xref: /haiku/src/system/kernel/arch/x86/arch_cpu.cpp (revision 233c0ffd47ac0e32caa336846541fc7064b2a192)
1 /*
2  * Copyright 2018, Jérôme Duval, jerome.duval@gmail.com.
3  * Copyright 2002-2010, Axel Dörfler, axeld@pinc-software.de.
4  * Copyright 2013, Paweł Dziepak, pdziepak@quarnos.org.
5  * Copyright 2012, Alex Smith, alex@alex-smith.me.uk.
6  * Distributed under the terms of the MIT License.
7  *
8  * Copyright 2001-2002, Travis Geiselbrecht. All rights reserved.
9  * Distributed under the terms of the NewOS License.
10  */
11 
12 
13 #include <cpu.h>
14 
15 #include <string.h>
16 #include <stdlib.h>
17 #include <stdio.h>
18 
19 #include <algorithm>
20 
21 #include <ACPI.h>
22 
23 #include <boot_device.h>
24 #include <commpage.h>
25 #include <debug.h>
26 #include <elf.h>
27 #include <safemode.h>
28 #include <smp.h>
29 #include <util/BitUtils.h>
30 #include <vm/vm.h>
31 #include <vm/vm_types.h>
32 #include <vm/VMAddressSpace.h>
33 
34 #include <arch_system_info.h>
35 #include <arch/x86/apic.h>
36 #include <boot/kernel_args.h>
37 
38 #include "paging/X86PagingStructures.h"
39 #include "paging/X86VMTranslationMap.h"
40 
41 
42 #define DUMP_FEATURE_STRING	1
43 #define DUMP_CPU_TOPOLOGY	1
44 #define DUMP_CPU_PATCHLEVEL	1
45 
46 
47 /* cpu vendor info */
48 struct cpu_vendor_info {
49 	const char *vendor;
50 	const char *ident_string[2];
51 };
52 
53 static const struct cpu_vendor_info vendor_info[VENDOR_NUM] = {
54 	{ "Intel", { "GenuineIntel" } },
55 	{ "AMD", { "AuthenticAMD" } },
56 	{ "Cyrix", { "CyrixInstead" } },
57 	{ "UMC", { "UMC UMC UMC" } },
58 	{ "NexGen", { "NexGenDriven" } },
59 	{ "Centaur", { "CentaurHauls" } },
60 	{ "Rise", { "RiseRiseRise" } },
61 	{ "Transmeta", { "GenuineTMx86", "TransmetaCPU" } },
62 	{ "NSC", { "Geode by NSC" } },
63 	{ "Hygon", { "HygonGenuine" } },
64 };
65 
66 #define K8_SMIONCMPHALT			(1ULL << 27)
67 #define K8_C1EONCMPHALT			(1ULL << 28)
68 
69 #define K8_CMPHALT				(K8_SMIONCMPHALT | K8_C1EONCMPHALT)
70 
71 struct set_mtrr_parameter {
72 	int32	index;
73 	uint64	base;
74 	uint64	length;
75 	uint8	type;
76 };
77 
78 struct set_mtrrs_parameter {
79 	const x86_mtrr_info*	infos;
80 	uint32					count;
81 	uint8					defaultType;
82 };
83 
84 
85 #ifdef __x86_64__
86 extern addr_t _stac;
87 extern addr_t _clac;
88 extern addr_t _xsave;
89 extern addr_t _xsavec;
90 extern addr_t _xrstor;
91 uint64 gXsaveMask;
92 uint64 gFPUSaveLength = 512;
93 bool gHasXsave = false;
94 bool gHasXsavec = false;
95 #endif
96 
97 extern "C" void x86_reboot(void);
98 	// from arch.S
99 
100 void (*gCpuIdleFunc)(void);
101 #ifndef __x86_64__
102 void (*gX86SwapFPUFunc)(void* oldState, const void* newState) = x86_noop_swap;
103 bool gHasSSE = false;
104 #endif
105 
106 static uint32 sCpuRendezvous;
107 static uint32 sCpuRendezvous2;
108 static uint32 sCpuRendezvous3;
109 static vint32 sTSCSyncRendezvous;
110 
111 /* Some specials for the double fault handler */
112 static uint8* sDoubleFaultStacks;
113 static const size_t kDoubleFaultStackSize = 4096;	// size per CPU
114 
115 static x86_cpu_module_info* sCpuModule;
116 
117 
118 /* CPU topology information */
119 static uint32 (*sGetCPUTopologyID)(int currentCPU);
120 static uint32 sHierarchyMask[CPU_TOPOLOGY_LEVELS];
121 static uint32 sHierarchyShift[CPU_TOPOLOGY_LEVELS];
122 
123 /* Cache topology information */
124 static uint32 sCacheSharingMask[CPU_MAX_CACHE_LEVEL];
125 
126 static void* sUcodeData = NULL;
127 static size_t sUcodeDataSize = 0;
128 static struct intel_microcode_header* sLoadedUcodeUpdate;
129 static spinlock sUcodeUpdateLock = B_SPINLOCK_INITIALIZER;
130 
131 
132 static status_t
133 acpi_shutdown(bool rebootSystem)
134 {
135 	if (debug_debugger_running() || !are_interrupts_enabled())
136 		return B_ERROR;
137 
138 	acpi_module_info* acpi;
139 	if (get_module(B_ACPI_MODULE_NAME, (module_info**)&acpi) != B_OK)
140 		return B_NOT_SUPPORTED;
141 
142 	status_t status;
143 	if (rebootSystem) {
144 		status = acpi->reboot();
145 	} else {
146 		status = acpi->prepare_sleep_state(ACPI_POWER_STATE_OFF, NULL, 0);
147 		if (status == B_OK) {
148 			//cpu_status state = disable_interrupts();
149 			status = acpi->enter_sleep_state(ACPI_POWER_STATE_OFF);
150 			//restore_interrupts(state);
151 		}
152 	}
153 
154 	put_module(B_ACPI_MODULE_NAME);
155 	return status;
156 }
157 
158 
159 /*!	Disable CPU caches, and invalidate them. */
160 static void
161 disable_caches()
162 {
163 	x86_write_cr0((x86_read_cr0() | CR0_CACHE_DISABLE)
164 		& ~CR0_NOT_WRITE_THROUGH);
165 	wbinvd();
166 	arch_cpu_global_TLB_invalidate();
167 }
168 
169 
170 /*!	Invalidate CPU caches, and enable them. */
171 static void
172 enable_caches()
173 {
174 	wbinvd();
175 	arch_cpu_global_TLB_invalidate();
176 	x86_write_cr0(x86_read_cr0()
177 		& ~(CR0_CACHE_DISABLE | CR0_NOT_WRITE_THROUGH));
178 }
179 
180 
181 static void
182 set_mtrr(void* _parameter, int cpu)
183 {
184 	struct set_mtrr_parameter* parameter
185 		= (struct set_mtrr_parameter*)_parameter;
186 
187 	// wait until all CPUs have arrived here
188 	smp_cpu_rendezvous(&sCpuRendezvous);
189 
190 	// One CPU has to reset sCpuRendezvous3 -- it is needed to prevent the CPU
191 	// that initiated the call_all_cpus() from doing that again and clearing
192 	// sCpuRendezvous2 before the last CPU has actually left the loop in
193 	// smp_cpu_rendezvous();
194 	if (cpu == 0)
195 		atomic_set((int32*)&sCpuRendezvous3, 0);
196 
197 	disable_caches();
198 
199 	sCpuModule->set_mtrr(parameter->index, parameter->base, parameter->length,
200 		parameter->type);
201 
202 	enable_caches();
203 
204 	// wait until all CPUs have arrived here
205 	smp_cpu_rendezvous(&sCpuRendezvous2);
206 	smp_cpu_rendezvous(&sCpuRendezvous3);
207 }
208 
209 
210 static void
211 set_mtrrs(void* _parameter, int cpu)
212 {
213 	set_mtrrs_parameter* parameter = (set_mtrrs_parameter*)_parameter;
214 
215 	// wait until all CPUs have arrived here
216 	smp_cpu_rendezvous(&sCpuRendezvous);
217 
218 	// One CPU has to reset sCpuRendezvous3 -- it is needed to prevent the CPU
219 	// that initiated the call_all_cpus() from doing that again and clearing
220 	// sCpuRendezvous2 before the last CPU has actually left the loop in
221 	// smp_cpu_rendezvous();
222 	if (cpu == 0)
223 		atomic_set((int32*)&sCpuRendezvous3, 0);
224 
225 	disable_caches();
226 
227 	sCpuModule->set_mtrrs(parameter->defaultType, parameter->infos,
228 		parameter->count);
229 
230 	enable_caches();
231 
232 	// wait until all CPUs have arrived here
233 	smp_cpu_rendezvous(&sCpuRendezvous2);
234 	smp_cpu_rendezvous(&sCpuRendezvous3);
235 }
236 
237 
238 static void
239 init_mtrrs(void* _unused, int cpu)
240 {
241 	// wait until all CPUs have arrived here
242 	smp_cpu_rendezvous(&sCpuRendezvous);
243 
244 	// One CPU has to reset sCpuRendezvous3 -- it is needed to prevent the CPU
245 	// that initiated the call_all_cpus() from doing that again and clearing
246 	// sCpuRendezvous2 before the last CPU has actually left the loop in
247 	// smp_cpu_rendezvous();
248 	if (cpu == 0)
249 		atomic_set((int32*)&sCpuRendezvous3, 0);
250 
251 	disable_caches();
252 
253 	sCpuModule->init_mtrrs();
254 
255 	enable_caches();
256 
257 	// wait until all CPUs have arrived here
258 	smp_cpu_rendezvous(&sCpuRendezvous2);
259 	smp_cpu_rendezvous(&sCpuRendezvous3);
260 }
261 
262 
263 uint32
264 x86_count_mtrrs(void)
265 {
266 	if (sCpuModule == NULL)
267 		return 0;
268 
269 	return sCpuModule->count_mtrrs();
270 }
271 
272 
273 void
274 x86_set_mtrr(uint32 index, uint64 base, uint64 length, uint8 type)
275 {
276 	struct set_mtrr_parameter parameter;
277 	parameter.index = index;
278 	parameter.base = base;
279 	parameter.length = length;
280 	parameter.type = type;
281 
282 	sCpuRendezvous = sCpuRendezvous2 = 0;
283 	call_all_cpus(&set_mtrr, &parameter);
284 }
285 
286 
287 status_t
288 x86_get_mtrr(uint32 index, uint64* _base, uint64* _length, uint8* _type)
289 {
290 	// the MTRRs are identical on all CPUs, so it doesn't matter
291 	// on which CPU this runs
292 	return sCpuModule->get_mtrr(index, _base, _length, _type);
293 }
294 
295 
296 void
297 x86_set_mtrrs(uint8 defaultType, const x86_mtrr_info* infos, uint32 count)
298 {
299 	if (sCpuModule == NULL)
300 		return;
301 
302 	struct set_mtrrs_parameter parameter;
303 	parameter.defaultType = defaultType;
304 	parameter.infos = infos;
305 	parameter.count = count;
306 
307 	sCpuRendezvous = sCpuRendezvous2 = 0;
308 	call_all_cpus(&set_mtrrs, &parameter);
309 }
310 
311 
312 void
313 x86_init_fpu(void)
314 {
315 	// All x86_64 CPUs support SSE, don't need to bother checking for it.
