xref: /haiku/src/system/kernel/slab/MemoryManager.cpp (revision b617a7b410c05275effb95f4b2f5608359d9b7b9)
1 /*
2  * Copyright 2010, Ingo Weinhold <ingo_weinhold@gmx.de>.
3  * Distributed under the terms of the MIT License.
4  */
5 
6 
7 #include "MemoryManager.h"
8 
9 #include <algorithm>
10 
11 #include <debug.h>
12 #include <tracing.h>
13 #include <util/AutoLock.h>
14 #include <vm/vm.h>
15 #include <vm/vm_page.h>
16 #include <vm/vm_priv.h>
17 #include <vm/VMAddressSpace.h>
18 #include <vm/VMArea.h>
19 #include <vm/VMCache.h>
20 #include <vm/VMTranslationMap.h>
21 
22 #include "kernel_debug_config.h"
23 
24 #include "ObjectCache.h"
25 
26 
27 //#define TRACE_MEMORY_MANAGER
28 #ifdef TRACE_MEMORY_MANAGER
29 #	define TRACE(x...)	dprintf(x)
30 #else
31 #	define TRACE(x...)	do {} while (false)
32 #endif
33 
34 #if DEBUG_SLAB_MEMORY_MANAGER_PARANOID_CHECKS
35 #	define PARANOID_CHECKS_ONLY(x)	x
36 #else
37 #	define PARANOID_CHECKS_ONLY(x)
38 #endif
39 
40 
41 static const char* const kSlabAreaName = "slab area";
42 
43 static void* sAreaTableBuffer[1024];
44 
45 mutex MemoryManager::sLock;
46 rw_lock MemoryManager::sAreaTableLock;
47 kernel_args* MemoryManager::sKernelArgs;
48 MemoryManager::AreaTable MemoryManager::sAreaTable;
49 MemoryManager::Area* MemoryManager::sFreeAreas;
50 int MemoryManager::sFreeAreaCount;
51 MemoryManager::MetaChunkList MemoryManager::sFreeCompleteMetaChunks;
52 MemoryManager::MetaChunkList MemoryManager::sFreeShortMetaChunks;
53 MemoryManager::MetaChunkList MemoryManager::sPartialMetaChunksSmall;
54 MemoryManager::MetaChunkList MemoryManager::sPartialMetaChunksMedium;
55 MemoryManager::AllocationEntry* MemoryManager::sAllocationEntryCanWait;
56 MemoryManager::AllocationEntry* MemoryManager::sAllocationEntryDontWait;
57 bool MemoryManager::sMaintenanceNeeded;
58 
59 
60 RANGE_MARKER_FUNCTION_BEGIN(SlabMemoryManager)
61 
62 
63 // #pragma mark - kernel tracing
64 
65 
66 #if SLAB_MEMORY_MANAGER_TRACING
67 
68 
69 //namespace SlabMemoryManagerCacheTracing {
70 struct MemoryManager::Tracing {
71 
72 class MemoryManagerTraceEntry
73 	: public TRACE_ENTRY_SELECTOR(SLAB_MEMORY_MANAGER_TRACING_STACK_TRACE) {
74 public:
75 	MemoryManagerTraceEntry()
76 		:
77 		TraceEntryBase(SLAB_MEMORY_MANAGER_TRACING_STACK_TRACE, 0, true)
78 	{
79 	}
80 };
81 
82 
83 class Allocate : public MemoryManagerTraceEntry {
84 public:
85 	Allocate(ObjectCache* cache, uint32 flags)
86 		:
87 		MemoryManagerTraceEntry(),
88 		fCache(cache),
89 		fFlags(flags)
90 	{
91 		Initialized();
92 	}
93 
94 	virtual void AddDump(TraceOutput& out)
95 	{
96 		out.Print("slab memory manager alloc: cache: %p, flags: %#" B_PRIx32,
97 			fCache, fFlags);
98 	}
99 
100 private:
101 	ObjectCache*	fCache;
102 	uint32			fFlags;
103 };
104 
105 
106 class Free : public MemoryManagerTraceEntry {
107 public:
108 	Free(void* address, uint32 flags)
109 		:
110 		MemoryManagerTraceEntry(),
111 		fAddress(address),
112 		fFlags(flags)
113 	{
114 		Initialized();
115 	}
116 
117 	virtual void AddDump(TraceOutput& out)
118 	{
119 		out.Print("slab memory manager free: address: %p, flags: %#" B_PRIx32,
120 			fAddress, fFlags);
121 	}
122 
123 private:
124 	void*	fAddress;
125 	uint32	fFlags;
126 };
127 
128 
129 class AllocateRaw : public MemoryManagerTraceEntry {
130 public:
131 	AllocateRaw(size_t size, uint32 flags)
132 		:
133 		MemoryManagerTraceEntry(),
134 		fSize(size),
135 		fFlags(flags)
136 	{
137 		Initialized();
138 	}
139 
140 	virtual void AddDump(TraceOutput& out)
141 	{
142 		out.Print("slab memory manager alloc raw: size: %" B_PRIuSIZE
143 			", flags: %#" B_PRIx32, fSize, fFlags);
144 	}
145 
146 private:
147 	size_t	fSize;
148 	uint32	fFlags;
149 };
150 
151 
152 class FreeRawOrReturnCache : public MemoryManagerTraceEntry {
153 public:
154 	FreeRawOrReturnCache(void* address, uint32 flags)
155 		:
156 		MemoryManagerTraceEntry(),
157 		fAddress(address),
158 		fFlags(flags)
159 	{
160 		Initialized();
161 	}
162 
163 	virtual void AddDump(TraceOutput& out)
164 	{
165 		out.Print("slab memory manager free raw/return: address: %p, flags: %#"
166 			B_PRIx32, fAddress, fFlags);
167 	}
168 
169 private:
170 	void*	fAddress;
171 	uint32	fFlags;
172 };
173 
174 
175 class AllocateArea : public MemoryManagerTraceEntry {
176 public:
177 	AllocateArea(Area* area, uint32 flags)
178 		:
179 		MemoryManagerTraceEntry(),
180 		fArea(area),
181 		fFlags(flags)
182 	{
183 		Initialized();
184 	}
185 
186 	virtual void AddDump(TraceOutput& out)
187 	{
188 		out.Print("slab memory manager alloc area: flags: %#" B_PRIx32
189 			" -> %p", fFlags, fArea);
190 	}
191 
192 private:
193 	Area*	fArea;
194 	uint32	fFlags;
195 };
196 
197 
198 class AddArea : public MemoryManagerTraceEntry {
199 public:
200 	AddArea(Area* area)
201 		:
202 		MemoryManagerTraceEntry(),
203 		fArea(area)
204 	{
205 		Initialized();
206 	}
207 
208 	virtual void AddDump(TraceOutput& out)
209 	{
210 		out.Print("slab memory manager add area: %p", fArea);
211 	}
212 
213 private:
214 	Area*	fArea;
215 };
216 
217 
218 class FreeArea : public MemoryManagerTraceEntry {
219 public:
220 	FreeArea(Area* area, bool areaRemoved, uint32 flags)
221 		:
222 		MemoryManagerTraceEntry(),
223 		fArea(area),
224 		fFlags(flags),
225 		fRemoved(areaRemoved)
226 	{
227 		Initialized();
228 	}
229 
230 	virtual void AddDump(TraceOutput& out)
231 	{
232 		out.Print("slab memory manager free area: %p%s, flags: %#" B_PRIx32,
233 			fArea, fRemoved ? " (removed)" : "", fFlags);
234 	}
235 
236 private:
237 	Area*	fArea;
238 	uint32	fFlags;
239 	bool	fRemoved;
240 };
241 
242 
243 class AllocateMetaChunk : public MemoryManagerTraceEntry {
244 public:
245 	AllocateMetaChunk(MetaChunk* metaChunk)
246 		:
247 		MemoryManagerTraceEntry(),
248 		fMetaChunk(metaChunk->chunkBase)
249 	{
250 		Initialized();
251 	}
252 
253 	virtual void AddDump(TraceOutput& out)
254 	{
255 		out.Print("slab memory manager alloc meta chunk: %#" B_PRIxADDR,
256 			fMetaChunk);
257 	}
258 
259 private:
260 	addr_t	fMetaChunk;
261 };
262 
263 
264 class FreeMetaChunk : public MemoryManagerTraceEntry {
265 public:
266 	FreeMetaChunk(MetaChunk* metaChunk)
267 		:
268 		MemoryManagerTraceEntry(),
269 		fMetaChunk(metaChunk->chunkBase)
270 	{
271 		Initialized();
272 	}
273 
274 	virtual void AddDump(TraceOutput& out)
275 	{
276 		out.Print("slab memory manager free meta chunk: %#" B_PRIxADDR,
277 			fMetaChunk);
278 	}
279 
280 private:
281 	addr_t	fMetaChunk;
282 };
283 
284 
285 class AllocateChunk : public MemoryManagerTraceEntry {
286 public:
287 	AllocateChunk(size_t chunkSize, MetaChunk* metaChunk, Chunk* chunk)
288 		:
289 		MemoryManagerTraceEntry(),
290 		fChunkSize(chunkSize),
291 		fMetaChunk(metaChunk->chunkBase),
292 		fChunk(chunk - metaChunk->chunks)
293 	{
294 		Initialized();
295 	}
296 
297 	virtual void AddDump(TraceOutput& out)
298 	{
299 		out.Print("slab memory manager alloc chunk: size: %" B_PRIuSIZE
300 			" -> meta chunk: %#" B_PRIxADDR ", chunk: %" B_PRIu32, fChunkSize,
301 			fMetaChunk, fChunk);
302 	}
303 
304 private:
305 	size_t	fChunkSize;
306 	addr_t	fMetaChunk;
307 	uint32	fChunk;
308 };
309 
310 
311 class AllocateChunks : public MemoryManagerTraceEntry {
312 public:
313 	AllocateChunks(size_t chunkSize, uint32 chunkCount, MetaChunk* metaChunk,
314 		Chunk* chunk)
315 		:
316 		MemoryManagerTraceEntry(),
317 		fMetaChunk(metaChunk->chunkBase),
318 		fChunkSize(chunkSize),
319 		fChunkCount(chunkCount),
320 		fChunk(chunk - metaChunk->chunks)
321 	{
322 		Initialized();
323 	}
324 
325 	virtual void AddDump(TraceOutput& out)
326 	{
327 		out.Print("slab memory manager alloc chunks: size: %" B_PRIuSIZE
328 			", count %" B_PRIu32 " -> meta chunk: %#" B_PRIxADDR ", chunk: %"
329 			B_PRIu32, fChunkSize, fChunkCount, fMetaChunk, fChunk);
330 	}
331 
332 private:
333 	addr_t	fMetaChunk;
334 	size_t	fChunkSize;
335 	uint32	fChunkCount;
336 	uint32	fChunk;
337 };
338 
339 
340 class FreeChunk : public MemoryManagerTraceEntry {
341 public:
342 	FreeChunk(MetaChunk* metaChunk, Chunk* chunk)
