xref: /haiku/src/system/boot/platform/bios_ia32/long.cpp (revision 2510baa4685f8f570c607ceedfd73473d69342c4)
1 /*
2  * Copyright 2012, Alex Smith, alex@alex-smith.me.uk.
3  * Distributed under the terms of the MIT License.
4  */
5 
6 
7 #include "long.h"
8 
9 #include <algorithm>
10 
11 #include <KernelExport.h>
12 
13 // Include the x86_64 version of descriptors.h
14 #define __x86_64__
15 #include <arch/x86/descriptors.h>
16 #undef __x86_64__
17 
18 #include <arch_system_info.h>
19 #include <boot/platform.h>
20 #include <boot/heap.h>
21 #include <boot/stage2.h>
22 #include <boot/stdio.h>
23 #include <kernel.h>
24 
25 #include "debug.h"
26 #include "smp.h"
27 #include "mmu.h"
28 
29 
30 static const uint64 kTableMappingFlags = 0x7;
31 static const uint64 kLargePageMappingFlags = 0x183;
32 static const uint64 kPageMappingFlags = 0x103;
33 	// Global, R/W, Present
34 
35 extern "C" void long_enter_kernel(int currentCPU, uint64 stackTop);
36 
37 extern uint32 gLongPhysicalGDT;
38 extern uint64 gLongVirtualGDT;
39 extern uint32 gLongPhysicalPML4;
40 extern uint64 gLongKernelEntry;
41 
42 
43 /*! Convert a 32-bit address to a 64-bit address. */
44 static inline uint64
45 fix_address(uint64 address)
46 {
47 	return address - KERNEL_LOAD_BASE + KERNEL_LOAD_BASE_64_BIT;
48 }
49 
50 
51 template<typename Type>
52 inline void
53 fix_address(FixedWidthPointer<Type>& p)
54 {
55 	if (p != NULL)
56 		p.SetTo(fix_address(p.Get()));
57 }
58 
59 
60 static void
61 long_gdt_init()
62 {
63 	// Allocate memory for the GDT.
64 	segment_descriptor* gdt = (segment_descriptor*)
65 		mmu_allocate_page(&gKernelArgs.arch_args.phys_gdt);
66 	gKernelArgs.arch_args.vir_gdt = fix_address((addr_t)gdt);
67 
68 	dprintf("GDT at phys 0x%lx, virt 0x%llx\n", gKernelArgs.arch_args.phys_gdt,
69 		gKernelArgs.arch_args.vir_gdt);
70 
71 	clear_segment_descriptor(&gdt[0]);
72 
73 	// Set up code/data segments (TSS segments set up later in the kernel).
74 	set_segment_descriptor(&gdt[KERNEL_CODE_SEG / 8], DT_CODE_EXECUTE_ONLY,
75 		DPL_KERNEL);
76 	set_segment_descriptor(&gdt[KERNEL_DATA_SEG / 8], DT_DATA_WRITEABLE,
77 		DPL_KERNEL);
78 	set_segment_descriptor(&gdt[USER_CODE_SEG / 8], DT_CODE_EXECUTE_ONLY,
79 		DPL_USER);
80 	set_segment_descriptor(&gdt[USER_DATA_SEG / 8], DT_DATA_WRITEABLE,
81 		DPL_USER);
82 
83 	// Used by long_enter_kernel().
84 	gLongPhysicalGDT = gKernelArgs.arch_args.phys_gdt;
85 	gLongVirtualGDT = gKernelArgs.arch_args.vir_gdt;
86 }
87 
88 
89 static void
90 long_idt_init()
91 {
92 	interrupt_descriptor* idt = (interrupt_descriptor*)
93 		mmu_allocate_page(&gKernelArgs.arch_args.phys_idt);
94 	gKernelArgs.arch_args.vir_idt = fix_address((addr_t)idt);
95 
96 	dprintf("IDT at phys %#lx, virt %#llx\n", gKernelArgs.arch_args.phys_idt,
97 		gKernelArgs.arch_args.vir_idt);
98 
99 	// The 32-bit kernel gets an IDT with the loader's exception handlers until
100 	// it can set up its own. Can't do that here because they won't work after
101 	// switching to long mode. Therefore, just clear the IDT and leave the
102 	// kernel to set it up.