316 #ifndef __x86_64__
317 	if (!x86_check_feature(IA32_FEATURE_FPU, FEATURE_COMMON)) {
318 		// No FPU... time to install one in your 386?
319 		dprintf("%s: Warning: CPU has no reported FPU.\n", __func__);
320 		gX86SwapFPUFunc = x86_noop_swap;
321 		return;
322 	}
323 
324 	if (!x86_check_feature(IA32_FEATURE_SSE, FEATURE_COMMON)
325 		|| !x86_check_feature(IA32_FEATURE_FXSR, FEATURE_COMMON)) {
326 		dprintf("%s: CPU has no SSE... just enabling FPU.\n", __func__);
327 		// we don't have proper SSE support, just enable FPU
328 		x86_write_cr0(x86_read_cr0() & ~(CR0_FPU_EMULATION | CR0_MONITOR_FPU));
329 		gX86SwapFPUFunc = x86_fnsave_swap;
330 		return;
331 	}
332 #endif
333 
334 	dprintf("%s: CPU has SSE... enabling FXSR and XMM.\n", __func__);
335 #ifndef __x86_64__
336 	// enable OS support for SSE
337 	x86_write_cr4(x86_read_cr4() | CR4_OS_FXSR | CR4_OS_XMM_EXCEPTION);
338 	x86_write_cr0(x86_read_cr0() & ~(CR0_FPU_EMULATION | CR0_MONITOR_FPU));
339 
340 	gX86SwapFPUFunc = x86_fxsave_swap;
341 	gHasSSE = true;
342 #endif
343 }
344 
345 
346 #if DUMP_FEATURE_STRING
347 static void
348 dump_feature_string(int currentCPU, cpu_ent* cpu)
349 {
350 	char features[512];
351 	features[0] = 0;
352 
353 	if (cpu->arch.feature[FEATURE_COMMON] & IA32_FEATURE_FPU)
354 		strlcat(features, "fpu ", sizeof(features));
355 	if (cpu->arch.feature[FEATURE_COMMON] & IA32_FEATURE_VME)
356 		strlcat(features, "vme ", sizeof(features));
357 	if (cpu->arch.feature[FEATURE_COMMON] & IA32_FEATURE_DE)
358 		strlcat(features, "de ", sizeof(features));
359 	if (cpu->arch.feature[FEATURE_COMMON] & IA32_FEATURE_PSE)
360 		strlcat(features, "pse ", sizeof(features));
361 	if (cpu->arch.feature[FEATURE_COMMON] & IA32_FEATURE_TSC)
362 		strlcat(features, "tsc ", sizeof(features));
363 	if (cpu->arch.feature[FEATURE_COMMON] & IA32_FEATURE_MSR)
364 		strlcat(features, "msr ", sizeof(features));
365 	if (cpu->arch.feature[FEATURE_COMMON] & IA32_FEATURE_PAE)
366 		strlcat(features, "pae ", sizeof(features));
367 	if (cpu->arch.feature[FEATURE_COMMON] & IA32_FEATURE_MCE)
368 		strlcat(features, "mce ", sizeof(features));
369 	if (cpu->arch.feature[FEATURE_COMMON] & IA32_FEATURE_CX8)
370 		strlcat(features, "cx8 ", sizeof(features));
371 	if (cpu->arch.feature[FEATURE_COMMON] & IA32_FEATURE_APIC)
372 		strlcat(features, "apic ", sizeof(features));
373 	if (cpu->arch.feature[FEATURE_COMMON] & IA32_FEATURE_SEP)
374 		strlcat(features, "sep ", sizeof(features));
375 	if (cpu->arch.feature[FEATURE_COMMON] & IA32_FEATURE_MTRR)
376 		strlcat(features, "mtrr ", sizeof(features));
377 	if (cpu->arch.feature[FEATURE_COMMON] & IA32_FEATURE_PGE)
378 		strlcat(features, "pge ", sizeof(features));
379 	if (cpu->arch.feature[FEATURE_COMMON] & IA32_FEATURE_MCA)
380 		strlcat(features, "mca ", sizeof(features));
381 	if (cpu->arch.feature[FEATURE_COMMON] & IA32_FEATURE_CMOV)
382 		strlcat(features, "cmov ", sizeof(features));
383 	if (cpu->arch.feature[FEATURE_COMMON] & IA32_FEATURE_PAT)
384 		strlcat(features, "pat ", sizeof(features));
385 	if (cpu->arch.feature[FEATURE_COMMON] & IA32_FEATURE_PSE36)
386 		strlcat(features, "pse36 ", sizeof(features));
387 	if (cpu->arch.feature[FEATURE_COMMON] & IA32_FEATURE_PSN)
388 		strlcat(features, "psn ", sizeof(features));
389 	if (cpu->arch.feature[FEATURE_COMMON] & IA32_FEATURE_CLFSH)
390 		strlcat(features, "clfsh ", sizeof(features));
391 	if (cpu->arch.feature[FEATURE_COMMON] & IA32_FEATURE_DS)
392 		strlcat(features, "ds ", sizeof(features));
393 	if (cpu->arch.feature[FEATURE_COMMON] & IA32_FEATURE_ACPI)
394 		strlcat(features, "acpi ", sizeof(features));
395 	if (cpu->arch.feature[FEATURE_COMMON] & IA32_FEATURE_MMX)
396 		strlcat(features, "mmx ", sizeof(features));
397 	if (cpu->arch.feature[FEATURE_COMMON] & IA32_FEATURE_FXSR)
398 		strlcat(features, "fxsr ", sizeof(features));
399 	if (cpu->arch.feature[FEATURE_COMMON] & IA32_FEATURE_SSE)
400 		strlcat(features, "sse ", sizeof(features));
401 	if (cpu->arch.feature[FEATURE_COMMON] & IA32_FEATURE_SSE2)
402 		strlcat(features, "sse2 ", sizeof(features));
403 	if (cpu->arch.feature[FEATURE_COMMON] & IA32_FEATURE_SS)
404 		strlcat(features, "ss ", sizeof(features));
405 	if (cpu->arch.feature[FEATURE_COMMON] & IA32_FEATURE_HTT)
406 		strlcat(features, "htt ", sizeof(features));
407 	if (cpu->arch.feature[FEATURE_COMMON] & IA32_FEATURE_TM)
408 		strlcat(features, "tm ", sizeof(features));
409 	if (cpu->arch.feature[FEATURE_COMMON] & IA32_FEATURE_PBE)
410 		strlcat(features, "pbe ", sizeof(features));
411 	if (cpu->arch.feature[FEATURE_EXT] & IA32_FEATURE_EXT_SSE3)
412 		strlcat(features, "sse3 ", sizeof(features));
413 	if (cpu->arch.feature[FEATURE_EXT] & IA32_FEATURE_EXT_PCLMULQDQ)
414 		strlcat(features, "pclmulqdq ", sizeof(features));
415 	if (cpu->arch.feature[FEATURE_EXT] & IA32_FEATURE_EXT_DTES64)
416 		strlcat(features, "dtes64 ", sizeof(features));
417 	if (cpu->arch.feature[FEATURE_EXT] & IA32_FEATURE_EXT_MONITOR)
418 		strlcat(features, "monitor ", sizeof(features));
419 	if (cpu->arch.feature[FEATURE_EXT] & IA32_FEATURE_EXT_DSCPL)
420 		strlcat(features, "dscpl ", sizeof(features));
421 	if (cpu->arch.feature[FEATURE_EXT] & IA32_FEATURE_EXT_VMX)
422 		strlcat(features, "vmx ", sizeof(features));
423 	if (cpu->arch.feature[FEATURE_EXT] & IA32_FEATURE_EXT_SMX)
424 		strlcat(features, "smx ", sizeof(features));
425 	if (cpu->arch.feature[FEATURE_EXT] & IA32_FEATURE_EXT_EST)
426 		strlcat(features, "est ", sizeof(features));
427 	if (cpu->arch.feature[FEATURE_EXT] & IA32_FEATURE_EXT_TM2)
428 		strlcat(features, "tm2 ", sizeof(features));
429 	if (cpu->arch.feature[FEATURE_EXT] & IA32_FEATURE_EXT_SSSE3)
430 		strlcat(features, "ssse3 ", sizeof(features));
431 	if (cpu->arch.feature[FEATURE_EXT] & IA32_FEATURE_EXT_CNXTID)
432 		strlcat(features, "cnxtid ", sizeof(features));
433 	if (cpu->arch.feature[FEATURE_EXT] & IA32_FEATURE_EXT_FMA)
434 		strlcat(features, "fma ", sizeof(features));
435 	if (cpu->arch.feature[FEATURE_EXT] & IA32_FEATURE_EXT_CX16)
436 		strlcat(features, "cx16 ", sizeof(features));
437 	if (cpu->arch.feature[FEATURE_EXT] & IA32_FEATURE_EXT_XTPR)
438 		strlcat(features, "xtpr ", sizeof(features));
439 	if (cpu->arch.feature[FEATURE_EXT] & IA32_FEATURE_EXT_PDCM)
440 		strlcat(features, "pdcm ", sizeof(features));
441 	if (cpu->arch.feature[FEATURE_EXT] & IA32_FEATURE_EXT_PCID)
442 		strlcat(features, "pcid ", sizeof(features));
443 	if (cpu->arch.feature[FEATURE_EXT] & IA32_FEATURE_EXT_DCA)
444 		strlcat(features, "dca ", sizeof(features));
445 	if (cpu->arch.feature[FEATURE_EXT] & IA32_FEATURE_EXT_SSE4_1)
446 		strlcat(features, "sse4_1 ", sizeof(features));
447 	if (cpu->arch.feature[FEATURE_EXT] & IA32_FEATURE_EXT_SSE4_2)
448 		strlcat(features, "sse4_2 ", sizeof(features));
449 	if (cpu->arch.feature[FEATURE_EXT] & IA32_FEATURE_EXT_X2APIC)
450 		strlcat(features, "x2apic ", sizeof(features));
451 	if (cpu->arch.feature[FEATURE_EXT] & IA32_FEATURE_EXT_MOVBE)
452 		strlcat(features, "movbe ", sizeof(features));
453 	if (cpu->arch.feature[FEATURE_EXT] & IA32_FEATURE_EXT_POPCNT)
454 		strlcat(features, "popcnt ", sizeof(features));
455 	if (cpu->arch.feature[FEATURE_EXT] & IA32_FEATURE_EXT_TSCDEADLINE)
456 		strlcat(features, "tscdeadline ", sizeof(features));
457 	if (cpu->arch.feature[FEATURE_EXT] & IA32_FEATURE_EXT_AES)
458 		strlcat(features, "aes ", sizeof(features));
459 	if (cpu->arch.feature[FEATURE_EXT] & IA32_FEATURE_EXT_XSAVE)
