xref: /haiku/src/system/kernel/device_manager/device_manager.cpp (revision 820dca4df6c7bf955c46e8f6521b9408f50b2900)
1 /*
2  * Copyright 2008-2009, Axel Dörfler, axeld@pinc-software.de.
3  * Distributed under the terms of the MIT License.
4  */
5 
6 
7 #include <kdevice_manager.h>
8 
9 #include <new>
10 #include <set>
11 #include <stdio.h>
12 #include <stdlib.h>
13 #include <string.h>
14 
15 #include <KernelExport.h>
16 #include <Locker.h>
17 #include <module.h>
18 #include <PCI.h>
19 
20 #include <boot_device.h>
21 #include <device_manager_defs.h>
22 #include <fs/devfs.h>
23 #include <fs/KPath.h>
24 #include <kernel.h>
25 #include <generic_syscall.h>
26 #include <util/AutoLock.h>
27 #include <util/DoublyLinkedList.h>
28 #include <util/Stack.h>
29 
30 #include "AbstractModuleDevice.h"
31 #include "devfs_private.h"
32 #include "id_generator.h"
33 #include "IORequest.h"
34 #include "io_resources.h"
35 #include "IOSchedulerRoster.h"
36 
37 
38 //#define TRACE_DEVICE_MANAGER
39 #ifdef TRACE_DEVICE_MANAGER
40 #	define TRACE(a) dprintf a
41 #else
42 #	define TRACE(a) ;
43 #endif
44 
45 
46 #define DEVICE_MANAGER_ROOT_NAME "system/devices_root/driver_v1"
47 #define DEVICE_MANAGER_GENERIC_NAME "system/devices_generic/driver_v1"
48 
49 
50 struct device_attr_private : device_attr,
51 		DoublyLinkedListLinkImpl<device_attr_private> {
52 						device_attr_private();
53 						device_attr_private(const device_attr& attr);
54 						~device_attr_private();
55 
56 			status_t	InitCheck();
57 			status_t	CopyFrom(const device_attr& attr);
58 
59 	static	int			Compare(const device_attr* attrA,
60 							const device_attr *attrB);
61 
62 private:
63 			void		_Unset();
64 };
65 
66 typedef DoublyLinkedList<device_attr_private> AttributeList;
67 
68 // I/O resource
69 typedef struct io_resource_info {
70 	struct io_resource_info *prev, *next;
71 	device_node*		owner;			// associated node; NULL for temporary allocation
72 	io_resource			resource;		// info about actual resource
73 } io_resource_info;
74 
75 
76 namespace {
77 
78 
79 class Device : public AbstractModuleDevice,
80 	public DoublyLinkedListLinkImpl<Device> {
81 public:
82 							Device(device_node* node, const char* moduleName);
83 	virtual					~Device();
84 
85 			status_t		InitCheck() const;
86 
87 			const char*		ModuleName() const { return fModuleName; }
88 
89 	virtual	status_t		InitDevice();
90 	virtual	void			UninitDevice();
91 
92 	virtual void			Removed();
93 
94 			void			SetRemovedFromParent(bool removed)
95 								{ fRemovedFromParent = removed; }
96 
97 private:
98 	const char*				fModuleName;
99 	bool					fRemovedFromParent;
100 };
101 
102 
103 } // unnamed namespace
104 
105 
106 typedef DoublyLinkedList<Device> DeviceList;
107 typedef DoublyLinkedList<device_node> NodeList;
108 
109 struct device_node : DoublyLinkedListLinkImpl<device_node> {
110 							device_node(const char* moduleName,
111 								const device_attr* attrs);
112 							~device_node();
113 
114 			status_t		InitCheck() const;
115 
116 			status_t		AcquireResources(const io_resource* resources);
117 
118 			const char*		ModuleName() const { return fModuleName; }
119 			device_node*	Parent() const { return fParent; }
120 			AttributeList&	Attributes() { return fAttributes; }
121 			const AttributeList& Attributes() const { return fAttributes; }
122 
123 			status_t		InitDriver();
124 			bool			UninitDriver();
125 			void			UninitUnusedDriver();
126 
127 			// The following two are only valid, if the node's driver is
128 			// initialized
129 			driver_module_info* DriverModule() const { return fDriver; }
130 			void*			DriverData() const { return fDriverData; }
131 
132 			void			AddChild(device_node *node);
133 			void			RemoveChild(device_node *node);
134 			const NodeList&	Children() const { return fChildren; }
135 			void			DeviceRemoved();
136 
137 			status_t		Register(device_node* parent);
138 			status_t		Probe(const char* devicePath, uint32 updateCycle);
139 			status_t		Reprobe();
140 			status_t		Rescan();
141 
142 			bool			IsRegistered() const { return fRegistered; }
143 			bool			IsInitialized() const { return fInitialized > 0; }
144 			bool			IsProbed() const { return fLastUpdateCycle != 0; }
145 			uint32			Flags() const { return fFlags; }
146 
147 			void			Acquire();
148 			bool			Release();
149 
150 			const DeviceList& Devices() const { return fDevices; }
151 			void			AddDevice(Device* device);
152 			void			RemoveDevice(Device* device);
153 
154 			int				CompareTo(const device_attr* attributes) const;
155 			device_node*	FindChild(const device_attr* attributes) const;
156 			device_node*	FindChild(const char* moduleName) const;
157 
158 			int32			Priority();
159 
160 			void			Dump(int32 level = 0);
161 
162 private:
163 			status_t		_RegisterFixed(uint32& registered);
164 			bool			_AlwaysRegisterDynamic();
165 			status_t		_AddPath(Stack<KPath*>& stack, const char* path,
166 								const char* subPath = NULL);
167 			status_t		_GetNextDriverPath(void*& cookie, KPath& _path);
168 			status_t		_GetNextDriver(void* list,
169 								driver_module_info*& driver);
170 			status_t		_FindBestDriver(const char* path,
171 								driver_module_info*& bestDriver,
172 								float& bestSupport,
173 								device_node* previous = NULL);
174 			status_t		_RegisterPath(const char* path);
175 			status_t		_RegisterDynamic(device_node* previous = NULL);
176 			status_t		_RemoveChildren();
177 			device_node*	_FindCurrentChild();
178 			status_t		_Probe();
179 			void			_ReleaseWaiting();
180 
181 	device_node*			fParent;
182 	NodeList				fChildren;
183 	int32					fRefCount;
184 	int32					fInitialized;
185 	bool					fRegistered;
186 	uint32					fFlags;
187 	float					fSupportsParent;
188 	uint32					fLastUpdateCycle;
189 
190 	const char*				fModuleName;
191 
192 	driver_module_info*		fDriver;
193 	void*					fDriverData;
194 
195 	DeviceList				fDevices;
196 	AttributeList			fAttributes;
197 	ResourceList			fResources;
198 };
199 
200 // flags in addition to those specified by B_DEVICE_FLAGS
201 enum node_flags {
202 	NODE_FLAG_REGISTER_INITIALIZED	= 0x00010000,
203 	NODE_FLAG_DEVICE_REMOVED		= 0x00020000,
204 	NODE_FLAG_OBSOLETE_DRIVER		= 0x00040000,
205 	NODE_FLAG_WAITING_FOR_DRIVER	= 0x00080000,
206 
207 	NODE_FLAG_PUBLIC_MASK			= 0x0000ffff
208 };
209 
210 
211 static device_node *sRootNode;
212 static recursive_lock sLock;
213 static const char* sGenericContextPath;
214 
215 
216 //	#pragma mark -
217 
218 
219 static device_attr_private*
220 find_attr(const device_node* node, const char* name, bool recursive,
221 	type_code type)
222 {
223 	do {
224 		AttributeList::ConstIterator iterator
225 			= node->Attributes().GetIterator();
226 
227 		while (iterator.HasNext()) {
228 			device_attr_private* attr = iterator.Next();
229 
230 			if (type != B_ANY_TYPE && attr->type != type)
231 				continue;
232 
233 			if (!strcmp(attr->name, name))
234 				return attr;
235 		}
236 
237 		node = node->Parent();
238 	} while (node != NULL && recursive);
239 
240 	return NULL;
241 }
242 
243 
244 static void
245 put_level(int32 level)
246 {
247 	while (level-- > 0)
248 		kprintf("   ");
249 }
250 
251 
252 static void
253 dump_attribute(device_attr* attr, int32 level)
254 {
255 	if (attr == NULL)
256 		return;
257 
258 	put_level(level + 2);
259 	kprintf("\"%s\" : ", attr->name);
260 	switch (attr->type) {
261 		case B_STRING_TYPE:
262 			kprintf("string : \"%s\"", attr->value.string);
263 			break;
264 		case B_INT8_TYPE:
265 		case B_UINT8_TYPE:
266 			kprintf("uint8 : %" B_PRIu8 " (%#" B_PRIx8 ")", attr->value.ui8,
267 				attr->value.ui8);
268 			break;
269 		case B_INT16_TYPE:
270 		case B_UINT16_TYPE:
271 			kprintf("uint16 : %" B_PRIu16 " (%#" B_PRIx16 ")", attr->value.ui16,
272 				attr->value.ui16);
273 			break;
274 		case B_INT32_TYPE:
275 		case B_UINT32_TYPE:
276 			kprintf("uint32 : %" B_PRIu32 " (%#" B_PRIx32 ")", attr->value.ui32,
277 				attr->value.ui32);
278 			break;
279 		case B_INT64_TYPE:
280 		case B_UINT64_TYPE:
281 			kprintf("uint64 : %" B_PRIu64 " (%#" B_PRIx64 ")", attr->value.ui64,
282 				attr->value.ui64);
283 			break;
284 		default:
285 			kprintf("raw data");
286 	}
287 	kprintf("\n");
288 }
289 
290 
291 static int
292 dump_io_scheduler(int argc, char** argv)
293 {
294 	if (argc != 2) {
295 		print_debugger_command_usage(argv[0]);
296 		return 0;
297 	}
298 
299 	IOScheduler* scheduler = (IOScheduler*)parse_expression(argv[1]);
300 	scheduler->Dump();
301 	return 0;
302 }
303 
304 
305 static int