343 		:
344 		MemoryManagerTraceEntry(),
345 		fMetaChunk(metaChunk->chunkBase),
346 		fChunk(chunk - metaChunk->chunks)
347 	{
348 		Initialized();
349 	}
350 
351 	virtual void AddDump(TraceOutput& out)
352 	{
353 		out.Print("slab memory manager free chunk: meta chunk: %#" B_PRIxADDR
354 			", chunk: %" B_PRIu32, fMetaChunk, fChunk);
355 	}
356 
357 private:
358 	addr_t	fMetaChunk;
359 	uint32	fChunk;
360 };
361 
362 
363 class Map : public MemoryManagerTraceEntry {
364 public:
365 	Map(addr_t address, size_t size, uint32 flags)
366 		:
367 		MemoryManagerTraceEntry(),
368 		fAddress(address),
369 		fSize(size),
370 		fFlags(flags)
371 	{
372 		Initialized();
373 	}
374 
375 	virtual void AddDump(TraceOutput& out)
376 	{
377 		out.Print("slab memory manager map: %#" B_PRIxADDR ", size: %"
378 			B_PRIuSIZE ", flags: %#" B_PRIx32, fAddress, fSize, fFlags);
379 	}
380 
381 private:
382 	addr_t	fAddress;
383 	size_t	fSize;
384 	uint32	fFlags;
385 };
386 
387 
388 class Unmap : public MemoryManagerTraceEntry {
389 public:
390 	Unmap(addr_t address, size_t size, uint32 flags)
391 		:
392 		MemoryManagerTraceEntry(),
393 		fAddress(address),
394 		fSize(size),
395 		fFlags(flags)
396 	{
397 		Initialized();
398 	}
399 
400 	virtual void AddDump(TraceOutput& out)
401 	{
402 		out.Print("slab memory manager unmap: %#" B_PRIxADDR ", size: %"
403 			B_PRIuSIZE ", flags: %#" B_PRIx32, fAddress, fSize, fFlags);
404 	}
405 
406 private:
407 	addr_t	fAddress;
408 	size_t	fSize;
409 	uint32	fFlags;
410 };
411 
412 
413 //}	// namespace SlabMemoryManagerCacheTracing
414 };	// struct MemoryManager::Tracing
415 
416 
417 //#	define T(x)	new(std::nothrow) SlabMemoryManagerCacheTracing::x
418 #	define T(x)	new(std::nothrow) MemoryManager::Tracing::x
419 
420 #else
421 #	define T(x)
422 #endif	// SLAB_MEMORY_MANAGER_TRACING
423 
424 
425 // #pragma mark - MemoryManager
426 
427 
428 /*static*/ void
429 MemoryManager::Init(kernel_args* args)
430 {
431 	mutex_init(&sLock, "slab memory manager");
432 	rw_lock_init(&sAreaTableLock, "slab memory manager area table");
433 	sKernelArgs = args;
434 
435 	new(&sFreeCompleteMetaChunks) MetaChunkList;
436 	new(&sFreeShortMetaChunks) MetaChunkList;
437 	new(&sPartialMetaChunksSmall) MetaChunkList;
438 	new(&sPartialMetaChunksMedium) MetaChunkList;
439 
440 	new(&sAreaTable) AreaTable;
441 	sAreaTable.Resize(sAreaTableBuffer, sizeof(sAreaTableBuffer), true);
442 		// A bit hacky: The table now owns the memory. Since we never resize or
443 		// free it, that's not a problem, though.
444 
445 	sFreeAreas = NULL;
446 	sFreeAreaCount = 0;
447 	sMaintenanceNeeded = false;
448 }
449 
450 
451 /*static*/ void
452 MemoryManager::InitPostArea()
453 {
454 	sKernelArgs = NULL;
455 
456 	// Convert all areas to actual areas. This loop might look a bit weird, but
457 	// is necessary since creating the actual area involves memory allocations,
458 	// which in turn can change the situation.
459 	bool done;
460 	do {
461 		done = true;
462 
463 		for (AreaTable::Iterator it = sAreaTable.GetIterator();
464 				Area* area = it.Next();) {
465 			if (area->vmArea == NULL) {
466 				_ConvertEarlyArea(area);
467 				done = false;
468 				break;
469 			}
470 		}
471 	} while (!done);
472 
473 	// unmap and free unused pages
474 	if (sFreeAreas != NULL) {
475 		// Just "leak" all but the first of the free areas -- the VM will
476 		// automatically free all unclaimed memory.
477 		sFreeAreas->next = NULL;
478 		sFreeAreaCount = 1;
479 
480 		Area* area = sFreeAreas;
481 		_ConvertEarlyArea(area);
482 		_UnmapFreeChunksEarly(area);
483 	}
484 
485 	for (AreaTable::Iterator it = sAreaTable.GetIterator();
486 			Area* area = it.Next();) {
487 		_UnmapFreeChunksEarly(area);
488 	}
489 
490 	sMaintenanceNeeded = true;
491 		// might not be necessary, but doesn't harm
492 
493 	add_debugger_command_etc("slab_area", &_DumpArea,
494 		"Dump information on a given slab area",
495 		"[ -c ] <area>\n"
496 		"Dump information on a given slab area specified by its base "
497 			"address.\n"
498 		"If \"-c\" is given, the chunks of all meta chunks area printed as "
499 			"well.\n", 0);
500 	add_debugger_command_etc("slab_areas", &_DumpAreas,
501 		"List all slab areas",
502 		"\n"
503 		"Lists all slab areas.\n", 0);
504 	add_debugger_command_etc("slab_meta_chunk", &_DumpMetaChunk,
505 		"Dump information on a given slab meta chunk",
506 		"<meta chunk>\n"
507 		"Dump information on a given slab meta chunk specified by its base "
508 			"or object address.\n", 0);
509 	add_debugger_command_etc("slab_meta_chunks", &_DumpMetaChunks,
510 		"List all non-full slab meta chunks",
511 		"[ -c ]\n"
512 		"Lists all non-full slab meta chunks.\n"
513 		"If \"-c\" is given, the chunks of all meta chunks area printed as "
514 			"well.\n", 0);
515 	add_debugger_command_etc("slab_raw_allocations", &_DumpRawAllocations,
516 		"List all raw allocations in slab areas",
517 		"\n"
518 		"Lists all raw allocations in slab areas.\n", 0);
519 }
520 
521 
522 /*static*/ status_t
523 MemoryManager::Allocate(ObjectCache* cache, uint32 flags, void*& _pages)
524 {
525 	// TODO: Support CACHE_UNLOCKED_PAGES!
526 
527 	T(Allocate(cache, flags));
528 
529 	size_t chunkSize = cache->slab_size;
530 
531 	TRACE("MemoryManager::Allocate(%p, %#" B_PRIx32 "): chunkSize: %"
532 		B_PRIuSIZE "\n", cache, flags, chunkSize);
533 
534 	MutexLocker locker(sLock);
535 
536 	// allocate a chunk
537 	MetaChunk* metaChunk;
538 	Chunk* chunk;
539 	status_t error = _AllocateChunks(chunkSize, 1, flags, metaChunk, chunk);
540 	if (error != B_OK)
541 		return error;
542 
543 	// map the chunk
544 	Area* area = metaChunk->GetArea();
545 	addr_t chunkAddress = _ChunkAddress(metaChunk, chunk);
546 
547 	locker.Unlock();
548 	error = _MapChunk(area->vmArea, chunkAddress, chunkSize, 0, flags);
549 	locker.Lock();
550 	if (error != B_OK) {
551 		// something failed -- free the chunk
552 		_FreeChunk(area, metaChunk, chunk, chunkAddress, true, flags);
553 		return error;
554 	}
555 
556 	chunk->reference = (addr_t)cache;
557 	_pages = (void*)chunkAddress;
558 
559 	TRACE("MemoryManager::Allocate() done: %p (meta chunk: %d, chunk %d)\n",
560 		_pages, int(metaChunk - area->metaChunks),
561 		int(chunk - metaChunk->chunks));
562 	return B_OK;
563 }
564 
565 
566 /*static*/ void
567 MemoryManager::Free(void* pages, uint32 flags)
568 {
569 	TRACE("MemoryManager::Free(%p, %#" B_PRIx32 ")\n", pages, flags);
570 
571 	T(Free(pages, flags));
572 
573 	// get the area and the meta chunk
574 	Area* area = _AreaForAddress((addr_t)pages);
575 	MetaChunk* metaChunk = &area->metaChunks[
576 		((addr_t)pages % SLAB_AREA_SIZE) / SLAB_CHUNK_SIZE_LARGE];
577 
578 	ASSERT(metaChunk->chunkSize > 0);
579 	ASSERT((addr_t)pages >= metaChunk->chunkBase);
580 	ASSERT(((addr_t)pages % metaChunk->chunkSize) == 0);
581 
582 	// get the chunk
583 	uint16 chunkIndex = _ChunkIndexForAddress(metaChunk, (addr_t)pages);
584 	Chunk* chunk = &metaChunk->chunks[chunkIndex];
585 
586 	ASSERT(chunk->next != NULL);
587 	ASSERT(chunk->next < metaChunk->chunks
588 		|| chunk->next
589 			>= metaChunk->chunks + SLAB_SMALL_CHUNKS_PER_META_CHUNK);
590 
591 	// and free it
592 	MutexLocker locker(sLock);
593 	_FreeChunk(area, metaChunk, chunk, (addr_t)pages, false, flags);
594 }
595 
596 
597 /*static*/ status_t
598 MemoryManager::AllocateRaw(size_t size, uint32 flags, void*& _pages)
599 {
600 #if SLAB_MEMORY_MANAGER_TRACING
601 #if SLAB_MEMORY_MANAGER_ALLOCATION_TRACKING
602 	AbstractTraceEntryWithStackTrace* traceEntry = T(AllocateRaw(size, flags));
603 	size += sizeof(AllocationTrackingInfo);
604 #else
605 	T(AllocateRaw(size, flags));
606 #endif
607 #endif
608 
609 	size = ROUNDUP(size, SLAB_CHUNK_SIZE_SMALL);
610 
611 	TRACE("MemoryManager::AllocateRaw(%" B_PRIuSIZE ", %#" B_PRIx32 ")\n", size,
612 		  flags);
613 
614 	if (size > SLAB_CHUNK_SIZE_LARGE || (flags & CACHE_ALIGN_ON_SIZE) != 0) {
615 		// Requested size greater than a large chunk or an aligned allocation.
