xref: /haiku/src/system/kernel/scheduler/scheduler.cpp (revision 4a55cc230cf7566cadcbb23b1928eefff8aea9a2)
1 /*
2  * Copyright 2013-2014, Paweł Dziepak, pdziepak@quarnos.org.
3  * Copyright 2009, Rene Gollent, rene@gollent.com.
4  * Copyright 2008-2011, Ingo Weinhold, ingo_weinhold@gmx.de.
5  * Copyright 2002-2010, Axel Dörfler, axeld@pinc-software.de.
6  * Copyright 2002, Angelo Mottola, a.mottola@libero.it.
7  * Distributed under the terms of the MIT License.
8  *
9  * Copyright 2001-2002, Travis Geiselbrecht. All rights reserved.
10  * Distributed under the terms of the NewOS License.
11  */
12 
13 
14 /*! The thread scheduler */
15 
16 
17 #include <OS.h>
18 
19 #include <AutoDeleter.h>
20 #include <cpu.h>
21 #include <debug.h>
22 #include <int.h>
23 #include <kernel.h>
24 #include <kscheduler.h>
25 #include <listeners.h>
26 #include <load_tracking.h>
27 #include <scheduler_defs.h>
28 #include <smp.h>
29 #include <timer.h>
30 #include <util/Random.h>
31 
32 #include "scheduler_common.h"
33 #include "scheduler_cpu.h"
34 #include "scheduler_locking.h"
35 #include "scheduler_modes.h"
36 #include "scheduler_profiler.h"
37 #include "scheduler_thread.h"
38 #include "scheduler_tracing.h"
39 
40 
41 namespace Scheduler {
42 
43 
44 class ThreadEnqueuer : public ThreadProcessing {
45 public:
46 	void		operator()(ThreadData* thread);
47 };
48 
49 scheduler_mode gCurrentModeID;
50 scheduler_mode_operations* gCurrentMode;
51 
52 bool gSingleCore;
53 bool gTrackCoreLoad;
54 bool gTrackCPULoad;
55 
56 }	// namespace Scheduler
57 
58 using namespace Scheduler;
59 
60 
61 static bool sSchedulerEnabled;
62 
63 SchedulerListenerList gSchedulerListeners;
64 spinlock gSchedulerListenersLock = B_SPINLOCK_INITIALIZER;
65 
66 static scheduler_mode_operations* sSchedulerModes[] = {
67 	&gSchedulerLowLatencyMode,
68 	&gSchedulerPowerSavingMode,
69 };
70 
71 // Since CPU IDs used internally by the kernel bear no relation to the actual
72 // CPU topology the following arrays are used to efficiently get the core
73 // and the package that CPU in question belongs to.
74 static int32* sCPUToCore;
75 static int32* sCPUToPackage;
76 
77 
78 static void enqueue(Thread* thread, bool newOne);
79 
80 
81 void
82 ThreadEnqueuer::operator()(ThreadData* thread)
83 {
84 	enqueue(thread->GetThread(), false);
85 }
86 
87 
88 void
89 scheduler_dump_thread_data(Thread* thread)
90 {
91 	thread->scheduler_data->Dump();
92 }
93 
94 
95 static void
96 enqueue(Thread* thread, bool newOne)
97 {
98 	SCHEDULER_ENTER_FUNCTION();
99 
100 	ThreadData* threadData = thread->scheduler_data;
101 
102 	int32 threadPriority = threadData->GetEffectivePriority();
103 	T(EnqueueThread(thread, threadPriority));
104 
105 	CPUEntry* targetCPU = NULL;
106 	CoreEntry* targetCore = NULL;
107 	if (thread->pinned_to_cpu > 0) {
108 		ASSERT(thread->previous_cpu != NULL);
109 		ASSERT(threadData->Core() != NULL);
110 		targetCPU = &gCPUEntries[thread->previous_cpu->cpu_num];
111 	} else if (gSingleCore) {
112 		targetCore = &gCoreEntries[0];
113 	} else if (threadData->Core() != NULL
114 		&& (!newOne || !threadData->HasCacheExpired())) {
115 		targetCore = threadData->Rebalance();
116 	}
117 
118 	const bool rescheduleNeeded = threadData->ChooseCoreAndCPU(targetCore, targetCPU);
119 
120 	TRACE("enqueueing thread %ld with priority %ld on CPU %ld (core %ld)\n",
121 		thread->id, threadPriority, targetCPU->ID(), targetCore->ID());
122 
123 	bool wasRunQueueEmpty = false;
124 	threadData->Enqueue(wasRunQueueEmpty);
125 
126 	// notify listeners
127 	NotifySchedulerListeners(&SchedulerListener::ThreadEnqueuedInRunQueue,
128 		thread);
129 
130 	int32 heapPriority = CPUPriorityHeap::GetKey(targetCPU);
131 	if (threadPriority > heapPriority
132 		|| (threadPriority == heapPriority && rescheduleNeeded)
133 		|| wasRunQueueEmpty) {
134 
135 		if (targetCPU->ID() == smp_get_current_cpu()) {
136 			gCPU[targetCPU->ID()].invoke_scheduler = true;
137 		} else {
138 			smp_send_ici(targetCPU->ID(), SMP_MSG_RESCHEDULE, 0, 0, 0,
139 				NULL, SMP_MSG_FLAG_ASYNC);
140 		}
141 	}
142 }
143 
144 
145 /*!	Enqueues the thread into the run queue.
