3773 	while (slot < lastTeamID && !(team = team_get_team_struct_locked(slot)))
3774 		slot++;
3775 
3776 	if (team == NULL)
3777 		return B_BAD_TEAM_ID;
3778 
3779 	// get a reference to the team and unlock
3780 	BReference<Team> teamReference(team);
3781 	locker.Unlock();
3782 
3783 	// fill in the info
3784 	*cookie = ++slot;
3785 	return fill_team_info(team, info, size);
3786 }
3787 
3788 
3789 status_t
3790 _get_team_usage_info(team_id id, int32 who, team_usage_info* info, size_t size)
3791 {
3792 	if (size != sizeof(team_usage_info))
3793 		return B_BAD_VALUE;
3794 
3795 	return common_get_team_usage_info(id, who, info, 0);
3796 }
3797 
3798 
3799 pid_t
3800 getpid(void)
3801 {
3802 	return thread_get_current_thread()->team->id;
3803 }
3804 
3805 
3806 pid_t
3807 getppid(void)
3808 {
3809 	Team* team = thread_get_current_thread()->team;
3810 
3811 	TeamLocker teamLocker(team);
3812 
3813 	return team->parent->id;
3814 }
3815 
3816 
3817 pid_t
3818 getpgid(pid_t id)
3819 {
3820 	if (id < 0) {
3821 		errno = EINVAL;
3822 		return -1;
3823 	}
3824 
3825 	if (id == 0) {
3826 		// get process group of the calling process
3827 		Team* team = thread_get_current_thread()->team;
3828 		TeamLocker teamLocker(team);
3829 		return team->group_id;
3830 	}
3831 
3832 	// get the team
3833 	Team* team = Team::GetAndLock(id);
3834 	if (team == NULL) {
3835 		errno = ESRCH;
3836 		return -1;
3837 	}
3838 
3839 	// get the team's process group ID
3840 	pid_t groupID = team->group_id;
3841 
3842 	team->UnlockAndReleaseReference();
3843 
3844 	return groupID;
3845 }
3846 
3847 
3848 pid_t
3849 getsid(pid_t id)
3850 {
3851 	if (id < 0) {
3852 		errno = EINVAL;
3853 		return -1;
3854 	}
3855 
3856 	if (id == 0) {
3857 		// get session of the calling process
3858 		Team* team = thread_get_current_thread()->team;
3859 		TeamLocker teamLocker(team);
3860 		return team->session_id;
3861 	}
3862 
3863 	// get the team
3864 	Team* team = Team::GetAndLock(id);
3865 	if (team == NULL) {
3866 		errno = ESRCH;
3867 		return -1;
3868 	}
3869 
3870 	// get the team's session ID
3871 	pid_t sessionID = team->session_id;
3872 
3873 	team->UnlockAndReleaseReference();
3874 
3875 	return sessionID;
3876 }
3877 
3878 
3879 //	#pragma mark - User syscalls
3880 
3881 
3882 status_t
3883 _user_exec(const char* userPath, const char* const* userFlatArgs,
3884 	size_t flatArgsSize, int32 argCount, int32 envCount, mode_t umask)
3885 {
3886 	// NOTE: Since this function normally doesn't return, don't use automatic
3887 	// variables that need destruction in the function scope.