616 		// Allocate as an area.
617 		if ((flags & CACHE_DONT_LOCK_KERNEL_SPACE) != 0)
618 			return B_WOULD_BLOCK;
619 
620 		virtual_address_restrictions virtualRestrictions = {};
621 		virtualRestrictions.address_specification
622 			= (flags & CACHE_ALIGN_ON_SIZE) != 0
623 				? B_ANY_KERNEL_BLOCK_ADDRESS : B_ANY_KERNEL_ADDRESS;
624 		physical_address_restrictions physicalRestrictions = {};
625 		area_id area = create_area_etc(VMAddressSpace::KernelID(),
626 			"slab large raw allocation", size, B_FULL_LOCK,
627 			B_KERNEL_READ_AREA | B_KERNEL_WRITE_AREA,
628 			((flags & CACHE_DONT_WAIT_FOR_MEMORY) != 0
629 					? CREATE_AREA_DONT_WAIT : 0)
630 				| CREATE_AREA_DONT_CLEAR, 0,
631 			&virtualRestrictions, &physicalRestrictions, &_pages);
632 
633 		status_t result = area >= 0 ? B_OK : area;
634 		if (result == B_OK) {
635 			fill_allocated_block(_pages, size);
636 #if SLAB_MEMORY_MANAGER_ALLOCATION_TRACKING
637 			_AddTrackingInfo(_pages, size, traceEntry);
638 #endif
639 		}
640 
641 		return result;
642 	}
643 
644 	// determine chunk size (small or medium)
645 	size_t chunkSize = SLAB_CHUNK_SIZE_SMALL;
646 	uint32 chunkCount = size / SLAB_CHUNK_SIZE_SMALL;
647 
648 	if (size % SLAB_CHUNK_SIZE_MEDIUM == 0) {
649 		chunkSize = SLAB_CHUNK_SIZE_MEDIUM;
650 		chunkCount = size / SLAB_CHUNK_SIZE_MEDIUM;
651 	}
652 
653 	MutexLocker locker(sLock);
654 
655 	// allocate the chunks
656 	MetaChunk* metaChunk;
657 	Chunk* chunk;
658 	status_t error = _AllocateChunks(chunkSize, chunkCount, flags, metaChunk,
659 		chunk);
660 	if (error != B_OK)
661 		return error;
662 
663 	// map the chunks
664 	Area* area = metaChunk->GetArea();
665 	addr_t chunkAddress = _ChunkAddress(metaChunk, chunk);
666 
667 	locker.Unlock();
668 	error = _MapChunk(area->vmArea, chunkAddress, size, 0, flags);
669 	locker.Lock();
670 	if (error != B_OK) {
671 		// something failed -- free the chunks
672 		for (uint32 i = 0; i < chunkCount; i++)
673 			_FreeChunk(area, metaChunk, chunk + i, chunkAddress, true, flags);
674 		return error;
675 	}
676 
677 	chunk->reference = (addr_t)chunkAddress + size - 1;
678 	_pages = (void*)chunkAddress;
679 
680 	fill_allocated_block(_pages, size);
681 #if SLAB_MEMORY_MANAGER_ALLOCATION_TRACKING
682 	_AddTrackingInfo(_pages, size, traceEntry);
683 #endif
684 
685 	TRACE("MemoryManager::AllocateRaw() done: %p (meta chunk: %d, chunk %d)\n",
686 		_pages, int(metaChunk - area->metaChunks),
687 		int(chunk - metaChunk->chunks));
688 	return B_OK;
689 }
690 
691 
692 /*static*/ ObjectCache*
693 MemoryManager::FreeRawOrReturnCache(void* pages, uint32 flags)
694 {
695 	TRACE("MemoryManager::FreeRawOrReturnCache(%p, %#" B_PRIx32 ")\n", pages,
696 		flags);
697 
698 	T(FreeRawOrReturnCache(pages, flags));
699 
700 	// get the area
701 	addr_t areaBase = _AreaBaseAddressForAddress((addr_t)pages);
702 
703 	ReadLocker readLocker(sAreaTableLock);
704 	Area* area = sAreaTable.Lookup(areaBase);
705 	readLocker.Unlock();
706 
707 	if (area == NULL) {
708 		// Probably a large allocation. Look up the VM area.
709 		VMAddressSpace* addressSpace = VMAddressSpace::Kernel();
710 		addressSpace->ReadLock();
711 		VMArea* area = addressSpace->LookupArea((addr_t)pages);
712 		addressSpace->ReadUnlock();
713 
714 		if (area != NULL && (addr_t)pages == area->Base())
715 			delete_area(area->id);
716 		else
717 			panic("freeing unknown block %p from area %p", pages, area);
718 
719 		return NULL;
720 	}
721 
722 	MetaChunk* metaChunk = &area->metaChunks[
723 		((addr_t)pages % SLAB_AREA_SIZE) / SLAB_CHUNK_SIZE_LARGE];
724 
725 	// get the chunk
726 	ASSERT(metaChunk->chunkSize > 0);
727 	ASSERT((addr_t)pages >= metaChunk->chunkBase);
728 	uint16 chunkIndex = _ChunkIndexForAddress(metaChunk, (addr_t)pages);
729 	Chunk* chunk = &metaChunk->chunks[chunkIndex];
730 
731 	addr_t reference = chunk->reference;
732 	if ((reference & 1) == 0)
733 		return (ObjectCache*)reference;
734 
735 	// Seems we have a raw chunk allocation.
736 	ASSERT((addr_t)pages == _ChunkAddress(metaChunk, chunk));
737 	ASSERT(reference > (addr_t)pages);
738 	ASSERT(reference <= areaBase + SLAB_AREA_SIZE - 1);
739 	size_t size = reference - (addr_t)pages + 1;
740 	ASSERT((size % SLAB_CHUNK_SIZE_SMALL) == 0);
741 
742 	// unmap the chunks
743 	_UnmapChunk(area->vmArea, (addr_t)pages, size, flags);
744 
745 	// and free them
746 	MutexLocker locker(sLock);
747 	uint32 chunkCount = size / metaChunk->chunkSize;
748 	for (uint32 i = 0; i < chunkCount; i++)
749 		_FreeChunk(area, metaChunk, chunk + i, (addr_t)pages, true, flags);
750 
751 	return NULL;
752 }
753 
754 
755 /*static*/ size_t
756 MemoryManager::AcceptableChunkSize(size_t size)
757 {
758 	if (size <= SLAB_CHUNK_SIZE_SMALL)
759 		return SLAB_CHUNK_SIZE_SMALL;
760 	if (size <= SLAB_CHUNK_SIZE_MEDIUM)
761 		return SLAB_CHUNK_SIZE_MEDIUM;
762 	return SLAB_CHUNK_SIZE_LARGE;
763 }
764 
765 
766 /*static*/ ObjectCache*
767 MemoryManager::GetAllocationInfo(void* address, size_t& _size)
768 {
769 	// get the area
770 	ReadLocker readLocker(sAreaTableLock);
771 	Area* area = sAreaTable.Lookup(_AreaBaseAddressForAddress((addr_t)address));
772 	readLocker.Unlock();
773 
774 	if (area == NULL) {
775 		VMAddressSpace* addressSpace = VMAddressSpace::Kernel();
776 		addressSpace->ReadLock();
777 		VMArea* area = addressSpace->LookupArea((addr_t)address);
778 		if (area != NULL && (addr_t)address == area->Base())
779 			_size = area->Size();
780 		else
781 			_size = 0;
782 		addressSpace->ReadUnlock();
783 
784 		return NULL;
785 	}
786 
787 	MetaChunk* metaChunk = &area->metaChunks[
788 		((addr_t)address % SLAB_AREA_SIZE) / SLAB_CHUNK_SIZE_LARGE];
789 
790 	// get the chunk
791 	ASSERT(metaChunk->chunkSize > 0);
792 	ASSERT((addr_t)address >= metaChunk->chunkBase);
793 	uint16 chunkIndex = _ChunkIndexForAddress(metaChunk, (addr_t)address);
794 
795 	addr_t reference = metaChunk->chunks[chunkIndex].reference;
796 	if ((reference & 1) == 0) {
797 		ObjectCache* cache = (ObjectCache*)reference;
798 		_size = cache->object_size;
799 		return cache;
800 	}
801 
802 	_size = reference - (addr_t)address + 1;
803 	return NULL;
804 }
805 
806 
807 /*static*/ ObjectCache*
808 MemoryManager::CacheForAddress(void* address)
809 {
810 	// get the area
811 	ReadLocker readLocker(sAreaTableLock);
812 	Area* area = sAreaTable.Lookup(_AreaBaseAddressForAddress((addr_t)address));
813 	readLocker.Unlock();
814 
815 	if (area == NULL)
816 		return NULL;
817 
818 	MetaChunk* metaChunk = &area->metaChunks[
819 		((addr_t)address % SLAB_AREA_SIZE) / SLAB_CHUNK_SIZE_LARGE];
820 
821 	// get the chunk
822 	ASSERT(metaChunk->chunkSize > 0);
823 	ASSERT((addr_t)address >= metaChunk->chunkBase);
824 	uint16 chunkIndex = _ChunkIndexForAddress(metaChunk, (addr_t)address);
825 
826 	addr_t reference = metaChunk->chunks[chunkIndex].reference;
827 	return (reference & 1) == 0 ? (ObjectCache*)reference : NULL;
828 }
829 
830 
831 /*static*/ void
832 MemoryManager::PerformMaintenance()
833 {
834 	MutexLocker locker(sLock);
835 
836 	while (sMaintenanceNeeded) {
837 		sMaintenanceNeeded = false;
838 
839 		// We want to keep one or two areas as a reserve. This way we have at
840 		// least one area to use in situations when we aren't allowed to
841 		// allocate one and also avoid ping-pong effects.