146 	Note: thread lock must be held when entering this function
147 */
148 void
149 scheduler_enqueue_in_run_queue(Thread *thread)
150 {
151 	ASSERT(!are_interrupts_enabled());
152 	SCHEDULER_ENTER_FUNCTION();
153 
154 	SchedulerModeLocker _;
155 
156 	TRACE("enqueueing new thread %ld with static priority %ld\n", thread->id,
157 		thread->priority);
158 
159 	ThreadData* threadData = thread->scheduler_data;
160 
161 	if (threadData->ShouldCancelPenalty())
162 		threadData->CancelPenalty();
163 
164 	enqueue(thread, true);
165 }
166 
167 
168 /*!	Sets the priority of a thread.
169 */
170 int32
171 scheduler_set_thread_priority(Thread *thread, int32 priority)
172 {
173 	ASSERT(are_interrupts_enabled());
174 
175 	InterruptsSpinLocker _(thread->scheduler_lock);
176 	SchedulerModeLocker modeLocker;
177 
178 	SCHEDULER_ENTER_FUNCTION();
179 
180 	ThreadData* threadData = thread->scheduler_data;
181 	int32 oldPriority = thread->priority;
182 
183 	TRACE("changing thread %ld priority to %ld (old: %ld, effective: %ld)\n",
184 		thread->id, priority, oldPriority, threadData->GetEffectivePriority());
185 
186 	thread->priority = priority;
187 	threadData->CancelPenalty();
188 
189 	if (priority == oldPriority)
190 		return oldPriority;
191 
192 	if (thread->state != B_THREAD_READY) {
193 		if (thread->state == B_THREAD_RUNNING) {
194 			ASSERT(threadData->Core() != NULL);
195 
196 			ASSERT(thread->cpu != NULL);
197 			CPUEntry* cpu = &gCPUEntries[thread->cpu->cpu_num];
198 
199 			CoreCPUHeapLocker _(threadData->Core());
200 			cpu->UpdatePriority(priority);
201 		}
202 
203 		return oldPriority;
204 	}
205 
206 	// The thread is in the run queue. We need to remove it and re-insert it at
207 	// a new position.
208 
209 	T(RemoveThread(thread));
210 
211 	// notify listeners
212 	NotifySchedulerListeners(&SchedulerListener::ThreadRemovedFromRunQueue,
213 		thread);
214 
215 	if (threadData->Dequeue())
216 		enqueue(thread, true);
217 
218 	return oldPriority;
219 }
220 
221 
222 void
223 scheduler_reschedule_ici()
224 {
225 	// This function is called as a result of an incoming ICI.
226 	// Make sure the reschedule() is invoked.