3888 	char path[B_PATH_NAME_LENGTH];
3889 
3890 	if (!IS_USER_ADDRESS(userPath) || !IS_USER_ADDRESS(userFlatArgs)
3891 		|| user_strlcpy(path, userPath, sizeof(path)) < B_OK)
3892 		return B_BAD_ADDRESS;
3893 
3894 	// copy and relocate the flat arguments
3895 	char** flatArgs;
3896 	status_t error = copy_user_process_args(userFlatArgs, flatArgsSize,
3897 		argCount, envCount, flatArgs);
3898 
3899 	if (error == B_OK) {
3900 		error = exec_team(path, flatArgs, _ALIGN(flatArgsSize), argCount,
3901 			envCount, umask);
3902 			// this one only returns in case of error
3903 	}
3904 
3905 	free(flatArgs);
3906 	return error;
3907 }
3908 
3909 
3910 thread_id
3911 _user_fork(void)
3912 {
3913 	return fork_team();
3914 }
3915 
3916 
3917 pid_t
3918 _user_wait_for_child(thread_id child, uint32 flags, siginfo_t* userInfo)
3919 {
3920 	if (userInfo != NULL && !IS_USER_ADDRESS(userInfo))
3921 		return B_BAD_ADDRESS;
3922 
3923 	siginfo_t info;
3924 	pid_t foundChild = wait_for_child(child, flags, info);
3925 	if (foundChild < 0)
3926 		return syscall_restart_handle_post(foundChild);
3927 
3928 	// copy info back to userland
3929 	if (userInfo != NULL && user_memcpy(userInfo, &info, sizeof(info)) != B_OK)
3930 		return B_BAD_ADDRESS;
3931 
3932 	return foundChild;
3933 }
3934 
3935 
3936 pid_t
3937 _user_process_info(pid_t process, int32 which)
3938 {
3939 	// we only allow to return the parent of the current process
3940 	if (which == PARENT_ID
3941 		&& process != 0 && process != thread_get_current_thread()->team->id)
3942 		return B_BAD_VALUE;
3943 
3944 	pid_t result;
3945 	switch (which) {
3946 		case SESSION_ID:
3947 			result = getsid(process);
3948 			break;
3949 		case GROUP_ID:
3950 			result = getpgid(process);
3951 			break;
3952 		case PARENT_ID:
3953 			result = getppid();
3954 			break;
3955 		default:
3956 			return B_BAD_VALUE;
3957 	}
3958 
3959 	return result >= 0 ? result : errno;
3960 }
3961 
3962 
3963 pid_t
3964 _user_setpgid(pid_t processID, pid_t groupID)
3965 {
3966 	// setpgid() can be called either by the parent of the target process or
3967 	// by the process itself to do one of two things:
3968 	// * Create a new process group with the target process' ID and the target
3969 	//   process as group leader.
3970 	// * Set the target process' process group to an already existing one in the
3971 	//   same session.
3972 
3973 	if (groupID < 0)
3974 		return B_BAD_VALUE;
3975 
3976 	Team* currentTeam = thread_get_current_thread()->team;
3977 	if (processID == 0)
3978 		processID = currentTeam->id;
3979 
3980 	// if the group ID is not specified, use the target process' ID
3981 	if (groupID == 0)
3982 		groupID = processID;
3983 
3984 	// We loop when running into the following race condition: We create a new
3985 	// process group, because there isn't one with that ID yet, but later when
3986 	// trying to publish it, we find that someone else created and published
3987 	// a group with that ID in the meantime. In that case we just restart the
3988 	// whole action.
3989 	while (true) {
3990 		// Look up the process group by ID. If it doesn't exist yet and we are
3991 		// allowed to create a new one, do that.