306 dump_io_request_owner(int argc, char** argv)
307 {
308 	if (argc != 2) {
309 		print_debugger_command_usage(argv[0]);
310 		return 0;
311 	}
312 
313 	IORequestOwner* owner = (IORequestOwner*)parse_expression(argv[1]);
314 	owner->Dump();
315 	return 0;
316 }
317 
318 
319 static int
320 dump_io_request(int argc, char** argv)
321 {
322 	if (argc != 2 || !strcmp(argv[1], "--help")) {
323 		kprintf("usage: %s <ptr-to-io-request>\n", argv[0]);
324 		return 0;
325 	}
326 
327 	IORequest* request = (IORequest*)parse_expression(argv[1]);
328 	request->Dump();
329 	return 0;
330 }
331 
332 
333 static int
334 dump_io_operation(int argc, char** argv)
335 {
336 	if (argc != 2 || !strcmp(argv[1], "--help")) {
337 		kprintf("usage: %s <ptr-to-io-operation>\n", argv[0]);
338 		return 0;
339 	}
340 
341 	IOOperation* operation = (IOOperation*)parse_expression(argv[1]);
342 	operation->Dump();
343 	return 0;
344 }
345 
346 
347 static int
348 dump_io_buffer(int argc, char** argv)
349 {
350 	if (argc != 2 || !strcmp(argv[1], "--help")) {
351 		kprintf("usage: %s <ptr-to-io-buffer>\n", argv[0]);
352 		return 0;
353 	}
354 
355 	IOBuffer* buffer = (IOBuffer*)parse_expression(argv[1]);
356 	buffer->Dump();
357 	return 0;
358 }
359 
360 
361 static int
362 dump_dma_buffer(int argc, char** argv)
363 {
364 	if (argc != 2 || !strcmp(argv[1], "--help")) {
365 		kprintf("usage: %s <ptr-to-dma-buffer>\n", argv[0]);
366 		return 0;
367 	}
368 
369 	DMABuffer* buffer = (DMABuffer*)parse_expression(argv[1]);
370 	buffer->Dump();
371 	return 0;
372 }
373 
374 
375 static int
376 dump_device_nodes(int argc, char** argv)
377 {
378 	sRootNode->Dump();
379 	return 0;
380 }
381 
382 
383 static void
384 publish_directories(const char* subPath)
385 {
386 	if (gBootDevice < 0) {
387 		if (subPath[0]) {
388 			// we only support the top-level directory for modules
389 			return;
390 		}
391 
392 		// we can only iterate over the known modules to find all directories
393 		KPath path("drivers");
394 		if (path.Append(subPath) != B_OK)
395 			return;
396 
397 		size_t length = strlen(path.Path()) + 1;
398 			// account for the separating '/'
399 
400 		void* list = open_module_list_etc(path.Path(), "driver_v1");
401 		char name[B_FILE_NAME_LENGTH];
402 		size_t nameLength = sizeof(name);
403 		while (read_next_module_name(list, name, &nameLength) == B_OK) {
404 			if (nameLength == length)
405 				continue;
406 
407 			char* leaf = name + length;
408 			char* end = strchr(leaf, '/');
409 			if (end != NULL)
410 				end[0] = '\0';
411 
412 			path.SetTo(subPath);
413 			path.Append(leaf);
414 
415 			devfs_publish_directory(path.Path());
416 		}
417 		close_module_list(list);
418 	} else {
419 		// TODO: implement module directory traversal!
420 	}
421 }
422 
423 
424 static status_t
425 control_device_manager(const char* subsystem, uint32 function, void* buffer,
426 	size_t bufferSize)
427 {
428 	// TODO: this function passes pointers to userland, and uses pointers
429 	// to device nodes that came from userland - this is completely unsafe
430 	// and should be changed.
431 	switch (function) {
432 		case DM_GET_ROOT:
433 		{
434 			device_node_cookie cookie;
435 			if (!IS_USER_ADDRESS(buffer))
436 				return B_BAD_ADDRESS;
437 			if (bufferSize != sizeof(device_node_cookie))
438 				return B_BAD_VALUE;
439 			cookie = (device_node_cookie)sRootNode;
440 
441 			// copy back to user space
442 			return user_memcpy(buffer, &cookie, sizeof(device_node_cookie));
443 		}
444 
445 		case DM_GET_CHILD:
446 		{
447 			if (!IS_USER_ADDRESS(buffer))
448 				return B_BAD_ADDRESS;
449 			if (bufferSize != sizeof(device_node_cookie))
450 				return B_BAD_VALUE;
451 
452 			device_node_cookie cookie;
453 			if (user_memcpy(&cookie, buffer, sizeof(device_node_cookie)) < B_OK)
454 				return B_BAD_ADDRESS;
455 
456 			device_node* node = (device_node*)cookie;
457 			NodeList::ConstIterator iterator = node->Children().GetIterator();
458 
459 			if (!iterator.HasNext()) {
460 				return B_ENTRY_NOT_FOUND;
461 			}
462 			node = iterator.Next();
463 			cookie = (device_node_cookie)node;
464 
465 			// copy back to user space
466 			return user_memcpy(buffer, &cookie, sizeof(device_node_cookie));
467 		}
468 
469 		case DM_GET_NEXT_CHILD:
470 		{
471 			if (!IS_USER_ADDRESS(buffer))
472 				return B_BAD_ADDRESS;
473 			if (bufferSize != sizeof(device_node_cookie))
474 				return B_BAD_VALUE;
475 
476 			device_node_cookie cookie;
477 			if (user_memcpy(&cookie, buffer, sizeof(device_node_cookie)) < B_OK)
478 				return B_BAD_ADDRESS;
479 
480 			device_node* last = (device_node*)cookie;
481 			if (!last->Parent())
482 				return B_ENTRY_NOT_FOUND;
483 
484 			NodeList::ConstIterator iterator
485 				= last->Parent()->Children().GetIterator();
486 
487 			// skip those we already traversed
488 			while (iterator.HasNext()) {
489 				device_node* node = iterator.Next();
490 
491 				if (node == last)
492 					break;
493 			}
494 
495 			if (!iterator.HasNext())
496 				return B_ENTRY_NOT_FOUND;
497 			device_node* node = iterator.Next();
498 			cookie = (device_node_cookie)node;
499 
500 			// copy back to user space
501 			return user_memcpy(buffer, &cookie, sizeof(device_node_cookie));
502 		}
503 
504 		case DM_GET_NEXT_ATTRIBUTE:
505 		{
506 			struct device_attr_info attrInfo;
507 			if (!IS_USER_ADDRESS(buffer))
508 				return B_BAD_ADDRESS;
509 			if (bufferSize != sizeof(device_attr_info))
510 				return B_BAD_VALUE;
511 			if (user_memcpy(&attrInfo, buffer, sizeof(device_attr_info)) < B_OK)
512 				return B_BAD_ADDRESS;
513 
514 			device_node* node = (device_node*)attrInfo.node_cookie;
515 			device_attr* last = (device_attr*)attrInfo.cookie;
516 			AttributeList::Iterator iterator = node->Attributes().GetIterator();
517 			// skip those we already traversed
518 			while (iterator.HasNext() && last != NULL) {
519 				device_attr* attr = iterator.Next();
520 
521 				if (attr == last)
522 					break;
523 			}
524 
525 			if (!iterator.HasNext()) {
526 				attrInfo.cookie = 0;
527 				return B_ENTRY_NOT_FOUND;
528 			}
529 
530 			device_attr* attr = iterator.Next();
531 			attrInfo.cookie = (device_node_cookie)attr;
532 			strlcpy(attrInfo.name, attr->name, 254);
533 			attrInfo.type = attr->type;
534 			switch (attrInfo.type) {
535 				case B_UINT8_TYPE:
536 					attrInfo.value.ui8 = attr->value.ui8;
537 					break;
538 				case B_UINT16_TYPE:
539 					attrInfo.value.ui16 = attr->value.ui16;
540 					break;
541 				case B_UINT32_TYPE:
542 					attrInfo.value.ui32 = attr->value.ui32;
543 					break;
544 				case B_UINT64_TYPE:
545 					attrInfo.value.ui64 = attr->value.ui64;
546 					break;
547 				case B_STRING_TYPE:
548 					strlcpy(attrInfo.value.string, attr->value.string, 254);
549 					break;
550 				/*case B_RAW_TYPE:
551 					if (attr.value.raw.length > attr_info->attr.value.raw.length)
552 						attr.value.raw.length = attr_info->attr.value.raw.length;
553 					user_memcpy(attr.value.raw.data, attr_info->attr.value.raw.data,
554 						attr.value.raw.length);
555 					break;*/
556 			}
557 
558 			// copy back to user space
559 			return user_memcpy(buffer, &attrInfo, sizeof(device_attr_info));
560 		}
561 	}
562 
563 	return B_BAD_HANDLER;
564 }
565 
566 
567 //	#pragma mark - Device Manager module API
568 
569 
570 static status_t
571 rescan_node(device_node* node)
572 {
573 	RecursiveLocker _(sLock);
574 	return node->Rescan();
575 }
576 
577 
578 static status_t
579 register_node(device_node* parent, const char* moduleName,
580 	const device_attr* attrs, const io_resource* ioResources,
581 	device_node** _node)
582 {
583 	if ((parent == NULL && sRootNode != NULL) || moduleName == NULL)
584 		return B_BAD_VALUE;
585 
586 	if (parent != NULL && parent->FindChild(attrs) != NULL) {
587 		// A node like this one already exists for this parent
588 		return B_NAME_IN_USE;
589 	}
590 
591 	RecursiveLocker _(sLock);
592 
593 	device_node* newNode = new(std::nothrow) device_node(moduleName, attrs);
594 	if (newNode == NULL)
595 		return B_NO_MEMORY;
596 
597 	TRACE(("%p: register node \"%s\", parent %p\n", newNode, moduleName,
598 		parent));
599 
600 	status_t status = newNode->InitCheck();
601 	if (status == B_OK)
602 		status = newNode->AcquireResources(ioResources);
603 	if (status == B_OK)
604 		status = newNode->Register(parent);
605 
606 	if (status != B_OK) {
607 		newNode->Release();
608 		return status;
609 	}
610 
611 	if (_node)
612 		*_node = newNode;
613 
614 	return B_OK;
615 }
616 
617 
618 /*!	Unregisters the device \a node.