460 		strlcat(features, "xsave ", sizeof(features));
461 	if (cpu->arch.feature[FEATURE_EXT] & IA32_FEATURE_EXT_OSXSAVE)
462 		strlcat(features, "osxsave ", sizeof(features));
463 	if (cpu->arch.feature[FEATURE_EXT] & IA32_FEATURE_EXT_AVX)
464 		strlcat(features, "avx ", sizeof(features));
465 	if (cpu->arch.feature[FEATURE_EXT] & IA32_FEATURE_EXT_F16C)
466 		strlcat(features, "f16c ", sizeof(features));
467 	if (cpu->arch.feature[FEATURE_EXT] & IA32_FEATURE_EXT_RDRND)
468 		strlcat(features, "rdrnd ", sizeof(features));
469 	if (cpu->arch.feature[FEATURE_EXT] & IA32_FEATURE_EXT_HYPERVISOR)
470 		strlcat(features, "hypervisor ", sizeof(features));
471 	if (cpu->arch.feature[FEATURE_EXT_AMD] & IA32_FEATURE_AMD_EXT_SYSCALL)
472 		strlcat(features, "syscall ", sizeof(features));
473 	if (cpu->arch.feature[FEATURE_EXT_AMD] & IA32_FEATURE_AMD_EXT_NX)
474 		strlcat(features, "nx ", sizeof(features));
475 	if (cpu->arch.feature[FEATURE_EXT_AMD] & IA32_FEATURE_AMD_EXT_MMXEXT)
476 		strlcat(features, "mmxext ", sizeof(features));
477 	if (cpu->arch.feature[FEATURE_EXT_AMD] & IA32_FEATURE_AMD_EXT_FFXSR)
478 		strlcat(features, "ffxsr ", sizeof(features));
479 	if (cpu->arch.feature[FEATURE_EXT_AMD] & IA32_FEATURE_AMD_EXT_PDPE1GB)
480 		strlcat(features, "pdpe1gb ", sizeof(features));
481 	if (cpu->arch.feature[FEATURE_EXT_AMD] & IA32_FEATURE_AMD_EXT_LONG)
482 		strlcat(features, "long ", sizeof(features));
483 	if (cpu->arch.feature[FEATURE_EXT_AMD] & IA32_FEATURE_AMD_EXT_3DNOWEXT)
484 		strlcat(features, "3dnowext ", sizeof(features));
485 	if (cpu->arch.feature[FEATURE_EXT_AMD] & IA32_FEATURE_AMD_EXT_3DNOW)
486 		strlcat(features, "3dnow ", sizeof(features));
487 	if (cpu->arch.feature[FEATURE_6_EAX] & IA32_FEATURE_DTS)
488 		strlcat(features, "dts ", sizeof(features));
489 	if (cpu->arch.feature[FEATURE_6_EAX] & IA32_FEATURE_ITB)
490 		strlcat(features, "itb ", sizeof(features));
491 	if (cpu->arch.feature[FEATURE_6_EAX] & IA32_FEATURE_ARAT)
492 		strlcat(features, "arat ", sizeof(features));
493 	if (cpu->arch.feature[FEATURE_6_EAX] & IA32_FEATURE_PLN)
494 		strlcat(features, "pln ", sizeof(features));
495 	if (cpu->arch.feature[FEATURE_6_EAX] & IA32_FEATURE_ECMD)
496 		strlcat(features, "ecmd ", sizeof(features));
497 	if (cpu->arch.feature[FEATURE_6_EAX] & IA32_FEATURE_PTM)
498 		strlcat(features, "ptm ", sizeof(features));
499 	if (cpu->arch.feature[FEATURE_6_EAX] & IA32_FEATURE_HWP)
500 		strlcat(features, "hwp ", sizeof(features));
501 	if (cpu->arch.feature[FEATURE_6_EAX] & IA32_FEATURE_HWP_NOTIFY)
502 		strlcat(features, "hwp_notify ", sizeof(features));
503 	if (cpu->arch.feature[FEATURE_6_EAX] & IA32_FEATURE_HWP_ACTWIN)
504 		strlcat(features, "hwp_actwin ", sizeof(features));
505 	if (cpu->arch.feature[FEATURE_6_EAX] & IA32_FEATURE_HWP_EPP)
506 		strlcat(features, "hwp_epp ", sizeof(features));
507 	if (cpu->arch.feature[FEATURE_6_EAX] & IA32_FEATURE_HWP_PLR)
508 		strlcat(features, "hwp_plr ", sizeof(features));
509 	if (cpu->arch.feature[FEATURE_6_EAX] & IA32_FEATURE_HDC)
510 		strlcat(features, "hdc ", sizeof(features));
511 	if (cpu->arch.feature[FEATURE_6_EAX] & IA32_FEATURE_TBMT3)
512 		strlcat(features, "tbmt3 ", sizeof(features));
513 	if (cpu->arch.feature[FEATURE_6_EAX] & IA32_FEATURE_HWP_CAP)
514 		strlcat(features, "hwp_cap ", sizeof(features));
515 	if (cpu->arch.feature[FEATURE_6_EAX] & IA32_FEATURE_HWP_PECI)
516 		strlcat(features, "hwp_peci ", sizeof(features));
517 	if (cpu->arch.feature[FEATURE_6_EAX] & IA32_FEATURE_HWP_FLEX)
518 		strlcat(features, "hwp_flex ", sizeof(features));
519 	if (cpu->arch.feature[FEATURE_6_EAX] & IA32_FEATURE_HWP_FAST)
520 		strlcat(features, "hwp_fast ", sizeof(features));
521 	if (cpu->arch.feature[FEATURE_6_EAX] & IA32_FEATURE_HW_FEEDBACK)
522 		strlcat(features, "hw_feedback ", sizeof(features));
523 	if (cpu->arch.feature[FEATURE_6_EAX] & IA32_FEATURE_HWP_IGNIDL)
524 		strlcat(features, "hwp_ignidl ", sizeof(features));
525 	if (cpu->arch.feature[FEATURE_6_ECX] & IA32_FEATURE_APERFMPERF)
526 		strlcat(features, "aperfmperf ", sizeof(features));
527 	if (cpu->arch.feature[FEATURE_6_ECX] & IA32_FEATURE_EPB)
528 		strlcat(features, "epb ", sizeof(features));
529 	if (cpu->arch.feature[FEATURE_7_EBX] & IA32_FEATURE_TSC_ADJUST)
530 		strlcat(features, "tsc_adjust ", sizeof(features));
531 	if (cpu->arch.feature[FEATURE_7_EBX] & IA32_FEATURE_SGX)
532 		strlcat(features, "sgx ", sizeof(features));
533 	if (cpu->arch.feature[FEATURE_7_EBX] & IA32_FEATURE_BMI1)
534 		strlcat(features, "bmi1 ", sizeof(features));
535 	if (cpu->arch.feature[FEATURE_7_EBX] & IA32_FEATURE_HLE)
536 		strlcat(features, "hle ", sizeof(features));
537 	if (cpu->arch.feature[FEATURE_7_EBX] & IA32_FEATURE_AVX2)
538 		strlcat(features, "avx2 ", sizeof(features));
539 	if (cpu->arch.feature[FEATURE_7_EBX] & IA32_FEATURE_SMEP)
540 		strlcat(features, "smep ", sizeof(features));
541 	if (cpu->arch.feature[FEATURE_7_EBX] & IA32_FEATURE_BMI2)
542 		strlcat(features, "bmi2 ", sizeof(features));
543 	if (cpu->arch.feature[FEATURE_7_EBX] & IA32_FEATURE_ERMS)
544 		strlcat(features, "erms ", sizeof(features));
545 	if (cpu->arch.feature[FEATURE_7_EBX] & IA32_FEATURE_INVPCID)
546 		strlcat(features, "invpcid ", sizeof(features));
547 	if (cpu->arch.feature[FEATURE_7_EBX] & IA32_FEATURE_RTM)
548 		strlcat(features, "rtm ", sizeof(features));
549 	if (cpu->arch.feature[FEATURE_7_EBX] & IA32_FEATURE_CQM)
550 		strlcat(features, "cqm ", sizeof(features));
551 	if (cpu->arch.feature[FEATURE_7_EBX] & IA32_FEATURE_MPX)
552 		strlcat(features, "mpx ", sizeof(features));
553 	if (cpu->arch.feature[FEATURE_7_EBX] & IA32_FEATURE_RDT_A)
554 		strlcat(features, "rdt_a ", sizeof(features));
555 	if (cpu->arch.feature[FEATURE_7_EBX] & IA32_FEATURE_AVX512F)
556 		strlcat(features, "avx512f ", sizeof(features));
557 	if (cpu->arch.feature[FEATURE_7_EBX] & IA32_FEATURE_AVX512DQ)
558 		strlcat(features, "avx512dq ", sizeof(features));
559 	if (cpu->arch.feature[FEATURE_7_EBX] & IA32_FEATURE_RDSEED)
560 		strlcat(features, "rdseed ", sizeof(features));
561 	if (cpu->arch.feature[FEATURE_7_EBX] & IA32_FEATURE_ADX)
562 		strlcat(features, "adx ", sizeof(features));
563 	if (cpu->arch.feature[FEATURE_7_EBX] & IA32_FEATURE_SMAP)
564 		strlcat(features, "smap ", sizeof(features));
565 	if (cpu->arch.feature[FEATURE_7_EBX] & IA32_FEATURE_AVX512IFMA)
566 		strlcat(features, "avx512ifma ", sizeof(features));
567 	if (cpu->arch.feature[FEATURE_7_EBX] & IA32_FEATURE_PCOMMIT)
568 		strlcat(features, "pcommit ", sizeof(features));
569 	if (cpu->arch.feature[FEATURE_7_EBX] & IA32_FEATURE_CLFLUSHOPT)
570 		strlcat(features, "cflushopt ", sizeof(features));
571 	if (cpu->arch.feature[FEATURE_7_EBX] & IA32_FEATURE_CLWB)
572 		strlcat(features, "clwb ", sizeof(features));
573 	if (cpu->arch.feature[FEATURE_7_EBX] & IA32_FEATURE_INTEL_PT)
574 		strlcat(features, "intel_pt ", sizeof(features));
575 	if (cpu->arch.feature[FEATURE_7_EBX] & IA32_FEATURE_AVX512PF)
576 		strlcat(features, "avx512pf ", sizeof(features));
577 	if (cpu->arch.feature[FEATURE_7_EBX] & IA32_FEATURE_AVX512ER)
578 		strlcat(features, "avx512er ", sizeof(features));
579 	if (cpu->arch.feature[FEATURE_7_EBX] & IA32_FEATURE_AVX512CD)
580 		strlcat(features, "avx512cd ", sizeof(features));
581 	if (cpu->arch.feature[FEATURE_7_EBX] & IA32_FEATURE_SHA_NI)
582 		strlcat(features, "sha_ni ", sizeof(features));
583 	if (cpu->arch.feature[FEATURE_7_EBX] & IA32_FEATURE_AVX512BW)
584 		strlcat(features, "avx512bw ", sizeof(features));