227 	get_cpu_struct()->invoke_scheduler = true;
228 }
229 
230 
231 static inline void
232 stop_cpu_timers(Thread* fromThread, Thread* toThread)
233 {
234 	SpinLocker teamLocker(&fromThread->team->time_lock);
235 	SpinLocker threadLocker(&fromThread->time_lock);
236 
237 	if (fromThread->HasActiveCPUTimeUserTimers()
238 		|| fromThread->team->HasActiveCPUTimeUserTimers()) {
239 		user_timer_stop_cpu_timers(fromThread, toThread);
240 	}
241 }
242 
243 
244 static inline void
245 continue_cpu_timers(Thread* thread, cpu_ent* cpu)
246 {
247 	SpinLocker teamLocker(&thread->team->time_lock);
248 	SpinLocker threadLocker(&thread->time_lock);
249 
250 	if (thread->HasActiveCPUTimeUserTimers()
251 		|| thread->team->HasActiveCPUTimeUserTimers()) {
252 		user_timer_continue_cpu_timers(thread, cpu->previous_thread);
253 	}
254 }
255 
256 
257 static void
258 thread_resumes(Thread* thread)
259 {
260 	cpu_ent* cpu = thread->cpu;
261 
262 	release_spinlock(&cpu->previous_thread->scheduler_lock);
263 
264 	// continue CPU time based user timers
265 	continue_cpu_timers(thread, cpu);
266 
267 	// notify the user debugger code
268 	if ((thread->flags & THREAD_FLAGS_DEBUGGER_INSTALLED) != 0)
269 		user_debug_thread_scheduled(thread);
270 }
271 
272 
273 void
274 scheduler_new_thread_entry(Thread* thread)
275 {
276 	thread_resumes(thread);
277 
278 	SpinLocker locker(thread->time_lock);
279 	thread->last_time = system_time();
280 }
281 
282 
283 /*!	Switches the currently running thread.
284 	This is a service function for scheduler implementations.
285 
286 	\param fromThread The currently running thread.
287 	\param toThread The thread to switch to. Must be different from
288 		\a fromThread.
289 */
290 static inline void
291 switch_thread(Thread* fromThread, Thread* toThread)
292 {
293 	// notify the user debugger code
294 	if ((fromThread->flags & THREAD_FLAGS_DEBUGGER_INSTALLED) != 0)
295 		user_debug_thread_unscheduled(fromThread);
296 
297 	// stop CPU time based user timers
298 	stop_cpu_timers(fromThread, toThread);
299 
300 	// update CPU and Thread structures and perform the context switch
301 	cpu_ent* cpu = fromThread->cpu;
302 	toThread->previous_cpu = toThread->cpu = cpu;
303 	fromThread->cpu = NULL;
304 	cpu->running_thread = toThread;
305 	cpu->previous_thread = fromThread;
306 
307 	arch_thread_set_current_thread(toThread);
308 	arch_thread_context_switch(fromThread, toThread);
309 
310 	// The use of fromThread below looks weird, but is correct. fromThread had
311 	// been unscheduled earlier, but is back now. For a thread scheduled the
312 	// first time the same is done in thread.cpp:common_thread_entry().
313 	thread_resumes(fromThread);
314 }
315 
316 
317 static void
318 reschedule(int32 nextState)
319 {
320 	ASSERT(!are_interrupts_enabled());
321 	SCHEDULER_ENTER_FUNCTION();
322 
323 	int32 thisCPU = smp_get_current_cpu();
324 	gCPU[thisCPU].invoke_scheduler = false;
325 
326 	CPUEntry* cpu = CPUEntry::GetCPU(thisCPU);
327 	CoreEntry* core = CoreEntry::GetCore(thisCPU);
328 
329 	Thread* oldThread = thread_get_current_thread();
330 	ThreadData* oldThreadData = oldThread->scheduler_data;
331 
332 	oldThreadData->StopCPUTime();
333 
334 	SchedulerModeLocker modeLocker;
335 
336 	TRACE("reschedule(): cpu %ld, current thread = %ld\n", thisCPU,
337 		oldThread->id);
338 
339 	oldThread->state = nextState;
340 
341 	// return time spent in interrupts