619 
620 	If the node is currently in use, this function will return B_BUSY to
621 	indicate that the node hasn't been removed yet - it will still remove
622 	the node as soon as possible.
623 */
624 static status_t
625 unregister_node(device_node* node)
626 {
627 	TRACE(("unregister_node(node %p)\n", node));
628 	RecursiveLocker _(sLock);
629 
630 	bool initialized = node->IsInitialized();
631 
632 	node->DeviceRemoved();
633 
634 	return initialized ? B_BUSY : B_OK;
635 }
636 
637 
638 static status_t
639 get_driver(device_node* node, driver_module_info** _module, void** _data)
640 {
641 	if (node->DriverModule() == NULL)
642 		return B_NO_INIT;
643 
644 	if (_module != NULL)
645 		*_module = node->DriverModule();
646 	if (_data != NULL)
647 		*_data = node->DriverData();
648 
649 	return B_OK;
650 }
651 
652 
653 static device_node*
654 get_root_node(void)
655 {
656 	if (sRootNode != NULL)
657 		sRootNode->Acquire();
658 
659 	return sRootNode;
660 }
661 
662 
663 static status_t
664 get_next_child_node(device_node* parent, const device_attr* attributes,
665 	device_node** _node)
666 {
667 	RecursiveLocker _(sLock);
668 
669 	NodeList::ConstIterator iterator = parent->Children().GetIterator();
670 	device_node* last = *_node;
671 
672 	// skip those we already traversed
673 	while (iterator.HasNext() && last != NULL) {
674 		device_node* node = iterator.Next();
675 
676 		if (node != last)
677 			continue;
678 	}
679 
680 	// find the next one that fits
681 	while (iterator.HasNext()) {
682 		device_node* node = iterator.Next();
683 
684 		if (!node->IsRegistered())
685 			continue;
686 
687 		if (!node->CompareTo(attributes)) {
688 			if (last != NULL)
689 				last->Release();
690 
691 			node->Acquire();
692 			*_node = node;
693 			return B_OK;
694 		}
695 	}
696 
697 	if (last != NULL)
698 		last->Release();
699 
700 	return B_ENTRY_NOT_FOUND;
701 }
702 
703 
704 static device_node*
705 get_parent_node(device_node* node)
706 {
707 	if (node == NULL)
708 		return NULL;
709 
710 	RecursiveLocker _(sLock);
711 
712 	device_node* parent = node->Parent();
713 	parent->Acquire();
714 
715 	return parent;
716 }
717 
718 
719 static void
720 put_node(device_node* node)
721 {
722 	RecursiveLocker _(sLock);
723 	node->Release();
724 }
725 
726 
727 static status_t
728 publish_device(device_node *node, const char *path, const char *moduleName)
729 {
730 	if (path == NULL || !path[0] || moduleName == NULL || !moduleName[0])
731 		return B_BAD_VALUE;
732 
733 	RecursiveLocker _(sLock);
734 	dprintf("publish device: node %p, path %s, module %s\n", node, path,
735 		moduleName);
736 
737 	Device* device = new(std::nothrow) Device(node, moduleName);
738 	if (device == NULL)
739 		return B_NO_MEMORY;
740 
741 	status_t status = device->InitCheck();
742 	if (status == B_OK)
743 		status = devfs_publish_device(path, device);
744 	if (status != B_OK) {
745 		delete device;
746 		return status;
747 	}
748 
749 	node->AddDevice(device);
750 	return B_OK;
751 }
752 
753 
754 static status_t
755 unpublish_device(device_node *node, const char *path)
756 {
757 	if (path == NULL)
758 		return B_BAD_VALUE;
759 
760 	RecursiveLocker _(sLock);
761 
762 #if 0
763 	DeviceList::ConstIterator iterator = node->Devices().GetIterator();
764 	while (iterator.HasNext()) {
765 		Device* device = iterator.Next();
766 		if (!strcmp(device->Path(), path)) {
767 			node->RemoveDevice(device);
768 			delete device;
769 			return B_OK;
770 		}
771 	}
772 #endif
773 
774 	return B_ENTRY_NOT_FOUND;
775 }
776 
777 
778 static status_t
779 get_attr_uint8(const device_node* node, const char* name, uint8* _value,
780 	bool recursive)
781 {
782 	if (node == NULL || name == NULL || _value == NULL)
783 		return B_BAD_VALUE;
784 
785 	device_attr_private* attr = find_attr(node, name, recursive, B_UINT8_TYPE);
786 	if (attr == NULL)
787 		return B_NAME_NOT_FOUND;
788 
789 	*_value = attr->value.ui8;
790 	return B_OK;
791 }
792 
793 
794 static status_t
795 get_attr_uint16(const device_node* node, const char* name, uint16* _value,
796 	bool recursive)
797 {
798 	if (node == NULL || name == NULL || _value == NULL)
799 		return B_BAD_VALUE;
800 
801 	device_attr_private* attr = find_attr(node, name, recursive, B_UINT16_TYPE);
802 	if (attr == NULL)
803 		return B_NAME_NOT_FOUND;
804 
805 	*_value = attr->value.ui16;
806 	return B_OK;
807 }
808 
809 
810 static status_t
811 get_attr_uint32(const device_node* node, const char* name, uint32* _value,
812 	bool recursive)
813 {
814 	if (node == NULL || name == NULL || _value == NULL)
815 		return B_BAD_VALUE;
816 
817 	device_attr_private* attr = find_attr(node, name, recursive, B_UINT32_TYPE);
818 	if (attr == NULL)
819 		return B_NAME_NOT_FOUND;
820 
821 	*_value = attr->value.ui32;
822 	return B_OK;
823 }
824 
825 
826 static status_t
827 get_attr_uint64(const device_node* node, const char* name,
828 	uint64* _value, bool recursive)
829 {
830 	if (node == NULL || name == NULL || _value == NULL)
831 		return B_BAD_VALUE;
832 
833 	device_attr_private* attr = find_attr(node, name, recursive, B_UINT64_TYPE);
834 	if (attr == NULL)
835 		return B_NAME_NOT_FOUND;
836 
837 	*_value = attr->value.ui64;
838 	return B_OK;
839 }
840 
841 
842 static status_t
843 get_attr_string(const device_node* node, const char* name,
844 	const char** _value, bool recursive)
845 {
846 	if (node == NULL || name == NULL || _value == NULL)
847 		return B_BAD_VALUE;
848 
849 	device_attr_private* attr = find_attr(node, name, recursive, B_STRING_TYPE);
850 	if (attr == NULL)
851 		return B_NAME_NOT_FOUND;
852 
853 	*_value = attr->value.string;
854 	return B_OK;
855 }
856 
857 
858 static status_t
859 get_attr_raw(const device_node* node, const char* name, const void** _data,
860 	size_t* _length, bool recursive)
861 {
862 	if (node == NULL || name == NULL || (_data == NULL && _length == NULL))
863 		return B_BAD_VALUE;
864 
865 	device_attr_private* attr = find_attr(node, name, recursive, B_RAW_TYPE);
866 	if (attr == NULL)
867 		return B_NAME_NOT_FOUND;
868 
869 	if (_data != NULL)
870 		*_data = attr->value.raw.data;
871 	if (_length != NULL)
872 		*_length = attr->value.raw.length;
873 	return B_OK;
874 }
875 
876 
877 static status_t
878 get_next_attr(device_node* node, device_attr** _attr)
879 {
880 	if (node == NULL)
881 		return B_BAD_VALUE;
882 
883 	device_attr_private* next;
884 	device_attr_private* attr = *(device_attr_private**)_attr;
885 
886 	if (attr != NULL) {
887 		// next attribute
888 		next = attr->GetDoublyLinkedListLink()->next;
889 	} else {
890 		// first attribute
891 		next = node->Attributes().First();
