xref: /haiku/src/system/boot/platform/atari_m68k/mmu.cpp (revision 204dee708a999d5a71d0cb9497650ee7cef85d0a)
1 /*
2  * Copyright 2008-2010, François Revol, revol@free.fr. All rights reserved.
3  * Copyright 2004-2007, Axel Dörfler, axeld@pinc-software.de.
4  * Based on code written by Travis Geiselbrecht for NewOS.
5  *
6  * Distributed under the terms of the MIT License.
7  */
8 
9 
10 #include "atari_memory_map.h"
11 #include "toscalls.h"
12 #include "mmu.h"
13 
14 #include <boot/platform.h>
15 #include <boot/stdio.h>
16 #include <boot/kernel_args.h>
17 #include <boot/stage2.h>
18 #include <arch/cpu.h>
19 #include <arch_kernel.h>
20 #include <kernel.h>
21 
22 #include <OS.h>
23 
24 #include <string.h>
25 
26 
27 //XXX: x86
28 /** The (physical) memory layout of the boot loader is currently as follows:
29  *	  0x0500 - 0x10000	protected mode stack
30  *	  0x0500 - 0x09000	real mode stack
31  *	 0x10000 - ?		code (up to ~500 kB)
32  *	 0x90000			1st temporary page table (identity maps 0-4 MB)
33  *	 0x91000			2nd (4-8 MB)
34  *	 0x92000 - 0x92000	further page tables
35  *	 0x9e000 - 0xa0000	SMP trampoline code
36  *	[0xa0000 - 0x100000	BIOS/ROM/reserved area]
37  *	0x100000			page directory
38  *	     ...			boot loader heap (32 kB)
39  *	     ...			free physical memory
40  *
41  *	The first 8 MB are identity mapped (0x0 - 0x0800000); paging is turned
42  *	on. The kernel is mapped at 0x80000000, all other stuff mapped by the
43  *	loader (kernel args, modules, driver settings, ...) comes after
44  *	0x81000000 which means that there is currently only 1 MB reserved for
45  *	the kernel itself (see kMaxKernelSize).
46  */
47 
48 // notes m68k:
49 /** The (physical) memory layout of the boot loader is currently as follows:
50  *	  0x0800 - 0x10000	supervisor mode stack (1) XXX: more ? x86 starts at 500
51  *	 0x10000 - ?		code (up to ~500 kB)
52  *  0x100000 or FAST_RAM_BASE if any:
53  *	     ...			page root directory
54  *	     ...			interrupt vectors (VBR)
55  *	     ...			page directory
56  *	     ...			boot loader heap (32 kB)
57  *	     ...			free physical memory
58  *  0xdNNNNN			video buffer usually there, as per v_bas_ad
59  *						(=Logbase() but Physbase() is better)
60  *
61  *	The first 32 MB (2) are identity mapped (0x0 - 0x1000000); paging
62  *	is turned on. The kernel is mapped at 0x80000000, all other stuff
63  *	mapped by the loader (kernel args, modules, driver settings, ...)
64  *	comes after 0x81000000 which means that there is currently only
65  *	1 MB reserved for the kernel itself (see kMaxKernelSize).
66  *
67  *	(1) no need for user stack, we are already in supervisor mode in the
68  *	loader.
69  *	(2) maps the whole regular ST space; transparent translation registers
70  *	have larger granularity anyway.
