1 /* 2 * Copyright 2007, Haiku Inc. All rights reserved. 3 * Distributed under the terms of the MIT License. 4 * 5 * Authors: 6 * François Revol <revol@free.fr> 7 * 8 * Copyright 2003-2007, Axel Dörfler, axeld@pinc-software.de. 9 * Distributed under the terms of the MIT License. 10 * 11 * Copyright 2001, Travis Geiselbrecht. All rights reserved. 12 * Distributed under the terms of the NewOS License. 13 */ 14 15 #ifndef ARCH_M68K_MMU_TYPE 16 #error This file is included from arch_*_mmu.cpp 17 #endif 18 19 /* (mmu_man) Implementation details on 68030 and others: 20 21 Unlike on x86 we can't just switch the context to another team by just 22 setting a register to another page directory, since we only have one 23 page table containing both kernel and user address mappings. 24 The 030 supports arbitrary layout of the page directory tree, including 25 a 1-bit first level (2 entries top level table) that would map kernel 26 and user land at a single place. But 040 and later only support a fixed 27 splitting of 7/7/6 for 4K pages. 28 29 Since 68k SMP hardware is rare enough we don't want to support them, we 30 can take some shortcuts. 31 32 As we don't want a separate user and kernel space, we'll use a single 33 table. With the 7/7/6 split the 2nd level would require 32KB of tables, 34 which is small enough to not want to use the list hack from x86. 35 XXX: we use the hack for now, check later 36 37 Since page directories/tables don't fit exactly a page, we stuff more 38 than one per page, and allocate them all at once, and add them at the 39 same time to the tree. So we guarantee all higher-level entries modulo 40 the number of tables/page are either invalid or present. 41 */ 42 43 #include <KernelExport.h> 44 #include <kernel.h> 45 #include <heap.h> 46 #include <vm/vm.h> 47 #include <vm/vm_page.h> 48 #include <vm/vm_priv.h> 49 #include <vm/VMAddressSpace.h> 50 #include <int.h> 51 #include <boot/kernel_args.h> 52 #include <arch/vm_translation_map.h> 53 #include <arch/cpu.h> 54 #include <arch_mmu.h> 55 #include <stdlib.h> 56 57 #include "generic_vm_physical_page_mapper.h" 58 #include "generic_vm_physical_page_ops.h" 59 60 61 #define TRACE_VM_TMAP 62 #ifdef TRACE_VM_TMAP 63 # define TRACE(x) dprintf x 64 #else 65 # define TRACE(x) ; 66 #endif 67 68 // 4 MB of iospace 69 //#define IOSPACE_SIZE (4*1024*1024) 70 #define IOSPACE_SIZE (16*1024*1024) 71 // 256K = 2^6*4K 72 #define IOSPACE_CHUNK_SIZE (NUM_PAGEENT_PER_TBL*B_PAGE_SIZE) 73 74 static page_table_entry *iospace_pgtables = NULL; 75 76 #define PAGE_INVALIDATE_CACHE_SIZE 64 77 78 // vm_translation object stuff 79 typedef struct vm_translation_map_arch_info { 80 page_root_entry *rtdir_virt; 81 page_root_entry *rtdir_phys; 82 int num_invalidate_pages; 83 addr_t pages_to_invalidate[PAGE_INVALIDATE_CACHE_SIZE]; 84 } vm_translation_map_arch_info; 85 86 #if 1//XXX:HOLE 87 static page_table_entry *page_hole = NULL; 88 static page_directory_entry *page_hole_pgdir = NULL; 89 #endif 90 static page_root_entry *sKernelPhysicalPageRoot = NULL; 91 static page_root_entry *sKernelVirtualPageRoot = NULL; 92 static addr_t sQueryPage = NULL; 93 //static page_table_entry *sQueryPageTable; 94 //static page_directory_entry *sQueryPageDir; 95 // MUST be aligned 96 static page_table_entry sQueryDesc __attribute__ (( aligned (4) )); 97 98 static vm_translation_map *tmap_list; 99 static spinlock tmap_list_lock; 100 101 static addr_t sIOSpaceBase; 102 103 #define CHATTY_TMAP 0 104 105 #if 0 106 // use P*E_TO_* and TA_TO_P*EA ! 107 #define ADDR_SHIFT(x) ((x)>>12) 108 #define ADDR_REVERSE_SHIFT(x) ((x)<<12) 109 #endif 110 111 #define FIRST_USER_PGROOT_ENT (VADDR_TO_PRENT(USER_BASE)) 112 #define FIRST_USER_PGDIR_ENT (VADDR_TO_PDENT(USER_BASE)) 113 #define NUM_USER_PGROOT_ENTS (VADDR_TO_PRENT(ROUNDUP(USER_SIZE, B_PAGE_SIZE * 64 * 128))) 114 #define NUM_USER_PGDIR_ENTS (VADDR_TO_PDENT(ROUNDUP(USER_SIZE, B_PAGE_SIZE * 64))) 115 #define FIRST_KERNEL_PGROOT_ENT (VADDR_TO_PRENT(KERNEL_BASE)) 116 #define FIRST_KERNEL_PGDIR_ENT (VADDR_TO_PDENT(KERNEL_BASE)) 117 #define NUM_KERNEL_PGROOT_ENTS (VADDR_TO_PRENT(KERNEL_SIZE)) 118 #define NUM_KERNEL_PGDIR_ENTS (VADDR_TO_PDENT(KERNEL_SIZE)) 119 #define IS_KERNEL_MAP(map) (map->arch_data->rtdir_phys == sKernelPhysicalPageRoot) 120 121 static status_t early_query(addr_t va, addr_t *out_physical); 122 static status_t get_physical_page_tmap_internal(addr_t pa, addr_t *va, uint32 flags); 123 static status_t put_physical_page_tmap_internal(addr_t va); 124 125 static void flush_tmap(vm_translation_map *map); 126 127 128 #warning M68K: RENAME 129 static void * 130 _m68k_translation_map_get_pgdir(vm_translation_map *map) 131 { 132 return map->arch_data->rtdir_phys; 133 } 134 135 136 static inline void 137 init_page_root_entry(page_root_entry *entry) 138 { 139 // DT_INVALID is 0 140 *(page_root_entry_scalar *)entry = DFL_ROOTENT_VAL; 141 } 142 143 144 static inline void 145 update_page_root_entry(page_root_entry *entry, page_root_entry *with) 146 { 147 // update page directory entry atomically 148 *(page_root_entry_scalar *)entry = *(page_root_entry_scalar *)with; 149 } 150 151 152 static inline void 153 init_page_directory_entry(page_directory_entry *entry) 154 { 155 *(page_directory_entry_scalar *)entry = DFL_DIRENT_VAL; 156 } 157 158 159 static inline void 160 update_page_directory_entry(page_directory_entry *entry, page_directory_entry *with) 161 { 162 // update page directory entry atomically 163 *(page_directory_entry_scalar *)entry = *(page_directory_entry_scalar *)with; 164 } 165 166 167 static inline void 168 init_page_table_entry(page_table_entry *entry) 169 { 170 *(page_table_entry_scalar *)entry = DFL_PAGEENT_VAL; 171 } 172 173 174 static inline void 175 update_page_table_entry(page_table_entry *entry, page_table_entry *with) 176 { 177 // update page table entry atomically 178 // XXX: is it ?? (long desc?) 179 *(page_table_entry_scalar *)entry = *(page_table_entry_scalar *)with; 180 } 181 182 183 static inline void 184 init_page_indirect_entry(page_indirect_entry *entry) 185 { 186 #warning M68K: is it correct ? 