892 	}
893 
894 	*_attr = next;
895 
896 	return next ? B_OK : B_ENTRY_NOT_FOUND;
897 }
898 
899 
900 struct device_manager_info gDeviceManagerModule = {
901 	{
902 		B_DEVICE_MANAGER_MODULE_NAME,
903 		0,
904 		NULL
905 	},
906 
907 	// device nodes
908 	rescan_node,
909 	register_node,
910 	unregister_node,
911 	get_driver,
912 	get_root_node,
913 	get_next_child_node,
914 	get_parent_node,
915 	put_node,
916 
917 	// devices
918 	publish_device,
919 	unpublish_device,
920 
921 	// I/O resources
922 
923 	// ID generator
924 	dm_create_id,
925 	dm_free_id,
926 
927 	// attributes
928 	get_attr_uint8,
929 	get_attr_uint16,
930 	get_attr_uint32,
931 	get_attr_uint64,
932 	get_attr_string,
933 	get_attr_raw,
934 	get_next_attr,
935 };
936 
937 
938 //	#pragma mark - device_attr
939 
940 
941 device_attr_private::device_attr_private()
942 {
943 	name = NULL;
944 	type = 0;
945 	value.raw.data = NULL;
946 	value.raw.length = 0;
947 }
948 
949 
950 device_attr_private::device_attr_private(const device_attr& attr)
951 {
952 	CopyFrom(attr);
953 }
954 
955 
956 device_attr_private::~device_attr_private()
957 {
958 	_Unset();
959 }
960 
961 
962 status_t
963 device_attr_private::InitCheck()
964 {
965 	return name != NULL ? B_OK : B_NO_INIT;
966 }
967 
968 
969 status_t
970 device_attr_private::CopyFrom(const device_attr& attr)
971 {
972 	name = strdup(attr.name);
973 	if (name == NULL)
974 		return B_NO_MEMORY;
975 
976 	type = attr.type;
977 
978 	switch (type) {
979 		case B_UINT8_TYPE:
980 		case B_UINT16_TYPE:
981 		case B_UINT32_TYPE:
982 		case B_UINT64_TYPE:
983 			value.ui64 = attr.value.ui64;
984 			break;
985 
986 		case B_STRING_TYPE:
987 			if (attr.value.string != NULL) {
988 				value.string = strdup(attr.value.string);
989 				if (value.string == NULL) {
990 					_Unset();
991 					return B_NO_MEMORY;
992 				}
993 			} else
994 				value.string = NULL;
995 			break;
996 
997 		case B_RAW_TYPE:
998 			value.raw.data = malloc(attr.value.raw.length);
999 			if (value.raw.data == NULL) {
1000 				_Unset();
1001 				return B_NO_MEMORY;
1002 			}
1003 
1004 			value.raw.length = attr.value.raw.length;
1005 			memcpy((void*)value.raw.data, attr.value.raw.data,
1006 				attr.value.raw.length);
1007 			break;
1008 
1009 		default:
1010 			return B_BAD_VALUE;
1011 	}
1012 
1013 	return B_OK;
1014 }
1015 
1016 
1017 void
1018 device_attr_private::_Unset()
1019 {
1020 	if (type == B_STRING_TYPE)
1021 		free((char*)value.string);
1022 	else if (type == B_RAW_TYPE)
1023 		free((void*)value.raw.data);
1024 
1025 	free((char*)name);
1026 
1027 	name = NULL;
1028 	value.raw.data = NULL;
1029 	value.raw.length = 0;
1030 }
1031 
1032 
1033 /*static*/ int
1034 device_attr_private::Compare(const device_attr* attrA, const device_attr *attrB)
1035 {
1036 	if (attrA->type != attrB->type)
1037 		return -1;
1038 
1039 	switch (attrA->type) {
1040 		case B_UINT8_TYPE:
1041 			return (int)attrA->value.ui8 - (int)attrB->value.ui8;
1042 
1043 		case B_UINT16_TYPE:
1044 			return (int)attrA->value.ui16 - (int)attrB->value.ui16;
1045 
1046 		case B_UINT32_TYPE:
1047 			if (attrA->value.ui32 > attrB->value.ui32)
1048 				return 1;
1049 			if (attrA->value.ui32 < attrB->value.ui32)
1050 				return -1;
1051 			return 0;
1052 
1053 		case B_UINT64_TYPE:
1054 			if (attrA->value.ui64 > attrB->value.ui64)
1055 				return 1;
1056 			if (attrA->value.ui64 < attrB->value.ui64)
1057 				return -1;
1058 			return 0;
1059 
1060 		case B_STRING_TYPE:
1061 			return strcmp(attrA->value.string, attrB->value.string);
1062 
1063 		case B_RAW_TYPE:
1064 			if (attrA->value.raw.length != attrB->value.raw.length)
1065 				return -1;
1066 
1067 			return memcmp(attrA->value.raw.data, attrB->value.raw.data,
1068 				attrA->value.raw.length);
1069 	}
1070 
1071 	return -1;
1072 }
1073 
1074 
1075 //	#pragma mark - Device
1076 
1077 
1078 Device::Device(device_node* node, const char* moduleName)
1079 	:
1080 	fModuleName(strdup(moduleName)),
1081 	fRemovedFromParent(false)
1082 {
1083 	fNode = node;
1084 }
1085 
1086 
1087 Device::~Device()
1088 {
1089 	free((char*)fModuleName);
1090 }
1091 
1092 
1093 status_t
1094 Device::InitCheck() const
1095 {
1096 	return fModuleName != NULL ? B_OK : B_NO_MEMORY;
1097 }
1098 
1099 
1100 status_t
1101 Device::InitDevice()
1102 {
1103 	RecursiveLocker _(sLock);
1104 
1105 	if ((fNode->Flags() & NODE_FLAG_DEVICE_REMOVED) != 0) {
1106 		// TODO: maybe the device should be unlinked in devfs, too
1107 		return ENODEV;
1108 	}
1109 	if ((fNode->Flags() & NODE_FLAG_WAITING_FOR_DRIVER) != 0)
1110 		return B_BUSY;
1111 
1112 	if (fInitialized++ > 0) {
1113 		fNode->InitDriver();
1114 			// acquire another reference to our parent as well
1115 		return B_OK;
1116 	}
1117 
1118 	status_t status = get_module(ModuleName(), (module_info**)&fDeviceModule);
1119 	if (status == B_OK) {
1120 		// our parent always has to be initialized
1121 		status = fNode->InitDriver();
1122 	}
1123 	if (status < B_OK) {
1124 		fInitialized--;
1125 		return status;
1126 	}
1127 
1128 	if (Module()->init_device != NULL)
1129 		status = Module()->init_device(fNode->DriverData(), &fDeviceData);
1130 
1131 	if (status < B_OK) {
1132 		fNode->UninitDriver();
1133 		fInitialized--;
1134 
1135 		put_module(ModuleName());
1136 		fDeviceModule = NULL;
1137 		fDeviceData = NULL;
1138 	}
1139 
1140 	return status;
1141 }
1142 
1143 
1144 void
1145 Device::UninitDevice()
1146 {
1147 	RecursiveLocker _(sLock);
1148 
1149 	if (fInitialized-- > 1) {
1150 		fNode->UninitDriver();
1151 		return;
1152 	}
1153 
1154 	TRACE(("uninit driver for node %p\n", this));
1155 
1156 	if (Module()->uninit_device != NULL)
1157 		Module()->uninit_device(fDeviceData);
1158 
1159 	fDeviceModule = NULL;
1160 	fDeviceData = NULL;
1161 
1162 	put_module(ModuleName());
1163 
1164 	fNode->UninitDriver();
1165 }
1166 
1167 
1168 void
1169 Device::Removed()
1170 {
1171 	RecursiveLocker _(sLock);
1172 
1173 	if (!fRemovedFromParent)
1174 		fNode->RemoveDevice(this);
1175 
1176 	delete this;
1177 }
1178 
1179 
1180 //	#pragma mark - device_node
1181 
1182 
1183 device_node::device_node(const char* moduleName, const device_attr* attrs)
1184 {
1185 	fModuleName = strdup(moduleName);
1186 	if (fModuleName == NULL)
1187 		return;
1188 
1189 	fParent = NULL;
1190 	fRefCount = 1;
1191 	fInitialized = 0;
1192 	fRegistered = false;
1193 	fFlags = 0;
1194 	fSupportsParent = 0.0;
1195 	fLastUpdateCycle = 0;
1196 	fDriver = NULL;
1197 	fDriverData = NULL;
1198 
1199 	// copy attributes
1200 
1201 	while (attrs != NULL && attrs->name != NULL) {
1202 		device_attr_private* attr