585 	if (cpu->arch.feature[FEATURE_7_EBX] & IA32_FEATURE_AVX512VI)
586 		strlcat(features, "avx512vi ", sizeof(features));
587 	if (cpu->arch.feature[FEATURE_7_ECX] & IA32_FEATURE_AVX512VMBI)
588 		strlcat(features, "avx512vmbi ", sizeof(features));
589 	if (cpu->arch.feature[FEATURE_7_ECX] & IA32_FEATURE_UMIP)
590 		strlcat(features, "umip ", sizeof(features));
591 	if (cpu->arch.feature[FEATURE_7_ECX] & IA32_FEATURE_PKU)
592 		strlcat(features, "pku ", sizeof(features));
593 	if (cpu->arch.feature[FEATURE_7_ECX] & IA32_FEATURE_OSPKE)
594 		strlcat(features, "ospke ", sizeof(features));
595 	if (cpu->arch.feature[FEATURE_7_ECX] & IA32_FEATURE_AVX512VMBI2)
596 		strlcat(features, "avx512vmbi2 ", sizeof(features));
597 	if (cpu->arch.feature[FEATURE_7_ECX] & IA32_FEATURE_GFNI)
598 		strlcat(features, "gfni ", sizeof(features));
599 	if (cpu->arch.feature[FEATURE_7_ECX] & IA32_FEATURE_VAES)
600 		strlcat(features, "vaes ", sizeof(features));
601 	if (cpu->arch.feature[FEATURE_7_ECX] & IA32_FEATURE_VPCLMULQDQ)
602 		strlcat(features, "vpclmulqdq ", sizeof(features));
603 	if (cpu->arch.feature[FEATURE_7_ECX] & IA32_FEATURE_AVX512_VNNI)
604 		strlcat(features, "avx512vnni ", sizeof(features));
605 	if (cpu->arch.feature[FEATURE_7_ECX] & IA32_FEATURE_AVX512_BITALG)
606 		strlcat(features, "avx512bitalg ", sizeof(features));
607 	if (cpu->arch.feature[FEATURE_7_ECX] & IA32_FEATURE_AVX512_VPOPCNTDQ)
608 		strlcat(features, "avx512vpopcntdq ", sizeof(features));
609 	if (cpu->arch.feature[FEATURE_7_ECX] & IA32_FEATURE_LA57)
610 		strlcat(features, "la57 ", sizeof(features));
611 	if (cpu->arch.feature[FEATURE_7_ECX] & IA32_FEATURE_RDPID)
612 		strlcat(features, "rdpid ", sizeof(features));
613 	if (cpu->arch.feature[FEATURE_7_ECX] & IA32_FEATURE_SGX_LC)
614 		strlcat(features, "sgx_lc ", sizeof(features));
615 	if (cpu->arch.feature[FEATURE_7_EDX] & IA32_FEATURE_IBRS)
616 		strlcat(features, "ibrs ", sizeof(features));
617 	if (cpu->arch.feature[FEATURE_7_EDX] & IA32_FEATURE_STIBP)
618 		strlcat(features, "stibp ", sizeof(features));
619 	if (cpu->arch.feature[FEATURE_7_EDX] & IA32_FEATURE_L1D_FLUSH)
620 		strlcat(features, "l1d_flush ", sizeof(features));
621 	if (cpu->arch.feature[FEATURE_7_EDX] & IA32_FEATURE_ARCH_CAPABILITIES)
622 		strlcat(features, "msr_arch ", sizeof(features));
623 	if (cpu->arch.feature[FEATURE_7_EDX] & IA32_FEATURE_SSBD)
624 		strlcat(features, "ssbd ", sizeof(features));
625 	if (cpu->arch.feature[FEATURE_D_1_EAX] & IA32_FEATURE_XSAVEOPT)
626 		strlcat(features, "xsaveopt ", sizeof(features));
627 	if (cpu->arch.feature[FEATURE_D_1_EAX] & IA32_FEATURE_XSAVEC)
628 		strlcat(features, "xsavec ", sizeof(features));
629 	if (cpu->arch.feature[FEATURE_D_1_EAX] & IA32_FEATURE_XGETBV1)
630 		strlcat(features, "xgetbv1 ", sizeof(features));
631 	if (cpu->arch.feature[FEATURE_D_1_EAX] & IA32_FEATURE_XSAVES)
632 		strlcat(features, "xsaves ", sizeof(features));
633 	if (cpu->arch.feature[FEATURE_EXT_8_EBX] & IA32_FEATURE_CLZERO)
634 		strlcat(features, "clzero ", sizeof(features));
635 	if (cpu->arch.feature[FEATURE_EXT_8_EBX] & IA32_FEATURE_IBPB)
636 		strlcat(features, "ibpb ", sizeof(features));
637 	if (cpu->arch.feature[FEATURE_EXT_8_EBX] & IA32_FEATURE_AMD_SSBD)
638 		strlcat(features, "amd_ssbd ", sizeof(features));
639 	if (cpu->arch.feature[FEATURE_EXT_8_EBX] & IA32_FEATURE_VIRT_SSBD)
640 		strlcat(features, "virt_ssbd ", sizeof(features));
641 	if (cpu->arch.feature[FEATURE_EXT_8_EBX] & IA32_FEATURE_AMD_SSB_NO)
642 		strlcat(features, "amd_ssb_no ", sizeof(features));
643 	dprintf("CPU %d: features: %s\n", currentCPU, features);
644 }
645 #endif	// DUMP_FEATURE_STRING
646 
647 
648 static void
649 compute_cpu_hierarchy_masks(int maxLogicalID, int maxCoreID)
650 {
651 	ASSERT(maxLogicalID >= maxCoreID);
652 	const int kMaxSMTID = maxLogicalID / maxCoreID;
653 
654 	sHierarchyMask[CPU_TOPOLOGY_SMT] = kMaxSMTID - 1;
655 	sHierarchyShift[CPU_TOPOLOGY_SMT] = 0;
656 
657 	sHierarchyMask[CPU_TOPOLOGY_CORE] = (maxCoreID - 1) * kMaxSMTID;
658 	sHierarchyShift[CPU_TOPOLOGY_CORE]
659 		= count_set_bits(sHierarchyMask[CPU_TOPOLOGY_SMT]);
660 
661 	const uint32 kSinglePackageMask = sHierarchyMask[CPU_TOPOLOGY_SMT]
662 		| sHierarchyMask[CPU_TOPOLOGY_CORE];
663 	sHierarchyMask[CPU_TOPOLOGY_PACKAGE] = ~kSinglePackageMask;
664 	sHierarchyShift[CPU_TOPOLOGY_PACKAGE] = count_set_bits(kSinglePackageMask);
665 }
666 
667 
668 static uint32
669 get_cpu_legacy_initial_apic_id(int /* currentCPU */)
670 {
671 	cpuid_info cpuid;
672 	get_current_cpuid(&cpuid, 1, 0);
673 	return cpuid.regs.ebx >> 24;
674 }
675 
676 
677 static inline status_t
678 detect_amd_cpu_topology(uint32 maxBasicLeaf, uint32 maxExtendedLeaf)
679 {
680 	sGetCPUTopologyID = get_cpu_legacy_initial_apic_id;
681 
682 	cpuid_info cpuid;
683 	get_current_cpuid(&cpuid, 1, 0);
684 	int maxLogicalID = next_power_of_2((cpuid.regs.ebx >> 16) & 0xff);
685 
686 	int maxCoreID = 1;
687 	if (maxExtendedLeaf >= 0x80000008) {
688 		get_current_cpuid(&cpuid, 0x80000008, 0);
689 		maxCoreID = (cpuid.regs.ecx >> 12) & 0xf;
690 		if (maxCoreID != 0)
691 			maxCoreID = 1 << maxCoreID;
692 		else
693 			maxCoreID = next_power_of_2((cpuid.regs.edx & 0xf) + 1);
694 	}
695 
696 	if (maxExtendedLeaf >= 0x80000001) {
697 		get_current_cpuid(&cpuid, 0x80000001, 0);
698 		if (x86_check_feature(IA32_FEATURE_AMD_EXT_CMPLEGACY,
699 				FEATURE_EXT_AMD_ECX))
700 			maxCoreID = maxLogicalID;
701 	}
702 
703 	compute_cpu_hierarchy_masks(maxLogicalID, maxCoreID);
704 
705 	return B_OK;
706 }
707 
708 
709 static void
710 detect_amd_cache_topology(uint32 maxExtendedLeaf)
711 {
712 	if (!x86_check_feature(IA32_FEATURE_AMD_EXT_TOPOLOGY, FEATURE_EXT_AMD_ECX))
713 		return;
714 
715 	if (maxExtendedLeaf < 0x8000001d)
716 		return;
717 
718 	uint8 hierarchyLevels[CPU_MAX_CACHE_LEVEL];
719 	int maxCacheLevel = 0;
720 
721 	int currentLevel = 0;
722 	int cacheType;
723 	do {
724 		cpuid_info cpuid;
725 		get_current_cpuid(&cpuid, 0x8000001d, currentLevel);
726 
727 		cacheType = cpuid.regs.eax & 0x1f;
728 		if (cacheType == 0)
729 			break;
730 
731 		int cacheLevel = (cpuid.regs.eax >> 5) & 0x7;
732 		int coresCount = next_power_of_2(((cpuid.regs.eax >> 14) & 0x3f) + 1);
733 		hierarchyLevels[cacheLevel - 1]
734 			= coresCount * (sHierarchyMask[CPU_TOPOLOGY_SMT] + 1);
735 		maxCacheLevel = std::max(maxCacheLevel, cacheLevel);
736 
737 		currentLevel++;
738 	} while (true);
739 
740 	for (int i = 0; i < maxCacheLevel; i++)
741 		sCacheSharingMask[i] = ~uint32(hierarchyLevels[i] - 1);
742 	gCPUCacheLevelCount = maxCacheLevel;
743 }
744 
745 
746 static uint32
747 get_intel_cpu_initial_x2apic_id(int /* currentCPU */)
748 {
749 	cpuid_info cpuid;
750 	get_current_cpuid(&cpuid, 11, 0);
751 	return cpuid.regs.edx;
752 }
753 
754 
755 static inline status_t
756 detect_intel_cpu_topology_x2apic(uint32 maxBasicLeaf)
757 {
758 
759 	uint32 leaf = 0;
760 	cpuid_info cpuid;
761 	if (maxBasicLeaf >= 0x1f) {
762 		get_current_cpuid(&cpuid, 0x1f, 0);
763 		if (cpuid.regs.ebx != 0)
764 			leaf = 0x1f;
765 	}
766 	if (maxBasicLeaf >= 0xb && leaf == 0) {
767 		get_current_cpuid(&cpuid, 0xb, 0);
768 		if (cpuid.regs.ebx != 0)
769 			leaf = 0xb;
770 	}
771 	if (leaf == 0)
772 		return B_UNSUPPORTED;
773 
774 	uint8 hierarchyLevels[CPU_TOPOLOGY_LEVELS] = { 0 };
775 
776 	int currentLevel = 0;
777 	unsigned int levelsSet = 0;
778 	do {
779 		cpuid_info cpuid;
780 		get_current_cpuid(&cpuid, leaf, currentLevel++);