3992 		ProcessGroup* group = ProcessGroup::Get(groupID);
3993 		bool newGroup = false;
3994 		if (group == NULL) {
3995 			if (groupID != processID)
3996 				return B_NOT_ALLOWED;
3997 
3998 			group = new(std::nothrow) ProcessGroup(groupID);
3999 			if (group == NULL)
4000 				return B_NO_MEMORY;
4001 
4002 			newGroup = true;
4003 		}
4004 		BReference<ProcessGroup> groupReference(group, true);
4005 
4006 		// get the target team
4007 		Team* team = Team::Get(processID);
4008 		if (team == NULL)
4009 			return ESRCH;
4010 		BReference<Team> teamReference(team, true);
4011 
4012 		// lock the new process group and the team's current process group
4013 		while (true) {
4014 			// lock the team's current process group
4015 			team->LockProcessGroup();
4016 
4017 			ProcessGroup* oldGroup = team->group;
4018 			if (oldGroup == group) {
4019 				// it's the same as the target group, so just bail out
4020 				oldGroup->Unlock();
4021 				return group->id;
4022 			}
4023 
4024 			oldGroup->AcquireReference();
4025 
4026 			// lock the target process group, if locking order allows it
4027 			if (newGroup || group->id > oldGroup->id) {
4028 				group->Lock();
4029 				break;
4030 			}
4031 
4032 			// try to lock
4033 			if (group->TryLock())
4034 				break;
4035 
4036 			// no dice -- unlock the team's current process group and relock in
4037 			// the correct order
4038 			oldGroup->Unlock();
4039 
4040 			group->Lock();
4041 			oldGroup->Lock();
4042 
4043 			// check whether things are still the same
4044 			TeamLocker teamLocker(team);
4045 			if (team->group == oldGroup)
4046 				break;
4047 
4048 			// something changed -- unlock everything and retry
4049 			teamLocker.Unlock();
4050 			oldGroup->Unlock();
4051 			group->Unlock();
4052 			oldGroup->ReleaseReference();
4053 		}
4054 
4055 		// we now have references and locks of both new and old process group
4056 		BReference<ProcessGroup> oldGroupReference(team->group, true);
4057 		AutoLocker<ProcessGroup> oldGroupLocker(team->group, true);
4058 		AutoLocker<ProcessGroup> groupLocker(group, true);
4059 
4060 		// also lock the target team and its parent
4061 		team->LockTeamAndParent(false);
4062 		TeamLocker parentLocker(team->parent, true);
4063 		TeamLocker teamLocker(team, true);
4064 
4065 		// perform the checks
4066 		if (team == currentTeam) {
4067 			// we set our own group
4068 
4069 			// we must not change our process group ID if we're a session leader
4070 			if (is_session_leader(currentTeam))
4071 				return B_NOT_ALLOWED;
4072 		} else {
4073 			// Calling team != target team. The target team must be a child of
4074 			// the calling team and in the same session. (If that's the case it
4075 			// isn't a session leader either.)
4076 			if (team->parent != currentTeam
4077 				|| team->session_id != currentTeam->session_id) {
4078 				return B_NOT_ALLOWED;
4079 			}
4080 
4081 			// The call is also supposed to fail on a child, when the child has
4082 			// already executed exec*() [EACCES].
4083 			if ((team->flags & TEAM_FLAG_EXEC_DONE) != 0)
4084 				return EACCES;
4085 		}
4086 
4087 		// If we created a new process group, publish it now.
4088 		if (newGroup) {
4089 			InterruptsSpinLocker groupHashLocker(sGroupHashLock);
4090 			if (sGroupHash.Lookup(groupID)) {
4091 				// A group with the group ID appeared since we first checked.
4092 				// Back to square one.
4093 				continue;
4094 			}
4095 
4096 			group->PublishLocked(team->group->Session());
4097 		} else if (group->Session()->id != team->session_id) {
4098 			// The existing target process group belongs to a different session.
4099 			// That's not allowed.
4100 			return B_NOT_ALLOWED;
4101 		}
4102 
4103 		// Everything is ready -- set the group.
4104 		remove_team_from_group(team);
4105 		insert_team_into_group(group, team);
4106 
4107 		// Changing the process group might have changed the situation for a
4108 		// parent waiting in wait_for_child(). Hence we notify it.
