1 /* 2 * Copyright 2003-2011, Haiku Inc. All rights reserved. 3 * Distributed under the terms of the MIT License. 4 * 5 * Authors: 6 * Axel Dörfler <axeld@pinc-software.de> 7 * Ingo Weinhold <bonefish@cs.tu-berlin.de> 8 * 9 * Copyright 2001, Travis Geiselbrecht. All rights reserved. 10 * Distributed under the terms of the NewOS License. 11 */ 12 13 14 #include <int.h> 15 16 #include <arch/smp.h> 17 #include <boot/kernel_args.h> 18 #include <device_manager.h> 19 #include <kscheduler.h> 20 #include <interrupt_controller.h> 21 #include <smp.h> 22 #include <thread.h> 23 #include <timer.h> 24 #include <util/AutoLock.h> 25 #include <util/DoublyLinkedList.h> 26 #include <util/kernel_cpp.h> 27 #include <vm/vm.h> 28 #include <vm/vm_priv.h> 29 #include <vm/VMAddressSpace.h> 30 31 #include <string.h> 32 33 34 // defined in arch_exceptions.S 35 extern int __irqvec_start; 36 extern int __irqvec_end; 37 38 extern"C" void ppc_exception_tail(void); 39 40 41 // the exception contexts for all CPUs 42 static ppc_cpu_exception_context sCPUExceptionContexts[SMP_MAX_CPUS]; 43 44 45 // An iframe stack used in the early boot process when we don't have 46 // threads yet. 47 struct iframe_stack gBootFrameStack; 48 49 // interrupt controller interface (initialized 50 // in arch_int_init_post_device_manager()) 51 static struct interrupt_controller_module_info *sPIC; 52 static void *sPICCookie; 53 54 55 void 56 arch_int_enable_io_interrupt(int irq) 57 { 58 if (!sPIC) 59 return; 60 61 // TODO: I have no idea, what IRQ type is appropriate. 62 sPIC->enable_io_interrupt(sPICCookie, irq, IRQ_TYPE_LEVEL); 63 } 64 65 66 void 67 arch_int_disable_io_interrupt(int irq) 68 { 69 if (!sPIC) 70 return; 71 72 sPIC->disable_io_interrupt(sPICCookie, irq); 73 } 74 75 76 /* arch_int_*_interrupts() and friends are in arch_asm.S */ 77 78 79 static void 80 print_iframe(struct iframe *frame) 81 { 82 dprintf("iframe at %p:\n", frame); 83 dprintf("r0-r3: 0x%08lx 0x%08lx 0x%08lx 0x%08lx\n", frame->r0, frame->r1, frame->r2, frame->r3); 84 dprintf("r4-r7: 0x%08lx 0x%08lx 0x%08lx 0x%08lx\n", frame->r4, frame->r5, frame->r6, frame->r7); 85 dprintf("r8-r11: 0x%08lx 0x%08lx 0x%08lx 0x%08lx\n", frame->r8, frame->r9, frame->r10, frame->r11); 86 dprintf("r12-r15: 0x%08lx 0x%08lx 0x%08lx 0x%08lx\n", frame->r12, frame->r13, frame->r14, frame->r15); 87 dprintf("r16-r19: 0x%08lx 0x%08lx 0x%08lx 0x%08lx\n", frame->r16, frame->r17, frame->r18, frame->r19); 88 dprintf("r20-r23: 0x%08lx 0x%08lx 0x%08lx 0x%08lx\n", frame->r20, frame->r21, frame->r22, frame->r23); 89 dprintf("r24-r27: 0x%08lx 0x%08lx 0x%08lx 0x%08lx\n", frame->r24, frame->r25, frame->r26, frame->r27); 90 dprintf("r28-r31: 0x%08lx 0x%08lx 0x%08lx 0x%08lx\n", frame->r28, frame->r29, frame->r30, frame->r31); 91 dprintf(" ctr 0x%08lx xer 0x%08lx\n", frame->ctr, frame->xer); 92 dprintf(" cr 0x%08lx lr 0x%08lx\n", frame->cr, frame->lr); 93 dprintf(" dsisr 0x%08lx dar 0x%08lx\n", frame->dsisr, frame->dar); 94 dprintf(" srr1 0x%08lx srr0 0x%08lx\n", frame->srr1, frame->srr0); 95 } 96 97 98 extern "C" void ppc_exception_entry(int vector, struct iframe *iframe); 99 void 100 ppc_exception_entry(int vector, struct iframe *iframe) 101 { 102 if (vector != 0x900) { 103 dprintf("ppc_exception_entry: time %lld vector 