781 		int levelType = (cpuid.regs.ecx >> 8) & 0xff;
782 		int levelValue = cpuid.regs.eax & 0x1f;
783 
784 		if (levelType == 0)
785 			break;
786 
787 		switch (levelType) {
788 			case 1:	// SMT
789 				hierarchyLevels[CPU_TOPOLOGY_SMT] = levelValue;
790 				levelsSet |= 1;
791 				break;
792 			case 2:	// core
793 				hierarchyLevels[CPU_TOPOLOGY_CORE] = levelValue;
794 				levelsSet |= 2;
795 				break;
796 		}
797 
798 	} while (levelsSet != 3);
799 
800 	sGetCPUTopologyID = get_intel_cpu_initial_x2apic_id;
801 
802 	for (int i = 1; i < CPU_TOPOLOGY_LEVELS; i++) {
803 		if ((levelsSet & (1u << i)) != 0)
804 			continue;
805 		hierarchyLevels[i] = hierarchyLevels[i - 1];
806 	}
807 
808 	for (int i = 0; i < CPU_TOPOLOGY_LEVELS; i++) {
809 		uint32 mask = ~uint32(0);
810 		if (i < CPU_TOPOLOGY_LEVELS - 1)
811 			mask = (1u << hierarchyLevels[i]) - 1;
812 		if (i > 0)
813 			mask &= ~sHierarchyMask[i - 1];
814 		sHierarchyMask[i] = mask;
815 		sHierarchyShift[i] = i > 0 ? hierarchyLevels[i - 1] : 0;
816 	}
817 
818 	return B_OK;
819 }
820 
821 
822 static inline status_t
823 detect_intel_cpu_topology_legacy(uint32 maxBasicLeaf)
824 {
825 	sGetCPUTopologyID = get_cpu_legacy_initial_apic_id;
826 
827 	cpuid_info cpuid;
828 
829 	get_current_cpuid(&cpuid, 1, 0);
830 	int maxLogicalID = next_power_of_2((cpuid.regs.ebx >> 16) & 0xff);
831 
832 	int maxCoreID = 1;
833 	if (maxBasicLeaf >= 4) {
834 		get_current_cpuid(&cpuid, 4, 0);
835 		maxCoreID = next_power_of_2((cpuid.regs.eax >> 26) + 1);
836 	}
837 
838 	compute_cpu_hierarchy_masks(maxLogicalID, maxCoreID);
839 
840 	return B_OK;
841 }
842 
843 
844 static void
845 detect_intel_cache_topology(uint32 maxBasicLeaf)
846 {
847 	if (maxBasicLeaf < 4)
848 		return;
849 
850 	uint8 hierarchyLevels[CPU_MAX_CACHE_LEVEL];
851 	int maxCacheLevel = 0;
852 
853 	int currentLevel = 0;
854 	int cacheType;
855 	do {
856 		cpuid_info cpuid;
857 		get_current_cpuid(&cpuid, 4, currentLevel);
858 
859 		cacheType = cpuid.regs.eax & 0x1f;
860 		if (cacheType == 0)
861 			break;
862 
863 		int cacheLevel = (cpuid.regs.eax >> 5) & 0x7;
864 		hierarchyLevels[cacheLevel - 1]
865 			= next_power_of_2(((cpuid.regs.eax >> 14) & 0x3f) + 1);
866 		maxCacheLevel = std::max(maxCacheLevel, cacheLevel);
867 
868 		currentLevel++;
869 	} while (true);
870 
871 	for (int i = 0; i < maxCacheLevel; i++)
872 		sCacheSharingMask[i] = ~uint32(hierarchyLevels[i] - 1);
873 
874 	gCPUCacheLevelCount = maxCacheLevel;
875 }
876 
877 
878 static uint32
879 get_simple_cpu_topology_id(int currentCPU)
880 {
881 	return currentCPU;
882 }
883 
884 
885 static inline int
886 get_topology_level_id(uint32 id, cpu_topology_level level)
887 {
888 	ASSERT(level < CPU_TOPOLOGY_LEVELS);
889 	return (id & sHierarchyMask[level]) >> sHierarchyShift[level];
890 }
891 
892 
893 static void
894 detect_cpu_topology(int currentCPU, cpu_ent* cpu, uint32 maxBasicLeaf,
895 	uint32 maxExtendedLeaf)
896 {
897 	if (currentCPU == 0) {
898 		memset(sCacheSharingMask, 0xff, sizeof(sCacheSharingMask));
899 
900 		status_t result = B_UNSUPPORTED;
901 		if (x86_check_feature(IA32_FEATURE_HTT, FEATURE_COMMON)) {
902 			if (cpu->arch.vendor == VENDOR_AMD
903 				|| cpu->arch.vendor == VENDOR_HYGON) {
904 				result = detect_amd_cpu_topology(maxBasicLeaf, maxExtendedLeaf);
905 
906 				if (result == B_OK)
907 					detect_amd_cache_topology(maxExtendedLeaf);
908 			}
909 
910 			if (cpu->arch.vendor == VENDOR_INTEL) {
911 				result = detect_intel_cpu_topology_x2apic(maxBasicLeaf);
912 				if (result != B_OK)
913 					result = detect_intel_cpu_topology_legacy(maxBasicLeaf);
914 
915 				if (result == B_OK)
916 					detect_intel_cache_topology(maxBasicLeaf);
917 			}
918 		}
919 
920 		if (result != B_OK) {
921 			dprintf("No CPU topology information available.\n");
922 
923 			sGetCPUTopologyID = get_simple_cpu_topology_id;
924 
925 			sHierarchyMask[CPU_TOPOLOGY_PACKAGE] = ~uint32(0);
926 		}
927 	}
928 
929 	ASSERT(sGetCPUTopologyID != NULL);
930 	int topologyID = sGetCPUTopologyID(currentCPU);
931 	cpu->topology_id[CPU_TOPOLOGY_SMT]
932 		= get_topology_level_id(topologyID, CPU_TOPOLOGY_SMT);
933 	cpu->topology_id[CPU_TOPOLOGY_CORE]
934 		= get_topology_level_id(topologyID, CPU_TOPOLOGY_CORE);
935 	cpu->topology_id[CPU_TOPOLOGY_PACKAGE]
936 		= get_topology_level_id(topologyID, CPU_TOPOLOGY_PACKAGE);
937 
938 	unsigned int i;
939 	for (i = 0; i < gCPUCacheLevelCount; i++)
940 		cpu->cache_id[i] = topologyID & sCacheSharingMask[i];
941 	for (; i < CPU_MAX_CACHE_LEVEL; i++)
942 		cpu->cache_id[i] = -1;
943 
944 #if DUMP_CPU_TOPOLOGY
945 	dprintf("CPU %d: apic id %d, package %d, core %d, smt %d\n", currentCPU,
946 		topologyID, cpu->topology_id[CPU_TOPOLOGY_PACKAGE],
947 		cpu->topology_id[CPU_TOPOLOGY_CORE],
948 		cpu->topology_id[CPU_TOPOLOGY_SMT]);
949 
950 	if (gCPUCacheLevelCount > 0) {
951 		char cacheLevels[256];
952 		unsigned int offset = 0;
953 		for (i = 0; i < gCPUCacheLevelCount; i++) {
954 			offset += snprintf(cacheLevels + offset,
955 					sizeof(cacheLevels) - offset,
956 					" L%d id %d%s", i + 1, cpu->cache_id[i],
957 					i < gCPUCacheLevelCount - 1 ? "," : "");
958 
959 			if (offset >= sizeof(cacheLevels))
960 				break;
961 		}
962 
963 		dprintf("CPU %d: cache sharing:%s\n", currentCPU, cacheLevels);
964 	}
965 #endif
966 }
967 
968 
969 static void
970 detect_intel_patch_level(cpu_ent* cpu)
971 {
972 	if (cpu->arch.feature[FEATURE_EXT] & IA32_FEATURE_EXT_HYPERVISOR) {
973 		cpu->arch.patch_level = 0;
974 		return;
975 	}
976 
977 	x86_write_msr(IA32_MSR_UCODE_REV, 0);
978 	cpuid_info cpuid;
979 	get_current_cpuid(&cpuid, 1, 0);
980 
981 	uint64 value = x86_read_msr(IA32_MSR_UCODE_REV);
982 	cpu->arch.patch_level = value >> 32;
983 }
984 
985 
986 static void
987 detect_amd_patch_level(cpu_ent* cpu)
988 {
989 	if (cpu->arch.feature[FEATURE_EXT] & IA32_FEATURE_EXT_HYPERVISOR) {
990 		cpu->arch.patch_level = 0;
991 		return;
992 	}
993 
994 	uint64 value = x86_read_msr(IA32_MSR_UCODE_REV);
995 	cpu->arch.patch_level = value >> 32;
996 }
997 
998 
999 static struct intel_microcode_header*
1000 find_microcode_intel(addr_t data, size_t size, uint32 patchLevel)
1001 {
1002 	// 9.11.3 Processor Identification
1003 	cpuid_info cpuid;
1004 	get_current_cpuid(&cpuid, 1, 0);
1005 	uint32 signature = cpuid.regs.eax;
1006 	// 9.11.4 Platform Identification
1007 	uint64 platformBits = (x86_read_msr(IA32_MSR_PLATFORM_ID) >> 50) & 0x7;
1008 	uint64 mask = 1 << platformBits;
1009 
1010 	while (size > 0) {
1011 		if (size < sizeof(struct intel_microcode_header)) {
1012 			dprintf("find_microcode_intel update is too small for header\n");
1013 			break;
1014 		}
1015 		struct intel_microcode_header* header =
1016 			(struct intel_microcode_header*)data;
1017 
1018 		uint32 totalSize = header->total_size;
1019 		uint32 dataSize = header->data_size;
1020 		if (dataSize == 0) {
1021 			dataSize = 2000;
1022 			totalSize = sizeof(struct intel_microcode_header)
1023 				+ dataSize;
1024 		}
1025 		if (totalSize > size) {
1026 			dprintf("find_microcode_intel update is too small for data\n");
1027 			break;
1028 		}
1029 
1030 		uint32* dwords = (uint32*)data;
1031 		// prepare the next update
1032 		size -= totalSize;
1033 		data += totalSize;
1034 
1035 		if (header->loader_revision != 1) {
1036 			dprintf("find_microcode_intel incorrect loader version\n");
1037 			continue;
1038 		}
1039 		// 9.11.6 The microcode update data requires a 16-byte boundary
1040 		// alignment.
