1 /* 2 * Copyright 2018, Jérôme Duval, jerome.duval@gmail.com. 3 * Copyright 2012, Alex Smith, alex@alex-smith.me.uk. 4 * Copyright 2002-2008, Axel Dörfler, axeld@pinc-software.de. 5 * Distributed under the terms of the MIT License. 6 * 7 * Copyright 2001, Travis Geiselbrecht. All rights reserved. 8 * Distributed under the terms of the NewOS License. 9 */ 10 11 12 #include <arch/thread.h> 13 14 #include <string.h> 15 16 #include <commpage.h> 17 #include <cpu.h> 18 #include <debug.h> 19 #include <kernel.h> 20 #include <ksignal.h> 21 #include <int.h> 22 #include <team.h> 23 #include <thread.h> 24 #include <tls.h> 25 #include <tracing.h> 26 #include <util/Random.h> 27 #include <vm/vm_types.h> 28 #include <vm/VMAddressSpace.h> 29 30 #include "paging/X86PagingStructures.h" 31 #include "paging/X86VMTranslationMap.h" 32 33 34 //#define TRACE_ARCH_THREAD 35 #ifdef TRACE_ARCH_THREAD 36 # define TRACE(x...) dprintf(x) 37 #else 38 # define TRACE(x...) ; 39 #endif 40 41 42 #ifdef SYSCALL_TRACING 43 44 namespace SyscallTracing { 45 46 class RestartSyscall : public AbstractTraceEntry { 47 public: 48 RestartSyscall() 49 { 50 Initialized(); 51 } 52 53 virtual void AddDump(TraceOutput& out) 54 { 55 out.Print("syscall restart"); 56 } 57 }; 58 59 } 60 61 # define TSYSCALL(x) new(std::nothrow) SyscallTracing::x 62 63 #else 64 # define TSYSCALL(x) 65 #endif // SYSCALL_TRACING 66 67 68 extern "C" void x86_64_thread_entry(); 69 70 // Initial thread saved state. 71 static arch_thread sInitialState _ALIGNED(64); 72 extern uint64 gFPUSaveLength; 73 extern bool gHasXsave; 74 extern bool gHasXsavec; 75 76 77 void 78 x86_restart_syscall(iframe* frame) 79 { 80 Thread* thread = thread_get_current_thread(); 81 82 atomic_and(&thread->flags, ~THREAD_FLAGS_RESTART_SYSCALL); 83 atomic_or(&thread->flags, THREAD_FLAGS_SYSCALL_RESTARTED); 84 85 // Get back the original system call number and modify the frame to 86 // re-execute the syscall instruction. 87 frame->ax = frame->orig_rax; 88 frame->ip -= 2; 89 90 TSYSCALL(RestartSyscall()); 91 } 92 93 94 void 95 x86_set_tls_context(Thread* thread) 96 { 97 // Set FS segment base address to the TLS segment. 98 x86_write_msr(IA32_MSR_FS_BASE, thread->user_local_storage); 99 } 100 101 102 static addr_t 103 arch_randomize_stack_pointer(addr_t value) 104 { 105 static_assert(MAX_RANDOM_VALUE >= B_PAGE_SIZE - 1, 106 "randomization range is too big"); 107 value -= random_value() & (B_PAGE_SIZE - 1); 108 return (value & ~addr_t(0xf)) - 8; 109 // This means, result % 16 == 8, which is what rsp should adhere to 110 // when a function is entered for the stack to be considered aligned to 111 // 16 byte. 112 } 113 114 115 static uint8* 116 get_signal_stack(Thread* thread, iframe* frame, struct sigaction* action, 117 size_t spaceNeeded) 118 { 119 // Use the alternate signal stack if we should and can. 120 if (thread->signal_stack_enabled 121 && (action->sa_flags & SA_ONSTACK) != 0 122 && (frame->user_sp < thread->signal_stack_base 123 || frame->user_sp >= thread->signal_stack_base 124 + thread->signal_stack_size)) { 125 addr_t stackTop = thread->signal_stack_base + thread->signal_stack_size; 126 return (uint8*)arch_randomize_stack_pointer(stackTop - spaceNeeded); 127 } 128 129 // We are going to use the stack that we are already on. We must not touch 130 // the red zone (128 byte area below the stack pointer, reserved for use 131 // by functions to store temporary data and guaranteed not to be modified 132 // by signal handlers). 