842 		if (sFreeAreaCount > 0 && sFreeAreaCount <= 2)
843 			return;
844 
845 		if (sFreeAreaCount == 0) {
846 			// try to allocate one
847 			Area* area;
848 			if (_AllocateArea(0, area) != B_OK)
849 				return;
850 
851 			_PushFreeArea(area);
852 			if (sFreeAreaCount > 2)
853 				sMaintenanceNeeded = true;
854 		} else {
855 			// free until we only have two free ones
856 			while (sFreeAreaCount > 2)
857 				_FreeArea(_PopFreeArea(), true, 0);
858 
859 			if (sFreeAreaCount == 0)
860 				sMaintenanceNeeded = true;
861 		}
862 	}
863 }
864 
865 
866 #if SLAB_MEMORY_MANAGER_ALLOCATION_TRACKING
867 
868 /*static*/ bool
869 MemoryManager::AnalyzeAllocationCallers(AllocationTrackingCallback& callback)
870 {
871 	for (AreaTable::Iterator it = sAreaTable.GetIterator();
872 			Area* area = it.Next();) {
873 		for (int32 i = 0; i < SLAB_META_CHUNKS_PER_AREA; i++) {
874 			MetaChunk* metaChunk = area->metaChunks + i;
875 			if (metaChunk->chunkSize == 0)
876 				continue;
877 
878 			for (uint32 k = 0; k < metaChunk->chunkCount; k++) {
879 				Chunk* chunk = metaChunk->chunks + k;
880 
881 				// skip free chunks
882 				if (_IsChunkFree(metaChunk, chunk))
883 					continue;
884 
885 				addr_t reference = chunk->reference;
886 				if ((reference & 1) == 0 || reference == 1)
887 					continue;
888 
889 				addr_t chunkAddress = _ChunkAddress(metaChunk, chunk);
890 				size_t size = reference - chunkAddress + 1;
891 
892 				if (!callback.ProcessTrackingInfo(
893 						_TrackingInfoFor((void*)chunkAddress, size),
894 						(void*)chunkAddress, size)) {
895 					return false;
896 				}
897 			}
898 		}
899 	}
900 
901 	return true;
902 }
903 
904 #endif	// SLAB_MEMORY_MANAGER_ALLOCATION_TRACKING
905 
906 
907 /*static*/ ObjectCache*
908 MemoryManager::DebugObjectCacheForAddress(void* address)
909 {
910 	// get the area
911 	addr_t areaBase = _AreaBaseAddressForAddress((addr_t)address);
912 	Area* area = sAreaTable.Lookup(areaBase);
913 
914 	if (area == NULL)
915 		return NULL;
916 
917 	MetaChunk* metaChunk = &area->metaChunks[
918 		((addr_t)address % SLAB_AREA_SIZE) / SLAB_CHUNK_SIZE_LARGE];
919 
920 	// get the chunk
921 	if (metaChunk->chunkSize == 0)
922 		return NULL;
923 	if ((addr_t)address < metaChunk->chunkBase)
924 		return NULL;
925 
926 	uint16 chunkIndex = _ChunkIndexForAddress(metaChunk, (addr_t)address);
927 	Chunk* chunk = &metaChunk->chunks[chunkIndex];
928 
929 	addr_t reference = chunk->reference;
930 	if ((reference & 1) == 0)
931 		return (ObjectCache*)reference;
932 
933 	return NULL;
934 }
935 
936 
937 /*static*/ status_t
938 MemoryManager::_AllocateChunks(size_t chunkSize, uint32 chunkCount,
939 	uint32 flags, MetaChunk*& _metaChunk, Chunk*& _chunk)
940 {
941 	MetaChunkList* metaChunkList = NULL;
942 	if (chunkSize == SLAB_CHUNK_SIZE_SMALL) {
943 		metaChunkList = &sPartialMetaChunksSmall;
944 	} else if (chunkSize == SLAB_CHUNK_SIZE_MEDIUM) {
945 		metaChunkList = &sPartialMetaChunksMedium;
946 	} else if (chunkSize != SLAB_CHUNK_SIZE_LARGE) {
947 		panic("MemoryManager::_AllocateChunks(): Unsupported chunk size: %"
948 			B_PRIuSIZE, chunkSize);
949 		return B_BAD_VALUE;
950 	}
951 
952 	if (_GetChunks(metaChunkList, chunkSize, chunkCount, _metaChunk, _chunk))
953 		return B_OK;
954 
955 	if (sFreeAreas != NULL) {
956 		_AddArea(_PopFreeArea());
957 		_RequestMaintenance();
958 
959 		_GetChunks(metaChunkList, chunkSize, chunkCount, _metaChunk, _chunk);
960 		return B_OK;
961 	}
962 
963 	if ((flags & CACHE_DONT_LOCK_KERNEL_SPACE) != 0) {
964 		// We can't create an area with this limitation and we must not wait for
965 		// someone else doing that.
966 		return B_WOULD_BLOCK;
967 	}
968 
969 	// We need to allocate a new area. Wait, if someone else is trying to do
970 	// the same.
971 	while (true) {
972 		AllocationEntry* allocationEntry = NULL;
973 		if (sAllocationEntryDontWait != NULL) {
974 			allocationEntry = sAllocationEntryDontWait;
975 		} else if (sAllocationEntryCanWait != NULL
976 				&& (flags & CACHE_DONT_WAIT_FOR_MEMORY) == 0) {
977 			allocationEntry = sAllocationEntryCanWait;
978 		} else
979 			break;
980 
981 		ConditionVariableEntry entry;
982 		allocationEntry->condition.Add(&entry);
983 
984 		mutex_unlock(&sLock);
985 		entry.Wait();
986 		mutex_lock(&sLock);
987 
988 		if (_GetChunks(metaChunkList, chunkSize, chunkCount, _metaChunk,
989 				_chunk)) {
990 			return B_OK;
991 		}
992 	}
993 
994 	// prepare the allocation entry others can wait on
995 	AllocationEntry*& allocationEntry
996 		= (flags & CACHE_DONT_WAIT_FOR_MEMORY) != 0
997 			? sAllocationEntryDontWait : sAllocationEntryCanWait;
998 
999 	AllocationEntry myResizeEntry;
1000 	allocationEntry = &myResizeEntry;
1001 	allocationEntry->condition.Init(metaChunkList, "wait for slab area");
1002 	allocationEntry->thread = find_thread(NULL);
1003 
1004 	Area* area;
1005 	status_t error = _AllocateArea(flags, area);
1006 
1007 	allocationEntry->condition.NotifyAll();
1008 	allocationEntry = NULL;
1009 
1010 	if (error != B_OK)
1011 		return error;
1012 
1013 	// Try again to get a meta chunk. Something might have been freed in the
1014 	// meantime. We can free the area in this case.
1015 	if (_GetChunks(metaChunkList, chunkSize, chunkCount, _metaChunk, _chunk)) {
1016 		_FreeArea(area, true, flags);
1017 		return B_OK;
1018 	}
1019 
1020 	_AddArea(area);
1021 	_GetChunks(metaChunkList, chunkSize, chunkCount, _metaChunk, _chunk);
1022 	return B_OK;
1023 }
1024 
1025 
1026 /*static*/ bool
1027 MemoryManager::_GetChunks(MetaChunkList* metaChunkList, size_t chunkSize,
1028 	uint32 chunkCount, MetaChunk*& _metaChunk, Chunk*& _chunk)
1029 {
1030 	// the common and less complicated special case
1031 	if (chunkCount == 1)
1032 		return _GetChunk(metaChunkList, chunkSize, _metaChunk, _chunk);
1033 
1034 	ASSERT(metaChunkList != NULL);
1035 
1036 	// Iterate through the partial meta chunk list and try to find a free
1037 	// range that is large enough.
1038 	MetaChunk* metaChunk = NULL;
1039 	for (MetaChunkList::Iterator it = metaChunkList->GetIterator();
1040 			(metaChunk = it.Next()) != NULL;) {
1041 		if (metaChunk->firstFreeChunk + chunkCount - 1
1042 				<= metaChunk->lastFreeChunk) {
1043 			break;
1044 		}
1045 	}
1046 
1047 	if (metaChunk == NULL) {
1048 		// try to get a free meta chunk
1049 		if ((SLAB_CHUNK_SIZE_LARGE - SLAB_AREA_STRUCT_OFFSET - kAreaAdminSize)
1050 				/ chunkSize >= chunkCount) {
1051 			metaChunk = sFreeShortMetaChunks.RemoveHead();
1052 		}
1053 		if (metaChunk == NULL)
1054 			metaChunk = sFreeCompleteMetaChunks.RemoveHead();
1055 
1056 		if (metaChunk == NULL)
1057 			return false;
1058 
1059 		metaChunkList->Add(metaChunk);
1060 		metaChunk->GetArea()->usedMetaChunkCount++;
1061 		_PrepareMetaChunk(metaChunk, chunkSize);
1062 
1063 		T(AllocateMetaChunk(metaChunk));
1064 	}
1065 
1066 	// pull the chunks out of the free list
1067 	Chunk* firstChunk = metaChunk->chunks + metaChunk->firstFreeChunk;
1068 	Chunk* lastChunk = firstChunk + (chunkCount - 1);
1069 	Chunk** chunkPointer = &metaChunk->freeChunks;
1070 	uint32 remainingChunks = chunkCount;
1071 	while (remainingChunks > 0) {
1072 		ASSERT_PRINT(chunkPointer, "remaining: %" B_PRIu32 "/%" B_PRIu32
1073 			", area: %p, meta chunk: %" B_PRIdSSIZE "\n", remainingChunks,
1074 			chunkCount, metaChunk->GetArea(),
1075 			metaChunk - metaChunk->GetArea()->metaChunks);
1076 		Chunk* chunk = *chunkPointer;
1077 		if (chunk >= firstChunk && chunk <= lastChunk) {
1078 			*chunkPointer = chunk->next;
1079 			chunk->reference = 1;
1080 			remainingChunks--;
1081 		} else
1082 			chunkPointer = &chunk->next;
1083 	}
1084 
1085 	// allocate the chunks
1086 	metaChunk->usedChunkCount += chunkCount;
1087 	if (metaChunk->usedChunkCount == metaChunk->chunkCount) {
1088 		// meta chunk is full now -- remove it from its list
1089 		if (metaChunkList != NULL)
1090 			metaChunkList->Remove(metaChunk);
1091 	}
1092 
1093 	// update the free range
1094 	metaChunk->firstFreeChunk += chunkCount;
1095 
1096 	PARANOID_CHECKS_ONLY(_CheckMetaChunk(metaChunk));
1097 
1098 	_chunk = firstChunk;
1099 	_metaChunk = metaChunk;
1100 
1101 	T(AllocateChunks(chunkSize, chunkCount, metaChunk, firstChunk));
1102 
1103 	return true;
1104 }
1105 
1106 
1107 /*static*/ bool
1108 MemoryManager::_GetChunk(MetaChunkList* metaChunkList, size_t chunkSize,
1109 	MetaChunk*& _metaChunk, Chunk*& _chunk)
1110 {
1111 	MetaChunk* metaChunk = metaChunkList != NULL
1112 		? metaChunkList->Head() : NULL;
1113 	if (metaChunk == NULL) {
1114 		// no partial meta chunk -- maybe there's a free one