342 	oldThreadData->SetStolenInterruptTime(gCPU[thisCPU].interrupt_time);
343 
344 	bool enqueueOldThread = false;
345 	bool putOldThreadAtBack = false;
346 	switch (nextState) {
347 		case B_THREAD_RUNNING:
348 		case B_THREAD_READY:
349 			enqueueOldThread = true;
350 
351 			if (!oldThreadData->IsIdle()) {
352 				oldThreadData->Continues();
353 				if (oldThreadData->HasQuantumEnded(oldThread->cpu->preempted,
354 						oldThread->has_yielded)) {
355 					TRACE("enqueueing thread %ld into run queue priority ="
356 						" %ld\n", oldThread->id,
357 						oldThreadData->GetEffectivePriority());
358 					putOldThreadAtBack = true;
359 				} else {
360 					TRACE("putting thread %ld back in run queue priority ="
361 						" %ld\n", oldThread->id,
362 						oldThreadData->GetEffectivePriority());
363 					putOldThreadAtBack = false;
364 				}
365 			}
366 
367 			break;
368 		case THREAD_STATE_FREE_ON_RESCHED:
369 			oldThreadData->Dies();
370 			break;
371 		default:
372 			oldThreadData->GoesAway();
373 			TRACE("not enqueueing thread %ld into run queue next_state = %ld\n",
374 				oldThread->id, nextState);
375 			break;
376 	}
377 
378 	oldThread->has_yielded = false;
379 
380 	// select thread with the biggest priority and enqueue back the old thread
381 	ThreadData* nextThreadData;
382 	if (gCPU[thisCPU].disabled) {
383 		if (!oldThreadData->IsIdle()) {
384 			putOldThreadAtBack = oldThread->pinned_to_cpu == 0;
385 			oldThreadData->UnassignCore(true);
386 
387 			CPURunQueueLocker cpuLocker(cpu);
388 			nextThreadData = cpu->PeekIdleThread();
389 			cpu->Remove(nextThreadData);
390 		} else
391 			nextThreadData = oldThreadData;
392 	} else {
393 		nextThreadData
394 			= cpu->ChooseNextThread(enqueueOldThread ? oldThreadData : NULL,
395 				putOldThreadAtBack);
396 
397 		// update CPU heap
398 		CoreCPUHeapLocker cpuLocker(core);
399 		cpu->UpdatePriority(nextThreadData->GetEffectivePriority());
400 	}
401 
402 	Thread* nextThread = nextThreadData->GetThread();
403 	ASSERT(!gCPU[thisCPU].disabled || nextThreadData->IsIdle());
404 
405 	if (nextThread != oldThread) {
406 		if (enqueueOldThread) {
407 			if (putOldThreadAtBack)
408 				enqueue(oldThread, false);
409 			else
410 				oldThreadData->PutBack();
411 		}
412 
413 		acquire_spinlock(&nextThread->scheduler_lock);
414 	}
415 
416 	TRACE("reschedule(): cpu %ld, next thread = %ld\n", thisCPU,
417 		nextThread->id);
418 
419 	T(ScheduleThread(nextThread, oldThread));
420 
421 	// notify listeners
422 	NotifySchedulerListeners(&SchedulerListener::ThreadScheduled,
423 		oldThread, nextThread);
424 
425 	ASSERT(nextThreadData->Core() == core);
426 	nextThread->state = B_THREAD_RUNNING;
427 	nextThreadData->StartCPUTime();
428 
429 	// track CPU activity
430 	cpu->TrackActivity(oldThreadData, nextThreadData);
431 
432 	if (nextThread != oldThread || oldThread->cpu->preempted) {
433 		cpu->StartQuantumTimer(nextThreadData, oldThread->cpu->preempted);
434 
435 		oldThread->cpu->preempted = false;
436 		if (!nextThreadData->IsIdle())
437 			nextThreadData->Continues();
438 		else
439 			gCurrentMode->rebalance_irqs(true);
440 		nextThreadData->StartQuantum();
441 
442 		modeLocker.Unlock();
443 
444 		SCHEDULER_EXIT_FUNCTION();
445 
446 		if (nextThread != oldThread)
447 			switch_thread(oldThread, nextThread);
448 	}
449 }
450 
451 
452 /*!	Runs the scheduler.