133 return (uint8*)((frame->user_sp - 128 - spaceNeeded) & ~addr_t(0xf)) - 8; 134 // align stack pointer (cf. arch_randomize_stack_pointer()) 135 } 136 137 138 // #pragma mark - 139 140 141 status_t 142 arch_thread_init(kernel_args* args) 143 { 144 // Save one global valid FPU state; it will be copied in the arch dependent 145 // part of each new thread. 146 if (gHasXsave || gHasXsavec) { 147 memset(sInitialState.fpu_state, 0, gFPUSaveLength); 148 if (gHasXsavec) { 149 asm volatile ( 150 "clts;" \ 151 "fninit;" \ 152 "fnclex;" \ 153 "movl $0x7,%%eax;" \ 154 "movl $0x0,%%edx;" \ 155 "xsavec64 %0" 156 :: "m" (sInitialState.fpu_state)); 157 } else { 158 asm volatile ( 159 "clts;" \ 160 "fninit;" \ 161 "fnclex;" \ 162 "movl $0x7,%%eax;" \ 163 "movl $0x0,%%edx;" \ 164 "xsave64 %0" 165 :: "m" (sInitialState.fpu_state)); 166 } 167 } else { 168 asm volatile ( 169 "clts;" \ 170 "fninit;" \ 171 "fnclex;" \ 172 "fxsaveq %0" 173 :: "m" (sInitialState.fpu_state)); 174 } 175 return B_OK; 176 } 177 178 179 status_t 180 arch_thread_init_thread_struct(Thread* thread) 181 { 182 // Copy the initial saved FPU state to the new thread. 183 memcpy(&thread->arch_info, &sInitialState, sizeof(arch_thread)); 184 185 // Initialise the current thread pointer. 186 thread->arch_info.thread = thread; 187 188 return B_OK; 189 } 190 191 192 /*! Prepares the given thread's kernel stack for executing its entry function. 193 194 \param thread The thread. 195 \param stack The usable bottom of the thread's kernel stack. 196 \param stackTop The usable top of the thread's kernel stack. 197 \param function The entry function the thread shall execute. 198 \param data Pointer to be passed to the entry function. 199 */ 200 void 201 arch_thread_init_kthread_stack(Thread* thread, void* _stack, void* _stackTop, 202 void (*function)(void*), const void* data) 203 { 204 uintptr_t* stackTop = static_cast<uintptr_t*>(_stackTop); 205 206 TRACE("arch_thread_init_kthread_stack: stack top %p, function %p, data: " 207 "%p\n", _stackTop, function, data); 208 209 // Save the stack top for system call entry. 210 thread->arch_info.syscall_rsp = (uint64*)thread->kernel_stack_top; 211 212 thread->arch_info.instruction_pointer 213 = reinterpret_cast<uintptr_t>(x86_64_thread_entry); 214 215 *--stackTop = uintptr_t(data); 216 *--stackTop = uintptr_t(function); 217 218 // Save the stack position. 219 thread->arch_info.current_stack = stackTop; 220 } 221 222 223 void 224 arch_thread_dump_info(void* info) 225 { 226 arch_thread* thread = (arch_thread*)info; 227 228 kprintf("\trsp: %p\n", thread->current_stack); 229 kprintf("\tsyscall_rsp: %p\n", thread->syscall_rsp); 230 kprintf("\tuser_rsp: %p\n", thread->user_rsp); 231 kprintf("\tfpu_state at %p\n", thread->fpu_state); 232 } 233 234 235 /*! Sets up initial thread context and enters user space 236 */ 237 status_t 238 arch_thread_enter_userspace(Thread* thread, addr_t entry, void* args1, 239 void* args2) 240 { 241 addr_t stackTop = thread->user_stack_base + thread->user_stack_size; 242 addr_t codeAddr; 243 244 TRACE("arch_thread_enter_userspace: entry %#lx, args %p %p, " 245 "stackTop %#lx\n", entry, args1, args2, stackTop); 246 247 stackTop = arch_randomize_stack_pointer(stackTop - sizeof(codeAddr)); 248 249 // Copy the address of the stub that calls exit_thread() when the thread 250 // entry function returns to the top of the stack to act as the return 251 // address. The stub is inside commpage. 