1115 		if (chunkSize == SLAB_CHUNK_SIZE_LARGE) {
1116 			metaChunk = sFreeCompleteMetaChunks.RemoveHead();
1117 		} else {
1118 			metaChunk = sFreeShortMetaChunks.RemoveHead();
1119 			if (metaChunk == NULL)
1120 				metaChunk = sFreeCompleteMetaChunks.RemoveHead();
1121 			if (metaChunk != NULL)
1122 				metaChunkList->Add(metaChunk);
1123 		}
1124 
1125 		if (metaChunk == NULL)
1126 			return false;
1127 
1128 		metaChunk->GetArea()->usedMetaChunkCount++;
1129 		_PrepareMetaChunk(metaChunk, chunkSize);
1130 
1131 		T(AllocateMetaChunk(metaChunk));
1132 	}
1133 
1134 	// allocate the chunk
1135 	if (++metaChunk->usedChunkCount == metaChunk->chunkCount) {
1136 		// meta chunk is full now -- remove it from its list
1137 		if (metaChunkList != NULL)
1138 			metaChunkList->Remove(metaChunk);
1139 	}
1140 
1141 	_chunk = _pop(metaChunk->freeChunks);
1142 	_metaChunk = metaChunk;
1143 
1144 	_chunk->reference = 1;
1145 
1146 	// update the free range
1147 	uint32 chunkIndex = _chunk - metaChunk->chunks;
1148 	if (chunkIndex >= metaChunk->firstFreeChunk
1149 			&& chunkIndex <= metaChunk->lastFreeChunk) {
1150 		if (chunkIndex - metaChunk->firstFreeChunk
1151 				<= metaChunk->lastFreeChunk - chunkIndex) {
1152 			metaChunk->firstFreeChunk = chunkIndex + 1;
1153 		} else
1154 			metaChunk->lastFreeChunk = chunkIndex - 1;
1155 	}
1156 
1157 	PARANOID_CHECKS_ONLY(_CheckMetaChunk(metaChunk));
1158 
1159 	T(AllocateChunk(chunkSize, metaChunk, _chunk));
1160 
1161 	return true;
1162 }
1163 
1164 
1165 /*static*/ void
1166 MemoryManager::_FreeChunk(Area* area, MetaChunk* metaChunk, Chunk* chunk,
1167 	addr_t chunkAddress, bool alreadyUnmapped, uint32 flags)
1168 {
1169 	// unmap the chunk
1170 	if (!alreadyUnmapped) {
1171 		mutex_unlock(&sLock);
1172 		_UnmapChunk(area->vmArea, chunkAddress, metaChunk->chunkSize, flags);
1173 		mutex_lock(&sLock);
1174 	}
1175 
1176 	T(FreeChunk(metaChunk, chunk));
1177 
1178 	_push(metaChunk->freeChunks, chunk);
1179 
1180 	uint32 chunkIndex = chunk - metaChunk->chunks;
1181 
1182 	// free the meta chunk, if it is unused now
1183 	PARANOID_CHECKS_ONLY(bool areaDeleted = false;)
1184 	ASSERT(metaChunk->usedChunkCount > 0);
1185 	if (--metaChunk->usedChunkCount == 0) {
1186 		T(FreeMetaChunk(metaChunk));
1187 
1188 		// remove from partial meta chunk list
1189 		if (metaChunk->chunkSize == SLAB_CHUNK_SIZE_SMALL)
1190 			sPartialMetaChunksSmall.Remove(metaChunk);
1191 		else if (metaChunk->chunkSize == SLAB_CHUNK_SIZE_MEDIUM)
1192 			sPartialMetaChunksMedium.Remove(metaChunk);
1193 
1194 		// mark empty
1195 		metaChunk->chunkSize = 0;
1196 
1197 		// add to free list
1198 		if (metaChunk == area->metaChunks)
1199 			sFreeShortMetaChunks.Add(metaChunk, false);
1200 		else
1201 			sFreeCompleteMetaChunks.Add(metaChunk, false);
1202 
1203 		// free the area, if it is unused now
1204 		ASSERT(area->usedMetaChunkCount > 0);
1205 		if (--area->usedMetaChunkCount == 0) {
1206 			_FreeArea(area, false, flags);
1207 			PARANOID_CHECKS_ONLY(areaDeleted = true;)
1208 		}
1209 	} else if (metaChunk->usedChunkCount == metaChunk->chunkCount - 1) {
1210 		// the meta chunk was full before -- add it back to its partial chunk
1211 		// list
1212 		if (metaChunk->chunkSize == SLAB_CHUNK_SIZE_SMALL)
1213 			sPartialMetaChunksSmall.Add(metaChunk, false);
1214 		else if (metaChunk->chunkSize == SLAB_CHUNK_SIZE_MEDIUM)
1215 			sPartialMetaChunksMedium.Add(metaChunk, false);
1216 
1217 		metaChunk->firstFreeChunk = chunkIndex;
1218 		metaChunk->lastFreeChunk = chunkIndex;
1219 	} else {
1220 		// extend the free range, if the chunk adjoins
1221 		if (chunkIndex + 1 == metaChunk->firstFreeChunk) {
1222 			uint32 firstFree = chunkIndex;
1223 			for (; firstFree > 0; firstFree--) {
1224 				Chunk* previousChunk = &metaChunk->chunks[firstFree - 1];
1225 				if (!_IsChunkFree(metaChunk, previousChunk))
1226 					break;
1227 			}
1228 			metaChunk->firstFreeChunk = firstFree;
1229 		} else if (chunkIndex == (uint32)metaChunk->lastFreeChunk + 1) {
1230 			uint32 lastFree = chunkIndex;
1231 			for (; lastFree + 1 < metaChunk->chunkCount; lastFree++) {
1232 				Chunk* nextChunk = &metaChunk->chunks[lastFree + 1];
1233 				if (!_IsChunkFree(metaChunk, nextChunk))
1234 					break;
1235 			}
1236 			metaChunk->lastFreeChunk = lastFree;
1237 		}
1238 	}
1239 
1240 	PARANOID_CHECKS_ONLY(
1241 		if (!areaDeleted)
1242 			_CheckMetaChunk(metaChunk);
1243 	)
1244 }
1245 
1246 
1247 /*static*/ void
1248 MemoryManager::_PrepareMetaChunk(MetaChunk* metaChunk, size_t chunkSize)
1249 {
1250 	Area* area = metaChunk->GetArea();
1251 
1252 	if (metaChunk == area->metaChunks) {
1253 		// the first chunk is shorter
1254 		size_t unusableSize = ROUNDUP(SLAB_AREA_STRUCT_OFFSET + kAreaAdminSize,
1255 			chunkSize);
1256 		metaChunk->chunkBase = area->BaseAddress() + unusableSize;
1257 		metaChunk->totalSize = SLAB_CHUNK_SIZE_LARGE - unusableSize;
1258 	}
1259 
1260 	metaChunk->chunkSize = chunkSize;
1261 	metaChunk->chunkCount = metaChunk->totalSize / chunkSize;
1262 	metaChunk->usedChunkCount = 0;
1263 
1264 	metaChunk->freeChunks = NULL;
1265 	for (int32 i = metaChunk->chunkCount - 1; i >= 0; i--)
1266 		_push(metaChunk->freeChunks, metaChunk->chunks + i);
1267 
1268 	metaChunk->firstFreeChunk = 0;
1269 	metaChunk->lastFreeChunk = metaChunk->chunkCount - 1;
1270 
1271 	PARANOID_CHECKS_ONLY(_CheckMetaChunk(metaChunk));
1272 }
1273 
1274 
1275 /*static*/ void
1276 MemoryManager::_AddArea(Area* area)
1277 {
1278 	T(AddArea(area));
1279 
1280 	// add the area to the hash table
1281 	WriteLocker writeLocker(sAreaTableLock);
1282 	sAreaTable.InsertUnchecked(area);
1283 	writeLocker.Unlock();
1284 
1285 	// add the area's meta chunks to the free lists
1286 	sFreeShortMetaChunks.Add(&area->metaChunks[0]);
1287 	for (int32 i = 1; i < SLAB_META_CHUNKS_PER_AREA; i++)
1288 		sFreeCompleteMetaChunks.Add(&area->metaChunks[i]);
1289 }
1290 
1291 
1292 /*static*/ status_t
1293 MemoryManager::_AllocateArea(uint32 flags, Area*& _area)
1294 {
1295 	TRACE("MemoryManager::_AllocateArea(%#" B_PRIx32 ")\n", flags);
1296 
1297 	ASSERT((flags & CACHE_DONT_LOCK_KERNEL_SPACE) == 0);
1298 
1299 	mutex_unlock(&sLock);
1300 
1301 	size_t pagesNeededToMap = 0;
1302 	void* areaBase;
1303 	Area* area;
1304 	VMArea* vmArea = NULL;
1305 
1306 	if (sKernelArgs == NULL) {
1307 		// create an area
1308 		uint32 areaCreationFlags = (flags & CACHE_PRIORITY_VIP) != 0
1309 			? CREATE_AREA_PRIORITY_VIP : 0;
1310 		area_id areaID = vm_create_null_area(B_SYSTEM_TEAM, kSlabAreaName,
1311 			&areaBase, B_ANY_KERNEL_BLOCK_ADDRESS, SLAB_AREA_SIZE,
1312 			areaCreationFlags);
1313 		if (areaID < 0) {
1314 			mutex_lock(&sLock);
1315 			return areaID;
1316 		}
1317 
1318 		area = _AreaForAddress((addr_t)areaBase);
1319 
1320 		// map the memory for the administrative structure
1321 		VMAddressSpace* addressSpace = VMAddressSpace::Kernel();
1322 		VMTranslationMap* translationMap = addressSpace->TranslationMap();
1323 
1324 		pagesNeededToMap = translationMap->MaxPagesNeededToMap(
1325 			(addr_t)area, (addr_t)areaBase + SLAB_AREA_SIZE - 1);
1326 
1327 		vmArea = VMAreaHash::Lookup(areaID);
1328 		status_t error = _MapChunk(vmArea, (addr_t)area, kAreaAdminSize,
1329 			pagesNeededToMap, flags);
1330 		if (error != B_OK) {
1331 			delete_area(areaID);
1332 			mutex_lock(&sLock);
1333 			return error;
1334 		}
1335 
1336 		dprintf("slab memory manager: created area %p (%" B_PRId32 ")\n", area,
1337 			areaID);
1338 	} else {
1339 		// no areas yet -- allocate raw memory
1340 		areaBase = (void*)vm_allocate_early(sKernelArgs, SLAB_AREA_SIZE,
1341 			SLAB_AREA_SIZE, B_KERNEL_READ_AREA | B_KERNEL_WRITE_AREA,
1342 			SLAB_AREA_SIZE);
1343 		if (areaBase == NULL) {
1344 			mutex_lock(&sLock);
1345 			return B_NO_MEMORY;
1346 		}
1347 		area = _AreaForAddress((addr_t)areaBase);
1348 
1349 		TRACE("MemoryManager::_AllocateArea(): allocated early area %p\n",
1350 			area);
1351 	}
1352 
1353 	// init the area structure
1354 	area->vmArea = vmArea;
1355 	area->reserved_memory_for_mapping = pagesNeededToMap * B_PAGE_SIZE;
1356 	area->usedMetaChunkCount = 0;
1357 	area->fullyMapped = vmArea == NULL;
1358 
1359 	// init the meta chunks
1360 	for (int32 i = 0; i < SLAB_META_CHUNKS_PER_AREA; i++) {
1361 		MetaChunk* metaChunk = area->metaChunks + i;
1362 		metaChunk->chunkSize = 0;
1363 		metaChunk->chunkBase = (addr_t)areaBase + i * SLAB_CHUNK_SIZE_LARGE;
1364 		metaChunk->totalSize = SLAB_CHUNK_SIZE_LARGE;
1365 			// Note: chunkBase and totalSize aren't correct for the first
1366 			// meta chunk. They will be set in _PrepareMetaChunk().