187 *(page_indirect_entry_scalar *)entry = DFL_PAGEENT_VAL; 188 } 189 190 191 static inline void 192 update_page_indirect_entry(page_indirect_entry *entry, page_indirect_entry *with) 193 { 194 // update page table entry atomically 195 // XXX: is it ?? (long desc?) 196 *(page_indirect_entry_scalar *)entry = *(page_indirect_entry_scalar *)with; 197 } 198 199 200 #warning M68K: allocate all kernel pgdirs at boot and remove this (also dont remove them anymore from unmap) 201 static void 202 _update_all_pgdirs(int index, page_root_entry e) 203 { 204 vm_translation_map *entry; 205 unsigned int state = disable_interrupts(); 206 207 acquire_spinlock(&tmap_list_lock); 208 209 for(entry = tmap_list; entry != NULL; entry = entry->next) 210 entry->arch_data->rtdir_virt[index] = e; 211 212 release_spinlock(&tmap_list_lock); 213 restore_interrupts(state); 214 } 215 216 217 // this is used before the vm is fully up, it uses the 218 // transparent translation of the first 256MB 219 // a set up by the bootloader. 220 static status_t 221 early_query(addr_t va, addr_t *_physicalAddress) 222 { 223 page_root_entry *pr = sKernelVirtualPageRoot; 224 page_directory_entry *pd; 225 page_indirect_entry *pi; 226 page_table_entry *pt; 227 addr_t pa; 228 int32 index; 229 status_t err = B_ERROR; // no pagetable here 230 TRACE(("%s(%p,)\n", __FUNCTION__, va)); 231 232 index = VADDR_TO_PRENT(va); 233 TRACE(("%s: pr[%d].type %d\n", __FUNCTION__, index, pr[index].type)); 234 if (pr && pr[index].type == DT_ROOT) { 235 pa = PRE_TO_TA(pr[index]); 236 // pa == va when in TT 237 // and no need to fiddle with cache 238 pd = (page_directory_entry *)pa; 239 240 index = VADDR_TO_PDENT(va); 241 TRACE(("%s: pd[%d].type %d\n", __FUNCTION__, index, 242 pd?(pd[index].type):-1)); 243 if (pd && pd[index].type == DT_DIR) { 244 pa = PDE_TO_TA(pd[index]); 245 pt = (page_table_entry *)pa; 246 247 index = VADDR_TO_PTENT(va); 248 TRACE(("%s: pt[%d].type %d\n", __FUNCTION__, index, 249 pt?(pt[index].type):-1)); 250 if (pt && pt[index].type == DT_INDIRECT) { 251 pi = (page_indirect_entry *)pt; 252 pa = PIE_TO_TA(pi[index]); 253 pt = (page_table_entry *)pa; 254 index = 0; // single descriptor 255 } 256 257 if (pt && pt[index].type == DT_PAGE) { 258 *_physicalAddress = PTE_TO_PA(pt[index]); 259 // we should only be passed page va, but just in case. 260 *_physicalAddress += va % B_PAGE_SIZE; 261 err = B_OK; 262 } 263 } 264 } 265 266 return err; 267 } 268 269 270 /*! Acquires the map's recursive lock, and resets the invalidate pages counter 271 in case it's the first locking recursion. 272 */ 273 static status_t 274 lock_tmap(vm_translation_map *map) 275 { 276 TRACE(("lock_tmap: map %p\n", map)); 277 278 recursive_lock_lock(&map->lock); 279 if (recursive_lock_get_recursion(&map->lock) == 1) { 280 // we were the first one to grab the lock 281 TRACE(("clearing invalidated page count\n")); 282 map->arch_data->num_invalidate_pages = 0; 283 } 284 285 return B_OK; 286 } 287 288 289 /*! Unlocks the map, and, if we'll actually losing the recursive lock, 290 flush all pending changes of this map (ie. flush TLB caches as 291 needed). 292 */ 293 static status_t 294 unlock_tmap(vm_translation_map *map) 295 { 296 TRACE(("unlock_tmap: map %p\n", map)); 297 298 if (recursive_lock_get_recursion(&map->lock) == 1) { 299 // we're about to release it for the last time 300 flush_tmap(map); 301 } 302 303 recursive_lock_unlock(&map->lock); 304 return B_OK; 305 } 306 307 308 static void 309 destroy_tmap(vm_translation_map *map) 310 { 311 int state; 312 vm_translation_map *entry; 313 vm_translation_map *last = NULL; 314 unsigned int i, j; 315 316 if (map == NULL) 317 return; 318 319 // remove it from the tmap list 320 state = disable_interrupts(); 321 acquire_spinlock(&tmap_list_lock); 322 323 entry = tmap_list; 324 while (entry != NULL) { 325 if (entry == map) { 326 if (last != NULL) 327 last->next = entry->next; 328 else 329 tmap_list = entry->next; 330 331 break; 332 } 333 last = entry; 334 entry = entry->next; 335 } 336 337 release_spinlock(&tmap_list_lock); 338 restore_interrupts(state); 339 340 if (map->arch_data->rtdir_virt != NULL) { 341 // cycle through and free all of the user space pgtables 342 // since the size of tables don't match B_PAGE_SIZE, 343 // we alloc several at once, based on modulos, 344 // we make sure they are either all in the tree or none. 345 for (i = VADDR_TO_PRENT(USER_BASE); i <= VADDR_TO_PRENT(USER_BASE + (USER_SIZE - 1)); i++) { 346 addr_t pgdir_pn; 347 page_directory_entry *pgdir; 348 vm_page *dirpage; 349 350 if (map->arch_data->rtdir_virt[i].type == DT_INVALID) 351 continue; 352 if (map->arch_data->rtdir_virt[i].type != DT_ROOT) { 353 panic("rtdir[%d]: buggy descriptor type", i); 354 return; 355 } 356 // suboptimal (done 8 times) 357 pgdir_pn = PRE_TO_PN(map->arch_data->rtdir_virt[i]); 358 dirpage = vm_lookup_page(pgdir_pn); 359 pgdir = &(((page_directory_entry *)dirpage)[i%NUM_DIRTBL_PER_PAGE]); 360 361 for (j = 0; j <= NUM_DIRENT_PER_TBL; j+=NUM_PAGETBL_PER_PAGE) { 362 addr_t pgtbl_pn; 363 page_table_entry *pgtbl; 364 vm_page *page; 365 if (pgdir[j].type == DT_INVALID) 366 continue; 367 if (pgdir[j].type != DT_DIR) { 368 panic("rtdir[%d][%d]: buggy descriptor type", i, j); 369 return; 370 } 371 pgtbl_pn = PDE_TO_PN(pgdir[j]); 372 page = vm_lookup_page(pgtbl_pn); 373 pgtbl = (page_table_entry *)page; 374 375 if (!page) { 376 panic("destroy_tmap: didn't find pgtable page\n"); 377 return; 378 } 379 DEBUG_PAGE_ACCESS_START(page); 380 vm_page_set_state(page, PAGE_STATE_FREE); 381 } 382 if (((i + 1) % NUM_DIRTBL_PER_PAGE) == 0) { 383 DEBUG_PAGE_ACCESS_END(dirpage); 384 vm_page_set_state(dirpage, PAGE_STATE_FREE); 385 } 386 } 387 free(map->arch_data->rtdir_virt); 388 } 389 390 free(map->arch_data); 391 recursive_lock_destroy(&map->lock); 392 } 393 394 395 static void 396 put_pgdir_in_pgroot(page_root_entry *entry, 397 addr_t pgdir_phys, uint32 attributes) 398 { 399 page_root_entry dir; 400 // put it in the