1041 		if (((addr_t)header % 16) != 0) {
1042 			dprintf("find_microcode_intel incorrect alignment\n");
1043 			continue;
1044 		}
1045 		uint32 sum = 0;
1046 		for (uint32 i = 0; i < totalSize / 4; i++) {
1047 			sum += dwords[i];
1048 		}
1049 		if (sum != 0) {
1050 			dprintf("find_microcode_intel incorrect checksum\n");
1051 			continue;
1052 		}
1053 		if (patchLevel > header->update_revision) {
1054 			dprintf("find_microcode_intel update_revision is lower\n");
1055 			continue;
1056 		}
1057 		if (signature == header->processor_signature
1058 			&& (mask & header->processor_flags) != 0) {
1059 			return header;
1060 		}
1061 		if (totalSize <= (sizeof(struct intel_microcode_header) + dataSize
1062 			+ sizeof(struct intel_microcode_extended_signature_header))) {
1063 			continue;
1064 		}
1065 		struct intel_microcode_extended_signature_header* extSigHeader =
1066 			(struct intel_microcode_extended_signature_header*)((addr_t)header
1067 				+ sizeof(struct intel_microcode_header) + dataSize);
1068 		struct intel_microcode_extended_signature* extended_signature =
1069 			(struct intel_microcode_extended_signature*)((addr_t)extSigHeader
1070 				+ sizeof(struct intel_microcode_extended_signature_header));
1071 		for (uint32 i = 0; i < extSigHeader->extended_signature_count; i++) {
1072 			if (signature == extended_signature[i].processor_signature
1073 				&& (mask & extended_signature[i].processor_flags) != 0)
1074 				return header;
1075 		}
1076 	}
1077 	return NULL;
1078 }
1079 
1080 
1081 static void
1082 load_microcode_intel(int currentCPU, cpu_ent* cpu)
1083 {
1084 	// serialize for HT cores
1085 	if (currentCPU != 0)
1086 		acquire_spinlock(&sUcodeUpdateLock);
1087 	detect_intel_patch_level(cpu);
1088 	uint32 revision = cpu->arch.patch_level;
1089 	struct intel_microcode_header* update = sLoadedUcodeUpdate;
1090 	if (update == NULL) {
1091 		update = find_microcode_intel((addr_t)sUcodeData, sUcodeDataSize,
1092 			revision);
1093 	}
1094 	if (update != NULL) {
1095 		addr_t data = (addr_t)update + sizeof(struct intel_microcode_header);
1096 		wbinvd();
1097 		x86_write_msr(IA32_MSR_UCODE_WRITE, data);
1098 		detect_intel_patch_level(cpu);
1099 		if (revision == cpu->arch.patch_level) {
1100 			dprintf("CPU %d: update failed\n", currentCPU);
1101 		} else {
1102 			if (sLoadedUcodeUpdate == NULL)
1103 				sLoadedUcodeUpdate = update;
1104 			dprintf("CPU %d: updated from revision %" B_PRIu32 " to %" B_PRIu32
1105 				"\n", currentCPU, revision, cpu->arch.patch_level);
1106 		}
1107 	} else {
1108 		dprintf("CPU %d: no update found\n", currentCPU);
1109 	}
1110 	if (currentCPU != 0)
1111 		release_spinlock(&sUcodeUpdateLock);
1112 }
1113 
1114 
1115 static void
1116 load_microcode_amd(int currentCPU, cpu_ent* cpu)
1117 {
1118 	dprintf("CPU %d: no update found\n", currentCPU);
1119 }
1120 
1121 
1122 static void
1123 load_microcode(int currentCPU)
1124 {
1125 	if (sUcodeData == NULL)
1126 		return;
1127 	cpu_ent* cpu = get_cpu_struct();
1128 	if ((cpu->arch.feature[FEATURE_EXT] & IA32_FEATURE_EXT_HYPERVISOR) != 0)
1129 		return;
1130 	if (cpu->arch.vendor == VENDOR_INTEL)
1131 		load_microcode_intel(currentCPU, cpu);
1132 	else if (cpu->arch.vendor == VENDOR_AMD)
1133 		load_microcode_amd(currentCPU, cpu);
1134 }
1135 
1136 
1137 static void
1138 detect_cpu(int currentCPU)
1139 {
1140 	cpu_ent* cpu = get_cpu_struct();
1141 	char vendorString[17];
1142 	cpuid_info cpuid;
1143 
1144 	// clear out the cpu info data
1145 	cpu->arch.vendor = VENDOR_UNKNOWN;
1146 	cpu->arch.vendor_name = "UNKNOWN VENDOR";
1147 	cpu->arch.feature[FEATURE_COMMON] = 0;
1148 	cpu->arch.feature[FEATURE_EXT] = 0;
1149 	cpu->arch.feature[FEATURE_EXT_AMD] = 0;
1150 	cpu->arch.feature[FEATURE_7_EBX] = 0;
1151 	cpu->arch.feature[FEATURE_7_ECX] = 0;
1152 	cpu->arch.feature[FEATURE_7_EDX] = 0;
1153 	cpu->arch.feature[FEATURE_D_1_EAX] = 0;
1154 	cpu->arch.model_name[0] = 0;
1155 
1156 	// print some fun data
1157 	get_current_cpuid(&cpuid, 0, 0);
1158 	uint32 maxBasicLeaf = cpuid.eax_0.max_eax;
1159 
1160 	// build the vendor string
1161 	memset(vendorString, 0, sizeof(vendorString));
1162 	memcpy(vendorString, cpuid.eax_0.vendor_id, sizeof(cpuid.eax_0.vendor_id));
1163 
1164 	// get the family, model, stepping
1165 	get_current_cpuid(&cpuid, 1, 0);
1166 	cpu->arch.type = cpuid.eax_1.type;
1167 	cpu->arch.family = cpuid.eax_1.family;
1168 	cpu->arch.extended_family = cpuid.eax_1.extended_family;
1169 	cpu->arch.model = cpuid.eax_1.model;
1170 	cpu->arch.extended_model = cpuid.eax_1.extended_model;
1171 	cpu->arch.stepping = cpuid.eax_1.stepping;
1172 	dprintf("CPU %d: type %d family %d extended_family %d model %d "
1173 		"extended_model %d stepping %d, string '%s'\n",
1174 		currentCPU, cpu->arch.type, cpu->arch.family,
1175 		cpu->arch.extended_family, cpu->arch.model,
1176 		cpu->arch.extended_model, cpu->arch.stepping, vendorString);
1177 
1178 	// figure out what vendor we have here
1179 
1180 	for (int32 i = 0; i < VENDOR_NUM; i++) {
1181 		if (vendor_info[i].ident_string[0]
1182 			&& !strcmp(vendorString, vendor_info[i].ident_string[0])) {
1183 			cpu->arch.vendor = (x86_vendors)i;
1184 			cpu->arch.vendor_name = vendor_info[i].vendor;
1185 			break;
1186 		}
1187 		if (vendor_info[i].ident_string[1]
1188 			&& !strcmp(vendorString, vendor_info[i].ident_string[1])) {
1189 			cpu->arch.vendor = (x86_vendors)i;
1190 			cpu->arch.vendor_name = vendor_info[i].vendor;
1191 			break;
1192 		}
1193 	}
1194 
1195 	// see if we can get the model name
1196 	get_current_cpuid(&cpuid, 0x80000000, 0);
1197 	uint32 maxExtendedLeaf = cpuid.eax_0.max_eax;
1198 	if (maxExtendedLeaf >= 0x80000004) {
1199 		// build the model string (need to swap ecx/edx data before copying)
1200 		unsigned int temp;
1201 		memset(cpu->arch.model_name, 0, sizeof(cpu->arch.model_name));
1202 
1203 		get_current_cpuid(&cpuid, 0x80000002, 0);
1204 		temp = cpuid.regs.edx;
1205 		cpuid.regs.edx = cpuid.regs.ecx;
1206 		cpuid.regs.ecx = temp;
1207 		memcpy(cpu->arch.model_name, cpuid.as_chars, sizeof(cpuid.as_chars));
1208 
1209 		get_current_cpuid(&cpuid, 0x80000003, 0);
1210 		temp = cpuid.regs.edx;
1211 		cpuid.regs.edx = cpuid.regs.ecx;
1212 		cpuid.regs.ecx = temp;
1213 		memcpy(cpu->arch.model_name + 16, cpuid.as_chars,
1214 			sizeof(cpuid.as_chars));
1215 
1216 		get_current_cpuid(&cpuid, 0x80000004, 0);
1217 		temp = cpuid.regs.edx;
1218 		cpuid.regs.edx = cpuid.regs.ecx;
1219 		cpuid.regs.ecx = temp;
1220 		memcpy(cpu->arch.model_name + 32, cpuid.as_chars,
1221 			sizeof(cpuid.as_chars));
1222 
1223 		// some cpus return a right-justified string
1224 		int32 i = 0;
1225 		while (cpu->arch.model_name[i] == ' ')
1226 			i++;
1227 		if (i > 0) {
1228 			memmove(cpu->arch.model_name, &cpu->arch.model_name[i],
1229 				strlen(&cpu->arch.model_name[i]) + 1);
1230 		}
1231 
1232 		dprintf("CPU %d: vendor '%s' model name '%s'\n",
1233 			currentCPU, cpu->arch.vendor_name, cpu->arch.model_name);
1234 	} else {
1235 		strlcpy(cpu->arch.model_name, "unknown", sizeof(cpu->arch.model_name));
1236 	}
1237 
1238 	// load feature bits
1239 	get_current_cpuid(&cpuid, 1, 0);
1240 	cpu->arch.feature[FEATURE_COMMON] = cpuid.eax_1.features; // edx
1241 	cpu->arch.feature[FEATURE_EXT] = cpuid.eax_1.extended_features; // ecx
1242 
1243 	if (maxExtendedLeaf >= 0x80000001) {
1244 		get_current_cpuid(&cpuid, 0x80000001, 0);
1245 		if (cpu->arch.vendor == VENDOR_AMD)
1246 			cpu->arch.feature[FEATURE_EXT_AMD_ECX] = cpuid.regs.ecx; // ecx
1247 		cpu->arch.feature[FEATURE_EXT_AMD] = cpuid.regs.edx; // edx
1248 		if (cpu->arch.vendor != VENDOR_AMD)
1249 			cpu->arch.feature[FEATURE_EXT_AMD] &= IA32_FEATURES_INTEL_EXT;
1250 	}
1251 
1252 	if (maxBasicLeaf >= 5) {
1253 		get_current_cpuid(&cpuid, 5, 0);
1254 		cpu->arch.feature[FEATURE_5_ECX] = cpuid.regs.ecx;
1255 	}
1256 
1257 	if (maxBasicLeaf >= 6) {
1258 		get_current_cpuid(&cpuid, 6, 0);
1259 		cpu->arch.feature[FEATURE_6_EAX] = cpuid.regs.eax;
1260 		cpu->arch.feature[FEATURE_6_ECX] = cpuid.regs.ecx;
1261 	}
1262 
1263 	if (maxBasicLeaf >= 7) {
1264 		get_current_cpuid(&cpuid, 7, 0);
1265 		cpu->arch.feature[FEATURE_7_EBX] = cpuid.regs.ebx;
1266 		cpu->arch.feature[FEATURE_7_ECX] = cpuid.regs.ecx;
1267 		cpu->arch.feature[FEATURE_7_EDX] = cpuid.regs.edx;
1268 	}
1269 
1270 	if (maxBasicLeaf >= 0xd) {
1271 		get_current_cpuid(&cpuid, 0xd, 1);
1272 		cpu->arch.feature[FEATURE_D_1_EAX] = cpuid.regs.eax;
1273 	}
1274 
1275 	if (maxExtendedLeaf >= 0x80000007) {
1276 		get_current_cpuid(&cpuid, 0x80000007, 0);
1277 		cpu->arch.feature[FEATURE_EXT_7_EDX] = cpuid.regs.edx;
1278 	}
1279 
1280 	if (maxExtendedLeaf >= 0x80000008) {
1281 		get_current_cpuid(&cpuid, 0x80000008, 0);
1282 			cpu->arch.feature[FEATURE_EXT_8_EBX] = cpuid.regs.ebx;
1283 	}
1284 
1285 	detect_cpu_topology(currentCPU, cpu, maxBasicLeaf, maxExtendedLeaf);
1286 
1287 	if (cpu->arch.vendor == VENDOR_INTEL)
1288 		detect_intel_patch_level(cpu);
1289 	else if (cpu->arch.vendor == VENDOR_AMD)
1290 		detect_amd_patch_level(cpu);
1291 
1292 #if DUMP_FEATURE_STRING
1293 	dump_feature_string(currentCPU, cpu);
1294 #endif
1295 #if DUMP_CPU_PATCHLEVEL
1296 	dprintf("CPU %d: patch_level %" B_PRIu32 "\n", currentCPU,
1297 		cpu->arch.patch_level);
1298 #endif
1299 }
1300 
1301 
1302 bool
1303 x86_check_feature(uint32 feature, enum x86_feature_type type)
1304 {
1305 	cpu_ent* cpu = get_cpu_struct();
1306 
1307 #if 0
1308 	int i;
1309 	dprintf("x86_check_feature: feature 0x%x, type %d\n", feature, type);
1310 	for (i = 0; i < FEATURE_NUM; i++) {
1311 		dprintf("features %d: 0x%x\n", i, cpu->arch.feature[i]);
1312 	}
1313 #endif
1314 
1315 	return (cpu->arch.feature[type] & feature) != 0;
1316 }
1317 
1318 
1319 void*
1320 x86_get_double_fault_stack(int32 cpu, size_t* _size)
1321 {
1322 	*_size = kDoubleFaultStackSize;
1323 	return sDoubleFaultStacks + kDoubleFaultStackSize * cpu;
1324 }
1325 
1326 
1327 /*!	Returns the index of the current CPU. Can only be called from the double
1328 	fault handler.