4109 		team->parent->dead_children.condition_variable.NotifyAll();
4110 
4111 		return group->id;
4112 	}
4113 }
4114 
4115 
4116 pid_t
4117 _user_setsid(void)
4118 {
4119 	Team* team = thread_get_current_thread()->team;
4120 
4121 	// create a new process group and session
4122 	ProcessGroup* group = new(std::nothrow) ProcessGroup(team->id);
4123 	if (group == NULL)
4124 		return B_NO_MEMORY;
4125 	BReference<ProcessGroup> groupReference(group, true);
4126 	AutoLocker<ProcessGroup> groupLocker(group);
4127 
4128 	ProcessSession* session = new(std::nothrow) ProcessSession(group->id);
4129 	if (session == NULL)
4130 		return B_NO_MEMORY;
4131 	BReference<ProcessSession> sessionReference(session, true);
4132 
4133 	// lock the team's current process group, parent, and the team itself
4134 	team->LockTeamParentAndProcessGroup();
4135 	BReference<ProcessGroup> oldGroupReference(team->group);
4136 	AutoLocker<ProcessGroup> oldGroupLocker(team->group, true);
4137 	TeamLocker parentLocker(team->parent, true);
4138 	TeamLocker teamLocker(team, true);
4139 
4140 	// the team must not already be a process group leader
4141 	if (is_process_group_leader(team))
4142 		return B_NOT_ALLOWED;
4143 
4144 	// remove the team from the old and add it to the new process group
4145 	remove_team_from_group(team);
4146 	group->Publish(session);
4147 	insert_team_into_group(group, team);
4148 
4149 	// Changing the process group might have changed the situation for a
4150 	// parent waiting in wait_for_child(). Hence we notify it.
4151 	team->parent->dead_children.condition_variable.NotifyAll();
4152 
4153 	return group->id;
4154 }
4155 
4156 
4157 status_t
4158 _user_wait_for_team(team_id id, status_t* _userReturnCode)
4159 {
4160 	status_t returnCode;
4161 	status_t status;
4162 
4163 	if (_userReturnCode != NULL && !IS_USER_ADDRESS(_userReturnCode))
4164 		return B_BAD_ADDRESS;
4165 
4166 	status = wait_for_team(id, &returnCode);
4167 	if (status >= B_OK && _userReturnCode != NULL) {
4168 		if (user_memcpy(_userReturnCode, &returnCode, sizeof(returnCode))
4169 				!= B_OK)
4170 			return B_BAD_ADDRESS;
4171 		return B_OK;
4172 	}
4173 
4174 	return syscall_restart_handle_post(status);
4175 }
4176 
4177 
4178 thread_id
4179 _user_load_image(const char* const* userFlatArgs, size_t flatArgsSize,
4180 	int32 argCount, int32 envCount, int32 priority, uint32 flags,
4181 	port_id errorPort, uint32 errorToken)
4182 {
4183 	TRACE(("_user_load_image: argc = %" B_PRId32 "\n", argCount));
4184 
4185 	if (argCount < 1)
4186 		return B_BAD_VALUE;
4187 
4188 	// copy and relocate the flat arguments
4189 	char** flatArgs;
4190 	status_t error = copy_user_process_args(userFlatArgs, flatArgsSize,
4191 		argCount, envCount, flatArgs);
4192 	if (error != B_OK)
4193 		return error;
4194 
4195 	thread_id thread = load_image_internal(flatArgs, _ALIGN(flatArgsSize),
4196 		argCount, envCount, priority, B_CURRENT_TEAM, flags, errorPort,
4197 		errorToken);
4198 
4199 	free(flatArgs);
4200 		// load_image_internal() unset our variable if it took over ownership
4201 
4202 	return thread;
4203 }
4204 
4205 
4206 void
4207 _user_exit_team(status_t returnValue)
4208 {
4209 	Thread* thread = thread_get_current_thread();
4210 	Team* team = thread->team;
4211 
4212 	// set this thread's exit status
4213 	thread->exit.status = returnValue;
4214 
4215 	// set the team exit status
4216 	TeamLocker teamLocker(team);
4217 
4218 	if (!team->exit.initialized) {
4219 		team->exit.reason = CLD_EXITED;
4220 		team->exit.signal = 0;
4221 		team->exit.signaling_user = 0;
4222 		team->exit.status = returnValue;
4223 		team->exit.initialized = true;
4224 	}
4225 
4226 	teamLocker.Unlock();
4227 
4228 	// Stop the thread, if the team is being debugged and that has been
4229 	// requested.