pgdir 401 init_page_root_entry(&dir); 402 dir.addr = TA_TO_PREA(pgdir_phys); 403 404 // ToDo: we ignore the attributes of the page table - for compatibility 405 // with BeOS we allow having user accessible areas in the kernel address 406 // space. This is currently being used by some drivers, mainly for the 407 // frame buffer. Our current real time data implementation makes use of 408 // this fact, too. 409 // We might want to get rid of this possibility one day, especially if 410 // we intend to port it to a platform that does not support this. 411 //dir.user = 1; 412 //dir.rw = 1; 413 dir.type = DT_ROOT; 414 update_page_root_entry(entry, &dir); 415 } 416 417 418 static void 419 put_pgtable_in_pgdir(page_directory_entry *entry, 420 addr_t pgtable_phys, uint32 attributes) 421 { 422 page_directory_entry table; 423 // put it in the pgdir 424 init_page_directory_entry(&table); 425 table.addr = TA_TO_PDEA(pgtable_phys); 426 427 // ToDo: we ignore the attributes of the page table - for compatibility 428 // with BeOS we allow having user accessible areas in the kernel address 429 // space. This is currently being used by some drivers, mainly for the 430 // frame buffer. Our current real time data implementation makes use of 431 // this fact, too. 432 // We might want to get rid of this possibility one day, especially if 433 // we intend to port it to a platform that does not support this. 434 //table.user = 1; 435 //table.rw = 1; 436 table.type = DT_DIR; 437 update_page_directory_entry(entry, &table); 438 } 439 440 441 static void 442 put_page_table_entry_in_pgtable(page_table_entry *entry, 443 addr_t physicalAddress, uint32 attributes, bool globalPage) 444 { 445 page_table_entry page; 446 init_page_table_entry(&page); 447 448 page.addr = TA_TO_PTEA(physicalAddress); 449 450 // if the page is user accessible, it's automatically 451 // accessible in kernel space, too (but with the same 452 // protection) 453 page.supervisor = (attributes & B_USER_PROTECTION) == 0; 454 if (page.supervisor) 455 page.write_protect = (attributes & B_KERNEL_WRITE_AREA) == 0; 456 else 457 page.write_protect = (attributes & B_WRITE_AREA) == 0; 458 page.type = DT_PAGE; 459 460 #ifdef PAGE_HAS_GLOBAL_BIT 461 if (globalPage) 462 page.global = 1; 463 #endif 464 465 // put it in the page table 466 update_page_table_entry(entry, &page); 467 } 468 469 470 static void 471 put_page_indirect_entry_in_pgtable(page_indirect_entry *entry, 472 addr_t physicalAddress, uint32 attributes, bool globalPage) 473 { 474 page_indirect_entry page; 475 init_page_indirect_entry(&page); 476 477 page.addr = TA_TO_PIEA(physicalAddress); 478 page.type = DT_INDIRECT; 479 480 // there are no protection bits in indirect descriptor usually. 481 482 // put it in the page table 483 update_page_indirect_entry(entry, &page); 484 } 485 486 487 static size_t 488 map_max_pages_need(vm_translation_map */*map*/, addr_t start, addr_t end) 489 { 490 size_t need; 491 size_t pgdirs; 492 // If start == 0, the actual base address is not yet known to the caller 493 // and we shall assume the worst case. 494 if (start == 0) { 495 #warning M68K: FIXME? 496 start = (1023) * B_PAGE_SIZE; 497 end += start; 498 } 499 pgdirs = VADDR_TO_PRENT(end) + 1 - VADDR_TO_PRENT(start); 500 // how much for page directories 501 need = (pgdirs + NUM_DIRTBL_PER_PAGE - 1) / NUM_DIRTBL_PER_PAGE; 502 // and page tables themselves 503 need = ((pgdirs * NUM_DIRENT_PER_TBL) + NUM_PAGETBL_PER_PAGE - 1) / NUM_PAGETBL_PER_PAGE; 504 505 // better rounding when only 1 pgdir 506 // XXX: do better for other cases 507 if (pgdirs == 1) { 508 need = 1; 509 need += (VADDR_TO_PDENT(end) + 1 - VADDR_TO_PDENT(start) + NUM_PAGETBL_PER_PAGE - 1) / NUM_PAGETBL_PER_PAGE; 510 } 511 512 return need; 513 } 514 515 516 static status_t 517 map_tmap(vm_translation_map *map, addr_t va, addr_t pa, uint32 attributes) 518 { 519 page_root_entry *pr; 520 page_directory_entry *pd; 521 page_table_entry *pt; 522 addr_t pd_pg, pt_pg; 523 unsigned int rindex, dindex, pindex; 524 int err; 525 526 TRACE(("map_tmap: entry pa 0x%lx va 0x%lx\n", pa, va)); 527 528 /* 529 dprintf("pgdir at 0x%x\n", pgdir); 530 dprintf("index is %d\n", va / B_PAGE_SIZE / 1024); 531 dprintf("final at 0x%x\n", &pgdir[va / B_PAGE_SIZE / 1024]); 532 dprintf("value is 0x%x\n", *(int *)&pgdir[va / B_PAGE_SIZE / 1024]); 533 dprintf("present bit is %d\n", pgdir[va / B_PAGE_SIZE / 1024].present); 534 dprintf("addr is %d\n", pgdir[va / B_PAGE_SIZE / 1024].addr); 535 */ 536 pr = map->arch_data->rtdir_virt; 537 538 // check to see if a page directory exists for this range 539 rindex = VADDR_TO_PRENT(va); 540 if (pr[rindex].type != DT_ROOT) { 541 addr_t pgdir; 542 vm_page *page; 543 unsigned int i; 544 545 // we need to allocate a pgtable 546 page = vm_page_allocate_page(PAGE_STATE_WIRED | VM_PAGE_ALLOC_CLEAR); 547 548 DEBUG_PAGE_ACCESS_END(page); 549 550 pgdir = page->physical_page_number * B_PAGE_SIZE; 551 552 TRACE(("map_tmap: asked for free page for pgdir. 0x%lx\n", pgdir)); 553 554 // for each pgdir on the allocated page: 555 for (i = 0; i < NUM_DIRTBL_PER_PAGE; i++) { 556 unsigned aindex = rindex & ~(NUM_DIRTBL_PER_PAGE-1); /* aligned */ 557 page_root_entry *apr = &pr[aindex + i]; 558 559 // put in the pgdir 560 put_pgdir_in_pgroot(apr, pgdir, attributes 561 | (attributes & B_USER_PROTECTION ? B_WRITE_AREA : B_KERNEL_WRITE_AREA)); 562 563 // update any other page directories, if it maps kernel space 564 //XXX: suboptimal, should batch them 565 if ((aindex+i) >= FIRST_KERNEL_PGDIR_ENT 566 && (aindex+i) < (FIRST_KERNEL_PGDIR_ENT + NUM_KERNEL_PGDIR_ENTS)) 567 _update_all_pgdirs((aindex+i), pr[aindex+i]); 568 569 pgdir += SIZ_DIRTBL; 570 } 571 #warning M68K: really mean map_count++ ?? 