1203 			= new(std::nothrow) device_attr_private(*attrs);
1204 		if (attr == NULL)
1205 			break;
1206 
1207 		fAttributes.Add(attr);
1208 		attrs++;
1209 	}
1210 
1211 	get_attr_uint32(this, B_DEVICE_FLAGS, &fFlags, false);
1212 	fFlags &= NODE_FLAG_PUBLIC_MASK;
1213 }
1214 
1215 
1216 device_node::~device_node()
1217 {
1218 	TRACE(("delete node %p\n", this));
1219 	ASSERT(DriverModule() == NULL);
1220 
1221 	if (Parent() != NULL) {
1222 		if ((fFlags & NODE_FLAG_OBSOLETE_DRIVER) != 0) {
1223 			// This driver has been obsoleted; another driver has been waiting
1224 			// for us - make it available
1225 			Parent()->_ReleaseWaiting();
1226 		}
1227 		Parent()->RemoveChild(this);
1228 	}
1229 
1230 	// Delete children
1231 	while (device_node* child = fChildren.RemoveHead()) {
1232 		delete child;
1233 	}
1234 
1235 	// Delete devices
1236 	while (Device* device = fDevices.RemoveHead()) {
1237 		device->SetRemovedFromParent(true);
1238 		devfs_unpublish_device(device, true);
1239 	}
1240 
1241 	// Delete attributes
1242 	while (device_attr_private* attr = fAttributes.RemoveHead()) {
1243 		delete attr;
1244 	}
1245 
1246 	// Delete resources
1247 	while (io_resource_private* resource = fResources.RemoveHead()) {
1248 		delete resource;
1249 	}
1250 
1251 	free((char*)fModuleName);
1252 }
1253 
1254 
1255 status_t
1256 device_node::InitCheck() const
1257 {
1258 	return fModuleName != NULL ? B_OK : B_NO_MEMORY;
1259 }
1260 
1261 
1262 status_t
1263 device_node::AcquireResources(const io_resource* resources)
1264 {
1265 	if (resources == NULL)
1266 		return B_OK;
1267 
1268 	for (uint32 i = 0; resources[i].type != 0; i++) {
1269 		io_resource_private* resource = new(std::nothrow) io_resource_private;
1270 		if (resource == NULL)
1271 			return B_NO_MEMORY;
1272 
1273 		status_t status = resource->Acquire(resources[i]);
1274 		if (status != B_OK) {
1275 			delete resource;
1276 			return status;
1277 		}
1278 
1279 		fResources.Add(resource);
1280 	}
1281 
1282 	return B_OK;
1283 }
1284 
1285 
1286 status_t
1287 device_node::InitDriver()
1288 {
1289 	if (fInitialized++ > 0) {
1290 		if (Parent() != NULL) {
1291 			Parent()->InitDriver();
1292 				// acquire another reference to our parent as well
1293 		}
1294 		Acquire();
1295 		return B_OK;
1296 	}
1297 
1298 	status_t status = get_module(ModuleName(), (module_info**)&fDriver);
1299 	if (status == B_OK && Parent() != NULL) {
1300 		// our parent always has to be initialized
1301 		status = Parent()->InitDriver();
1302 	}
1303 	if (status < B_OK) {
1304 		fInitialized--;
1305 		return status;
1306 	}
1307 
1308 	if (fDriver->init_driver != NULL) {
1309 		status = fDriver->init_driver(this, &fDriverData);
1310 		if (status != B_OK) {
1311 			dprintf("driver %s init failed: %s\n", ModuleName(),
1312 				strerror(status));
1313 		}
1314 	}
1315 
1316 	if (status < B_OK) {
1317 		if (Parent() != NULL)
1318 			Parent()->UninitDriver();
1319 		fInitialized--;
1320 
1321 		put_module(ModuleName());
1322 		fDriver = NULL;
1323 		fDriverData = NULL;
1324 		return status;
1325 	}
1326 
1327 	Acquire();
1328 	return B_OK;
1329 }
1330 
1331 
1332 bool
1333 device_node::UninitDriver()
1334 {
1335 	if (fInitialized-- > 1) {
1336 		if (Parent() != NULL)
1337 			Parent()->UninitDriver();
1338 		Release();
1339 		return false;
1340 	}
1341 
1342 	TRACE(("uninit driver for node %p\n", this));
1343 
1344 	if (fDriver->uninit_driver != NULL)
1345 		fDriver->uninit_driver(fDriverData);
1346 
1347 	fDriver = NULL;
1348 	fDriverData = NULL;
1349 
1350 	put_module(ModuleName());
1351 
1352 	if (Parent() != NULL)
1353 		Parent()->UninitDriver();
1354 	Release();
1355 
1356 	return true;
1357 }
1358 
1359 
1360 void
1361 device_node::AddChild(device_node* node)
1362 {
1363 	// we must not be destroyed	as long as we have children
1364 	Acquire();
1365 	node->fParent = this;
1366 
1367 	int32 priority = node->Priority();
1368 
1369 	// Enforce an order in which the children are traversed - from most
1370 	// specific to least specific child.
1371 	NodeList::Iterator iterator = fChildren.GetIterator();
1372 	device_node* before = NULL;
1373 	while (iterator.HasNext()) {
1374 		device_node* child = iterator.Next();
1375 		if (child->Priority() <= priority) {
1376 			before = child;
1377 			break;
1378 		}
1379 	}
1380 
1381 	fChildren.Insert(before, node);
1382 }
1383 
1384 
1385 void
1386 device_node::RemoveChild(device_node* node)
1387 {
1388 	node->fParent = NULL;
1389 	fChildren.Remove(node);
1390 	Release();
1391 }
1392 
1393 
1394 /*!	Registers this node, and all of its children that have to be registered.
1395 	Also initializes the driver and keeps it that way on return in case
1396 	it returns successfully.
1397 */
1398 status_t
1399 device_node::Register(device_node* parent)
1400 {
1401 	// make it public
1402 	if (parent != NULL)
1403 		parent->AddChild(this);
1404 	else
1405 		sRootNode = this;
1406 
1407 	status_t status = InitDriver();
1408 	if (status != B_OK)
1409 		return status;
1410 
1411 	if ((fFlags & B_KEEP_DRIVER_LOADED) != 0) {
1412 		// We keep this driver loaded by having it always initialized
1413 		InitDriver();
1414 	}
1415 
1416 	fFlags |= NODE_FLAG_REGISTER_INITIALIZED;
1417 		// We don't uninitialize the driver - this is done by the caller
1418 		// in order to save reinitializing during driver loading.
1419 
1420 	uint32 registeredFixedCount;
1421 	status = _RegisterFixed(registeredFixedCount);
1422 	if (status != B_OK) {
1423 		UninitUnusedDriver();
1424 		return status;
1425 	}
1426 
1427 	// Register the children the driver wants
1428 
1429 	if (DriverModule()->register_child_devices != NULL) {
1430 		status = DriverModule()->register_child_devices(DriverData());
1431 		if (status != B_OK) {
1432 			UninitUnusedDriver();
1433 			return status;
1434 		}
1435 
1436 		if (!fChildren.IsEmpty()) {
1437 			fRegistered = true;
1438 			return B_OK;
1439 		}
1440 	}
1441 
1442 	if (registeredFixedCount > 0) {
1443 		// Nodes with fixed children cannot have any dynamic children, so bail
1444 		// out here
1445 		fRegistered = true;
1446 		return B_OK;
1447 	}
1448 
1449 	// Register all possible child device nodes
1450 
1451 	status = _RegisterDynamic();
1452 	if (status == B_OK)
1453 		fRegistered = true;
1454 	else
1455 		UninitUnusedDriver();
1456 
1457 	return status;
1458 }
1459 
1460 
1461 /*!	Registers any children that are identified via the B_DEVICE_FIXED_CHILD
1462 	attribute.
1463 	If any of these children cannot be registered, this call will fail (we
1464 	don't remove children we already registered up to this point in this case).