1367 		metaChunk->chunkCount = 0;
1368 		metaChunk->usedChunkCount = 0;
1369 		metaChunk->freeChunks = NULL;
1370 	}
1371 
1372 	mutex_lock(&sLock);
1373 	_area = area;
1374 
1375 	T(AllocateArea(area, flags));
1376 
1377 	return B_OK;
1378 }
1379 
1380 
1381 /*static*/ void
1382 MemoryManager::_FreeArea(Area* area, bool areaRemoved, uint32 flags)
1383 {
1384 	TRACE("MemoryManager::_FreeArea(%p, %#" B_PRIx32 ")\n", area, flags);
1385 
1386 	T(FreeArea(area, areaRemoved, flags));
1387 
1388 	ASSERT(area->usedMetaChunkCount == 0);
1389 
1390 	if (!areaRemoved) {
1391 		// remove the area's meta chunks from the free lists
1392 		ASSERT(area->metaChunks[0].usedChunkCount == 0);
1393 		sFreeShortMetaChunks.Remove(&area->metaChunks[0]);
1394 
1395 		for (int32 i = 1; i < SLAB_META_CHUNKS_PER_AREA; i++) {
1396 			ASSERT(area->metaChunks[i].usedChunkCount == 0);
1397 			sFreeCompleteMetaChunks.Remove(&area->metaChunks[i]);
1398 		}
1399 
1400 		// remove the area from the hash table
1401 		WriteLocker writeLocker(sAreaTableLock);
1402 		sAreaTable.RemoveUnchecked(area);
1403 		writeLocker.Unlock();
1404 	}
1405 
1406 	// We want to keep one or two free areas as a reserve.
1407 	if (sFreeAreaCount <= 1) {
1408 		_PushFreeArea(area);
1409 		return;
1410 	}
1411 
1412 	if (area->vmArea == NULL || (flags & CACHE_DONT_LOCK_KERNEL_SPACE) != 0) {
1413 		// This is either early in the boot process or we aren't allowed to
1414 		// delete the area now.
1415 		_PushFreeArea(area);
1416 		_RequestMaintenance();
1417 		return;
1418 	}
1419 
1420 	mutex_unlock(&sLock);
1421 
1422 	dprintf("slab memory manager: deleting area %p (%" B_PRId32 ")\n", area,
1423 		area->vmArea->id);
1424 
1425 	size_t memoryToUnreserve = area->reserved_memory_for_mapping;
1426 	delete_area(area->vmArea->id);
1427 	vm_unreserve_memory(memoryToUnreserve);
1428 
1429 	mutex_lock(&sLock);
1430 }
1431 
1432 
1433 /*static*/ status_t
1434 MemoryManager::_MapChunk(VMArea* vmArea, addr_t address, size_t size,
1435 	size_t reserveAdditionalMemory, uint32 flags)
1436 {
1437 	TRACE("MemoryManager::_MapChunk(%p, %#" B_PRIxADDR ", %#" B_PRIxSIZE
1438 		")\n", vmArea, address, size);
1439 
1440 	T(Map(address, size, flags));
1441 
1442 	if (vmArea == NULL) {
1443 		// everything is mapped anyway
1444 		return B_OK;
1445 	}
1446 
1447 	VMAddressSpace* addressSpace = VMAddressSpace::Kernel();
1448 	VMTranslationMap* translationMap = addressSpace->TranslationMap();
1449 
1450 	// reserve memory for the chunk
1451 	int priority = (flags & CACHE_PRIORITY_VIP) != 0
1452 		? VM_PRIORITY_VIP : VM_PRIORITY_SYSTEM;
1453 	size_t reservedMemory = size + reserveAdditionalMemory;
1454 	status_t error = vm_try_reserve_memory(size, priority,
1455 		(flags & CACHE_DONT_WAIT_FOR_MEMORY) != 0 ? 0 : 1000000);
1456 	if (error != B_OK)
1457 		return error;
1458 
1459 	// reserve the pages we need now
1460 	size_t reservedPages = size / B_PAGE_SIZE
1461 		+ translationMap->MaxPagesNeededToMap(address, address + size - 1);
1462 	vm_page_reservation reservation;
1463 	if ((flags & CACHE_DONT_WAIT_FOR_MEMORY) != 0) {
1464 		if (!vm_page_try_reserve_pages(&reservation, reservedPages, priority)) {
1465 			vm_unreserve_memory(reservedMemory);
1466 			return B_WOULD_BLOCK;
1467 		}
1468 	} else
1469 		vm_page_reserve_pages(&reservation, reservedPages, priority);
1470 
1471 	VMCache* cache = vm_area_get_locked_cache(vmArea);
1472 
1473 	// map the pages
1474 	translationMap->Lock();
1475 
1476 	addr_t areaOffset = address - vmArea->Base();
1477 	addr_t endAreaOffset = areaOffset + size;
1478 	for (size_t offset = areaOffset; offset < endAreaOffset;
1479 			offset += B_PAGE_SIZE) {
1480 		vm_page* page = vm_page_allocate_page(&reservation, PAGE_STATE_WIRED);
1481 		cache->InsertPage(page, offset);
1482 
1483 		page->IncrementWiredCount();
1484 		atomic_add(&gMappedPagesCount, 1);
1485 		DEBUG_PAGE_ACCESS_END(page);
1486 
1487 		translationMap->Map(vmArea->Base() + offset,
1488 			page->physical_page_number * B_PAGE_SIZE,
1489 			B_KERNEL_READ_AREA | B_KERNEL_WRITE_AREA,
1490 			vmArea->MemoryType(), &reservation);
1491 	}
1492 
1493 	translationMap->Unlock();
1494 
1495 	cache->ReleaseRefAndUnlock();
1496 
1497 	vm_page_unreserve_pages(&reservation);
1498 
1499 	return B_OK;
1500 }
1501 
1502 
1503 /*static*/ status_t
1504 MemoryManager::_UnmapChunk(VMArea* vmArea, addr_t address, size_t size,
1505 	uint32 flags)
1506 {
1507 	T(Unmap(address, size, flags));
1508 
1509 	if (vmArea == NULL)
1510 		return B_ERROR;
1511 
1512 	TRACE("MemoryManager::_UnmapChunk(%p, %#" B_PRIxADDR ", %#" B_PRIxSIZE
1513 		")\n", vmArea, address, size);
1514 
1515 	VMAddressSpace* addressSpace = VMAddressSpace::Kernel();
1516 	VMTranslationMap* translationMap = addressSpace->TranslationMap();
1517 	VMCache* cache = vm_area_get_locked_cache(vmArea);
1518 
1519 	// unmap the pages
1520 	translationMap->Lock();
1521 	translationMap->Unmap(address, address + size - 1);
1522 	atomic_add(&gMappedPagesCount, -(size / B_PAGE_SIZE));
1523 	translationMap->Unlock();
1524 
1525 	// free the pages
1526 	addr_t areaPageOffset = (address - vmArea->Base()) / B_PAGE_SIZE;
1527 	addr_t areaPageEndOffset = areaPageOffset + size / B_PAGE_SIZE;
1528 	VMCachePagesTree::Iterator it = cache->pages.GetIterator(
1529 		areaPageOffset, true, true);
1530 	while (vm_page* page = it.Next()) {
1531 		if (page->cache_offset >= areaPageEndOffset)
1532 			break;
1533 
1534 		DEBUG_PAGE_ACCESS_START(page);
1535 
1536 		page->DecrementWiredCount();
1537 
1538 		cache->RemovePage(page);
1539 			// the iterator is remove-safe
1540 		vm_page_free(cache, page);
1541 	}
1542 
1543 	cache->ReleaseRefAndUnlock();
1544 
1545 	vm_unreserve_memory(size);
1546 
1547 	return B_OK;
1548 }
1549 
1550 
1551 /*static*/ void
1552 MemoryManager::_UnmapFreeChunksEarly(Area* area)
1553 {
1554 	if (!area->fullyMapped)
1555 		return;
1556 
1557 	TRACE("MemoryManager::_UnmapFreeChunksEarly(%p)\n", area);
1558 
1559 	// unmap the space before the Area structure
1560 	#if SLAB_AREA_STRUCT_OFFSET > 0
1561 		_UnmapChunk(area->vmArea, area->BaseAddress(), SLAB_AREA_STRUCT_OFFSET,
1562 			0);
1563 	#endif
1564 
1565 	for (int32 i = 0; i < SLAB_META_CHUNKS_PER_AREA; i++) {
1566 		MetaChunk* metaChunk = area->metaChunks + i;
1567 		if (metaChunk->chunkSize == 0) {
1568 			// meta chunk is free -- unmap it completely
1569 			if (i == 0) {
1570 				_UnmapChunk(area->vmArea, (addr_t)area + kAreaAdminSize,
1571 					SLAB_CHUNK_SIZE_LARGE - kAreaAdminSize, 0);
1572 			} else {
1573 				_UnmapChunk(area->vmArea,
1574 					area->BaseAddress() + i * SLAB_CHUNK_SIZE_LARGE,
1575 					SLAB_CHUNK_SIZE_LARGE, 0);
1576 			}
1577 		} else {
1578 			// unmap free chunks
1579 			for (Chunk* chunk = metaChunk->freeChunks; chunk != NULL;
1580 					chunk = chunk->next) {
1581 				_UnmapChunk(area->vmArea, _ChunkAddress(metaChunk, chunk),
1582 					metaChunk->chunkSize, 0);
1583 			}
1584 
1585 			// The first meta chunk might have space before its first chunk.
