xref: /haiku/src/system/kernel/fs/EntryCache.cpp (revision 7d6915b4d08ffe728cd38af02843d5e98ddfe0db)
1 /*
2  * Copyright 2008-2010, Ingo Weinhold, ingo_weinhold@gmx.de.
3  * Distributed under the terms of the MIT License.
4  */
5 
6 
7 #include "EntryCache.h"
8 
9 #include <new>
10 
11 
12 static const int32 kEntriesPerGeneration = 1024;
13 
14 static const int32 kEntryNotInArray = -1;
15 static const int32 kEntryRemoved = -2;
16 
17 
18 // #pragma mark - EntryCacheGeneration
19 
20 
21 EntryCacheGeneration::EntryCacheGeneration()
22 	:
23 	next_index(0),
24 	entries(NULL)
25 {
26 }
27 
28 
29 EntryCacheGeneration::~EntryCacheGeneration()
30 {
31 	delete[] entries;
32 }
33 
34 
35 status_t
36 EntryCacheGeneration::Init()
37 {
38 	entries = new(std::nothrow) EntryCacheEntry*[kEntriesPerGeneration];
39 	if (entries == NULL)
40 		return B_NO_MEMORY;
41 
42 	memset(entries, 0, sizeof(EntryCacheEntry*) * kEntriesPerGeneration);
43 
44 	return B_OK;
45 }
46 
47 
48 // #pragma mark - EntryCache
49 
50 
51 EntryCache::EntryCache()
52 	:
53 	fCurrentGeneration(0)
54 {
55 	rw_lock_init(&fLock, "entry cache");
56 
57 	new(&fEntries) EntryTable;
58 }
59 
60 
61 EntryCache::~EntryCache()
62 {
63 	// delete entries
64 	EntryCacheEntry* entry = fEntries.Clear(true);
65 	while (entry != NULL) {
66 		EntryCacheEntry* next = entry->hash_link;
67 		free(entry);
68 		entry = next;
69 	}
70 
71 	rw_lock_destroy(&fLock);
72 }
73 
74 
75 status_t
76 EntryCache::Init()
77 {
78 	status_t error = fEntries.Init();
79 	if (error != B_OK)
80 		return error;
81 
82 	for (int32 i = 0; i < kGenerationCount; i++) {
83 		error = fGenerations[i].Init();
84 		if (error != B_OK)
85 			return error;
86 	}
87 
88 	return B_OK;
89 }
90 
91 
92 status_t
93 EntryCache::Add(ino_t dirID, const char* name, ino_t nodeID)
94 {
95 	EntryCacheKey key(dirID, name);
96 
97 	WriteLocker _(fLock);
98 
99 	EntryCacheEntry* entry = fEntries.Lookup(key);
100 	if (entry != NULL) {
101 		entry->node_id = nodeID;
102 		if (entry->generation != fCurrentGeneration) {
103 			if (entry->index >= 0) {
104 				fGenerations[entry->generation].entries[entry->index] = NULL;
105 				_AddEntryToCurrentGeneration(entry);
106 			}
107 		}
108 		return B_OK;
109 	}
110 
111 	entry = (EntryCacheEntry*)malloc(sizeof(EntryCacheEntry) + strlen(name));
112 	if (entry == NULL)
113 		return B_NO_MEMORY;
114 
115 	entry->node_id = nodeID;
116 	entry->dir_id = dirID;
117 	entry->generation = fCurrentGeneration;
118 	entry->index = kEntryNotInArray;
119 	strcpy(entry->name, name);
120 
121 	fEntries.Insert(entry);
122 
123 	_AddEntryToCurrentGeneration(entry);
124 
125 	return B_OK;
126 }
127 
128 
129 status_t
130 EntryCache::Remove(ino_t dirID, const char* name)
131 {
132 	EntryCacheKey key(dirID, name);
133 
134 	WriteLocker writeLocker(fLock);
135 
136 	EntryCacheEntry* entry = fEntries.Lookup(key);
137 	if (entry == NULL)
138 		return B_ENTRY_NOT_FOUND;
139 
140 	fEntries.Remove(entry);
141 
142 	if (entry->index >= 0) {
143 		// remove the entry from its generation and delete it
144 		fGenerations[entry->generation].entries[entry->index] = NULL;
145 		free(entry);
146 	} else {
147 		// We can't free it, since another thread is about to try to move it
148 		// to another generation. We mark it removed and the other thread will
149 		// take care of deleting it.