453 	Note: expects thread spinlock to be held
454 */
455 void
456 scheduler_reschedule(int32 nextState)
457 {
458 	ASSERT(!are_interrupts_enabled());
459 	SCHEDULER_ENTER_FUNCTION();
460 
461 	if (!sSchedulerEnabled) {
462 		Thread* thread = thread_get_current_thread();
463 		if (thread != NULL && nextState != B_THREAD_READY)
464 			panic("scheduler_reschedule_no_op() called in non-ready thread");
465 		return;
466 	}
467 
468 	reschedule(nextState);
469 }
470 
471 
472 status_t
473 scheduler_on_thread_create(Thread* thread, bool idleThread)
474 {
475 	thread->scheduler_data = new(std::nothrow) ThreadData(thread);
476 	if (thread->scheduler_data == NULL)
477 		return B_NO_MEMORY;
478 	return B_OK;
479 }
480 
481 
482 void
483 scheduler_on_thread_init(Thread* thread)
484 {
485 	ASSERT(thread->scheduler_data != NULL);
486 
487 	if (thread_is_idle_thread(thread)) {
488 		static int32 sIdleThreadsID;
489 		int32 cpuID = atomic_add(&sIdleThreadsID, 1);
490 
491 		thread->previous_cpu = &gCPU[cpuID];
492 		thread->pinned_to_cpu = 1;
493 
494 		thread->scheduler_data->Init(CoreEntry::GetCore(cpuID));
495 	} else
496 		thread->scheduler_data->Init();
497 }
498 
499 
500 void
501 scheduler_on_thread_destroy(Thread* thread)
502 {
503 	delete thread->scheduler_data;
504 }
505 
506 
507 /*!	This starts the scheduler. Must be run in the context of the initial idle
508 	thread. Interrupts must be disabled and will be disabled when returning.
509 */
510 void
511 scheduler_start()
512 {
513 	InterruptsSpinLocker _(thread_get_current_thread()->scheduler_lock);
514 	SCHEDULER_ENTER_FUNCTION();
515 
516 	reschedule(B_THREAD_READY);
517 }
518 
519 
520 status_t
521 scheduler_set_operation_mode(scheduler_mode mode)
522 {
523 	if (mode != SCHEDULER_MODE_LOW_LATENCY
524 		&& mode != SCHEDULER_MODE_POWER_SAVING) {
525 		return B_BAD_VALUE;
526 	}
527 
528 	dprintf("scheduler: switching to %s mode\n", sSchedulerModes[mode]->name);
529 
530 	InterruptsBigSchedulerLocker _;
531 
532 	gCurrentModeID = mode;
533 	gCurrentMode = sSchedulerModes[mode];
534 	gCurrentMode->switch_to_mode();
535 
536 	ThreadData::ComputeQuantumLengths();
537 
538 	return B_OK;
539 }
540 
541 
542 void
543 scheduler_set_cpu_enabled(int32 cpuID, bool enabled)
544 {
545 #if KDEBUG
546 	if (are_interrupts_enabled())
547 		panic("scheduler_set_cpu_enabled: called with interrupts enabled");
548 #endif
549 
550 	dprintf("scheduler: %s CPU %" B_PRId32 "\n",
551 		enabled ? "enabling" : "disabling", cpuID);
552 
553 	InterruptsBigSchedulerLocker _;
554 
555 	gCurrentMode->set_cpu_enabled(cpuID, enabled);
556 
557 	CPUEntry* cpu = &gCPUEntries[cpuID];
558 	CoreEntry* core = cpu->Core();
559 
560 	ASSERT(core->CPUCount() >= 0);
561 	if (enabled)
562 		cpu->Start();
563 	else {
564 		cpu->UpdatePriority(B_IDLE_PRIORITY);
565 
566 		ThreadEnqueuer enqueuer;
567 		core->RemoveCPU(cpu, enqueuer);
568 	}
569 
570 	gCPU[cpuID].disabled = !enabled;
571 
572 	if (!enabled) {
573 		cpu->Stop();
574 
575 		// don't wait until the thread quantum ends
576 		if (smp_get_current_cpu() != cpuID) {
577 			smp_send_ici(cpuID, SMP_MSG_RESCHEDULE, 0, 0, 0, NULL,
578 				SMP_MSG_FLAG_ASYNC);
579 		}
580 	}
581 }
582 
583 
584 static void
585 traverse_topology_tree(const cpu_topology_node* node, int packageID, int coreID)
586 {
587 	switch (node->level) {
588 		case CPU_TOPOLOGY_SMT:
589 			sCPUToCore[node->id] = coreID;