0x%x, iframe %p, " 104 "srr0: %p\n", system_time(), vector, iframe, (void*)iframe->srr0); 105 } 106 107 Thread *thread = thread_get_current_thread(); 108 109 // push iframe 110 if (thread) 111 ppc_push_iframe(&thread->arch_info.iframes, iframe); 112 else 113 ppc_push_iframe(&gBootFrameStack, iframe); 114 115 switch (vector) { 116 case 0x100: // system reset 117 panic("system reset exception\n"); 118 break; 119 case 0x200: // machine check 120 panic("machine check exception\n"); 121 break; 122 case 0x300: // DSI 123 case 0x400: // ISI 124 { 125 bool kernelDebugger = debug_debugger_running(); 126 127 if (kernelDebugger) { 128 // if this CPU or this thread has a fault handler, 129 // we're allowed to be here 130 cpu_ent* cpu = &gCPU[smp_get_current_cpu()]; 131 if (cpu->fault_handler != 0) { 132 iframe->srr0 = cpu->fault_handler; 133 iframe->r1 = cpu->fault_handler_stack_pointer; 134 break; 135 } 136 Thread *thread = thread_get_current_thread(); 137 if (thread && thread->fault_handler != 0) { 138 iframe->srr0 = thread->fault_handler; 139 break; 140 } 141 142 // otherwise, not really 143 panic("page fault in debugger without fault handler! Touching " 144 "address %p from ip %p\n", (void *)iframe->dar, 145 (void *)iframe->srr0); 146 break; 147 } else if ((iframe->srr1 & MSR_EXCEPTIONS_ENABLED) == 0) { 148 // if the interrupts were disabled, and we are not running the 149 // kernel startup the page fault was not allowed to happen and 150 // we must panic 151 panic("page fault, but interrupts were disabled. Touching " 152 "address %p from ip %p\n", (void *)iframe->dar, 153 (void *)iframe->srr0); 154 break; 155 } else if (thread != NULL && thread->page_faults_allowed < 1) { 156 panic("page fault not allowed at this place. Touching address " 157 "%p from ip %p\n", (void *)iframe->dar, 158 (void *)iframe->srr0); 159 } 160 161 enable_interrupts(); 162 163 addr_t newip; 164 165 vm_page_fault(iframe->dar, iframe->srr0, 166 iframe->dsisr & (1 << 25), // store or load 167 iframe->srr1 & (1 << 14), // was the system in user or supervisor 168 &newip); 169 if (newip != 0) { 170 // the page fault handler wants us to modify the iframe to set the 171 // IP the cpu will return to to be this ip 172 iframe->srr0 = newip; 173 } 174 break; 175 } 176 177 case 0x500: // external interrupt 178 { 179 if (!sPIC) { 180 panic("ppc_exception_entry(): external interrupt although we " 181 "don't have a PIC driver!"); 182 break; 183 } 184 185 dprintf("handling I/O interrupts...\n"); 186 int irq; 187 while ((irq = sPIC->acknowledge_io_interrupt(sPICCookie)) >= 0) { 188 // TODO: correctly pass level-triggered vs. edge-triggered to the handler! 189 int_io_interrupt_handler(irq, true); 190 } 191 dprintf("handling I/O interrupts done\n"); 192 break; 193 } 194 195 case 0x600: // alignment exception 196 panic("alignment exception: unimplemented\n"); 197 break; 198 case 0x700: // program exception 199 panic("program exception: unimplemented\n"); 200 break; 201 case 0x800: // FP unavailable exception 202 panic("FP unavailable exception: unimplemented\n"); 203 break; 204 case 0x900: // decrementer exception 205 timer_interrupt(); 206 break; 207 case 0xc00: // system call 208 panic("system call exception: unimplemented\n"); 209 break; 210 case 0xd00: // trace exception 211 panic("trace exception: unimplemented\n"); 212 break; 213 case 0xe00: // FP assist exception 214 panic("FP assist exception: unimplemented\n"); 215 break; 216 case 0xf00: // performance monitor exception 217 panic("performance monitor exception: unimplemented\n"); 218 break; 219 case 0xf20: // altivec unavailable exception 220 panic("alitivec unavailable exception: unimplemented\n"); 221 break; 222 case 0x1000: 223 case 0x1100: 224 case 0x1200: 225 panic("TLB miss exception: unimplemented\n"); 226 break; 227 case 0x1300: // instruction address exception 228 panic("instruction address exception: unimplemented\n"); 229 break; 230 case 0x1400: // system management exception 231 panic("system management exception: unimplemented\n"); 232 break; 233 case 0x1600: // altivec assist exception 234 panic("altivec assist exception: unimplemented\n"); 235 break; 236 case 0x1700: // thermal management exception 237 panic("thermal management exception: unimplemented\n"); 238 break; 239 default: 240 dprintf("unhandled exception type 0x%x\n", vector); 241 print_iframe(iframe); 242 panic("unhandled exception type\n"); 243 } 244 245 cpu_status state = disable_interrupts(); 246 if (thread->cpu->invoke_scheduler) { 247 SpinLocker schedulerLocker(gSchedulerLock); 248 scheduler_reschedule(); 249 schedulerLocker.Unlock(); 250 restore_interrupts(state); 251 } else if (thread->post_interrupt_callback != NULL) { 252 void (*callback)(void*) = thread->post_interrupt_callback; 253 void* data = thread->post_interrupt_data; 254 255 thread->post_interrupt_callback = NULL; 256 thread->post_interrupt_data = NULL; 257 258 restore_interrupts(state); 259 260 callback(data); 261 } 262 263 // pop iframe 264 if (thread) 265 ppc_pop_iframe(&thread->arch_info.iframes); 266 else 267 ppc_pop_iframe(&gBootFrameStack); 268 } 269 270 271 status_t 272 arch_int_init(kernel_args *args) 273 { 274 return B_OK; 275 } 276 277 278 status_t 279 arch_int_init_post_vm(kernel_args *args) 280 { 281 void *handlers = (void *)args->arch_args.exception_handlers.start; 282 283 // We may need to remap the exception handler area into the kernel address 284 // space. 285 if (!IS_KERNEL_ADDRESS(handlers)) { 286 addr_t address = (addr_t)handlers; 287 status_t error = ppc_remap_address_range(&address, 288 args->arch_args.exception_handlers.size, true); 289 if (error != B_OK) { 290 panic("arch_int_init_post_vm(): Failed to remap the exception " 291 "handler area!"); 292 return error; 293 } 294 handlers = (void*)(address); 295 } 296 297 // create a region to map the irq vector code into (physical address 0x0) 298 area_id exceptionArea = create_area("exception_handlers", 299 &handlers, B_EXACT_ADDRESS, args->arch_args.exception_handlers.size, 300 B_ALREADY_WIRED, B_KERNEL_READ_AREA | B_KERNEL_WRITE_AREA); 301 if (exceptionArea < B_OK) 302 panic("arch_int_init2: could not create exception handler region\n"); 303 304 dprintf("exception handlers at %p\n", handlers); 305 306 // copy the handlers into this area 307 memcpy(handlers, &__irqvec_start, args->arch_args.exception_handlers.size); 308 arch_cpu_sync_icache(handlers, args->arch_args.exception_handlers.size); 309 310 // init the CPU exception contexts 311 int cpuCount = smp_get_num_cpus(); 312 for (int