572 map->map_count++; 573 } 574 // now, fill in the pentry 575 do { 576 err = get_physical_page_tmap_internal(PRE_TO_PA(pr[rindex]), 577 &pd_pg, PHYSICAL_PAGE_DONT_WAIT); 578 } while (err < 0); 579 pd = (page_directory_entry *)pd_pg; 580 // we want the table at rindex, not at rindex%(tbl/page) 581 pd += (rindex % NUM_DIRTBL_PER_PAGE) * NUM_DIRENT_PER_TBL; 582 583 // check to see if a page table exists for this range 584 dindex = VADDR_TO_PDENT(va); 585 if (pd[dindex].type != DT_DIR) { 586 addr_t pgtable; 587 vm_page *page; 588 unsigned int i; 589 590 // we need to allocate a pgtable 591 page = vm_page_allocate_page(PAGE_STATE_WIRED | VM_PAGE_ALLOC_CLEAR); 592 593 DEBUG_PAGE_ACCESS_END(page); 594 595 pgtable = page->physical_page_number * B_PAGE_SIZE; 596 597 TRACE(("map_tmap: asked for free page for pgtable. 0x%lx\n", pgtable)); 598 599 // for each pgtable on the allocated page: 600 for (i = 0; i < NUM_PAGETBL_PER_PAGE; i++) { 601 unsigned aindex = dindex & ~(NUM_PAGETBL_PER_PAGE-1); /* aligned */ 602 page_directory_entry *apd = &pd[aindex + i]; 603 604 // put in the pgdir 605 put_pgtable_in_pgdir(apd, pgtable, attributes 606 | (attributes & B_USER_PROTECTION ? B_WRITE_AREA : B_KERNEL_WRITE_AREA)); 607 608 // no need to update other page directories for kernel space; 609 // the root-level already point to us. 610 611 pgtable += SIZ_PAGETBL; 612 } 613 614 #warning M68K: really mean map_count++ ?? 615 map->map_count++; 616 } 617 // now, fill in the pentry 618 do { 619 err = get_physical_page_tmap_internal(PDE_TO_PA(pd[dindex]), 620 &pt_pg, PHYSICAL_PAGE_DONT_WAIT); 621 } while (err < 0); 622 pt = (page_table_entry *)pt_pg; 623 // we want the table at rindex, not at rindex%(tbl/page) 624 pt += (dindex % NUM_PAGETBL_PER_PAGE) * NUM_PAGEENT_PER_TBL; 625 626 pindex = VADDR_TO_PTENT(va); 627 628 put_page_table_entry_in_pgtable(&pt[pindex], pa, attributes, 629 IS_KERNEL_MAP(map)); 630 631 put_physical_page_tmap_internal(pt_pg); 632 put_physical_page_tmap_internal(pd_pg); 633 634 if (map->arch_data->num_invalidate_pages < PAGE_INVALIDATE_CACHE_SIZE) 635 map->arch_data->pages_to_invalidate[map->arch_data->num_invalidate_pages] = va; 636 637 map->arch_data->num_invalidate_pages++; 638 639 map->map_count++; 640 641 return 0; 642 } 643 644 645 static status_t 646 unmap_tmap(vm_translation_map *map, addr_t start, addr_t end) 647 { 648 page_table_entry *pt; 649 page_directory_entry *pd; 650 page_root_entry *pr = map->arch_data->rtdir_virt; 651 addr_t pd_pg, pt_pg; 652 status_t status; 653 int index; 654 655 start = ROUNDDOWN(start, B_PAGE_SIZE); 656 end = ROUNDUP(end, B_PAGE_SIZE); 657 658 TRACE(("unmap_tmap: asked to free pages 0x%lx to 0x%lx\n", start, end)); 659 660 restart: 661 if (start >= end) 662 return B_OK; 663 664 index = VADDR_TO_PRENT(start); 665 if (pr[index].type != DT_ROOT) { 666 // no pagedir here, move the start up to access the next page table 667 start = ROUNDUP(start + 1, B_PAGE_SIZE); 668 goto restart; 669 } 670 671 do { 672 status = get_physical_page_tmap_internal(PRE_TO_PA(pr[index]), 673 &pd_pg, PHYSICAL_PAGE_DONT_WAIT); 674 } while (status < B_OK); 675 pd = (page_directory_entry *)pd_pg; 676 // we want the table at rindex, not at rindex%(tbl/page) 677 pd += (index % NUM_DIRTBL_PER_PAGE) * NUM_DIRENT_PER_TBL; 678 679 index = VADDR_TO_PDENT(start); 680 if (pd[index].type != DT_DIR) { 681 // no pagetable here, move the start up to access the next page table 682 start = ROUNDUP(start + 1, B_PAGE_SIZE); 683 put_physical_page_tmap_internal(pd_pg); 684 goto restart; 685 } 686 687 do { 688 status = get_physical_page_tmap_internal(PDE_TO_PA(pd[index]), 689 &pt_pg, PHYSICAL_PAGE_DONT_WAIT); 690 } while (status < B_OK); 691 pt = (page_table_entry *)pt_pg; 692 // we want the table at rindex, not at rindex%(tbl/page) 693 pt += (index % NUM_PAGETBL_PER_PAGE) * NUM_PAGEENT_PER_TBL; 694 695 for (index = VADDR_TO_PTENT(start); 696 (index < NUM_PAGEENT_PER_TBL) && (start < end); 697 index++, start += B_PAGE_SIZE) { 698 if (pt[index].type != DT_PAGE && pt[index].type != DT_INDIRECT) { 699 // page mapping not valid 700 continue; 701 } 702 703 TRACE(("unmap_tmap: removing page 0x%lx\n", start)); 704 705 pt[index].type = DT_INVALID; 706 map->map_count--; 707 708 if (map->arch_data->num_invalidate_pages < PAGE_INVALIDATE_CACHE_SIZE) 709 map->arch_data->pages_to_invalidate[map->arch_data->num_invalidate_pages] = start; 710 711 map->arch_data->num_invalidate_pages++; 712 } 713 714 put_physical_page_tmap_internal(pt_pg); 715 put_physical_page_tmap_internal(pd_pg); 716 717 goto restart; 718 } 719 720 // XXX: 040 should be able to do that with PTEST (but not 030 or 060) 721 static status_t 722 query_tmap_interrupt(vm_translation_map *map, addr_t va, addr_t *_physical, 723 uint32 *_flags) 724 { 725 page_root_entry *pr = map->arch_data->rtdir_virt; 726 page_directory_entry *pd; 727 page_indirect_entry *pi; 728 page_table_entry *pt; 729 addr_t physicalPageTable; 730 int32 index; 731 status_t err = B_ERROR; // no pagetable here 732 733 if (sQueryPage == NULL) 734 return err; // not yet initialized !? 735 736 index = VADDR_TO_PRENT(va); 737 if (pr && pr[index].type == DT_ROOT) { 738 put_page_table_entry_in_pgtable(&sQueryDesc, PRE_TO_TA(pr[index]), B_KERNEL_READ_AREA, false); 739 arch_cpu_invalidate_TLB_range((addr_t)pt, (addr_t)pt); 740 pd = (page_directory_entry *)sQueryPage; 741 742 index = VADDR_TO_PDENT(va); 743 if (pd && pd[index].type == DT_DIR) { 744 put_page_table_entry_in_pgtable(&sQueryDesc, PDE_TO_TA(pd[index]), B_KERNEL_READ_AREA, false); 745 arch_cpu_invalidate_TLB_range((addr_t)pt, (addr_t)pt); 746 pt = (page_table_entry *)sQueryPage; 747 748 index = VADDR_TO_PTENT(va); 749 if (pt && pt[index].type == DT_INDIRECT) { 750 pi = (page_indirect_entry *)pt; 751 put_page_table_entry_in_pgtable(&sQueryDesc, PIE_TO_TA(pi[index]), B_KERNEL_READ_AREA, false); 752 arch_cpu_invalidate_TLB_range((addr_t)pt, (addr_t)pt); 753 pt = (page_table_entry *)sQueryPage; 754 index = 0; // single descriptor 755 } 756 757 if (pt /*&& pt[index].type == DT_PAGE*/) { 758 *_physical = PTE_TO_PA(pt[index]); 759 // we should only be passed page va, but just in case. 760 *_physical += va % B_PAGE_SIZE; 761 *_flags |= ((pt[index].write_protect ? 