252 addr_t commPageAddress = (addr_t)thread->team->commpage_address; 253 set_ac(); 254 codeAddr = ((addr_t*)commPageAddress)[COMMPAGE_ENTRY_X86_THREAD_EXIT] 255 + commPageAddress; 256 clear_ac(); 257 if (user_memcpy((void*)stackTop, (const void*)&codeAddr, sizeof(codeAddr)) 258 != B_OK) 259 return B_BAD_ADDRESS; 260 261 // Prepare the user iframe. 262 iframe frame = {}; 263 frame.type = IFRAME_TYPE_SYSCALL; 264 frame.si = (uint64)args2; 265 frame.di = (uint64)args1; 266 frame.ip = entry; 267 frame.cs = USER_CODE_SELECTOR; 268 frame.flags = X86_EFLAGS_RESERVED1 | X86_EFLAGS_INTERRUPT; 269 frame.sp = stackTop; 270 frame.ss = USER_DATA_SELECTOR; 271 272 // Return to userland. Never returns. 273 x86_initial_return_to_userland(thread, &frame); 274 275 return B_OK; 276 } 277 278 279 /*! Sets up the user iframe for invoking a signal handler. 280 281 The function fills in the remaining fields of the given \a signalFrameData, 282 copies it to the thread's userland stack (the one on which the signal shall 283 be handled), and sets up the user iframe so that when returning to userland 284 a wrapper function is executed that calls the user-defined signal handler. 285 When the signal handler returns, the wrapper function shall call the 286 "restore signal frame" syscall with the (possibly modified) signal frame 287 data. 288 289 The following fields of the \a signalFrameData structure still need to be 290 filled in: 291 - \c context.uc_stack: The stack currently used by the thread. 292 - \c context.uc_mcontext: The current userland state of the registers. 293 - \c syscall_restart_return_value: Architecture specific use. On x86_64 the 294 value of rax which is overwritten by the syscall return value. 295 296 Furthermore the function needs to set \c thread->user_signal_context to the 297 userland pointer to the \c ucontext_t on the user stack. 298 299 \param thread The current thread. 300 \param action The signal action specified for the signal to be handled. 301 \param signalFrameData A partially initialized structure of all the data 302 that need to be copied to userland. 303 \return \c B_OK on success, another error code, if something goes wrong. 304 */ 305 status_t 306 arch_setup_signal_frame(Thread* thread, struct sigaction* action, 307 struct signal_frame_data* signalFrameData) 308 { 309 iframe* frame = x86_get_current_iframe(); 310 if (!IFRAME_IS_USER(frame)) { 311 panic("arch_setup_signal_frame(): No user iframe!"); 312 return B_BAD_VALUE; 313 } 314 315 // Store the register state. 316 signalFrameData->context.uc_mcontext.rax = frame->ax; 317 signalFrameData->context.uc_mcontext.rbx = frame->bx; 318 signalFrameData->context.uc_mcontext.rcx = frame->cx; 319 signalFrameData->context.uc_mcontext.rdx = frame->dx; 320 signalFrameData->context.uc_mcontext.rdi = frame->di; 321 signalFrameData->context.uc_mcontext.rsi = frame->si; 322 signalFrameData->context.uc_mcontext.rbp = frame->bp; 323 signalFrameData->context.uc_mcontext.r8 = frame->r8; 324 signalFrameData->context.uc_mcontext.r9 = frame->r9; 325 signalFrameData->context.uc_mcontext.r10 = frame->r10; 326 signalFrameData->context.uc_mcontext.r11 = frame->r11; 327 signalFrameData->context.uc_mcontext.r12 = frame->r12; 328 signalFrameData->context.uc_mcontext.r13 = frame->r13; 329 signalFrameData->context.uc_mcontext.r14 = frame->r14; 330 signalFrameData->context.uc_mcontext.r15 = frame->r15; 331 signalFrameData->context.uc_mcontext.rsp = frame->user_sp; 332 signalFrameData->context.uc_mcontext.rip = frame->ip; 333 signalFrameData->context.uc_mcontext.rflags = frame->flags; 334 335 if (frame->fpu != nullptr) { 336 memcpy((void*)&signalFrameData->context.uc_mcontext.fpu, frame->fpu, 337 gFPUSaveLength); 338 } else { 339 memcpy((void*)&signalFrameData->context.uc_mcontext.fpu, 340 sInitialState.fpu_state, gFPUSaveLength); 341 } 342 343 // Fill in signalFrameData->context.uc_stack. 