1465 */
1466 status_t
1467 device_node::_RegisterFixed(uint32& registered)
1468 {
1469 	AttributeList::Iterator iterator = fAttributes.GetIterator();
1470 	registered = 0;
1471 
1472 	while (iterator.HasNext()) {
1473 		device_attr_private* attr = iterator.Next();
1474 		if (strcmp(attr->name, B_DEVICE_FIXED_CHILD))
1475 			continue;
1476 
1477 		driver_module_info* driver;
1478 		status_t status = get_module(attr->value.string,
1479 			(module_info**)&driver);
1480 		if (status != B_OK) {
1481 			TRACE(("register fixed child %s failed: %s\n", attr->value.string,
1482 				strerror(status)));
1483 			return status;
1484 		}
1485 
1486 		if (driver->register_device != NULL) {
1487 			status = driver->register_device(this);
1488 			if (status == B_OK)
1489 				registered++;
1490 		}
1491 
1492 		put_module(attr->value.string);
1493 
1494 		if (status != B_OK)
1495 			return status;
1496 	}
1497 
1498 	return B_OK;
1499 }
1500 
1501 
1502 status_t
1503 device_node::_AddPath(Stack<KPath*>& stack, const char* basePath,
1504 	const char* subPath)
1505 {
1506 	KPath* path = new(std::nothrow) KPath;
1507 	if (path == NULL)
1508 		return B_NO_MEMORY;
1509 
1510 	status_t status = path->SetTo(basePath);
1511 	if (status == B_OK && subPath != NULL && subPath[0])
1512 		status = path->Append(subPath);
1513 	if (status == B_OK)
1514 		status = stack.Push(path);
1515 
1516 	TRACE(("  add path: \"%s\", %" B_PRId32 "\n", path->Path(), status));
1517 
1518 	if (status != B_OK)
1519 		delete path;
1520 
1521 	return status;
1522 }
1523 
1524 
1525 status_t
1526 device_node::_GetNextDriverPath(void*& cookie, KPath& _path)
1527 {
1528 	Stack<KPath*>* stack = NULL;
1529 
1530 	if (cookie == NULL) {
1531 		// find all paths and add them
1532 		stack = new(std::nothrow) Stack<KPath*>();
1533 		if (stack == NULL)
1534 			return B_NO_MEMORY;
1535 
1536 		StackDeleter<KPath*> stackDeleter(stack);
1537 
1538 		bool generic = false;
1539 		uint16 type = 0;
1540 		uint16 subType = 0;
1541 		uint16 interface = 0;
1542 		if (get_attr_uint16(this, B_DEVICE_TYPE, &type, false) != B_OK
1543 			|| get_attr_uint16(this, B_DEVICE_SUB_TYPE, &subType, false)
1544 					!= B_OK)
1545 			generic = true;
1546 
1547 		get_attr_uint16(this, B_DEVICE_INTERFACE, &interface, false);
1548 
1549 		// TODO: maybe make this extendible via settings file?
1550 		switch (type) {
1551 			case PCI_mass_storage:
1552 				switch (subType) {
1553 					case PCI_scsi:
1554 						_AddPath(*stack, "busses", "scsi");
1555 						break;
1556 					case PCI_ide:
1557 						_AddPath(*stack, "busses", "ata");
1558 						_AddPath(*stack, "busses", "ide");
1559 						break;
1560 					case PCI_sata:
1561 						// TODO: check for ahci interface
1562 						_AddPath(*stack, "busses", "scsi");
1563 						_AddPath(*stack, "busses", "ata");
1564 						_AddPath(*stack, "busses", "ide");
1565 						break;
1566 					default:
1567 						_AddPath(*stack, "busses");
1568 						break;
1569 				}
1570 				break;
1571 			case PCI_serial_bus:
1572 				switch (subType) {
1573 					case PCI_firewire:
1574 						_AddPath(*stack, "busses", "firewire");
1575 						break;
1576 					case PCI_usb:
1577 						_AddPath(*stack, "busses", "usb");
1578 						break;
1579 					default:
1580 						_AddPath(*stack, "busses");
1581 						break;
1582 				}
1583 				break;
1584 			case PCI_network:
1585 				_AddPath(*stack, "drivers", "net");
1586 				break;
1587 			case PCI_display:
1588 				_AddPath(*stack, "drivers", "graphics");
1589 				break;
1590 			case PCI_multimedia:
1591 				switch (subType) {
1592 					case PCI_audio:
1593 					case PCI_hd_audio:
1594 						_AddPath(*stack, "drivers", "audio");
1595 						break;
1596 					case PCI_video:
1597 						_AddPath(*stack, "drivers", "video");
1598 						break;
1599 					default:
1600 						_AddPath(*stack, "drivers");
1601 						break;
1602 				}
1603 				break;
1604 			default:
1605 				if (sRootNode == this) {
1606 					_AddPath(*stack, "busses/pci");
1607 					_AddPath(*stack, "bus_managers");
1608 				} else if (!generic) {
1609 					_AddPath(*stack, "drivers");
1610 				} else {
1611 					// For generic drivers, we only allow busses when the
1612 					// request is more specified
1613 					if (sGenericContextPath != NULL
1614 						&& (!strcmp(sGenericContextPath, "disk")
1615 							|| !strcmp(sGenericContextPath, "ports")
1616 							|| !strcmp(sGenericContextPath, "bus"))) {
1617 						_AddPath(*stack, "busses");
1618 					}
1619 					_AddPath(*stack, "drivers", sGenericContextPath);
1620 				}
1621 				break;
1622 		}
1623 
1624 		stackDeleter.Detach();
1625 
1626 		cookie = (void*)stack;
1627 	} else
1628 		stack = static_cast<Stack<KPath*>*>(cookie);
1629 
1630 	KPath* path;
1631 	if (stack->Pop(&path)) {
1632 		_path.Adopt(*path);
1633 		delete path;
1634 		return B_OK;
1635 	}
1636 
1637 	delete stack;
1638 	return B_ENTRY_NOT_FOUND;
1639 }
1640 
1641 
1642 status_t
1643 device_node::_GetNextDriver(void* list, driver_module_info*& driver)
1644 {
1645 	while (true) {
1646 		char name[B_FILE_NAME_LENGTH];
1647 		size_t nameLength = sizeof(name);
1648 
1649 		status_t status = read_next_module_name(list, name, &nameLength);
1650 		if (status != B_OK)
1651 			return status;
1652 
1653 		if (!strcmp(fModuleName, name))
1654 			continue;
1655 
1656 		if (get_module(name, (module_info**)&driver) != B_OK)
1657 			continue;
1658 
1659 		if (driver->supports_device == NULL
1660 			|| driver->register_device == NULL) {
1661 			put_module(name);
1662 			continue;
1663 		}
1664 
1665 		return B_OK;
1666 	}
1667 }
1668 
1669 
1670 status_t
1671 device_node::_FindBestDriver(const char* path, driver_module_info*& bestDriver,
1672 	float& bestSupport, device_node* previous)
1673 {
1674 	if (bestDriver == NULL)
1675 		bestSupport = previous != NULL ? previous->fSupportsParent : 0.0f;
1676 
1677 	void* list = open_module_list_etc(path, "driver_v1");
1678 	driver_module_info* driver;
1679 	while (_GetNextDriver(list, driver) == B_OK) {
1680 		if (previous != NULL && driver == previous->DriverModule()) {
1681 			put_module(driver->info.name);
1682 			continue;
1683 		}
1684 
1685 		float support = driver->supports_device(this);
1686 		if (support > bestSupport) {
1687 			if (bestDriver != NULL)
1688 				put_module(bestDriver->info.name);
1689 
1690 			bestDriver = driver;
1691 			bestSupport = support;
1692 			continue;
1693 				// keep reference to best module around
1694 		}
1695 
1696 		put_module(driver->info.name);
1697 	}
1698 	close_module_list(list);
1699 
1700 	return bestDriver != NULL ? B_OK : B_ENTRY_NOT_FOUND;
1701 }
1702 
1703 
1704 status_t
1705 device_node::_RegisterPath(const char* path)
1706 {
1707 	void* list = open_module_list_etc(path, "driver_v1");
1708 	driver_module_info* driver;
1709 	uint32 count = 0;
1710 
1711 	while (_GetNextDriver(list, driver) == B_OK) {
1712 		float support = driver->supports_device(this);
1713 		if (support > 0.0) {
1714 			TRACE(("  register module \"%s\", support %f\n", driver->info.name,
1715 				support));
1716 			if (driver->register_device(this) == B_OK)
1717 				count++;
1718 		}
1719 
1720 		put_module(driver->info.name);
1721 	}
1722 	close_module_list(list);
1723 
1724 	return count > 0 ? B_OK : B_ENTRY_NOT_FOUND;
1725 }
1726 
1727 
1728 bool
1729 device_node::_AlwaysRegisterDynamic()
1730 {
1731 	uint16 type = 0;
1732 	uint16 subType = 0;
1733 	get_attr_uint16(this, B_DEVICE_TYPE, &type, false);
1734 	get_attr_uint16(this, B_DEVICE_SUB_TYPE, &subType, false);
1735 
1736 	return type == PCI_serial_bus || type == PCI_bridge;
1737 		// TODO: we may want to be a bit more specific in the future
1738 }
1739 
1740 
1741 status_t
1742 device_node::_RegisterDynamic(device_node* previous)
1743 {
1744 	// If this is not a bus, we don't have to scan it
1745 	if (find_attr(this, B_DEVICE_BUS, false, B_STRING_TYPE) == NULL)
1746 		return B_OK;
1747 
1748 	// If we're not being probed, we honour the B_FIND_CHILD_ON_DEMAND
1749 	// requirements
1750 	if (!IsProbed() && (fFlags & B_FIND_CHILD_ON_DEMAND) != 0
1751 		&& !_AlwaysRegisterDynamic())
1752 		return B_OK;
1753 
1754 	KPath path;
1755 
1756 	if ((fFlags & B_FIND_MULTIPLE_CHILDREN) == 0) {
1757 		// find the one driver
1758 		driver_module_info* bestDriver = NULL;
1759 		float bestSupport = 0.0;
1760 		void* cookie = NULL;
1761 
1762 		while (_GetNextDriverPath(cookie, path) == B_OK) {
1763 			_FindBestDriver(path.Path(), bestDriver, bestSupport, previous);
1764 		}
1765 
1766 		if (bestDriver != NULL) {
1767 			TRACE(("  register best module \"%s\", support %f\n",
1768 				bestDriver->info.name, bestSupport));
1769 			if (bestDriver->register_device(this) == B_OK) {
1770 				// There can only be one node of this driver
1771 				// (usually only one at all, but there might be a new driver
1772 				// "waiting" for its turn)
1773 				device_node* child = FindChild(bestDriver->info.name);
1774 				if (child != NULL) {
1775 					child->fSupportsParent = bestSupport;
1776 					if (previous != NULL) {
1777 						previous->fFlags |= NODE_FLAG_OBSOLETE_DRIVER;
1778 						previous->Release();
1779 						child->fFlags |= NODE_FLAG_WAITING_FOR_DRIVER;
1780 					}
1781 				}
1782 				// TODO: if this fails, we could try the second best driver,
1783 				// and so on...