150 		entry->index = kEntryRemoved;
151 	}
152 
153 	return B_OK;
154 }
155 
156 
157 bool
158 EntryCache::Lookup(ino_t dirID, const char* name, ino_t& _nodeID)
159 {
160 	EntryCacheKey key(dirID, name);
161 
162 	ReadLocker readLocker(fLock);
163 
164 	EntryCacheEntry* entry = fEntries.Lookup(key);
165 	if (entry == NULL)
166 		return false;
167 
168 	int32 oldGeneration = atomic_get_and_set(&entry->generation,
169 			fCurrentGeneration);
170 	if (oldGeneration == fCurrentGeneration || entry->index < 0) {
171 		// The entry is already in the current generation or is being moved to
172 		// it by another thread.
173 		_nodeID = entry->node_id;
174 		return true;
175 	}
176 
177 	// remove from old generation array
178 	fGenerations[oldGeneration].entries[entry->index] = NULL;
179 	entry->index = kEntryNotInArray;
180 
181 	// add to the current generation
182 	int32 index = atomic_add(&fGenerations[oldGeneration].next_index, 1);
183 	if (index < kEntriesPerGeneration) {
184 		fGenerations[fCurrentGeneration].entries[index] = entry;
185 		entry->index = index;
186 		_nodeID = entry->node_id;
187 		return true;
188 	}
189 
190 	// The current generation is full, so we probably need to clear the oldest
191 	// one to make room. We need the write lock for that.
192 	readLocker.Unlock();
193 	WriteLocker writeLocker(fLock);
194 
195 	if (entry->index == kEntryRemoved) {
196 		// the entry has been removed in the meantime
197 		free(entry);
198 		return false;
199 	}
200 
201 	_AddEntryToCurrentGeneration(entry);
202 
203 	_nodeID = entry->node_id;
204 	return true;
205 }
206 
207 
208 const char*
209 EntryCache::DebugReverseLookup(ino_t nodeID, ino_t& _dirID)
210 {
211 	for (EntryTable::Iterator it = fEntries.GetIterator();
212 			EntryCacheEntry* entry = it.Next();) {
213 		if (nodeID == entry->node_id && strcmp(entry->name, ".") != 0
214 				&& strcmp(entry->name, "..") != 0) {
215 			_dirID = entry->dir_id;
216 			return entry->name;
217 		}
218 	}
219 
220 	return NULL;
221 }
222 
223 
224 void
225 EntryCache::_AddEntryToCurrentGeneration(EntryCacheEntry* entry)
226 {
227 	// the generation might not be full yet
228 	int32 index = fGenerations[fCurrentGeneration].next_index++;
229 	if (index < kEntriesPerGeneration) {
230 		fGenerations[fCurrentGeneration].entries[index] = entry;
231 		entry->generation = fCurrentGeneration;
232 		entry->index = index;
233 		return;
234 	}
235 
236 	// we have to clear the oldest generation
237 	int32 newGeneration = (fCurrentGeneration + 1) % kGenerationCount;
238 	for (int32 i = 0; i < kEntriesPerGeneration; i++) {
239 		EntryCacheEntry* otherEntry = fGenerations[newGeneration].entries[i];
240 		if (otherEntry == NULL)
241 			continue;
242 
243 		fGenerations[newGeneration].entries[i] = NULL;
244 		fEntries.Remove(otherEntry);
245 		free(otherEntry);
246 	}
247 
248 	// set the new generation and add the entry
249 	fCurrentGeneration = newGeneration;
250 	fGenerations[newGeneration].next_index = 1;
251 	fGenerations[newGeneration].entries[0] = entry;
252 	entry->generation = newGeneration;
253 	entry->index = 0;
254 }
255