1586 			if (i == 0) {
1587 				addr_t unusedStart = (addr_t)area + kAreaAdminSize;
1588 				if (unusedStart < metaChunk->chunkBase) {
1589 					_UnmapChunk(area->vmArea, unusedStart,
1590 						metaChunk->chunkBase - unusedStart, 0);
1591 				}
1592 			}
1593 		}
1594 	}
1595 
1596 	area->fullyMapped = false;
1597 }
1598 
1599 
1600 /*static*/ void
1601 MemoryManager::_ConvertEarlyArea(Area* area)
1602 {
1603 	void* address = (void*)area->BaseAddress();
1604 	area_id areaID = create_area(kSlabAreaName, &address, B_EXACT_ADDRESS,
1605 		SLAB_AREA_SIZE, B_ALREADY_WIRED,
1606 		B_KERNEL_READ_AREA | B_KERNEL_WRITE_AREA);
1607 	if (areaID < 0)
1608 		panic("out of memory");
1609 
1610 	area->vmArea = VMAreaHash::Lookup(areaID);
1611 }
1612 
1613 
1614 /*static*/ void
1615 MemoryManager::_RequestMaintenance()
1616 {
1617 	if ((sFreeAreaCount > 0 && sFreeAreaCount <= 2) || sMaintenanceNeeded)
1618 		return;
1619 
1620 	sMaintenanceNeeded = true;
1621 	request_memory_manager_maintenance();
1622 }
1623 
1624 
1625 /*static*/ bool
1626 MemoryManager::_IsChunkInFreeList(const MetaChunk* metaChunk,
1627 	const Chunk* chunk)
1628 {
1629 	Chunk* freeChunk = metaChunk->freeChunks;
1630 	while (freeChunk != NULL) {
1631 		if (freeChunk == chunk)
1632 			return true;
1633 		freeChunk = freeChunk->next;
1634 	}
1635 
1636 	return false;
1637 }
1638 
1639 
1640 #if DEBUG_SLAB_MEMORY_MANAGER_PARANOID_CHECKS
1641 
1642 /*static*/ void
1643 MemoryManager::_CheckMetaChunk(MetaChunk* metaChunk)
1644 {
1645 	Area* area = metaChunk->GetArea();
1646 	int32 metaChunkIndex = metaChunk - area->metaChunks;
1647 	if (metaChunkIndex < 0 || metaChunkIndex >= SLAB_META_CHUNKS_PER_AREA) {
1648 		panic("invalid meta chunk %p!", metaChunk);
1649 		return;
1650 	}
1651 
1652 	switch (metaChunk->chunkSize) {
1653 		case 0:
1654 			// unused
1655 			return;
1656 		case SLAB_CHUNK_SIZE_SMALL:
1657 		case SLAB_CHUNK_SIZE_MEDIUM:
1658 		case SLAB_CHUNK_SIZE_LARGE:
1659 			break;
1660 		default:
1661 			panic("meta chunk %p has invalid chunk size: %" B_PRIuSIZE,
1662 				metaChunk, metaChunk->chunkSize);
1663 			return;
1664 	}
1665 
1666 	if (metaChunk->totalSize > SLAB_CHUNK_SIZE_LARGE) {
1667 		panic("meta chunk %p has invalid total size: %" B_PRIuSIZE,
1668 			metaChunk, metaChunk->totalSize);
1669 		return;
1670 	}
1671 
1672 	addr_t expectedBase = area->BaseAddress()
1673 		+ metaChunkIndex * SLAB_CHUNK_SIZE_LARGE;
1674 	if (metaChunk->chunkBase < expectedBase
1675 		|| metaChunk->chunkBase - expectedBase + metaChunk->totalSize
1676 			> SLAB_CHUNK_SIZE_LARGE) {
1677 		panic("meta chunk %p has invalid base address: %" B_PRIxADDR, metaChunk,
1678 			metaChunk->chunkBase);
1679 		return;
1680 	}
1681 
1682 	if (metaChunk->chunkCount != metaChunk->totalSize / metaChunk->chunkSize) {
1683 		panic("meta chunk %p has invalid chunk count: %u", metaChunk,
1684 			metaChunk->chunkCount);
1685 		return;
1686 	}
1687 
1688 	if (metaChunk->usedChunkCount > metaChunk->chunkCount) {
1689 		panic("meta chunk %p has invalid unused chunk count: %u", metaChunk,
1690 			metaChunk->usedChunkCount);
1691 		return;
1692 	}
1693 
1694 	if (metaChunk->firstFreeChunk > metaChunk->chunkCount) {
1695 		panic("meta chunk %p has invalid first free chunk: %u", metaChunk,
1696 			metaChunk->firstFreeChunk);
1697 		return;
1698 	}
1699 
1700 	if (metaChunk->lastFreeChunk >= metaChunk->chunkCount) {
1701 		panic("meta chunk %p has invalid last free chunk: %u", metaChunk,
1702 			metaChunk->lastFreeChunk);
1703 		return;
1704 	}
1705 
1706 	// check free list for structural sanity
1707 	uint32 freeChunks = 0;
1708 	for (Chunk* chunk = metaChunk->freeChunks; chunk != NULL;
1709 			chunk = chunk->next) {
1710 		if ((addr_t)chunk % sizeof(Chunk) != 0 || chunk < metaChunk->chunks
1711 			|| chunk >= metaChunk->chunks + metaChunk->chunkCount) {
1712 			panic("meta chunk %p has invalid element in free list, chunk: %p",
1713 				metaChunk, chunk);
1714 			return;
1715 		}
1716 
1717 		if (++freeChunks > metaChunk->chunkCount) {
1718 			panic("meta chunk %p has cyclic free list", metaChunk);
1719 			return;
1720 		}
1721 	}
1722 
1723 	if (freeChunks + metaChunk->usedChunkCount > metaChunk->chunkCount) {
1724 		panic("meta chunk %p has mismatching free/used chunk counts: total: "
1725 			"%u, used: %u, free: %" B_PRIu32, metaChunk, metaChunk->chunkCount,
1726 			metaChunk->usedChunkCount, freeChunks);
1727 		return;
1728 	}
1729 
1730 	// count used chunks by looking at their reference/next field
1731 	uint32 usedChunks = 0;
1732 	for (uint32 i = 0; i < metaChunk->chunkCount; i++) {
1733 		if (!_IsChunkFree(metaChunk, metaChunk->chunks + i))
1734 			usedChunks++;
1735 	}
1736 
1737 	if (usedChunks != metaChunk->usedChunkCount) {
1738 		panic("meta chunk %p has used chunks that appear free: total: "
1739 			"%u, used: %u, appearing used: %" B_PRIu32, metaChunk,
1740 			metaChunk->chunkCount, metaChunk->usedChunkCount, usedChunks);
1741 		return;
1742 	}
1743 
1744 	// check free range
1745 	for (uint32 i = metaChunk->firstFreeChunk; i < metaChunk->lastFreeChunk;
1746 			i++) {
1747 		if (!_IsChunkFree(metaChunk, metaChunk->chunks + i)) {
1748 			panic("meta chunk %p has used chunk in free range, chunk: %p (%"
1749 				B_PRIu32 ", free range: %u - %u)", metaChunk,
1750 				metaChunk->chunks + i, i, metaChunk->firstFreeChunk,
1751 				metaChunk->lastFreeChunk);
1752 			return;
1753 		}
1754 	}
1755 }
1756 
1757 #endif	// DEBUG_SLAB_MEMORY_MANAGER_PARANOID_CHECKS
1758 
1759 
1760 /*static*/ int
1761 MemoryManager::_DumpRawAllocations(int argc, char** argv)
1762 {
1763 	kprintf("%-*s    meta chunk  chunk  %-*s    size (KB)\n",
1764 		B_PRINTF_POINTER_WIDTH, "area", B_PRINTF_POINTER_WIDTH, "base");
1765 
1766 	size_t totalSize = 0;
1767 
1768 	for (AreaTable::Iterator it = sAreaTable.GetIterator();
1769 			Area* area = it.Next();) {
1770 		for (int32 i = 0; i < SLAB_META_CHUNKS_PER_AREA; i++) {
1771 			MetaChunk* metaChunk = area->metaChunks + i;
1772 			if (metaChunk->chunkSize == 0)
1773 				continue;
1774 			for (uint32 k = 0; k < metaChunk->chunkCount; k++) {
1775 				Chunk* chunk = metaChunk->chunks + k;
1776 
1777 				// skip free chunks
1778 				if (_IsChunkFree(metaChunk, chunk))
1779 					continue;
1780 
1781 				addr_t reference = chunk->reference;
1782 				if ((reference & 1) == 0 || reference == 1)
1783 					continue;
1784 
1785 				addr_t chunkAddress = _ChunkAddress(metaChunk, chunk);
1786 				size_t size = reference - chunkAddress + 1;
1787 				totalSize += size;
1788 
1789 				kprintf("%p  %10" B_PRId32 "  %5" B_PRIu32 "  %p  %9"
1790 					B_PRIuSIZE "\n", area, i, k, (void*)chunkAddress,
1791 					size / 1024);
1792 			}
1793 		}
1794 	}
1795 
1796 	kprintf("total:%*s%9" B_PRIuSIZE "\n", (2 * B_PRINTF_POINTER_WIDTH) + 21,
1797 		"", totalSize / 1024);
1798 
1799 	return 0;
1800 }
1801 
1802 
1803 /*static*/ void
1804 MemoryManager::_PrintMetaChunkTableHeader(bool printChunks)
1805 {
1806 	if (printChunks)
1807 		kprintf("chunk        base       cache  object size  cache name\n");
1808 	else
1809 		kprintf("chunk        base\n");
1810 }
1811 
1812 /*static*/ void
1813 MemoryManager::_DumpMetaChunk(MetaChunk* metaChunk, bool printChunks,
1814 	bool printHeader)
1815 {
1816 	if (printHeader)
1817 		_PrintMetaChunkTableHeader(printChunks);
1818 
1819 	const char* type = "empty";
1820 	if (metaChunk->chunkSize != 0) {
1821 		switch (metaChunk->chunkSize) {
1822 			case SLAB_CHUNK_SIZE_SMALL:
1823 				type = "small";
1824 				break;