i = 0; i < cpuCount; i++) { 313 ppc_cpu_exception_context *context = ppc_get_cpu_exception_context(i); 314 context->kernel_handle_exception = (void*)&ppc_exception_tail; 315 context->exception_context = context; 316 // kernel_stack is set when the current thread changes. At this point 317 // we don't have threads yet. 318 } 319 320 // set the exception context for this CPU 321 ppc_set_current_cpu_exception_context(ppc_get_cpu_exception_context(0)); 322 323 return B_OK; 324 } 325 326 327 status_t 328 arch_int_init_io(kernel_args* args) 329 { 330 return B_OK; 331 } 332 333 334 template<typename ModuleInfo> 335 struct Module : DoublyLinkedListLinkImpl<Module<ModuleInfo> > { 336 Module(ModuleInfo *module) 337 : module(module) 338 { 339 } 340 341 ~Module() 342 { 343 if (module) 344 put_module(((module_info*)module)->name); 345 } 346 347 ModuleInfo *module; 348 }; 349 350 typedef Module<interrupt_controller_module_info> PICModule; 351 352 struct PICModuleList : DoublyLinkedList<PICModule> { 353 ~PICModuleList() 354 { 355 while (PICModule *module = First()) { 356 Remove(module); 357 delete module; 358 } 359 } 360 }; 361 362 363 class DeviceTreeIterator { 364 public: 365 DeviceTreeIterator(device_manager_info *deviceManager) 366 : fDeviceManager(deviceManager), 367 fNode(NULL), 368 fParent(NULL) 369 { 370 Rewind(); 371 } 372 373 ~DeviceTreeIterator() 374 { 375 if (fParent != NULL) 376 fDeviceManager->put_node(fParent); 377 if (fNode != NULL) 378 fDeviceManager->put_node(fNode); 379 } 380 381 void Rewind() 382 { 383 fNode = fDeviceManager->get_root_node(); 384 } 385 386 bool HasNext() const 387 { 388 return (fNode != NULL); 389 } 390 391 device_node *Next() 392 { 393 if (fNode == NULL) 394 return NULL; 395 396 device_node *foundNode = fNode; 397 398 // get first child 399 device_node *child = NULL; 400 if (fDeviceManager->get_next_child_node(fNode, NULL, &child) 401 == B_OK) { 402 // move to the child node 403 if (fParent != NULL) 404 fDeviceManager->put_node(fParent); 405 fParent = fNode; 406 fNode = child; 407 408 // no more children; backtrack to find the next sibling 409 } else { 410 while (fParent != NULL) { 411 if (fDeviceManager->get_next_child_node(fParent, NULL, &fNode) 412 == B_OK) { 413 // get_next_child_node() always puts the node 414 break; 415 } 416 fNode = fParent; 417 fParent = fDeviceManager->get_parent_node(fNode); 418 } 419 420 // if we hit the root node again, we're done 421 if (fParent == NULL) { 422 fDeviceManager->put_node(fNode); 423 fNode = NULL; 424 } 425 } 426 427 return foundNode; 428 } 429 430 private: 431 device_manager_info *fDeviceManager; 432 device_node *fNode; 433 device_node *fParent; 434 }; 435 436 437 static void 438 get_interrupt_controller_modules(PICModuleList &list) 439 { 440 const char *namePrefix = "interrupt_controllers/"; 441 size_t namePrefixLen = strlen(namePrefix); 442 443 char name[B_PATH_NAME_LENGTH]; 444 size_t length; 445 uint32 cookie = 0; 446 while (get_next_loaded_module_name(&cookie, name, &(length = sizeof(name))) 447 == B_OK) { 448 // an interrupt controller module? 