xref: /haiku/src/system/kernel/slab/allocator.cpp (revision ed24eb5ff12640d052171c6a7feba37fab8a75d1)
1 /*
2  * Copyright 2010, Ingo Weinhold <ingo_weinhold@gmx.de>.
3  * Copyright 2007, Hugo Santos. All Rights Reserved.
4  * Distributed under the terms of the MIT License.
5  */
6 
7 
8 #include "slab_private.h"
9 
10 #include <stdio.h>
11 #include <string.h>
12 
13 #include <algorithm>
14 
15 #include <debug.h>
16 #include <heap.h>
17 #include <kernel.h> // for ROUNDUP
18 #include <malloc.h>
19 #include <vm/vm.h>
20 #include <vm/VMAddressSpace.h>
21 
22 #include "ObjectCache.h"
23 #include "MemoryManager.h"
24 
25 
26 //#define TEST_ALL_CACHES_DURING_BOOT
27 
28 static const size_t kBlockSizes[] = {
29 	16, 24, 32, 48, 64, 80, 96, 112,
30 	128, 160, 192, 224, 256, 320, 384, 448,
31 	512, 640, 768, 896, 1024, 1280, 1536, 1792,
32 	2048, 2560, 3072, 3584, 4096, 4608, 5120, 5632,
33 	6144, 6656, 7168, 7680, 8192,
34 	0
35 };
36 
37 static const size_t kNumBlockSizes = sizeof(kBlockSizes) / sizeof(size_t) - 1;
38 
39 static object_cache* sBlockCaches[kNumBlockSizes];
40 
41 static addr_t sBootStrapMemory = 0;
42 static size_t sBootStrapMemorySize = 0;
43 static size_t sUsedBootStrapMemory = 0;
44 
45 
46 RANGE_MARKER_FUNCTION_BEGIN(slab_allocator)
47 
48 
49 static int
50 size_to_index(size_t size)
51 {
52 	if (size <= 16)
53 		return 0;
54 	if (size <= 32)
55 		return 1 + (size - 16 - 1) / 8;
56 	if (size <= 128)
57 		return 3 + (size - 32 - 1) / 16;
58 	if (size <= 256)
59 		return 9 + (size - 128 - 1) / 32;
60 	if (size <= 512)
61 		return 13 + (size - 256 - 1) / 64;
62 	if (size <= 1024)
63 		return 17 + (size - 512 - 1) / 128;
64 	if (size <= 2048)
65 		return 21 + (size - 1024 - 1) / 256;
66 	if (size <= 8192)
67 		return 25 + (size - 2048 - 1) / 512;
68 
69 	return -1;
70 }
71 
72 
73 static void*
74 block_alloc(size_t size, size_t alignment, uint32 flags)
75 {
76 	if (alignment > kMinObjectAlignment) {
77 		// Make size >= alignment and a power of two. This is sufficient, since
78 		// all of our object caches with power of two sizes are aligned. We may
79 		// waste quite a bit of memory, but memalign() is very rarely used
80 		// in the kernel and always with power of two size == alignment anyway.
81 		ASSERT((alignment & (alignment - 1)) == 0);
82 		while (alignment < size)
83 			alignment <<= 1;
84 		size = alignment;
85 
86 		// If we're not using an object cache, make sure that the memory
87 		// manager knows it has to align the allocation.
88 		if (size > kBlockSizes[kNumBlockSizes])
89 			flags |= CACHE_ALIGN_ON_SIZE;
90 	}
91 
92 	// allocate from the respective object cache, if any
93 	int index = size_to_index(size);
94 	if (index >= 0)
95 		return object_cache_alloc(sBlockCaches[index], flags);
96 
97 	// the allocation is too large for our object caches -- ask the memory
98 	// manager
99 	void* block;
100 	if (MemoryManager::AllocateRaw(size, flags, block) != B_OK)
101 		return NULL;
102 
103 	return block;
104 }
105 
106 
107 void*
108 block_alloc_early(size_t size)
109 {
110 	int index = size_to_index(size);
111 	if (index >= 0 && sBlockCaches[index] != NULL)
112 		return object_cache_alloc(sBlockCaches[index], CACHE_DURING_BOOT);
113 
114 	if (size > SLAB_CHUNK_SIZE_SMALL) {
115 		// This is a sufficiently large allocation -- just ask the memory
116 		// manager directly.
117 		void* block;
118 		if (MemoryManager::AllocateRaw(size, 0, block) != B_OK)
119 			return NULL;
120 
121 		return block;
122 	}
123 
124 	// A small allocation, but no object cache yet. Use the bootstrap memory.
125 	// This allocation must never be freed!
126 	if (sBootStrapMemorySize - sUsedBootStrapMemory < size) {
127 		// We need more memory.