1825 			case SLAB_CHUNK_SIZE_MEDIUM:
1826 				type = "medium";
1827 				break;
1828 			case SLAB_CHUNK_SIZE_LARGE:
1829 				type = "large";
1830 				break;
1831 		}
1832 	}
1833 
1834 	int metaChunkIndex = metaChunk - metaChunk->GetArea()->metaChunks;
1835 	kprintf("%5d  %p  --- %6s meta chunk", metaChunkIndex,
1836 		(void*)metaChunk->chunkBase, type);
1837 	if (metaChunk->chunkSize != 0) {
1838 		kprintf(": %4u/%4u used, %-4u-%4u free ------------\n",
1839 			metaChunk->usedChunkCount, metaChunk->chunkCount,
1840 			metaChunk->firstFreeChunk, metaChunk->lastFreeChunk);
1841 	} else
1842 		kprintf(" --------------------------------------------\n");
1843 
1844 	if (metaChunk->chunkSize == 0 || !printChunks)
1845 		return;
1846 
1847 	for (uint32 i = 0; i < metaChunk->chunkCount; i++) {
1848 		Chunk* chunk = metaChunk->chunks + i;
1849 
1850 		// skip free chunks
1851 		if (_IsChunkFree(metaChunk, chunk)) {
1852 			if (!_IsChunkInFreeList(metaChunk, chunk)) {
1853 				kprintf("%5" B_PRIu32 "  %p  appears free, but isn't in free "
1854 					"list!\n", i, (void*)_ChunkAddress(metaChunk, chunk));
1855 			}
1856 
1857 			continue;
1858 		}
1859 
1860 		addr_t reference = chunk->reference;
1861 		if ((reference & 1) == 0) {
1862 			ObjectCache* cache = (ObjectCache*)reference;
1863 			kprintf("%5" B_PRIu32 "  %p  %p  %11" B_PRIuSIZE "  %s\n", i,
1864 				(void*)_ChunkAddress(metaChunk, chunk), cache,
1865 				cache != NULL ? cache->object_size : 0,
1866 				cache != NULL ? cache->name : "");
1867 		} else if (reference != 1) {
1868 			kprintf("%5" B_PRIu32 "  %p  raw allocation up to %p\n", i,
1869 				(void*)_ChunkAddress(metaChunk, chunk), (void*)reference);
1870 		}
1871 	}
1872 }
1873 
1874 
1875 /*static*/ int
1876 MemoryManager::_DumpMetaChunk(int argc, char** argv)
1877 {
1878 	if (argc != 2) {
1879 		print_debugger_command_usage(argv[0]);
1880 		return 0;
1881 	}
1882 
1883 	uint64 address;
1884 	if (!evaluate_debug_expression(argv[1], &address, false))
1885 		return 0;
1886 
1887 	Area* area = _AreaForAddress(address);
1888 
1889 	MetaChunk* metaChunk;
1890 	if ((addr_t)address >= (addr_t)area->metaChunks
1891 		&& (addr_t)address
1892 			< (addr_t)(area->metaChunks + SLAB_META_CHUNKS_PER_AREA)) {
1893 		metaChunk = (MetaChunk*)(addr_t)address;
1894 	} else {
1895 		metaChunk = area->metaChunks
1896 			+ (address % SLAB_AREA_SIZE) / SLAB_CHUNK_SIZE_LARGE;
1897 	}
1898 
1899 	_DumpMetaChunk(metaChunk, true, true);
1900 
1901 	return 0;
1902 }
1903 
1904 
1905 /*static*/ void
1906 MemoryManager::_DumpMetaChunks(const char* name, MetaChunkList& metaChunkList,
1907 	bool printChunks)
1908 {
1909 	kprintf("%s:\n", name);
1910 
1911 	for (MetaChunkList::Iterator it = metaChunkList.GetIterator();
1912 			MetaChunk* metaChunk = it.Next();) {
1913 		_DumpMetaChunk(metaChunk, printChunks, false);
1914 	}
1915 }
1916 
1917 
1918 /*static*/ int
1919 MemoryManager::_DumpMetaChunks(int argc, char** argv)
1920 {
1921 	bool printChunks = argc > 1 && strcmp(argv[1], "-c") == 0;
1922 
1923 	_PrintMetaChunkTableHeader(printChunks);
1924 	_DumpMetaChunks("free complete", sFreeCompleteMetaChunks, printChunks);
1925 	_DumpMetaChunks("free short", sFreeShortMetaChunks, printChunks);
1926 	_DumpMetaChunks("partial small", sPartialMetaChunksSmall, printChunks);
1927 	_DumpMetaChunks("partial medium", sPartialMetaChunksMedium, printChunks);
1928 
1929 	return 0;
1930 }
1931 
1932 
1933 /*static*/ int
1934 MemoryManager::_DumpArea(int argc, char** argv)
1935 {
1936 	bool printChunks = false;
1937 
1938 	int argi = 1;
1939 	while (argi < argc) {
1940 		if (argv[argi][0] != '-')
1941 			break;
1942 		const char* arg = argv[argi++];
1943 		if (strcmp(arg, "-c") == 0) {
1944 			printChunks = true;
1945 		} else {
1946 			print_debugger_command_usage(argv[0]);
1947 			return 0;
1948 		}
1949 	}
1950 
1951 	if (argi + 1 != argc) {
1952 		print_debugger_command_usage(argv[0]);
1953 		return 0;
1954 	}
1955 
1956 	uint64 address;
1957 	if (!evaluate_debug_expression(argv[argi], &address, false))
1958 		return 0;
1959 
1960 	Area* area = _AreaForAddress((addr_t)address);
1961 
1962 	for (uint32 k = 0; k < SLAB_META_CHUNKS_PER_AREA; k++) {
1963 		MetaChunk* metaChunk = area->metaChunks + k;
1964 		_DumpMetaChunk(metaChunk, printChunks, k == 0);
1965 	}
1966 
1967 	return 0;
1968 }
1969 
1970 
1971 /*static*/ int
1972 MemoryManager::_DumpAreas(int argc, char** argv)
1973 {
1974 	kprintf("  %*s    %*s   meta      small   medium  large\n",
1975 		B_PRINTF_POINTER_WIDTH, "base", B_PRINTF_POINTER_WIDTH, "area");
1976 
1977 	size_t totalTotalSmall = 0;
1978 	size_t totalUsedSmall = 0;
1979 	size_t totalTotalMedium = 0;
1980 	size_t totalUsedMedium = 0;
1981 	size_t totalUsedLarge = 0;
1982 	uint32 areaCount = 0;
1983 
1984 	for (AreaTable::Iterator it = sAreaTable.GetIterator();
1985 			Area* area = it.Next();) {
1986 		areaCount++;
1987 
1988 		// sum up the free/used counts for the chunk sizes
1989 		int totalSmall = 0;
1990 		int usedSmall = 0;
1991 		int totalMedium = 0;
1992 		int usedMedium = 0;
1993 		int usedLarge = 0;
1994 
1995 		for (int32 i = 0; i < SLAB_META_CHUNKS_PER_AREA; i++) {
1996 			MetaChunk* metaChunk = area->metaChunks + i;
1997 			if (metaChunk->chunkSize == 0)
1998 				continue;
1999 
2000 			switch (metaChunk->chunkSize) {
2001 				case SLAB_CHUNK_SIZE_SMALL:
2002 					totalSmall += metaChunk->chunkCount;
2003 					usedSmall += metaChunk->usedChunkCount;
2004 					break;
2005 				case SLAB_CHUNK_SIZE_MEDIUM:
2006 					totalMedium += metaChunk->chunkCount;
2007 					usedMedium += metaChunk->usedChunkCount;
2008 					break;
2009 				case SLAB_CHUNK_SIZE_LARGE:
2010 					usedLarge += metaChunk->usedChunkCount;
2011 					break;
2012 			}
2013 		}
2014 
2015 		kprintf("%p  %p  %2u/%2u  %4d/%4d  %3d/%3d  %5d\n",
2016 			area, area->vmArea, area->usedMetaChunkCount,
2017 			SLAB_META_CHUNKS_PER_AREA, usedSmall, totalSmall, usedMedium,
2018 			totalMedium, usedLarge);
2019 
2020 		totalTotalSmall += totalSmall;
2021 		totalUsedSmall += usedSmall;
2022 		totalTotalMedium += totalMedium;
2023 		totalUsedMedium += usedMedium;
2024 		totalUsedLarge += usedLarge;
2025 	}
2026 
2027 	kprintf("%d free area%s:\n", sFreeAreaCount,
2028 		sFreeAreaCount == 1 ? "" : "s");
2029 	for (Area* area = sFreeAreas; area != NULL; area = area->next) {
2030 		areaCount++;
2031 		kprintf("%p  %p\n", area, area->vmArea);
2032 	}
2033 
2034 	kprintf("total usage:\n");
2035 	kprintf("  small:    %" B_PRIuSIZE "/%" B_PRIuSIZE "\n", totalUsedSmall,
2036 		totalTotalSmall);
2037 	kprintf("  medium:   %" B_PRIuSIZE "/%" B_PRIuSIZE "\n", totalUsedMedium,
2038 		totalTotalMedium);
2039 	kprintf("  large:    %" B_PRIuSIZE "\n", totalUsedLarge);
2040 	kprintf("  memory:   %" B_PRIuSIZE "/%" B_PRIu32 " KB\n",
2041 		(totalUsedSmall * SLAB_CHUNK_SIZE_SMALL
2042 			+ totalUsedMedium * SLAB_CHUNK_SIZE_MEDIUM
2043 			+ totalUsedLarge * SLAB_CHUNK_SIZE_LARGE) / 1024,
2044 		areaCount * SLAB_AREA_SIZE / 1024);
2045 	kprintf("  overhead: %" B_PRIuSIZE " KB\n",
2046 		areaCount * kAreaAdminSize / 1024);
2047 
2048 	return 0;
2049 }
2050 
2051 
2052 #if SLAB_MEMORY_MANAGER_ALLOCATION_TRACKING
2053 
2054 void
2055 MemoryManager::_AddTrackingInfo(void* allocation, size_t size,
2056 	AbstractTraceEntryWithStackTrace* traceEntry)
2057 {
2058 	_TrackingInfoFor(allocation, size)->Init(traceEntry);
2059 }
2060 
2061 #endif // SLAB_MEMORY_MANAGER_ALLOCATION_TRACKING
2062 
2063 
2064 RANGE_MARKER_FUNCTION_END(SlabMemoryManager)
2065