103 	memset(idt, 0, B_PAGE_SIZE);
104 }
105 
106 
107 static void
108 long_mmu_init()
109 {
110 	uint64* pml4;
111 	uint64* pdpt;
112 	uint64* pageDir;
113 	uint64* pageTable;
114 	addr_t physicalAddress;
115 
116 	// Allocate the top level PML4.
117 	pml4 = (uint64*)mmu_allocate_page(&gKernelArgs.arch_args.phys_pgdir);
118 	memset(pml4, 0, B_PAGE_SIZE);
119 	gKernelArgs.arch_args.vir_pgdir = fix_address((uint64)(addr_t)pml4);
120 
121 	// Store the virtual memory usage information.
122 	gKernelArgs.virtual_allocated_range[0].start = KERNEL_LOAD_BASE_64_BIT;
123 	gKernelArgs.virtual_allocated_range[0].size = mmu_get_virtual_usage();
124 	gKernelArgs.num_virtual_allocated_ranges = 1;
125 	gKernelArgs.arch_args.virtual_end = ROUNDUP(KERNEL_LOAD_BASE_64_BIT
126 		+ gKernelArgs.virtual_allocated_range[0].size, 0x200000);
127 
128 	// Find the highest physical memory address. We map all physical memory
129 	// into the kernel address space, so we want to make sure we map everything
130 	// we have available.
131 	uint64 maxAddress = 0;
132 	for (uint32 i = 0; i < gKernelArgs.num_physical_memory_ranges; i++) {
133 		maxAddress = std::max(maxAddress,
134 			gKernelArgs.physical_memory_range[i].start
135 				+ gKernelArgs.physical_memory_range[i].size);
136 	}
137 
138 	// Want to map at least 4GB, there may be stuff other than usable RAM that
139 	// could be in the first 4GB of physical address space.
140 	maxAddress = std::max(maxAddress, (uint64)0x100000000ll);
141 	maxAddress = ROUNDUP(maxAddress, 0x40000000);
142 
143 	// Currently only use 1 PDPT (512GB). This will need to change if someone
144 	// wants to use Haiku on a box with more than 512GB of RAM but that's
145 	// probably not going to happen any time soon.
146 	if (maxAddress / 0x40000000 > 512)
147 		panic("Can't currently support more than 512GB of RAM!");
148 
149 	// Create page tables for the physical map area. Also map this PDPT
150 	// temporarily at the bottom of the address space so that we are identity
151 	// mapped.
152 
153 	pdpt = (uint64*)mmu_allocate_page(&physicalAddress);
154 	memset(pdpt, 0, B_PAGE_SIZE);
155 	pml4[510] = physicalAddress | kTableMappingFlags;
156 	pml4[0] = physicalAddress | kTableMappingFlags;
157 
158 	for (uint64 i = 0; i < maxAddress; i += 0x40000000) {
159 		pageDir = (uint64*)mmu_allocate_page(&physicalAddress);
160 		memset(pageDir, 0, B_PAGE_SIZE);
161 		pdpt[i / 0x40000000] = physicalAddress | kTableMappingFlags;
162 
163 		for (uint64 j = 0; j < 0x40000000; j += 0x200000) {
164 			pageDir[j / 0x200000] = (i + j) | kLargePageMappingFlags;
165 		}
166 
167 		mmu_free(pageDir, B_PAGE_SIZE);
168 	}
169 
170 	mmu_free(pdpt, B_PAGE_SIZE);
171 
172 	// Allocate tables for the kernel mappings.
173 
174 	pdpt = (uint64*)mmu_allocate_page(&physicalAddress);
175 	memset(pdpt, 0, B_PAGE_SIZE);
176 	pml4[511] = physicalAddress | kTableMappingFlags;
177 
178 	pageDir = (uint64*)mmu_allocate_page(&physicalAddress);
179 	memset(pageDir, 0, B_PAGE_SIZE);
180 	pdpt[510] = physicalAddress | kTableMappingFlags;
181 
182 	// We can now allocate page tables and duplicate the mappings across from
183 	// the 32-bit address space to them.