449 if (length <= namePrefixLen 450 || strncmp(name, namePrefix, namePrefixLen) != 0) { 451 continue; 452 } 453 454 // get the module 455 interrupt_controller_module_info *moduleInfo; 456 if (get_module(name, (module_info**)&moduleInfo) != B_OK) 457 continue; 458 459 // add it to the list 460 PICModule *module = new(nothrow) PICModule(moduleInfo); 461 if (!module) { 462 put_module(((module_info*)moduleInfo)->name); 463 continue; 464 } 465 list.Add(module); 466 } 467 } 468 469 470 static bool 471 probe_pic_device(device_node *node, PICModuleList &picModules) 472 { 473 for (PICModule *module = picModules.Head(); 474 module; 475 module = picModules.GetNext(module)) { 476 if (module->module->info.supports_device(node) > 0) { 477 if (module->module->info.register_device(node) == B_OK) 478 return true; 479 } 480 } 481 482 return false; 483 } 484 485 486 status_t 487 arch_int_init_post_device_manager(struct kernel_args *args) 488 { 489 // get the interrupt controller driver modules 490 PICModuleList picModules; 491 get_interrupt_controller_modules(picModules); 492 if (picModules.IsEmpty()) { 493 panic("arch_int_init_post_device_manager(): Found no PIC modules!"); 494 return B_ENTRY_NOT_FOUND; 495 } 496 497 // get the device manager module 498 device_manager_info *deviceManager; 499 status_t error = get_module(B_DEVICE_MANAGER_MODULE_NAME, 500 (module_info**)&deviceManager); 501 if (error != B_OK) { 502 panic("arch_int_init_post_device_manager(): Failed to get device " 503 "manager: %s", strerror(error)); 504 return error; 505 } 506 Module<device_manager_info> _deviceManager(deviceManager); // auto put 507 508 // iterate through the device tree and probe the interrupt controllers 509 DeviceTreeIterator iterator(deviceManager); 510 while (device_node *node = iterator.Next()) 511 probe_pic_device(node, picModules); 512 513 // iterate through the tree again and get an interrupt controller node 514 iterator.Rewind(); 515 while (device_node *node = iterator.Next()) { 516 const char *deviceType; 517 if (deviceManager->get_attr_string(node, B_DEVICE_TYPE, 518 &deviceType, false) == B_OK) { 519 bool isPIC = false; 520 521 /* 522 bool isPIC 523 = (strcmp(deviceType, B_INTERRUPT_CONTROLLER_DRIVER_TYPE) == 0); 524 free(deviceType); 525 */ 526 527 if (isPIC) { 528 driver_module_info *driver; 529 void *driverCookie; 530 531 deviceManager->get_driver(node, (driver_module_info **)&driver, (void **)&driverCookie); 532 533 sPIC = (interrupt_controller_module_info *)driver; 534 sPICCookie = driverCookie; 535 return B_OK; 536 } 537 } 538 } 539 540 // no PIC found 541 panic("arch_int_init_post_device_manager(): Found no supported PIC!"); 542 543 return B_ENTRY_NOT_FOUND; 544 } 545 546 547 // #pragma mark - 548 549 struct ppc_cpu_exception_context * 550 ppc_get_cpu_exception_context(int cpu) 551 { 552 return sCPUExceptionContexts + cpu; 553 } 554 555 556 void 557 ppc_set_current_cpu_exception_context(struct ppc_cpu_exception_context *context) 558 { 559 // translate to physical address 560 phys_addr_t physicalPage; 561 addr_t inPageOffset = (addr_t)context & (B_PAGE_SIZE - 1); 562 status_t error = vm_get_page_mapping(VMAddressSpace::KernelID(), 563 (addr_t)context - inPageOffset, &physicalPage); 564 if (error != B_OK) { 565 panic("ppc_set_current_cpu_exception_context(): Failed to get physical " 566 "address!"); 567 return; 568 } 569 570 asm volatile("mtsprg0 %0" : : "r"(physicalPage + inPageOffset)); 571 } 572 573