4230 	if ((atomic_get(&team->debug_info.flags) & B_TEAM_DEBUG_PREVENT_EXIT) != 0)
4231 		user_debug_stop_thread();
4232 
4233 	// Send this thread a SIGKILL. This makes sure the thread will not return to
4234 	// userland. The signal handling code forwards the signal to the main
4235 	// thread (if that's not already this one), which will take the team down.
4236 	Signal signal(SIGKILL, SI_USER, B_OK, team->id);
4237 	send_signal_to_thread(thread, signal, 0);
4238 }
4239 
4240 
4241 status_t
4242 _user_kill_team(team_id team)
4243 {
4244 	return kill_team(team);
4245 }
4246 
4247 
4248 status_t
4249 _user_get_team_info(team_id id, team_info* userInfo)
4250 {
4251 	status_t status;
4252 	team_info info;
4253 
4254 	if (!IS_USER_ADDRESS(userInfo))
4255 		return B_BAD_ADDRESS;
4256 
4257 	status = _get_team_info(id, &info, sizeof(team_info));
4258 	if (status == B_OK) {
4259 		if (user_memcpy(userInfo, &info, sizeof(team_info)) < B_OK)
4260 			return B_BAD_ADDRESS;
4261 	}
4262 
4263 	return status;
4264 }
4265 
4266 
4267 status_t
4268 _user_get_next_team_info(int32* userCookie, team_info* userInfo)
4269 {
4270 	status_t status;
4271 	team_info info;
4272 	int32 cookie;
4273 
4274 	if (!IS_USER_ADDRESS(userCookie)
4275 		|| !IS_USER_ADDRESS(userInfo)
4276 		|| user_memcpy(&cookie, userCookie, sizeof(int32)) < B_OK)
4277 		return B_BAD_ADDRESS;
4278 
4279 	status = _get_next_team_info(&cookie, &info, sizeof(team_info));
4280 	if (status != B_OK)
4281 		return status;
4282 
4283 	if (user_memcpy(userCookie, &cookie, sizeof(int32)) < B_OK
4284 		|| user_memcpy(userInfo, &info, sizeof(team_info)) < B_OK)
4285 		return B_BAD_ADDRESS;
4286 
4287 	return status;
4288 }
4289 
4290 
4291 team_id
4292 _user_get_current_team(void)
4293 {
4294 	return team_get_current_team_id();
4295 }
4296 
4297 
4298 status_t
4299 _user_get_team_usage_info(team_id team, int32 who, team_usage_info* userInfo,
4300 	size_t size)
4301 {
4302 	if (size != sizeof(team_usage_info))
4303 		return B_BAD_VALUE;
4304 
4305 	team_usage_info info;
4306 	status_t status = common_get_team_usage_info(team, who, &info,
4307 		B_CHECK_PERMISSION);
4308 
4309 	if (userInfo == NULL || !IS_USER_ADDRESS(userInfo)
4310 		|| user_memcpy(userInfo, &info, size) != B_OK) {
4311 		return B_BAD_ADDRESS;
4312 	}
4313 
4314 	return status;
4315 }
4316 
4317 
4318 status_t
4319 _user_get_extended_team_info(team_id teamID, uint32 flags, void* buffer,
4320 	size_t size, size_t* _sizeNeeded)
4321 {
4322 	// check parameters
4323 	if ((buffer != NULL && !IS_USER_ADDRESS(buffer))
4324 		|| (buffer == NULL && size > 0)
4325 		|| _sizeNeeded == NULL || !IS_USER_ADDRESS(_sizeNeeded)) {
4326 		return B_BAD_ADDRESS;
4327 	}
4328 
4329 	KMessage info;
4330 
4331 	if ((flags & B_TEAM_INFO_BASIC) != 0) {
4332 		// allocate memory for a copy of the needed team data
4333 		struct ExtendedTeamData {
4334 			team_id	id;
4335 			pid_t	group_id;
4336 			pid_t	session_id;
4337 			uid_t	real_uid;
4338 			gid_t	real_gid;
4339 			uid_t	effective_uid;
4340 			gid_t	effective_gid;
4341 			char	name[B_OS_NAME_LENGTH];
4342 		};
4343 
4344 		ExtendedTeamData* teamClone
4345 			= (ExtendedTeamData*)malloc(sizeof(ExtendedTeamData));
4346 			// It would be nicer to use new, but then we'd have to use
4347 			// ObjectDeleter and declare the structure outside of the function
4348 			// due to template parameter restrictions.