1329 */
1330 int32
1331 x86_double_fault_get_cpu(void)
1332 {
1333 	addr_t stack = x86_get_stack_frame();
1334 	return (stack - (addr_t)sDoubleFaultStacks) / kDoubleFaultStackSize;
1335 }
1336 
1337 
1338 //	#pragma mark -
1339 
1340 
1341 status_t
1342 arch_cpu_preboot_init_percpu(kernel_args* args, int cpu)
1343 {
1344 	// On SMP system we want to synchronize the CPUs' TSCs, so system_time()
1345 	// will return consistent values.
1346 	if (smp_get_num_cpus() > 1) {
1347 		// let the first CPU prepare the rendezvous point
1348 		if (cpu == 0)
1349 			sTSCSyncRendezvous = smp_get_num_cpus() - 1;
1350 
1351 		// One CPU after the other will drop out of this loop and be caught by
1352 		// the loop below, until the last CPU (0) gets there. Save for +/- a few
1353 		// cycles the CPUs should pass the second loop at the same time.
1354 		while (sTSCSyncRendezvous != cpu) {
1355 		}
1356 
1357 		sTSCSyncRendezvous = cpu - 1;
1358 
1359 		while (sTSCSyncRendezvous != -1) {
1360 		}
1361 
1362 		// reset TSC to 0
1363 		x86_write_msr(IA32_MSR_TSC, 0);
1364 	}
1365 
1366 	x86_descriptors_preboot_init_percpu(args, cpu);
1367 
1368 	return B_OK;
1369 }
1370 
1371 
1372 static void
1373 halt_idle(void)
1374 {
1375 	asm("hlt");
1376 }
1377 
1378 
1379 static void
1380 amdc1e_noarat_idle(void)
1381 {
1382 	uint64 msr = x86_read_msr(K8_MSR_IPM);
1383 	if (msr & K8_CMPHALT)
1384 		x86_write_msr(K8_MSR_IPM, msr & ~K8_CMPHALT);
1385 	halt_idle();
1386 }
1387 
1388 
1389 static bool
1390 detect_amdc1e_noarat()
1391 {
1392 	cpu_ent* cpu = get_cpu_struct();
1393 
1394 	if (cpu->arch.vendor != VENDOR_AMD)
1395 		return false;
1396 
1397 	// Family 0x12 and higher processors support ARAT
1398 	// Family lower than 0xf processors doesn't support C1E
1399 	// Family 0xf with model <= 0x40 procssors doesn't support C1E
1400 	uint32 family = cpu->arch.family + cpu->arch.extended_family;
1401 	uint32 model = (cpu->arch.extended_model << 4) | cpu->arch.model;
1402 	return (family < 0x12 && family > 0xf) || (family == 0xf && model > 0x40);
1403 }
1404 
1405 
1406 static void
1407 init_tsc_with_cpuid(kernel_args* args, uint32* conversionFactor)
1408 {
1409 	cpu_ent* cpu = get_cpu_struct();
1410 	if (cpu->arch.vendor != VENDOR_INTEL)
1411 		return;
1412 	uint32 model = (cpu->arch.extended_model << 4) | cpu->arch.model;
1413 	cpuid_info cpuid;
1414 	get_current_cpuid(&cpuid, 0, 0);
1415 	uint32 maxBasicLeaf = cpuid.eax_0.max_eax;
1416 	if (maxBasicLeaf < 0x15)
1417 		return;
1418 
1419 	get_current_cpuid(&cpuid, 0x15, 0);
1420 	if (cpuid.regs.eax == 0 || cpuid.regs.ebx == 0)
1421 		return;
1422 	uint32 khz = cpuid.regs.ecx / 1000;
1423 	uint32 denominator = cpuid.regs.eax;
1424 	uint32 numerator = cpuid.regs.ebx;
1425 	if (khz == 0 && model == 0x5f) {
1426 		// CPUID 0x16 isn't supported, hardcoding
1427 		khz = 25000;
1428 	}
1429 
1430 	if (khz == 0 && maxBasicLeaf >= 0x16) {
1431 		// for these CPUs the base frequency is also the tsc frequency
1432 		get_current_cpuid(&cpuid, 0x16, 0);
1433 		khz = cpuid.regs.eax * 1000 * denominator / numerator;
1434 	}
1435 	if (khz == 0)
1436 		return;
1437 	dprintf("CPU: using TSC frequency from CPUID\n");
1438 	// compute for microseconds as follows (1000000 << 32) / (tsc freq in Hz),
1439 	// or (1000 << 32) / (tsc freq in kHz)
1440 	*conversionFactor = (1000ULL << 32) / (khz * numerator / denominator);
1441 	// overwrite the bootloader value
1442 	args->arch_args.system_time_cv_factor = *conversionFactor;
1443 }
1444 
1445 
1446 static void
1447 init_tsc_with_msr(kernel_args* args, uint32* conversionFactor)
1448 {
1449 	cpu_ent* cpuEnt = get_cpu_struct();
1450 	if (cpuEnt->arch.vendor != VENDOR_AMD)
1451 		return;
1452 	uint32 family = cpuEnt->arch.family + cpuEnt->arch.extended_family;
1453 	if (family < 0x10)
1454 		return;
1455 	uint64 value = x86_read_msr(MSR_F10H_HWCR);
1456 	if ((value & HWCR_TSCFREQSEL) == 0)
1457 		return;
1458 
1459 	value = x86_read_msr(MSR_F10H_PSTATEDEF(0));
1460 	if ((value & PSTATEDEF_EN) == 0)
1461 		return;
1462 	if (family != 0x17 && family != 0x19)
1463 		return;
1464 
1465 	uint64 khz = 200 * 1000;
1466 	uint32 denominator = (value >> 8) & 0x3f;
1467 	if (denominator < 0x8 || denominator > 0x2c)
1468 		return;
1469 	if (denominator > 0x1a && (denominator % 2) == 1)
1470 		return;
1471 	uint32 numerator = value & 0xff;
1472 	if (numerator < 0x10)
1473 		return;
1474 
1475 	dprintf("CPU: using TSC frequency from MSR %" B_PRIu64 "\n", khz * numerator / denominator);
1476 	// compute for microseconds as follows (1000000 << 32) / (tsc freq in Hz),
1477 	// or (1000 << 32) / (tsc freq in kHz)
1478 	*conversionFactor = (1000ULL << 32) / (khz * numerator / denominator);
1479 	// overwrite the bootloader value
1480 	args->arch_args.system_time_cv_factor = *conversionFactor;
1481 }
1482 
1483 
1484 static void
1485 init_tsc(kernel_args* args)
1486 {
1487 	// init the TSC -> system_time() conversion factors
1488 
1489 	// try to find the TSC frequency with CPUID
1490 	uint32 conversionFactor = args->arch_args.system_time_cv_factor;
1491 	init_tsc_with_cpuid(args, &conversionFactor);
1492 	init_tsc_with_msr(args, &conversionFactor);
1493 	uint64 conversionFactorNsecs = (uint64)conversionFactor * 1000;
1494 
1495 
1496 #ifdef __x86_64__
1497 	// The x86_64 system_time() implementation uses 64-bit multiplication and
1498 	// therefore shifting is not necessary for low frequencies (it's also not
1499 	// too likely that there'll be any x86_64 CPUs clocked under 1GHz).
1500 	__x86_setup_system_time((uint64)conversionFactor << 32,
1501 		conversionFactorNsecs);
1502 #else
1503 	if (conversionFactorNsecs >> 32 != 0) {
1504 		// the TSC frequency is < 1 GHz, which forces us to shift the factor
1505 		__x86_setup_system_time(conversionFactor, conversionFactorNsecs >> 16,
1506 			true);
1507 	} else {
1508 		// the TSC frequency is >= 1 GHz
1509 		__x86_setup_system_time(conversionFactor, conversionFactorNsecs, false);
1510 	}
1511 #endif
1512 }
1513 
1514 
1515 status_t
1516 arch_cpu_init_percpu(kernel_args* args, int cpu)
1517 {
1518 	load_microcode(cpu);
1519 	detect_cpu(cpu);
1520 
1521 	if (cpu == 0)
1522 		init_tsc(args);
1523 
1524 	if (!gCpuIdleFunc) {
1525 		if (detect_amdc1e_noarat())
1526 			gCpuIdleFunc = amdc1e_noarat_idle;
1527 		else
1528 			gCpuIdleFunc = halt_idle;
1529 	}
1530 
1531 	if (x86_check_feature(IA32_FEATURE_MCE, FEATURE_COMMON))
1532 		x86_write_cr4(x86_read_cr4() | IA32_CR4_MCE);
1533 
1534 #ifdef __x86_64__
1535 	// if RDTSCP is available write cpu number in TSC_AUX
1536 	if (x86_check_feature(IA32_FEATURE_AMD_EXT_RDTSCP, FEATURE_EXT_AMD))
1537 		x86_write_msr(IA32_MSR_TSC_AUX, cpu);
1538 
1539 	// make LFENCE a dispatch serializing instruction on AMD 64bit
1540 	cpu_ent* cpuEnt = get_cpu_struct();
1541 	if (cpuEnt->arch.vendor == VENDOR_AMD) {
1542 		uint32 family = cpuEnt->arch.family + cpuEnt->arch.extended_family;
1543 		if (family >= 0x10 && family != 0x11) {
1544 			uint64 value = x86_read_msr(MSR_F10H_DE_CFG);
1545 			if ((value & DE_CFG_SERIALIZE_LFENCE) == 0)
1546 				x86_write_msr(MSR_F10H_DE_CFG, value | DE_CFG_SERIALIZE_LFENCE);
1547 		}
1548 	}
1549 #endif
1550 
1551 	if (x86_check_feature(IA32_FEATURE_APERFMPERF, FEATURE_6_ECX)) {
1552 		gCPU[cpu].arch.mperf_prev = x86_read_msr(IA32_MSR_MPERF);
1553 		gCPU[cpu].arch.aperf_prev = x86_read_msr(IA32_MSR_APERF);
1554 		gCPU[cpu].arch.frequency = 0;
1555 		gCPU[cpu].arch.perf_timestamp = 0;
1556 	}
1557 	return __x86_patch_errata_percpu(cpu);
1558 }
1559 
1560 
1561 status_t
1562 arch_cpu_init(kernel_args* args)
1563 {
1564 	if (args->ucode_data != NULL
1565 		&& args->ucode_data_size > 0) {
1566 		sUcodeData = args->ucode_data;
1567 		sUcodeDataSize = args->ucode_data_size;
1568 	} else {
1569 		dprintf("CPU: no microcode provided\n");
1570 	}
1571 
1572 	// Initialize descriptor tables.