344 signal_get_user_stack(frame->user_sp, &signalFrameData->context.uc_stack); 345 346 // Store syscall_restart_return_value. 347 signalFrameData->syscall_restart_return_value = frame->orig_rax; 348 349 // Get the stack to use and copy the frame data to it. 350 uint8* userStack = get_signal_stack(thread, frame, action, 351 sizeof(*signalFrameData) + sizeof(frame->ip)); 352 353 signal_frame_data* userSignalFrameData 354 = (signal_frame_data*)(userStack + sizeof(frame->ip)); 355 356 if (user_memcpy(userSignalFrameData, signalFrameData, 357 sizeof(*signalFrameData)) != B_OK) { 358 return B_BAD_ADDRESS; 359 } 360 361 // Copy a return address to the stack so that backtraces will be correct. 362 if (user_memcpy(userStack, &frame->ip, sizeof(frame->ip)) != B_OK) 363 return B_BAD_ADDRESS; 364 365 // Update Thread::user_signal_context, now that everything seems to have 366 // gone fine. 367 thread->user_signal_context = &userSignalFrameData->context; 368 369 // Set up the iframe to execute the signal handler wrapper on our prepared 370 // stack. First argument points to the frame data. 371 addr_t* commPageAddress = (addr_t*)thread->team->commpage_address; 372 frame->user_sp = (addr_t)userStack; 373 set_ac(); 374 frame->ip = commPageAddress[COMMPAGE_ENTRY_X86_SIGNAL_HANDLER] 375 + (addr_t)commPageAddress; 376 clear_ac(); 377 frame->di = (addr_t)userSignalFrameData; 378 frame->flags &= ~(uint64)(X86_EFLAGS_TRAP | X86_EFLAGS_DIRECTION); 379 380 return B_OK; 381 } 382 383 384 int64 385 arch_restore_signal_frame(struct signal_frame_data* signalFrameData) 386 { 387 iframe* frame = x86_get_current_iframe(); 388 389 frame->orig_rax = signalFrameData->syscall_restart_return_value; 390 frame->ax = signalFrameData->context.uc_mcontext.rax; 391 frame->bx = signalFrameData->context.uc_mcontext.rbx; 392 frame->cx = signalFrameData->context.uc_mcontext.rcx; 393 frame->dx = signalFrameData->context.uc_mcontext.rdx; 394 frame->di = signalFrameData->context.uc_mcontext.rdi; 395 frame->si = signalFrameData->context.uc_mcontext.rsi; 396 frame->bp = signalFrameData->context.uc_mcontext.rbp; 397 frame->r8 = signalFrameData->context.uc_mcontext.r8; 398 frame->r9 = signalFrameData->context.uc_mcontext.r9; 399 frame->r10 = signalFrameData->context.uc_mcontext.r10; 400 frame->r11 = signalFrameData->context.uc_mcontext.r11; 401 frame->r12 = signalFrameData->context.uc_mcontext.r12; 402 frame->r13 = signalFrameData->context.uc_mcontext.r13; 403 frame->r14 = signalFrameData->context.uc_mcontext.r14; 404 frame->r15 = signalFrameData->context.uc_mcontext.r15; 405 frame->user_sp = signalFrameData->context.uc_mcontext.rsp; 406 frame->ip = signalFrameData->context.uc_mcontext.rip; 407 frame->flags = (frame->flags & ~(uint64)X86_EFLAGS_USER_FLAGS) 408 | (signalFrameData->context.uc_mcontext.rflags & X86_EFLAGS_USER_FLAGS); 409 410 Thread* thread = thread_get_current_thread(); 411 412 memcpy(thread->arch_info.fpu_state, 413 (void*)&signalFrameData->context.uc_mcontext.fpu, gFPUSaveLength); 414 frame->fpu = &thread->arch_info.fpu_state; 415 416 // The syscall return code overwrites frame->ax with the return value of 417 // the syscall, need to return it here to ensure the correct value is 418 // restored. 419 return frame->ax; 420 } 421