4349 		if (teamClone == NULL)
4350 			return B_NO_MEMORY;
4351 		MemoryDeleter teamCloneDeleter(teamClone);
4352 
4353 		io_context* ioContext;
4354 		{
4355 			// get the team structure
4356 			Team* team = Team::GetAndLock(teamID);
4357 			if (team == NULL)
4358 				return B_BAD_TEAM_ID;
4359 			BReference<Team> teamReference(team, true);
4360 			TeamLocker teamLocker(team, true);
4361 
4362 			// copy the data
4363 			teamClone->id = team->id;
4364 			strlcpy(teamClone->name, team->Name(), sizeof(teamClone->name));
4365 			teamClone->group_id = team->group_id;
4366 			teamClone->session_id = team->session_id;
4367 			teamClone->real_uid = team->real_uid;
4368 			teamClone->real_gid = team->real_gid;
4369 			teamClone->effective_uid = team->effective_uid;
4370 			teamClone->effective_gid = team->effective_gid;
4371 
4372 			// also fetch a reference to the I/O context
4373 			ioContext = team->io_context;
4374 			vfs_get_io_context(ioContext);
4375 		}
4376 		CObjectDeleter<io_context> ioContextPutter(ioContext,
4377 			&vfs_put_io_context);
4378 
4379 		// add the basic data to the info message
4380 		if (info.AddInt32("id", teamClone->id) != B_OK
4381 			|| info.AddString("name", teamClone->name) != B_OK
4382 			|| info.AddInt32("process group", teamClone->group_id) != B_OK
4383 			|| info.AddInt32("session", teamClone->session_id) != B_OK
4384 			|| info.AddInt32("uid", teamClone->real_uid) != B_OK
4385 			|| info.AddInt32("gid", teamClone->real_gid) != B_OK
4386 			|| info.AddInt32("euid", teamClone->effective_uid) != B_OK
4387 			|| info.AddInt32("egid", teamClone->effective_gid) != B_OK) {
4388 			return B_NO_MEMORY;
4389 		}
4390 
4391 		// get the current working directory from the I/O context
4392 		dev_t cwdDevice;
4393 		ino_t cwdDirectory;
4394 		{
4395 			MutexLocker ioContextLocker(ioContext->io_mutex);
4396 			vfs_vnode_to_node_ref(ioContext->cwd, &cwdDevice, &cwdDirectory);
4397 		}
4398 
4399 		if (info.AddInt32("cwd device", cwdDevice) != B_OK
4400 			|| info.AddInt64("cwd directory", cwdDirectory) != B_OK) {
4401 			return B_NO_MEMORY;
4402 		}
4403 	}
4404 
4405 	// TODO: Support the other flags!
4406 
4407 	// copy the needed size and, if it fits, the message back to userland
4408 	size_t sizeNeeded = info.ContentSize();
4409 	if (user_memcpy(_sizeNeeded, &sizeNeeded, sizeof(sizeNeeded)) != B_OK)
4410 		return B_BAD_ADDRESS;
4411 
4412 	if (sizeNeeded > size)
4413 		return B_BUFFER_OVERFLOW;
4414 
4415 	if (user_memcpy(buffer, info.Buffer(), sizeNeeded) != B_OK)
4416 		return B_BAD_ADDRESS;
4417 
4418 	return B_OK;
4419 }
4420