0 : B_KERNEL_WRITE_AREA) | B_KERNEL_READ_AREA) 762 | (pt[index].dirty ? PAGE_MODIFIED : 0) 763 | (pt[index].accessed ? PAGE_ACCESSED : 0) 764 | ((pt[index].type == DT_PAGE) ? PAGE_PRESENT : 0); 765 err = B_OK; 766 } 767 } 768 } 769 770 // unmap the pg table from the indirect desc. 771 sQueryDesc.type = DT_INVALID; 772 773 return err; 774 } 775 776 777 static status_t 778 query_tmap(vm_translation_map *map, addr_t va, addr_t *_physical, uint32 *_flags) 779 { 780 page_table_entry *pt; 781 page_indirect_entry *pi; 782 page_directory_entry *pd; 783 page_directory_entry *pr = map->arch_data->rtdir_virt; 784 addr_t pd_pg, pt_pg, pi_pg; 785 status_t status; 786 int32 index; 787 788 // default the flags to not present 789 *_flags = 0; 790 *_physical = 0; 791 792 index = VADDR_TO_PRENT(va); 793 if (pr[index].type != DT_ROOT) { 794 // no pagetable here 795 return B_NO_ERROR; 796 } 797 798 do { 799 status = get_physical_page_tmap_internal(PRE_TO_PA(pr[index]), 800 &pd_pg, PHYSICAL_PAGE_DONT_WAIT); 801 } while (status < B_OK); 802 pd = (page_directory_entry *)pd_pg; 803 // we want the table at rindex, not at rindex%(tbl/page) 804 pd += (index % NUM_DIRTBL_PER_PAGE) * NUM_DIRENT_PER_TBL; 805 806 807 index = VADDR_TO_PDENT(va); 808 if (pd[index].type != DT_DIR) { 809 // no pagetable here 810 put_physical_page_tmap_internal(pd_pg); 811 return B_NO_ERROR; 812 } 813 814 do { 815 status = get_physical_page_tmap_internal(PDE_TO_PA(pd[index]), 816 &pt_pg, PHYSICAL_PAGE_DONT_WAIT); 817 } while (status < B_OK); 818 pt = (page_table_entry *)pt_pg; 819 // we want the table at rindex, not at rindex%(tbl/page) 820 pt += (index % NUM_PAGETBL_PER_PAGE) * NUM_PAGEENT_PER_TBL; 821 822 index = VADDR_TO_PTENT(va); 823 824 // handle indirect descriptor 825 if (pt[index].type == DT_INDIRECT) { 826 pi = (page_indirect_entry *)pt; 827 pi_pg = pt_pg; 828 do { 829 status = get_physical_page_tmap_internal(PIE_TO_PA(pi[index]), 830 &pt_pg, PHYSICAL_PAGE_DONT_WAIT); 831 } while (status < B_OK); 832 pt = (page_table_entry *)pt_pg; 833 // add offset from start of page 834 pt += PIE_TO_PO(pi[index]) / sizeof(page_table_entry); 835 // release the indirect table page 836 put_physical_page_tmap_internal(pi_pg); 837 } 838 839 *_physical = PTE_TO_PA(pt[index]); 840 841 // read in the page state flags 842 if (!pt[index].supervisor) 843 *_flags |= (pt[index].write_protect ? 0 : B_WRITE_AREA) | B_READ_AREA; 844 845 *_flags |= (pt[index].write_protect ? 0 : B_KERNEL_WRITE_AREA) 846 | B_KERNEL_READ_AREA 847 | (pt[index].dirty ? PAGE_MODIFIED : 0) 848 | (pt[index].accessed ? PAGE_ACCESSED : 0) 849 | ((pt[index].type == DT_PAGE) ? PAGE_PRESENT : 0); 850 851 put_physical_page_tmap_internal(pt_pg); 852 put_physical_page_tmap_internal(pd_pg); 853 854 TRACE(("query_tmap: returning pa 0x%lx for va 0x%lx\n", *_physical, va)); 855 856 return B_OK; 857 } 858 859 860 static addr_t 861 get_mapped_size_tmap(vm_translation_map *map) 862 { 863 return map->map_count; 864 } 865 866 867 static status_t 868 protect_tmap(vm_translation_map *map, addr_t start, addr_t end, uint32 attributes) 869 { 870 page_table_entry *pt; 871 page_directory_entry *pd; 872 page_root_entry *pr = map->arch_data->rtdir_virt; 873 addr_t pd_pg, pt_pg; 874 status_t status; 875 int index; 876 877 start = ROUNDDOWN(start, B_PAGE_SIZE); 878 end = ROUNDUP(end, B_PAGE_SIZE); 879 880 TRACE(("protect_tmap: pages 0x%lx to 0x%lx, attributes %lx\n", start, end, attributes)); 881 882 restart: 883 if (start >= end) 884 return B_OK; 885 886 index = VADDR_TO_PRENT(start); 887 if (pr[index].type != DT_ROOT) { 888 // no pagedir here, move the start up to access the next page table 889 start = ROUNDUP(start + 1, B_PAGE_SIZE); 890 goto restart; 891 } 892 893 do { 894 status = get_physical_page_tmap_internal(PRE_TO_PA(pr[index]), 895 &pd_pg, PHYSICAL_PAGE_DONT_WAIT); 896 } while (status < B_OK); 897 pd = (page_directory_entry *)pd_pg; 898 // we want the table at rindex, not at rindex%(tbl/page) 899 pd += (index % NUM_DIRTBL_PER_PAGE) * NUM_DIRENT_PER_TBL; 900 901 index = VADDR_TO_PDENT(start); 902 if (pd[index].type != DT_DIR) { 903 // no pagetable here, move the start up to access the next page table 904 start = ROUNDUP(start + 1, B_PAGE_SIZE); 905 put_physical_page_tmap_internal(pd_pg); 906 goto restart; 907 } 908 909 do { 910 status = get_physical_page_tmap_internal(PDE_TO_PA(pd[index]), 911 &pt_pg, PHYSICAL_PAGE_DONT_WAIT); 912 } while (status < B_OK); 913 pt = (page_table_entry *)pt_pg; 914 // we want the table at rindex, not at rindex%(tbl/page) 915 pt += (index % NUM_PAGETBL_PER_PAGE) * NUM_PAGEENT_PER_TBL; 916 917 for (index = VADDR_TO_PTENT(start); 918 (index < NUM_PAGEENT_PER_TBL) && (start < end); 919 index++, start += B_PAGE_SIZE) { 920 // XXX: handle indirect ? 921 if (pt[index].type != DT_PAGE /*&& pt[index].type != DT_INDIRECT*/) { 922 // page mapping not valid 923 continue; 924 } 925 926 TRACE(("protect_tmap: protect page 0x%lx\n", start)); 927 928 pt[index].supervisor = (attributes & B_USER_PROTECTION) == 0; 929 if ((attributes & B_USER_PROTECTION) != 0) 930 pt[index].write_protect = (attributes & B_WRITE_AREA) == 0; 931 else 932 pt[index].write_protect = (attributes & B_KERNEL_WRITE_AREA) == 0; 933 934 if (map->arch_data->num_invalidate_pages < PAGE_INVALIDATE_CACHE_SIZE) 935 map->arch_data->pages_to_invalidate[map->arch_data->num_invalidate_pages] = start; 936 937 map->arch_data->num_invalidate_pages++; 938 } 939 940 put_physical_page_tmap_internal(pt_pg); 941 put_physical_page_tmap_internal(pd_pg); 942 943 goto restart; 944 } 945 946 947 static status_t 948 clear_flags_tmap(vm_translation_map *map, addr_t va, uint32 flags) 949 { 950 page_table_entry *pt; 951 page_indirect_entry *pi; 952 page_directory_entry *pd; 953 page_root_entry *pr = map->arch_data->rtdir_virt; 954 addr_t pd_pg, pt_pg, pi_pg; 955 status_t status; 956 int index; 957 int tlb_flush = false; 958 959 index = VADDR_TO_PRENT(va); 960 if (pr[index].type != DT_ROOT) { 961 // no pagetable here 962 return B_NO_ERROR; 963 } 964 965 do { 966 status = get_physical_page_tmap_internal(PRE_TO_PA(pr[index]), 967 &pd_pg, PHYSICAL_PAGE_DONT_WAIT); 968 } while (status < B_OK); 969 pd = (page_directory_entry *)pd_pg; 970 // we want the table at rindex, not at rindex%(tbl/page) 971 pd += (index % NUM_DIRTBL_PER_PAGE) * NUM_DIRENT_PER_TBL; 972 973 974 index = VADDR_TO_PDENT(va); 975 if (pd[index].type != DT_DIR) { 976 // no pagetable here 977 put_physical_page_tmap_internal(pd_pg); 978 return B_NO_ERROR; 979 } 980 981 do { 982 status = get_physical_page_tmap_internal(PDE_TO_PA(pd[index]), 983 &pt_pg, PHYSICAL_PAGE_DONT_WAIT); 984 } while (status < B_OK); 985 pt = (page_table_entry *)pt_pg; 986 // we want the table at rindex, not at rindex%(tbl/page) 987 pt += (index % NUM_PAGETBL_PER_PAGE) * NUM_PAGEENT_PER_TBL; 988 989 index = VADDR_TO_PTENT(va); 990 991 // handle indirect descriptor 992 if (pt[index].type == DT_INDIRECT) { 993 pi = (page_indirect_entry *)pt; 994 pi_pg = pt_pg; 995 do { 996 status = get_physical_page_tmap_internal(PIE_TO_PA(pi[index]), 997 &pt_pg, PHYSICAL_PAGE_DONT_WAIT); 998 } while (status < B_OK); 999 pt = (page_table_entry *)pt_pg; 1000 // add offset from start of page 1001 pt += PIE_TO_PO(pi[index]) / sizeof(page_table_entry); 1002 // release the indirect table page 1003 put_physical_page_tmap_internal(pi_pg); 1004 } 1005 1006 // clear out the flags we've been requested to clear 1007 if (flags & PAGE_MODIFIED) { 1008 pt[index].dirty = 0; 1009 tlb_flush = true; 1010 } 1011 if (flags & PAGE_ACCESSED) { 1012 pt[index].accessed = 0; 1013 tlb_flush = true; 1014 } 1015 1016 put_physical_page_tmap_internal(pt_pg); 1017 put_physical_page_tmap_internal(pd_pg); 1018 1019 if (tlb_flush) { 1020 if (map->arch_data->num_invalidate_pages < PAGE_INVALIDATE_CACHE_SIZE) 1021 map->arch_data->pages_to_invalidate[map->arch_data->num_invalidate_pages] = va; 1022 1023 map->arch_data->num_invalidate_pages++; 1024 } 1025 1026 return B_OK; 1027 } 1028 1029 1030 static void 1031 flush_tmap(vm_translation_map *map) 1032 { 1033 cpu_status state; 1034 1035 if (map->arch_data->num_invalidate_pages <= 0) 1036 return; 1037 1038 state = disable_interrupts(); 1039 1040 if (map->arch_data->num_invalidate_pages > PAGE_INVALIDATE_CACHE_SIZE) { 1041 // invalidate all pages 1042 TRACE(("flush_tmap: %d pages to invalidate, invalidate all\n", 1043 map->arch_data->num_invalidate_pages)); 1044 1045 if (IS_KERNEL_MAP(map)) { 1046 arch_cpu_global_TLB_invalidate(); 1047 } else { 1048 arch_cpu_user_TLB_invalidate(); 1049 } 1050 } else { 1051 TRACE(("flush_tmap: %d pages to invalidate, invalidate list\n", 1052 map->arch_data->num_invalidate_pages)); 1053 1054 arch_cpu_invalidate_TLB_list(map->arch_data->pages_to_invalidate, 1055 map->arch_data->num_invalidate_pages); 1056 } 1057 map->arch_data->num_invalidate_pages = 0; 1058 1059 restore_interrupts(state); 1060 } 1061 1062 1063 static status_t 1064 map_iospace_chunk(addr_t va, addr_t pa, uint32 flags) 1065 { 1066 int i; 1067 page_table_entry *pt; 1068 int state; 1069 1070 pa &= ~(B_PAGE_SIZE - 1); // make sure it's page aligned 1071 va &= ~(B_PAGE_SIZE - 1); // make sure it's page aligned 1072 if (va < sIOSpaceBase || va >= (sIOSpaceBase + IOSPACE_SIZE)) 1073 panic("map_iospace_chunk: passed invalid va 0x%lx\n", va); 1074 1075 pt = &iospace_pgtables[(va - sIOSpaceBase) / B_PAGE_SIZE]; 1076 for (i = 0; i < NUM_PAGEENT_PER_TBL; i++, pa += B_PAGE_SIZE) { 1077 init_page_table_entry(&pt[i]); 1078 pt[i].addr = TA_TO_PTEA(pa); 1079 pt[i].supervisor = 1; 1080 pt[i].write_protect = 0; 1081 pt[i].type = DT_PAGE; 1082 //XXX: not cachable ? 1083 // 040 or 060 only 1084 #ifdef MMU_HAS_GLOBAL_PAGES 1085 pt[i].global = 1; 1086 #endif 1087 } 1088 1089 state = disable_interrupts(); 1090 arch_cpu_invalidate_TLB_range(va, va + (IOSPACE_CHUNK_SIZE - B_PAGE_SIZE)); 1091 //smp_send_broadcast_ici(SMP_MSG_INVALIDATE_PAGE_RANGE, 1092 // va, va + (IOSPACE_CHUNK_SIZE - B_PAGE_SIZE), 0, 1093 // NULL, SMP_MSG_FLAG_SYNC); 1094 restore_interrupts(state); 1095 1096 return B_OK; 1097 } 1098 1099 1100 static status_t 1101 get_physical_page_tmap_internal(addr_t pa, addr_t *va, uint32 flags) 1102 { 1103 return generic_get_physical_page(pa, va, flags); 1104 } 1105 1106 1107 static status_t 1108 put_physical_page_tmap_internal(addr_t va) 1109 { 1110 return generic_put_physical_page(va); 1111 } 1112 1113 1114 static status_t 1115 get_physical_page_tmap(addr_t physicalAddress, addr_t *_virtualAddress, 1116 void **handle) 1117 { 1118 return generic_get_physical_page(physicalAddress, _virtualAddress, 0); 1119 } 1120 1121 1122 static status_t 1123 put_physical_page_tmap(addr_t virtualAddress, void *handle) 1124 { 1125 return generic_put_physical_page(virtualAddress); 1126 } 1127 1128 1129 static vm_translation_map_ops tmap_ops = { 1130 destroy_tmap, 1131 lock_tmap, 1132 unlock_tmap, 1133 map_max_pages_need, 1134 map_tmap, 1135 unmap_tmap, 1136 query_tmap, 1137 query_tmap_interrupt, 1138 get_mapped_size_tmap, 1139 protect_tmap, 1140 clear_flags_tmap, 1141 flush_tmap, 1142 get_physical_page_tmap, 1143 put_physical_page_tmap, 1144 get_physical_page_tmap, // *_current_cpu() 1145 put_physical_page_tmap, // *_current_cpu() 1146 get_physical_page_tmap, // *_debug() 1147 put_physical_page_tmap, // *_debug() 1148 // TODO: Replace the *_current_cpu() and *_debug() versions! 