590 			sCPUToPackage[node->id] = packageID;
591 			return;
592 
593 		case CPU_TOPOLOGY_CORE:
594 			coreID = node->id;
595 			break;
596 
597 		case CPU_TOPOLOGY_PACKAGE:
598 			packageID = node->id;
599 			break;
600 
601 		default:
602 			break;
603 	}
604 
605 	for (int32 i = 0; i < node->children_count; i++)
606 		traverse_topology_tree(node->children[i], packageID, coreID);
607 }
608 
609 
610 static status_t
611 build_topology_mappings(int32& cpuCount, int32& coreCount, int32& packageCount)
612 {
613 	cpuCount = smp_get_num_cpus();
614 
615 	sCPUToCore = new(std::nothrow) int32[cpuCount];
616 	if (sCPUToCore == NULL)
617 		return B_NO_MEMORY;
618 	ArrayDeleter<int32> cpuToCoreDeleter(sCPUToCore);
619 
620 	sCPUToPackage = new(std::nothrow) int32[cpuCount];
621 	if (sCPUToPackage == NULL)
622 		return B_NO_MEMORY;
623 	ArrayDeleter<int32> cpuToPackageDeleter(sCPUToPackage);
624 
625 	coreCount = 0;
626 	for (int32 i = 0; i < cpuCount; i++) {
627 		if (gCPU[i].topology_id[CPU_TOPOLOGY_SMT] == 0)
628 			coreCount++;
629 	}
630 
631 	packageCount = 0;
632 	for (int32 i = 0; i < cpuCount; i++) {
633 		if (gCPU[i].topology_id[CPU_TOPOLOGY_SMT] == 0
634 			&& gCPU[i].topology_id[CPU_TOPOLOGY_CORE] == 0) {
635 			packageCount++;
636 		}
637 	}
638 
639 	const cpu_topology_node* root = get_cpu_topology();
640 	traverse_topology_tree(root, 0, 0);
641 
642 	cpuToCoreDeleter.Detach();
643 	cpuToPackageDeleter.Detach();
644 	return B_OK;
645 }
646 
647 
648 static status_t
649 init()
650 {
651 	// create logical processor to core and package mappings
652 	int32 cpuCount, coreCount, packageCount;
653 	status_t result = build_topology_mappings(cpuCount, coreCount,
654 		packageCount);
655 	if (result != B_OK)
656 		return result;
657 
658 	// disable parts of the scheduler logic that are not needed
659 	gSingleCore = coreCount == 1;
660 	scheduler_update_policy();
661 
662 	gCoreCount = coreCount;
663 	gPackageCount = packageCount;
664 
665 	gCPUEntries = new(std::nothrow) CPUEntry[cpuCount];
666 	if (gCPUEntries == NULL)
667 		return B_NO_MEMORY;
668 	ArrayDeleter<CPUEntry> cpuEntriesDeleter(gCPUEntries);
669 
670 	gCoreEntries = new(std::nothrow) CoreEntry[coreCount];
671 	if (gCoreEntries == NULL)
672 		return B_NO_MEMORY;
673 	ArrayDeleter<CoreEntry> coreEntriesDeleter(gCoreEntries);
674 
675 	gPackageEntries = new(std::nothrow) PackageEntry[packageCount];
676 	if (gPackageEntries == NULL)
677 		return B_NO_MEMORY;
678 	ArrayDeleter<PackageEntry> packageEntriesDeleter(gPackageEntries);
679 
680 	new(&gCoreLoadHeap) CoreLoadHeap(coreCount);
681 	new(&gCoreHighLoadHeap) CoreLoadHeap(coreCount);
682 
683 	new(&gIdlePackageList) IdlePackageList;
684 
685 	for (int32 i = 0; i < cpuCount; i++) {
686 		CoreEntry* core = &gCoreEntries[sCPUToCore[i]];
687 		PackageEntry* package = &gPackageEntries[sCPUToPackage[i]];
688 
689 		package->Init(sCPUToPackage[i]);
690 		core->Init(sCPUToCore[i], package);
691 		gCPUEntries[i].Init(i, core);
692 
693 		core->AddCPU(&gCPUEntries[i]);
694 	}
695 
696 	packageEntriesDeleter.Detach();
697 	coreEntriesDeleter.Detach();
698 	cpuEntriesDeleter.Detach();
699 
700 	return B_OK;
701 }
702 
703 
704 void
705 scheduler_init()
706 {
707 	int32 cpuCount = smp_get_num_cpus();
708 	dprintf("scheduler_init: found %" B_PRId32 " logical cpu%s and %" B_PRId32
709 		" cache level%s\n", cpuCount, cpuCount != 1 ? "s" : "",