1573 	x86_descriptors_init(args);
1574 
1575 	return B_OK;
1576 }
1577 
1578 
1579 #ifdef __x86_64__
1580 static void
1581 enable_smap(void* dummy, int cpu)
1582 {
1583 	x86_write_cr4(x86_read_cr4() | IA32_CR4_SMAP);
1584 }
1585 
1586 
1587 static void
1588 enable_smep(void* dummy, int cpu)
1589 {
1590 	x86_write_cr4(x86_read_cr4() | IA32_CR4_SMEP);
1591 }
1592 
1593 
1594 static void
1595 enable_osxsave(void* dummy, int cpu)
1596 {
1597 	x86_write_cr4(x86_read_cr4() | IA32_CR4_OSXSAVE);
1598 }
1599 
1600 
1601 static void
1602 enable_xsavemask(void* dummy, int cpu)
1603 {
1604 	xsetbv(0, gXsaveMask);
1605 }
1606 #endif
1607 
1608 
1609 status_t
1610 arch_cpu_init_post_vm(kernel_args* args)
1611 {
1612 	uint32 i;
1613 
1614 	// allocate an area for the double fault stacks
1615 	virtual_address_restrictions virtualRestrictions = {};
1616 	virtualRestrictions.address_specification = B_ANY_KERNEL_ADDRESS;
1617 	physical_address_restrictions physicalRestrictions = {};
1618 	create_area_etc(B_SYSTEM_TEAM, "double fault stacks",
1619 		kDoubleFaultStackSize * smp_get_num_cpus(), B_FULL_LOCK,
1620 		B_KERNEL_READ_AREA | B_KERNEL_WRITE_AREA, CREATE_AREA_DONT_WAIT, 0,
1621 		&virtualRestrictions, &physicalRestrictions,
1622 		(void**)&sDoubleFaultStacks);
1623 
1624 	X86PagingStructures* kernelPagingStructures
1625 		= static_cast<X86VMTranslationMap*>(
1626 			VMAddressSpace::Kernel()->TranslationMap())->PagingStructures();
1627 
1628 	// Set active translation map on each CPU.
1629 	for (i = 0; i < args->num_cpus; i++) {
1630 		gCPU[i].arch.active_paging_structures = kernelPagingStructures;
1631 		kernelPagingStructures->AddReference();
1632 	}
1633 
1634 	if (!apic_available())
1635 		x86_init_fpu();
1636 	// else fpu gets set up in smp code
1637 
1638 #ifdef __x86_64__
1639 	// if available enable SMEP (Supervisor Memory Execution Protection)
1640 	if (x86_check_feature(IA32_FEATURE_SMEP, FEATURE_7_EBX)) {
1641 		if (!get_safemode_boolean(B_SAFEMODE_DISABLE_SMEP_SMAP, false)) {
1642 			dprintf("enable SMEP\n");
1643 			call_all_cpus_sync(&enable_smep, NULL);
1644 		} else
1645 			dprintf("SMEP disabled per safemode setting\n");
1646 	}
1647 
1648 	// if available enable SMAP (Supervisor Memory Access Protection)
1649 	if (x86_check_feature(IA32_FEATURE_SMAP, FEATURE_7_EBX)) {
1650 		if (!get_safemode_boolean(B_SAFEMODE_DISABLE_SMEP_SMAP, false)) {
1651 			dprintf("enable SMAP\n");
1652 			call_all_cpus_sync(&enable_smap, NULL);
1653 
1654 			arch_altcodepatch_replace(ALTCODEPATCH_TAG_STAC, &_stac, 3);
1655 			arch_altcodepatch_replace(ALTCODEPATCH_TAG_CLAC, &_clac, 3);
1656 		} else
1657 			dprintf("SMAP disabled per safemode setting\n");
1658 	}
1659 
1660 	// if available enable XSAVE (XSAVE and extended states)
1661 	gHasXsave = x86_check_feature(IA32_FEATURE_EXT_XSAVE, FEATURE_EXT);
1662 	if (gHasXsave) {
1663 		gHasXsavec = x86_check_feature(IA32_FEATURE_XSAVEC,
1664 			FEATURE_D_1_EAX);
1665 
1666 		call_all_cpus_sync(&enable_osxsave, NULL);
1667 		gXsaveMask = IA32_XCR0_X87 | IA32_XCR0_SSE;
1668 		cpuid_info cpuid;
1669 		get_current_cpuid(&cpuid, 0xd, 0);
1670 		gXsaveMask |= (cpuid.regs.eax & IA32_XCR0_AVX);
1671 		call_all_cpus_sync(&enable_xsavemask, NULL);
1672 		get_current_cpuid(&cpuid, 0xd, 0);
1673 		gFPUSaveLength = cpuid.regs.ebx;
1674 		if (gFPUSaveLength > sizeof(((struct arch_thread *)0)->fpu_state))
1675 			gFPUSaveLength = 832;
1676 
1677 		arch_altcodepatch_replace(ALTCODEPATCH_TAG_XSAVE,
1678 			gHasXsavec ? &_xsavec : &_xsave, 4);
1679 		arch_altcodepatch_replace(ALTCODEPATCH_TAG_XRSTOR,
1680 			&_xrstor, 4);
1681 
1682 		dprintf("enable %s 0x%" B_PRIx64 " %" B_PRId64 "\n",
1683 			gHasXsavec ? "XSAVEC" : "XSAVE", gXsaveMask, gFPUSaveLength);
1684 	}
1685 
1686 #endif
1687 
1688 	return B_OK;
1689 }
1690 
1691 
1692 status_t
1693 arch_cpu_init_post_modules(kernel_args* args)
1694 {
1695 	// initialize CPU module
1696 
1697 	void* cookie = open_module_list("cpu");
1698 
1699 	while (true) {
1700 		char name[B_FILE_NAME_LENGTH];
1701 		size_t nameLength = sizeof(name);
1702 
1703 		if (read_next_module_name(cookie, name, &nameLength) != B_OK
1704 			|| get_module(name, (module_info**)&sCpuModule) == B_OK)
1705 			break;
1706 	}
1707 
1708 	close_module_list(cookie);
1709 
1710 	// initialize MTRRs if available
1711 	if (x86_count_mtrrs() > 0) {
1712 		sCpuRendezvous = sCpuRendezvous2 = 0;
1713 		call_all_cpus(&init_mtrrs, NULL);
1714 	}
1715 
1716 	size_t threadExitLen = (addr_t)x86_end_userspace_thread_exit
1717 		- (addr_t)x86_userspace_thread_exit;
1718 	addr_t threadExitPosition = fill_commpage_entry(
1719 		COMMPAGE_ENTRY_X86_THREAD_EXIT, (const void*)x86_userspace_thread_exit,
1720 		threadExitLen);
1721 
1722 	// add the functions to the commpage image
1723 	image_id image = get_commpage_image();
1724 
1725 	elf_add_memory_image_symbol(image, "commpage_thread_exit",
1726 		threadExitPosition, threadExitLen, B_SYMBOL_TYPE_TEXT);
1727 
1728 	return B_OK;
1729 }
1730 
1731 
1732 void
1733 arch_cpu_user_TLB_invalidate(void)
1734 {
1735 	x86_write_cr3(x86_read_cr3());
1736 }
1737 
1738 
1739 void
1740 arch_cpu_global_TLB_invalidate(void)
1741 {
1742 	uint32 flags = x86_read_cr4();
1743 
1744 	if (flags & IA32_CR4_GLOBAL_PAGES) {
1745 		// disable and reenable the global pages to flush all TLBs regardless
1746 		// of the global page bit
1747 		x86_write_cr4(flags & ~IA32_CR4_GLOBAL_PAGES);
1748 		x86_write_cr4(flags | IA32_CR4_GLOBAL_PAGES);
1749 	} else {
1750 		cpu_status state = disable_interrupts();
1751 		arch_cpu_user_TLB_invalidate();
1752 		restore_interrupts(state);
1753 	}
1754 }
1755 
1756 
1757 void
1758 arch_cpu_invalidate_TLB_range(addr_t start, addr_t end)
1759 {
1760 	int32 num_pages = end / B_PAGE_SIZE - start / B_PAGE_SIZE;
1761 	while (num_pages-- >= 0) {
1762 		invalidate_TLB(start);
1763 		start += B_PAGE_SIZE;
1764 	}
1765 }
1766 
1767 
1768 void
1769 arch_cpu_invalidate_TLB_list(addr_t pages[], int num_pages)
1770 {
1771 	int i;
1772 	for (i = 0; i < num_pages; i++) {
1773 		invalidate_TLB(pages[i]);
1774 	}
1775 }
1776 
1777 
1778 status_t
1779 arch_cpu_shutdown(bool rebootSystem)
1780 {
1781 	if (acpi_shutdown(rebootSystem) == B_OK)
1782 		return B_OK;
1783 
1784 	if (!rebootSystem) {
1785 #ifndef __x86_64__
1786 		return apm_shutdown();
1787 #else
1788 		return B_NOT_SUPPORTED;
1789 #endif
1790 	}
1791 
1792 	cpu_status state = disable_interrupts();
1793 
1794 	// try to reset the system using the keyboard controller
1795 	out8(0xfe, 0x64);
1796 
1797 	// Give some time to the controller to do its job (0.5s)
1798 	snooze(500000);
1799 
1800 	// if that didn't help, try it this way
1801 	x86_reboot();
1802 
1803 	restore_interrupts(state);
1804 	return B_ERROR;
1805 }
1806 
1807 
1808 void
1809 arch_cpu_sync_icache(void* address, size_t length)
1810 {
1811 	// instruction cache is always consistent on x86
1812 }
1813 
1814