1149 1150 generic_vm_memset_physical, 1151 generic_vm_memcpy_from_physical, 1152 generic_vm_memcpy_to_physical, 1153 generic_vm_memcpy_physical_page 1154 // TODO: Verify that this is safe to use! 1155 }; 1156 1157 1158 // #pragma mark - 1159 // VM API 1160 1161 1162 static status_t 1163 m68k_vm_translation_map_init_map(vm_translation_map *map, bool kernel) 1164 { 1165 if (map == NULL) 1166 return B_BAD_VALUE; 1167 1168 TRACE(("vm_translation_map_create\n")); 1169 1170 // initialize the new object 1171 map->ops = &tmap_ops; 1172 map->map_count = 0; 1173 1174 recursive_lock_init(&map->lock, "translation map"); 1175 1176 map->arch_data = (vm_translation_map_arch_info *)malloc(sizeof(vm_translation_map_arch_info)); 1177 if (map == NULL) { 1178 recursive_lock_destroy(&map->lock); 1179 return B_NO_MEMORY; 1180 } 1181 1182 map->arch_data->num_invalidate_pages = 0; 1183 1184 if (!kernel) { 1185 // user 1186 // allocate a rtdir 1187 map->arch_data->rtdir_virt = (page_root_entry *)memalign( 1188 SIZ_ROOTTBL, SIZ_ROOTTBL); 1189 if (map->arch_data->rtdir_virt == NULL) { 1190 free(map->arch_data); 1191 recursive_lock_destroy(&map->lock); 1192 return B_NO_MEMORY; 1193 } 1194 vm_get_page_mapping(VMAddressSpace::KernelID(), 1195 (addr_t)map->arch_data->rtdir_virt, (addr_t *)&map->arch_data->rtdir_phys); 1196 } else { 1197 // kernel 1198 // we already know the kernel pgdir mapping 1199 map->arch_data->rtdir_virt = sKernelVirtualPageRoot; 1200 map->arch_data->rtdir_phys = sKernelPhysicalPageRoot; 1201 } 1202 1203 // zero out the bottom portion of the new rtdir 1204 memset(map->arch_data->rtdir_virt + FIRST_USER_PGROOT_ENT, 0, 1205 NUM_USER_PGROOT_ENTS * sizeof(page_root_entry)); 1206 1207 // insert this new map into the map list 1208 { 1209 int state = disable_interrupts(); 1210 acquire_spinlock(&tmap_list_lock); 1211 1212 // copy the top portion of the rtdir from the current one 1213 memcpy(map->arch_data->rtdir_virt + FIRST_KERNEL_PGROOT_ENT, 1214 sKernelVirtualPageRoot + FIRST_KERNEL_PGROOT_ENT, 1215 NUM_KERNEL_PGROOT_ENTS * sizeof(page_root_entry)); 1216 1217 map->next = tmap_list; 1218 tmap_list = map; 1219 1220 release_spinlock(&tmap_list_lock); 1221 restore_interrupts(state); 1222 } 1223 1224 return B_OK; 1225 } 1226 1227 1228 static status_t 1229 m68k_vm_translation_map_init_kernel_map_post_sem(vm_translation_map *map) 1230 { 1231 return B_OK; 1232 } 1233 1234 1235 static status_t 1236 m68k_vm_translation_map_init(kernel_args *args) 1237 { 1238 status_t error; 1239 1240 TRACE(("vm_translation_map_init: entry\n")); 1241 #if 0//XXX:HOLE 1242 // page hole set up in stage2 1243 page_hole = (page_table_entry *)args->arch_args.page_hole; 1244 // calculate where the pgdir would be 1245 page_hole_pgdir = (page_directory_entry *)(((unsigned int)args->arch_args.page_hole) + (B_PAGE_SIZE * 1024 - B_PAGE_SIZE)); 1246 // clear out the bottom 2 GB, unmap everything 1247 memset(page_hole_pgdir + FIRST_USER_PGDIR_ENT, 0, sizeof(page_directory_entry) * NUM_USER_PGDIR_ENTS); 1248 #endif 1249 1250 sKernelPhysicalPageRoot = (page_root_entry *)args->arch_args.phys_pgroot; 1251 sKernelVirtualPageRoot = (page_root_entry *)args->arch_args.vir_pgroot; 1252 1253 sQueryDesc.type = DT_INVALID; 1254 1255 B_INITIALIZE_SPINLOCK(&tmap_list_lock); 1256 tmap_list = NULL; 1257 1258 // allocate some space to hold physical page mapping info 1259 //XXX: check page count 1260 // we already have all page directories allocated by the bootloader, 1261 // we only need page tables 1262 1263 iospace_pgtables = (page_table_entry *)vm_allocate_early(args, 1264 B_PAGE_SIZE * (IOSPACE_SIZE / (B_PAGE_SIZE * NUM_PAGEENT_PER_TBL * NUM_PAGETBL_PER_PAGE)), ~0L, 1265 B_KERNEL_READ_AREA | B_KERNEL_WRITE_AREA, 0); 1266 1267 TRACE(("iospace_pgtables %p\n", iospace_pgtables)); 1268 1269 // init physical page mapper 1270 error = generic_vm_physical_page_mapper_init(args, map_iospace_chunk, 1271 &sIOSpaceBase, IOSPACE_SIZE, IOSPACE_CHUNK_SIZE); 1272 if (error != B_OK) 1273 return error; 1274 TRACE(("iospace at %p\n", sIOSpaceBase)); 1275 // initialize our data structures 1276 memset(iospace_pgtables, 0, B_PAGE_SIZE * (IOSPACE_SIZE / (B_PAGE_SIZE * NUM_PAGEENT_PER_TBL * NUM_PAGETBL_PER_PAGE))); 1277 1278 TRACE(("mapping iospace_pgtables\n")); 1279 1280 // put the array of pgtables directly into the kernel pagedir 1281 // these will be wired and kept mapped into virtual space to be 1282 // easy to get to. 1283 // note the bootloader allocates all page directories for us 1284 // as a contiguous block. 1285 // we also still have transparent translation enabled, va==pa. 1286 { 1287 addr_t phys_pgtable; 1288 addr_t virt_pgtable; 1289 page_root_entry *pr = sKernelVirtualPageRoot; 1290 page_directory_entry *pd; 1291 page_directory_entry *e; 1292 int index; 1293 int i; 1294 1295 virt_pgtable = (addr_t)iospace_pgtables; 1296 1297 for (i = 0; i < (IOSPACE_SIZE / (B_PAGE_SIZE * NUM_PAGEENT_PER_TBL)); 1298 i++, virt_pgtable += SIZ_PAGETBL) { 1299 // early_query handles non-page-aligned addresses 1300 early_query(virt_pgtable, &phys_pgtable); 1301 index = VADDR_TO_PRENT(sIOSpaceBase) + i / NUM_DIRENT_PER_TBL; 1302 pd = (page_directory_entry *)PRE_TO_TA(pr[index]); 1303 e = &pd[(VADDR_TO_PDENT(sIOSpaceBase) + i) % NUM_DIRENT_PER_TBL]; 1304 put_pgtable_in_pgdir(e, phys_pgtable, 1305 B_KERNEL_READ_AREA | B_KERNEL_WRITE_AREA); 1306 } 1307 } 1308 1309 TRACE(("vm_translation_map_init: done\n")); 1310 1311 return B_OK; 1312 } 1313 1314 1315 static status_t 1316 m68k_vm_translation_map_init_post_sem(kernel_args *args) 1317 { 1318 return generic_vm_physical_page_mapper_init_post_sem(args); 1319 } 1320 1321 1322 static status_t 1323 m68k_vm_translation_map_init_post_area(kernel_args *args) 1324 { 1325 // now that the vm is initialized, create a region that represents 1326 // the page hole 1327 void *temp; 1328 status_t error; 1329 area_id area; 1330 addr_t queryPage; 1331 1332 TRACE(("vm_translation_map_init_post_area: entry\n")); 1333 1334 // unmap the page hole hack we were using before 1335 #warning M68K: FIXME 1336 //sKernelVirtualPageRoot[1023].present = 0; 1337 #if 0 1338 page_hole_pgdir = NULL; 1339 page_hole = NULL; 1340 #endif 1341 1342 temp = (void *)sKernelVirtualPageRoot; 1343 area = create_area("kernel_pgdir", &temp, B_EXACT_ADDRESS, B_PAGE_SIZE, 1344 B_ALREADY_WIRED, B_KERNEL_READ_AREA | B_KERNEL_WRITE_AREA); 1345 if (area < B_OK) 1346 return area; 1347 1348 temp = (void *)iospace_pgtables; 1349 area = create_area("iospace_pgtables", &temp, B_EXACT_ADDRESS, 1350 B_PAGE_SIZE * (IOSPACE_SIZE / (B_PAGE_SIZE * 1024)), 1351 B_ALREADY_WIRED, B_KERNEL_READ_AREA | B_KERNEL_WRITE_AREA); 1352 if (area < B_OK) 1353 return area; 1354 1355 error = generic_vm_physical_page_mapper_init_post_area(args); 1356 if (error != B_OK) 1357 return error; 1358 1359 // this area is used for query_tmap_interrupt() 1360 // TODO: Note, this only works as long as all pages belong to the same 1361 // page table, which is not yet enforced (or even tested)! 