1784 			}
1785 			put_module(bestDriver->info.name);
1786 		}
1787 	} else {
1788 		// register all drivers that match
1789 		void* cookie = NULL;
1790 		while (_GetNextDriverPath(cookie, path) == B_OK) {
1791 			_RegisterPath(path.Path());
1792 		}
1793 	}
1794 
1795 	return B_OK;
1796 }
1797 
1798 
1799 void
1800 device_node::_ReleaseWaiting()
1801 {
1802 	NodeList::Iterator iterator = fChildren.GetIterator();
1803 	while (iterator.HasNext()) {
1804 		device_node* child = iterator.Next();
1805 
1806 		child->fFlags &= ~NODE_FLAG_WAITING_FOR_DRIVER;
1807 	}
1808 }
1809 
1810 
1811 status_t
1812 device_node::_RemoveChildren()
1813 {
1814 	NodeList::Iterator iterator = fChildren.GetIterator();
1815 	while (iterator.HasNext()) {
1816 		device_node* child = iterator.Next();
1817 		child->Release();
1818 	}
1819 
1820 	return fChildren.IsEmpty() ? B_OK : B_BUSY;
1821 }
1822 
1823 
1824 device_node*
1825 device_node::_FindCurrentChild()
1826 {
1827 	NodeList::Iterator iterator = fChildren.GetIterator();
1828 	while (iterator.HasNext()) {
1829 		device_node* child = iterator.Next();
1830 
1831 		if ((child->Flags() & NODE_FLAG_WAITING_FOR_DRIVER) == 0)
1832 			return child;
1833 	}
1834 
1835 	return NULL;
1836 }
1837 
1838 
1839 status_t
1840 device_node::_Probe()
1841 {
1842 	device_node* previous = NULL;
1843 
1844 	if (IsProbed() && !fChildren.IsEmpty()
1845 		&& (fFlags & (B_FIND_CHILD_ON_DEMAND | B_FIND_MULTIPLE_CHILDREN))
1846 				== B_FIND_CHILD_ON_DEMAND) {
1847 		// We already have a driver that claims this node; remove all
1848 		// (unused) nodes, and evaluate it again
1849 		_RemoveChildren();
1850 
1851 		previous = _FindCurrentChild();
1852 		if (previous != NULL) {
1853 			// This driver is still active - give it back the reference
1854 			// that was stolen by _RemoveChildren() - _RegisterDynamic()
1855 			// will release it, if it really isn't needed anymore
1856 			previous->Acquire();
1857 		}
1858 	}
1859 
1860 	return _RegisterDynamic(previous);
1861 }
1862 
1863 
1864 status_t
1865 device_node::Probe(const char* devicePath, uint32 updateCycle)
1866 {
1867 	if ((fFlags & NODE_FLAG_DEVICE_REMOVED) != 0
1868 		|| updateCycle == fLastUpdateCycle)
1869 		return B_OK;
1870 
1871 	status_t status = InitDriver();
1872 	if (status < B_OK)
1873 		return status;
1874 
1875 	MethodDeleter<device_node, bool> uninit(this,
1876 		&device_node::UninitDriver);
1877 
1878 	if ((fFlags & B_FIND_CHILD_ON_DEMAND) != 0) {
1879 		bool matches = false;
1880 		uint16 type = 0;
1881 		uint16 subType = 0;
1882 		if (get_attr_uint16(this, B_DEVICE_SUB_TYPE, &subType, false) == B_OK
1883 			&& get_attr_uint16(this, B_DEVICE_TYPE, &type, false) == B_OK) {
1884 			// Check if this node matches the device path
1885 			// TODO: maybe make this extendible via settings file?
1886 			if (!strcmp(devicePath, "disk")) {
1887 				matches = type == PCI_mass_storage;
1888 			} else if (!strcmp(devicePath, "audio")) {
1889 				matches = type == PCI_multimedia
1890 					&& (subType == PCI_audio || subType == PCI_hd_audio);
1891 			} else if (!strcmp(devicePath, "net")) {
1892 				matches = type == PCI_network;
1893 			} else if (!strcmp(devicePath, "graphics")) {
1894 				matches = type == PCI_display;
1895 			} else if (!strcmp(devicePath, "video")) {
1896 				matches = type == PCI_multimedia && subType == PCI_video;
1897 			}
1898 		} else {
1899 			// This driver does not support types, but still wants to its
1900 			// children explored on demand only.
1901 			matches = true;
1902 			sGenericContextPath = devicePath;
1903 		}
1904 
1905 		if (matches) {
1906 			fLastUpdateCycle = updateCycle;
1907 				// This node will be probed in this update cycle
1908 
1909 			status = _Probe();
1910 
1911 			sGenericContextPath = NULL;
1912 			return status;
1913 		}
1914 
1915 		return B_OK;
1916 	}
1917 
1918 	NodeList::Iterator iterator = fChildren.GetIterator();
1919 	while (iterator.HasNext()) {
1920 		device_node* child = iterator.Next();
1921 
1922 		status = child->Probe(devicePath, updateCycle);
1923 		if (status != B_OK)
1924 			return status;
1925 	}
1926 
1927 	return B_OK;
1928 }
1929 
1930 
1931 status_t
1932 device_node::Reprobe()
1933 {
1934 	status_t status = InitDriver();
1935 	if (status < B_OK)
1936 		return status;
1937 
1938 	MethodDeleter<device_node, bool> uninit(this,
1939 		&device_node::UninitDriver);
1940 
1941 	// If this child has been probed already, probe it again
1942 	status = _Probe();
1943 	if (status != B_OK)
1944 		return status;
1945 
1946 	NodeList::Iterator iterator = fChildren.GetIterator();
1947 	while (iterator.HasNext()) {
1948 		device_node* child = iterator.Next();
1949 
1950 		status = child->Reprobe();
1951 		if (status != B_OK)
1952 			return status;
1953 	}
1954 
1955 	return B_OK;
1956 }
1957 
1958 
1959 status_t
1960 device_node::Rescan()
1961 {
1962 	status_t status = InitDriver();
1963 	if (status < B_OK)
1964 		return status;
1965 
1966 	MethodDeleter<device_node, bool> uninit(this,
1967 		&device_node::UninitDriver);
1968 
1969 	if (DriverModule()->rescan_child_devices != NULL) {
1970 		status = DriverModule()->rescan_child_devices(DriverData());
1971 		if (status != B_OK)
1972 			return status;
1973 	}
1974 
1975 	NodeList::Iterator iterator = fChildren.GetIterator();
1976 	while (iterator.HasNext()) {
1977 		device_node* child = iterator.Next();
1978 
1979 		status = child->Rescan();
1980 		if (status != B_OK)
1981 			return status;
1982 	}
1983 
1984 	return B_OK;
1985 }
1986 
1987 
1988 /*!	Uninitializes all temporary references to the driver. The registration
1989 	process keeps the driver initialized to optimize the startup procedure;
1990 	this function gives this reference away again.
1991 */
1992 void
1993 device_node::UninitUnusedDriver()
1994 {
1995 	// First, we need to go to the leaf, and go back from there
1996 
1997 	NodeList::Iterator iterator = fChildren.GetIterator();
1998 	while (iterator.HasNext()) {
1999 		device_node* child = iterator.Next();
2000 
2001 		child->UninitUnusedDriver();
2002 	}
2003 
2004 	if (!IsInitialized()
2005 		|| (fFlags & NODE_FLAG_REGISTER_INITIALIZED) == 0)
2006 		return;
2007 
2008 	fFlags &= ~NODE_FLAG_REGISTER_INITIALIZED;
2009 
2010 	UninitDriver();
2011 }
2012 
2013 
2014 /*!	Calls device_removed() on this node and all of its children - starting
2015 	with the deepest and last child.