128 		void* block;
129 		if (MemoryManager::AllocateRaw(SLAB_CHUNK_SIZE_SMALL, 0, block) != B_OK)
130 			return NULL;
131 		sBootStrapMemory = (addr_t)block;
132 		sBootStrapMemorySize = SLAB_CHUNK_SIZE_SMALL;
133 		sUsedBootStrapMemory = 0;
134 	}
135 
136 	size_t neededSize = ROUNDUP(size, sizeof(double));
137 	if (sUsedBootStrapMemory + neededSize > sBootStrapMemorySize)
138 		return NULL;
139 	void* block = (void*)(sBootStrapMemory + sUsedBootStrapMemory);
140 	sUsedBootStrapMemory += neededSize;
141 
142 	return block;
143 }
144 
145 
146 static void
147 block_free(void* block, uint32 flags)
148 {
149 	if (block == NULL)
150 		return;
151 
152 	ObjectCache* cache = MemoryManager::FreeRawOrReturnCache(block, flags);
153 	if (cache != NULL) {
154 		// a regular small allocation
155 		ASSERT(cache->object_size >= kBlockSizes[0]);
156 		ASSERT(cache->object_size <= kBlockSizes[kNumBlockSizes - 1]);
157 		ASSERT(cache == sBlockCaches[size_to_index(cache->object_size)]);
158 		object_cache_free(cache, block, flags);
159 	}
160 }
161 
162 
163 void
164 block_allocator_init_boot()
165 {
166 	for (int index = 0; kBlockSizes[index] != 0; index++) {
167 		char name[32];
168 		snprintf(name, sizeof(name), "block allocator: %lu",
169 			kBlockSizes[index]);
170 
171 		uint32 flags = CACHE_DURING_BOOT;
172 		size_t size = kBlockSizes[index];
173 
174 		// align the power of two objects to their size
175 		size_t alignment = (size & (size - 1)) == 0 ? size : 0;
176 
177 		// For the larger allocation sizes disable the object depot, so we don't
178 		// keep lot's of unused objects around.
179 		if (size > 2048)
180 			flags |= CACHE_NO_DEPOT;
181 
182 		sBlockCaches[index] = create_object_cache_etc(name, size, alignment, 0,
183 			0, 0, flags, NULL, NULL, NULL, NULL);
184 		if (sBlockCaches[index] == NULL)
185 			panic("allocator: failed to init block cache");
186 	}
187 }
188 
189 
190 void
191 block_allocator_init_rest()
192 {
193 #ifdef TEST_ALL_CACHES_DURING_BOOT
194 	for (int index = 0; kBlockSizes[index] != 0; index++) {
195 		block_free(block_alloc(kBlockSizes[index] - sizeof(boundary_tag)), 0,
196 			0);
197 	}
198 #endif
199 }
200 
201 
202 // #pragma mark - public API
203 
204 
205 #if USE_SLAB_ALLOCATOR_FOR_MALLOC
206 
207 
208 void*
209 memalign(size_t alignment, size_t size)
210 {
211 	return block_alloc(size, alignment, 0);
212 }
213 
214 
215 void *
216 memalign_etc(size_t alignment, size_t size, uint32 flags)
217 {
218 	return block_alloc(size, alignment, flags & CACHE_ALLOC_FLAGS);
219 }
220 
221 
222 int
223 posix_memalign(void** _pointer, size_t alignment, size_t size)
224 {
225 	if ((alignment & (sizeof(void*) - 1)) != 0 || _pointer == NULL)
226 		return B_BAD_VALUE;
227 	*_pointer = block_alloc(size, alignment, 0);
228 	return 0;
229 }
230 
231 
232 void
233 free_etc(void *address, uint32 flags)
234 {
235 	if ((flags & CACHE_DONT_LOCK_KERNEL_SPACE) != 0) {
236 		deferred_free(address);
237 		return;
238 	}
239 
240 	block_free(address, flags & CACHE_ALLOC_FLAGS);
241 }
242 
243 
244 void*
245 malloc(size_t size)
246 {
247 	return block_alloc(size, 0, 0);
248 }
249 
250 
251 void
252 free(void* address)
253 {
254 	block_free(address, 0);
255 }
256 
257 
258 void*
259 realloc(void* address, size_t newSize)
260 {
261 	if (newSize == 0) {
262 		block_free(address, 0);
263 		return NULL;
264 	}
265 
266 	if (address == NULL)
267 		return block_alloc(newSize, 0, 0);
268 
269 	size_t oldSize;
270 	ObjectCache* cache = MemoryManager::GetAllocationInfo(address, oldSize);
271 	if (cache == NULL && oldSize == 0) {
272 		panic("block_realloc(): allocation %p not known", address);
273 		return NULL;
274 	}
275 
276 	if (oldSize == newSize)
277 		return address;
278 
279 	void* newBlock = block_alloc(newSize, 0, 0);
280 	if (newBlock == NULL)
281 		return NULL;
282 
283 	memcpy(newBlock, address, std::min(oldSize, newSize));
284 
285 	block_free(address, 0);
286 
287 	return newBlock;
288 }
289 
290 
291 #endif	// USE_SLAB_ALLOCATOR_FOR_MALLOC
292 
293 
294 RANGE_MARKER_FUNCTION_END(slab_allocator)
295