1362 // Note we don't support SMP which makes things simpler. 1363 1364 area = vm_create_null_area(VMAddressSpace::KernelID(), 1365 "interrupt query pages", (void **)&queryPage, B_ANY_ADDRESS, 1366 B_PAGE_SIZE, 0); 1367 if (area < B_OK) 1368 return area; 1369 1370 // insert the indirect descriptor in the tree so we can map the page we want from it. 1371 1372 { 1373 page_directory_entry *pageDirEntry; 1374 page_indirect_entry *pageTableEntry; 1375 addr_t physicalPageDir, physicalPageTable; 1376 addr_t physicalIndirectDesc; 1377 int32 index; 1378 1379 // first get pa for the indirect descriptor 1380 1381 index = VADDR_TO_PRENT((addr_t)&sQueryDesc); 1382 physicalPageDir = PRE_TO_PA(sKernelVirtualPageRoot[index]); 1383 1384 get_physical_page_tmap_internal(physicalPageDir, 1385 (addr_t *)&pageDirEntry, PHYSICAL_PAGE_DONT_WAIT); 1386 1387 index = VADDR_TO_PDENT((addr_t)&sQueryDesc); 1388 physicalPageTable = PDE_TO_PA(pageDirEntry[index]); 1389 1390 get_physical_page_tmap_internal(physicalPageTable, 1391 (addr_t *)&pageTableEntry, PHYSICAL_PAGE_DONT_WAIT); 1392 1393 index = VADDR_TO_PTENT((addr_t)&sQueryDesc); 1394 1395 // pa of the page 1396 physicalIndirectDesc = PTE_TO_PA(pageTableEntry[index]); 1397 // add offset 1398 physicalIndirectDesc += ((addr_t)&sQueryDesc) % B_PAGE_SIZE; 1399 1400 put_physical_page_tmap_internal((addr_t)pageTableEntry); 1401 put_physical_page_tmap_internal((addr_t)pageDirEntry); 1402 1403 // then the va for the page table for the query page. 1404 1405 //sQueryPageTable = (page_indirect_entry *)(queryPage); 1406 1407 index = VADDR_TO_PRENT(queryPage); 1408 physicalPageDir = PRE_TO_PA(sKernelVirtualPageRoot[index]); 1409 1410 get_physical_page_tmap_internal(physicalPageDir, 1411 (addr_t *)&pageDirEntry, PHYSICAL_PAGE_DONT_WAIT); 1412 1413 index = VADDR_TO_PDENT(queryPage); 1414 physicalPageTable = PDE_TO_PA(pageDirEntry[index]); 1415 1416 get_physical_page_tmap_internal(physicalPageTable, 1417 (addr_t *)&pageTableEntry, PHYSICAL_PAGE_DONT_WAIT); 1418 1419 index = VADDR_TO_PTENT(queryPage); 1420 1421 put_page_indirect_entry_in_pgtable(&pageTableEntry[index], physicalIndirectDesc, 1422 B_KERNEL_READ_AREA | B_KERNEL_WRITE_AREA, false); 1423 1424 put_physical_page_tmap_internal((addr_t)pageTableEntry); 1425 put_physical_page_tmap_internal((addr_t)pageDirEntry); 1426 //invalidate_TLB(sQueryPageTable); 1427 } 1428 // qmery_tmap_interrupt checks for the NULL, now it can use it 1429 sQueryPage = queryPage; 1430 1431 TRACE(("vm_translation_map_init_post_area: done\n")); 1432 return B_OK; 1433 } 1434 1435 1436 // almost directly taken from boot mmu code 1437 // x86: 1438 // XXX horrible back door to map a page quickly regardless of translation map object, etc. 1439 // used only during VM setup. 1440 // uses a 'page hole' set up in the stage 2 bootloader. The page hole is created by pointing one of 1441 // the pgdir entries back at itself, effectively mapping the contents of all of the 4MB of pagetables 1442 // into a 4 MB region. It's only used here, and is later unmapped. 1443 1444 static status_t 1445 m68k_vm_translation_map_early_map(kernel_args *args, addr_t va, addr_t pa, 1446 uint8 attributes, addr_t (*get_free_page)(kernel_args *)) 1447 { 1448 page_root_entry *pr = (page_root_entry *)sKernelPhysicalPageRoot; 1449 page_directory_entry *pd; 1450 page_table_entry *pt; 1451 addr_t tbl; 1452 uint32 index; 1453 uint32 i; 1454 TRACE(("early_tmap: entry pa 0x%lx va 0x%lx\n", pa, va)); 1455 1456 // everything much simpler here because pa = va 1457 // thanks to transparent translation which hasn't been disabled yet 1458 1459 index = VADDR_TO_PRENT(va); 1460 if (pr[index].type != DT_ROOT) { 1461 unsigned aindex = index & ~(NUM_DIRTBL_PER_PAGE-1); /* aligned */ 1462 TRACE(("missing page root entry %d ai %d\n", index, aindex)); 1463 tbl = get_free_page(args) * B_PAGE_SIZE; 1464 if (!tbl) 1465 return ENOMEM; 1466 TRACE(("early_map: asked for free page for pgdir. 0x%lx\n", tbl)); 1467 // zero-out 1468 memset((void *)tbl, 0, B_PAGE_SIZE); 1469 // for each pgdir on the allocated page: 1470 for (i = 0; i < NUM_DIRTBL_PER_PAGE; i++) { 1471 put_pgdir_in_pgroot(&pr[aindex + i], tbl, attributes); 1472 //TRACE(("inserting tbl @ %p as %08x pr[%d] %08x\n", tbl, TA_TO_PREA(tbl), aindex + i, *(uint32 *)apr)); 1473 // clear the table 1474 //TRACE(("clearing table[%d]\n", i)); 1475 pd = (page_directory_entry *)tbl; 1476 for (int32 j = 0; j < NUM_DIRENT_PER_TBL; j++) 1477 *(page_directory_entry_scalar *)(&pd[j]) = DFL_DIRENT_VAL; 1478 tbl += SIZ_DIRTBL; 1479 } 1480 } 1481 pd = (page_directory_entry *)PRE_TO_TA(pr[index]); 1482 1483 index = VADDR_TO_PDENT(va); 1484 if (pd[index].type != DT_DIR) { 1485 unsigned aindex = index & ~(NUM_PAGETBL_PER_PAGE-1); /* aligned */ 1486 TRACE(("missing page dir entry %d ai %d\n", index, aindex)); 1487 tbl = get_free_page(args) * B_PAGE_SIZE; 1488 if (!tbl) 1489 return ENOMEM; 1490 TRACE(("early_map: asked for free page for pgtable. 0x%lx\n", tbl)); 1491 // zero-out 1492 memset((void *)tbl, 0, B_PAGE_SIZE); 1493 // for each pgdir on the allocated page: 1494 for (i = 0; i < NUM_PAGETBL_PER_PAGE; i++) { 1495 put_pgtable_in_pgdir(&pd[aindex + i], tbl, attributes); 1496 // clear the table 1497 //TRACE(("clearing table[%d]\n", i)); 1498 pt = (page_table_entry *)tbl; 1499 for (int32 j = 0; j < NUM_PAGEENT_PER_TBL; j++) 1500 *(page_table_entry_scalar *)(&pt[j]) = DFL_PAGEENT_VAL; 1501 tbl += SIZ_PAGETBL; 1502 } 1503 } 1504 pt = (page_table_entry *)PDE_TO_TA(pd[index]); 1505 1506 index = VADDR_TO_PTENT(va); 1507 put_page_table_entry_in_pgtable(&pt[index], pa, attributes, 1508 IS_KERNEL_ADDRESS(va)); 1509 1510 arch_cpu_invalidate_TLB_range(va, va); 1511 1512 return B_OK; 1513 } 1514 1515 1516 static bool 1517 m68k_vm_translation_map_is_kernel_page_accessible(addr_t virtualAddress, 1518 uint32 protection) 1519 { 1520 // TODO: Implement! 1521 return false; 1522 } 1523