2016 	It will also remove the one reference that every node gets on its creation.
2017 */
2018 void
2019 device_node::DeviceRemoved()
2020 {
2021 	// notify children
2022 	NodeList::ConstIterator iterator = Children().GetIterator();
2023 	while (iterator.HasNext()) {
2024 		device_node* child = iterator.Next();
2025 
2026 		child->DeviceRemoved();
2027 	}
2028 
2029 	// notify devices
2030 	DeviceList::ConstIterator deviceIterator = Devices().GetIterator();
2031 	while (deviceIterator.HasNext()) {
2032 		Device* device = deviceIterator.Next();
2033 
2034 		if (device->Module() != NULL
2035 			&& device->Module()->device_removed != NULL)
2036 			device->Module()->device_removed(device->Data());
2037 	}
2038 
2039 	fFlags |= NODE_FLAG_DEVICE_REMOVED;
2040 
2041 	if (IsInitialized() && DriverModule()->device_removed != NULL)
2042 		DriverModule()->device_removed(this);
2043 
2044 	if ((fFlags & B_KEEP_DRIVER_LOADED) != 0) {
2045 		// There is no point in keeping this driver loaded when its device
2046 		// is gone
2047 		UninitDriver();
2048 	}
2049 
2050 	UninitUnusedDriver();
2051 	Release();
2052 }
2053 
2054 
2055 void
2056 device_node::Acquire()
2057 {
2058 	atomic_add(&fRefCount, 1);
2059 }
2060 
2061 
2062 bool
2063 device_node::Release()
2064 {
2065 	if (atomic_add(&fRefCount, -1) > 1)
2066 		return false;
2067 
2068 	delete this;
2069 	return true;
2070 }
2071 
2072 
2073 void
2074 device_node::AddDevice(Device* device)
2075 {
2076 	fDevices.Add(device);
2077 }
2078 
2079 
2080 void
2081 device_node::RemoveDevice(Device* device)
2082 {
2083 	fDevices.Remove(device);
2084 }
2085 
2086 
2087 int
2088 device_node::CompareTo(const device_attr* attributes) const
2089 {
2090 	if (attributes == NULL)
2091 		return -1;
2092 
2093 	for (; attributes->name != NULL; attributes++) {
2094 		// find corresponding attribute
2095 		AttributeList::ConstIterator iterator = Attributes().GetIterator();
2096 		device_attr_private* attr = NULL;
2097 		bool found = false;
2098 
2099 		while (iterator.HasNext()) {
2100 			attr = iterator.Next();
2101 
2102 			if (!strcmp(attr->name, attributes->name)) {
2103 				found = true;
2104 				break;
2105 			}
2106 		}
2107 		if (!found)
2108 			return -1;
2109 
2110 		int compare = device_attr_private::Compare(attr, attributes);
2111 		if (compare != 0)
2112 			return compare;
2113 	}
2114 
2115 	return 0;
2116 }
2117 
2118 
2119 device_node*
2120 device_node::FindChild(const device_attr* attributes) const
2121 {
2122 	if (attributes == NULL)
2123 		return NULL;
2124 
2125 	NodeList::ConstIterator iterator = Children().GetIterator();
2126 	while (iterator.HasNext()) {
2127 		device_node* child = iterator.Next();
2128 
2129 		// ignore nodes that are pending to be removed
2130 		if ((child->Flags() & NODE_FLAG_DEVICE_REMOVED) == 0
2131 			&& !child->CompareTo(attributes))
2132 			return child;
2133 	}
2134 
2135 	return NULL;
2136 }
2137 
2138 
2139 device_node*
2140 device_node::FindChild(const char* moduleName) const
2141 {
2142 	if (moduleName == NULL)
2143 		return NULL;
2144 
2145 	NodeList::ConstIterator iterator = Children().GetIterator();
2146 	while (iterator.HasNext()) {
2147 		device_node* child = iterator.Next();
2148 
2149 		if (!strcmp(child->ModuleName(), moduleName))
2150 			return child;
2151 	}
2152 
2153 	return NULL;
2154 }
2155 
2156 
2157 /*!	This returns the priority or importance of this node. Nodes with higher
2158 	priority are registered/probed first.
2159 	Currently, only the B_FIND_MULTIPLE_CHILDREN flag alters the priority;
2160 	it might make sense to be able to directly set the priority via an
2161 	attribute.
2162 */
2163 int32
2164 device_node::Priority()
2165 {
2166 	return (fFlags & B_FIND_MULTIPLE_CHILDREN) != 0 ? 0 : 100;
2167 }
2168 
2169 
2170 void
2171 device_node::Dump(int32 level)
2172 {
2173 	put_level(level);
2174 	kprintf("(%" B_PRId32 ") @%p \"%s\" (ref %" B_PRId32 ", init %" B_PRId32
2175 		", module %p, data %p)\n", level, this, ModuleName(), fRefCount,
2176 		fInitialized, DriverModule(), DriverData());
2177 
2178 	AttributeList::Iterator attribute = Attributes().GetIterator();
2179 	while (attribute.HasNext()) {
2180 		dump_attribute(attribute.Next(), level);
2181 	}
2182 
2183 	DeviceList::Iterator deviceIterator = fDevices.GetIterator();
2184 	while (deviceIterator.HasNext()) {
2185 		Device* device = deviceIterator.Next();
2186 		put_level(level);
2187 		kprintf("device: %s, %p\n", device->ModuleName(), device->Data());
2188 	}
2189 
2190 	NodeList::ConstIterator iterator = Children().GetIterator();
2191 	while (iterator.HasNext()) {
2192 		iterator.Next()->Dump(level + 1);
2193 	}
2194 }
2195 
2196 
2197 //	#pragma mark - root node
2198 
2199 
2200 static void
2201 init_node_tree(void)
2202 {
2203 	device_attr attrs[] = {
2204 		{B_DEVICE_PRETTY_NAME, B_STRING_TYPE, {string: "Devices Root"}},
2205 		{B_DEVICE_BUS, B_STRING_TYPE, {string: "root"}},
2206 		{B_DEVICE_FLAGS, B_UINT32_TYPE,
2207 			{ui32: B_FIND_MULTIPLE_CHILDREN | B_KEEP_DRIVER_LOADED }},
2208 		{NULL}
2209 	};
2210 
2211 	device_node* node;
2212 	if (register_node(NULL, DEVICE_MANAGER_ROOT_NAME, attrs, NULL, &node)
2213 			!= B_OK) {
2214 		dprintf("Cannot register Devices Root Node\n");
2215 	}
2216 
2217 	device_attr genericAttrs[] = {
2218 		{B_DEVICE_PRETTY_NAME, B_STRING_TYPE, {string: "Generic"}},
2219 		{B_DEVICE_BUS, B_STRING_TYPE, {string: "generic"}},
2220 		{B_DEVICE_FLAGS, B_UINT32_TYPE, {ui32: B_FIND_MULTIPLE_CHILDREN
2221 			| B_KEEP_DRIVER_LOADED | B_FIND_CHILD_ON_DEMAND}},
2222 		{NULL}
2223 	};
2224 
2225 	if (register_node(node, DEVICE_MANAGER_GENERIC_NAME, genericAttrs, NULL,
2226 			NULL) != B_OK) {
2227 		dprintf("Cannot register Generic Devices Node\n");
2228 	}
2229 }
2230 
2231 
2232 driver_module_info gDeviceRootModule = {
2233 	{
2234 		DEVICE_MANAGER_ROOT_NAME,
2235 		0,
2236 		NULL,
2237 	},
2238 };
2239 
2240 
2241 driver_module_info gDeviceGenericModule = {
2242 	{
2243 		DEVICE_MANAGER_GENERIC_NAME,
2244 		0,
2245 		NULL,
2246 	},
2247 	NULL
2248 };
2249 
2250 
2251 //	#pragma mark - private kernel API
2252 
2253 
2254 status_t
2255 device_manager_probe(const char* path, uint32 updateCycle)
2256 {
2257 	TRACE(("device_manager_probe(\"%s\")\n", path));
2258 	RecursiveLocker _(sLock);
2259 
2260 	// first, publish directories in the driver directory
2261 	publish_directories(path);
2262 
2263 	return sRootNode->Probe(path, updateCycle);
2264 }
2265 
2266 
2267 status_t
2268 device_manager_init(struct kernel_args* args)
2269 {
2270 	TRACE(("device manager init\n"));
2271 
2272 	IOSchedulerRoster::Init();
2273 
2274 	dm_init_id_generator();
2275 	dm_init_io_resources();
2276 
2277 	recursive_lock_init(&sLock, "device manager");
2278 	init_node_tree();
2279 
2280 	register_generic_syscall(DEVICE_MANAGER_SYSCALLS, control_device_manager,
2281 		1, 0);
2282 
2283 	add_debugger_command("dm_tree", &dump_device_nodes,
2284 		"dump device node tree");
2285 	add_debugger_command_etc("io_scheduler", &dump_io_scheduler,
2286 		"Dump an I/O scheduler",
2287 		"<scheduler>\n"
2288 		"Dumps I/O scheduler at address <scheduler>.\n", 0);
2289 	add_debugger_command_etc("io_request_owner", &dump_io_request_owner,
2290 		"Dump an I/O request owner",
2291 		"<owner>\n"
2292 		"Dumps I/O request owner at address <owner>.\n", 0);
2293 	add_debugger_command("io_request", &dump_io_request, "dump an I/O request");
2294 	add_debugger_command("io_operation", &dump_io_operation,
2295 		"dump an I/O operation");
2296 	add_debugger_command("io_buffer", &dump_io_buffer, "dump an I/O buffer");
2297 	add_debugger_command("dma_buffer", &dump_dma_buffer, "dump a DMA buffer");
2298 	return B_OK;
2299 }
2300 
2301 
2302 status_t
2303 device_manager_init_post_modules(struct kernel_args* args)
2304 {
2305 	RecursiveLocker _(sLock);
2306 	return sRootNode->Reprobe();
2307 }
2308 
2309