710 		gCPUCacheLevelCount, gCPUCacheLevelCount != 1 ? "s" : "");
711 
712 #ifdef SCHEDULER_PROFILING
713 	Profiling::Profiler::Initialize();
714 #endif
715 
716 	status_t result = init();
717 	if (result != B_OK)
718 		panic("scheduler_init: failed to initialize scheduler\n");
719 
720 	scheduler_set_operation_mode(SCHEDULER_MODE_LOW_LATENCY);
721 
722 	init_debug_commands();
723 
724 #if SCHEDULER_TRACING
725 	add_debugger_command_etc("scheduler", &cmd_scheduler,
726 		"Analyze scheduler tracing information",
727 		"<thread>\n"
728 		"Analyzes scheduler tracing information for a given thread.\n"
729 		"  <thread>  - ID of the thread.\n", 0);
730 #endif
731 }
732 
733 
734 void
735 scheduler_enable_scheduling()
736 {
737 	sSchedulerEnabled = true;
738 }
739 
740 
741 void
742 scheduler_update_policy()
743 {
744 	gTrackCPULoad = increase_cpu_performance(0) == B_OK;
745 	gTrackCoreLoad = !gSingleCore || gTrackCPULoad;
746 	dprintf("scheduler switches: single core: %s, cpu load tracking: %s,"
747 		" core load tracking: %s\n", gSingleCore ? "true" : "false",
748 		gTrackCPULoad ? "true" : "false",
749 		gTrackCoreLoad ? "true" : "false");
750 }
751 
752 
753 // #pragma mark - SchedulerListener
754 
755 
756 SchedulerListener::~SchedulerListener()
757 {
758 }
759 
760 
761 // #pragma mark - kernel private
762 
763 
764 /*!	Add the given scheduler listener. Thread lock must be held.
765 */
766 void
767 scheduler_add_listener(struct SchedulerListener* listener)
768 {
769 	InterruptsSpinLocker _(gSchedulerListenersLock);
770 	gSchedulerListeners.Add(listener);
771 }
772 
773 
774 /*!	Remove the given scheduler listener. Thread lock must be held.
775 */
776 void
777 scheduler_remove_listener(struct SchedulerListener* listener)
778 {
779 	InterruptsSpinLocker _(gSchedulerListenersLock);
780 	gSchedulerListeners.Remove(listener);
781 }
782 
783 
784 // #pragma mark - Syscalls
785 
786 
787 bigtime_t
788 _user_estimate_max_scheduling_latency(thread_id id)
789 {
790 	syscall_64_bit_return_value();
791 
792 	// get the thread
793 	Thread* thread;
794 	if (id < 0) {
795 		thread = thread_get_current_thread();
796 		thread->AcquireReference();
797 	} else {
798 		thread = Thread::Get(id);
799 		if (thread == NULL)
800 			return 0;
801 	}
802 	BReference<Thread> threadReference(thread, true);
803 
804 #ifdef SCHEDULER_PROFILING
805 	InterruptsLocker _;
806 #endif
807 
808 	ThreadData* threadData = thread->scheduler_data;
809 	CoreEntry* core = threadData->Core();
810 	if (core == NULL)
811 		core = &gCoreEntries[get_random<int32>() % gCoreCount];
812 
813 	int32 threadCount = core->ThreadCount();
814 	if (core->CPUCount() > 0)
815 		threadCount /= core->CPUCount();
816 
817 	if (threadData->GetEffectivePriority() > 0) {
818 		threadCount -= threadCount * THREAD_MAX_SET_PRIORITY
819 				/ threadData->GetEffectivePriority();
820 	}
821 
822 	return std::min(std::max(threadCount * gCurrentMode->base_quantum,
823 			gCurrentMode->minimal_quantum),
824 		gCurrentMode->maximum_latency);
825 }
826 
827 
828 status_t
829 _user_set_scheduler_mode(int32 mode)
830 {
831 	scheduler_mode schedulerMode = static_cast<scheduler_mode>(mode);
832 	status_t error = scheduler_set_operation_mode(schedulerMode);
833 	if (error == B_OK)
834 		cpu_set_scheduler_mode(schedulerMode);
835 	return error;
836 }
837 
838 
839 int32
840 _user_get_scheduler_mode()
841 {
842 	return gCurrentModeID;
843 }
844 
845