184 	pageTable = NULL;
185 	for (uint32 i = 0; i < gKernelArgs.virtual_allocated_range[0].size
186 			/ B_PAGE_SIZE; i++) {
187 		if ((i % 512) == 0) {
188 			if (pageTable)
189 				mmu_free(pageTable, B_PAGE_SIZE);
190 
191 			pageTable = (uint64*)mmu_allocate_page(&physicalAddress);
192 			memset(pageTable, 0, B_PAGE_SIZE);
193 			pageDir[i / 512] = physicalAddress | kTableMappingFlags;
194 		}
195 
196 		// Get the physical address to map.
197 		if (!mmu_get_virtual_mapping(KERNEL_LOAD_BASE + (i * B_PAGE_SIZE),
198 				&physicalAddress))
199 			continue;
200 
201 		pageTable[i % 512] = physicalAddress | kPageMappingFlags;
202 	}
203 
204 	if (pageTable)
205 		mmu_free(pageTable, B_PAGE_SIZE);
206 	mmu_free(pageDir, B_PAGE_SIZE);
207 	mmu_free(pdpt, B_PAGE_SIZE);
208 
209 	// Sort the address ranges.
210 	sort_address_ranges(gKernelArgs.physical_memory_range,
211 		gKernelArgs.num_physical_memory_ranges);
212 	sort_address_ranges(gKernelArgs.physical_allocated_range,
213 		gKernelArgs.num_physical_allocated_ranges);
214 	sort_address_ranges(gKernelArgs.virtual_allocated_range,
215 		gKernelArgs.num_virtual_allocated_ranges);
216 
217 	dprintf("phys memory ranges:\n");
218 	for (uint32 i = 0; i < gKernelArgs.num_physical_memory_ranges; i++) {
219 		dprintf("    base %#018" B_PRIx64 ", length %#018" B_PRIx64 "\n",
220 			gKernelArgs.physical_memory_range[i].start,
221 			gKernelArgs.physical_memory_range[i].size);
222 	}
223 
224 	dprintf("allocated phys memory ranges:\n");
225 	for (uint32 i = 0; i < gKernelArgs.num_physical_allocated_ranges; i++) {
226 		dprintf("    base %#018" B_PRIx64 ", length %#018" B_PRIx64 "\n",
227 			gKernelArgs.physical_allocated_range[i].start,
228 			gKernelArgs.physical_allocated_range[i].size);
229 	}
230 
231 	dprintf("allocated virt memory ranges:\n");
232 	for (uint32 i = 0; i < gKernelArgs.num_virtual_allocated_ranges; i++) {
233 		dprintf("    base %#018" B_PRIx64 ", length %#018" B_PRIx64 "\n",
234 			gKernelArgs.virtual_allocated_range[i].start,
235 			gKernelArgs.virtual_allocated_range[i].size);
236 	}
237 
238 	gLongPhysicalPML4 = gKernelArgs.arch_args.phys_pgdir;
239 }
240 
241 
242 static void
243 convert_preloaded_image(preloaded_elf64_image* image)
244 {
245 	fix_address(image->next);
246 	fix_address(image->name);
247 	fix_address(image->debug_string_table);
248 	fix_address(image->syms);
249 	fix_address(image->rel);
250 	fix_address(image->rela);
251 	fix_address(image->pltrel);
252 	fix_address(image->debug_symbols);
253 }
254 
255 
256 /*!	Convert all addresses in kernel_args to 64-bit addresses. */
257 static void
258 convert_kernel_args()
259 {
260 	fix_address(gKernelArgs.boot_volume);
261 	fix_address(gKernelArgs.vesa_modes);
262 	fix_address(gKernelArgs.edid_info);
263 	fix_address(gKernelArgs.debug_output);
264 	fix_address(gKernelArgs.boot_splash);
265 	fix_address(gKernelArgs.arch_args.apic);
266 	fix_address(gKernelArgs.arch_args.hpet);
267 
268 	convert_preloaded_image(static_cast<preloaded_elf64_image*>(
269 		gKernelArgs.kernel_image.Pointer()));
270 	fix_address(gKernelArgs.kernel_image);
271 
272 	// Iterate over the preloaded images. Must save the next address before
273 	// converting, as the next pointer will be converted.
274 	preloaded_image* image = gKernelArgs.preloaded_images;
275 	fix_address(gKernelArgs.preloaded_images);
276 	while (image != NULL) {
277 		preloaded_image* next = image->next;
278 		convert_preloaded_image(static_cast<preloaded_elf64_image*>(image));
279 		image = next;
280 	}
281 
282 	// Set correct kernel args range addresses.
283 	dprintf("kernel args ranges:\n");
284 	for (uint32 i = 0; i < gKernelArgs.num_kernel_args_ranges; i++) {
285 		gKernelArgs.kernel_args_range[i].start = fix_address(
286 			gKernelArgs.kernel_args_range[i].start);
287 		dprintf("    base %#018" B_PRIx64 ", length %#018" B_PRIx64 "\n",
288 			gKernelArgs.kernel_args_range[i].start,
289 			gKernelArgs.kernel_args_range[i].size);
290 	}
291 
292 	// Fix driver settings files.
293 	driver_settings_file* file = gKernelArgs.driver_settings;
294 	fix_address(gKernelArgs.driver_settings);
295 	while (file != NULL) {
296 		driver_settings_file* next = file->next;
297 		fix_address(file->next);
298 		fix_address(file->buffer);
299 		file = next;
300 	}
301 }
302 
303 
304 static void
305 long_smp_start_kernel(void)
306 {
307 	uint32 cpu = smp_get_current_cpu();
308 
309 	// Important.  Make sure supervisor threads can fault on read only pages...
310 	asm("movl %%eax, %%cr0" : : "a" ((1 << 31) | (1 << 16) | (1 << 5) | 1));
311 	asm("cld");
312 	asm("fninit");
313 
314 	// Fix our kernel stack address.
315 	gKernelArgs.cpu_kstack[cpu].start
316 		= fix_address(gKernelArgs.cpu_kstack[cpu].start);
317 
318 	long_enter_kernel(cpu, gKernelArgs.cpu_kstack[cpu].start
319 		+ gKernelArgs.cpu_kstack[cpu].size);
320 
321 	panic("Shouldn't get here");
322 }
323 
324 
325 void
326 long_start_kernel()
327 {
328 	// Check whether long mode is supported.
329 	cpuid_info info;
330 	get_current_cpuid(&info, 0x80000001);
331 	if ((info.regs.edx & (1 << 29)) == 0)
332 		panic("64-bit kernel requires a 64-bit CPU");
333 
334 	preloaded_elf64_image *image = static_cast<preloaded_elf64_image *>(
335 		gKernelArgs.kernel_image.Pointer());
336 
337 	smp_init_other_cpus();
338 
339 	long_gdt_init();
340 	long_idt_init();
341 	long_mmu_init();
342 	convert_kernel_args();
343 
344 	debug_cleanup();
345 
346 	// Save the kernel entry point address.
347 	gLongKernelEntry = image->elf_header.e_entry;
348 	dprintf("kernel entry at %#llx\n", gLongKernelEntry);
349 
350 	// Fix our kernel stack address.
351 	gKernelArgs.cpu_kstack[0].start
352 		= fix_address(gKernelArgs.cpu_kstack[0].start);
353 
354 	// We're about to enter the kernel -- disable console output.
355 	stdout = NULL;
356 
357 	smp_boot_other_cpus(long_smp_start_kernel);
358 
359 	// Enter the kernel!
360 	long_enter_kernel(0, gKernelArgs.cpu_kstack[0].start
361 		+ gKernelArgs.cpu_kstack[0].size);
362 
363 	panic("Shouldn't get here");
364 }
365