71  */
72 #warning M68K: check for Physbase() < ST_RAM_TOP
73 
74 //#define TRACE_MMU
75 #ifdef TRACE_MMU
76 #	define TRACE(x) dprintf x
77 #else
78 #	define TRACE(x) ;
79 #endif
80 
81 
82 // since the page root directory doesn't take a full page (1k)
83 // we stuff some other stuff after it, like the interrupt vectors (1k)
84 #define VBR_PAGE_OFFSET 1024
85 
86 static const uint32 kDefaultPageTableFlags = 0x07;	// present, user, R/W
87 static const size_t kMaxKernelSize = 0x200000;		// 2 MB for the kernel
88 
89 // working page directory and page table
90 addr_t gPageRoot = 0;
91 
92 static addr_t sNextPhysicalAddress = 0x100000;
93 static addr_t sNextVirtualAddress = KERNEL_BASE + kMaxKernelSize;
94 static addr_t sMaxVirtualAddress = KERNEL_BASE /*+ 0x400000*/;
95 
96 #if 0
97 static addr_t sNextPageTableAddress = 0x90000;
98 static const uint32 kPageTableRegionEnd = 0x9e000;
99 	// we need to reserve 2 pages for the SMP trampoline code XXX:no
100 #endif
101 
102 static const struct boot_mmu_ops *gMMUOps;
103 
104 static addr_t
105 get_next_virtual_address(size_t size)
106 {
107 	addr_t address = sNextVirtualAddress;
108 	sNextVirtualAddress += size;
109 
110 	TRACE(("%s(%d): %08x\n", __FUNCTION__, size, address));
111 	return address;
112 }
113 
114 
115 static addr_t
116 get_next_physical_address(size_t size)
117 {
118 	addr_t address = sNextPhysicalAddress;
119 	sNextPhysicalAddress += size;
120 
121 	TRACE(("%s(%d): %08x\n", __FUNCTION__, size, address));
122 	return address;
123 }
124 
125 
126 static addr_t
127 get_next_virtual_page()
128 {
129 	TRACE(("%s\n", __FUNCTION__));
130 	return get_next_virtual_address(B_PAGE_SIZE);
131 }
132 
133 
134 static addr_t
135 get_next_physical_page()
136 {
137 	TRACE(("%s\n", __FUNCTION__));
138 	return get_next_physical_address(B_PAGE_SIZE);
139 }
140 
141 
142 // allocate a page worth of page dir or tables
143 extern "C" addr_t
144 mmu_get_next_page_tables()
145 {
146 #if 0
147 	TRACE(("mmu_get_next_page_tables, sNextPageTableAddress %p, kPageTableRegionEnd %p\n",
148 		sNextPageTableAddress, kPageTableRegionEnd));
149 
150 	addr_t address = sNextPageTableAddress;
151 	if (address >= kPageTableRegionEnd)
152 		return (uint32 *)get_next_physical_page();
153 
154 	sNextPageTableAddress += B_PAGE_SIZE;
155 	return (uint32 *)address;
156 #endif
157 	addr_t tbl = get_next_physical_page();
158 	if (!tbl)
159 		return tbl;
160 	// shouldn't we fill this ?
161 	//gKernelArgs.arch_args.pgtables[gKernelArgs.arch_args.num_pgtables++] = (uint32)pageTable;
162 
163 #if 0
164 	// clear them
165 	uint32 *p = (uint32 *)tbl;
166 	for (int32 i = 0; i < 1024; i++)
167 		p[i] = 0;
168 #endif
169 	return tbl;
170 }
171 
172 #if 0
173 /**	Adds a new page table for the specified base address */
174 
175 static void
176 add_page_table(addr_t base)
177 {
178 	TRACE(("add_page_table(base = %p)\n", (void *)base));
179 #if 0
180 
181 	// Get new page table and clear it out
182 	uint32 *pageTable = mmu_get_next_page_tables();
183 	if (pageTable > (uint32 *)(8 * 1024 * 1024))
184 		panic("tried to add page table beyond the indentity mapped 8 MB region\n");
185 
186 	gKernelArgs.arch_args.pgtables[gKernelArgs.arch_args.num_pgtables++] = (uint32)pageTable;
187 
188 	for (int32 i = 0; i < 1024; i++)
189 		pageTable[i] = 0;
190 
191 	// put the new page table into the page directory
192 	gPageRoot[base/(4*1024*1024)] = (uint32)pageTable | kDefaultPageTableFlags;
193 #endif
194 }
195 #endif
196 
197 
198 static void
199 unmap_page(addr_t virtualAddress)
200 {
201 	gMMUOps->unmap_page(virtualAddress);
202 }
203 
204 
205 /** Creates an entry to map the specified virtualAddress to the given
206  *	physicalAddress.
207  *	If the mapping goes beyond the current page table, it will allocate
208  *	a new one. If it cannot map the requested page, it panics.
209  */
210 
211 static void
212 map_page(addr_t virtualAddress, addr_t physicalAddress, uint32 flags)
213 {
214 	TRACE(("map_page: vaddr 0x%lx, paddr 0x%lx\n", virtualAddress, physicalAddress));
215 
216 	if (virtualAddress < KERNEL_BASE)
217 		panic("map_page: asked to map invalid page %p!\n", (void *)virtualAddress);
218 
219 	// slow but I'm too lazy to fix the code below
220 	gMMUOps->add_page_table(virtualAddress);
221 #if 0
222 	if (virtualAddress >= sMaxVirtualAddress) {
223 		// we need to add a new page table
224 
225 		gMMUOps->add_page_table(sMaxVirtualAddress);
226 		// 64 pages / page table
227 		sMaxVirtualAddress += B_PAGE_SIZE * 64;
228 
229 		if (virtualAddress >= sMaxVirtualAddress)
230 			panic("map_page: asked to map a page to %p\n", (void *)virtualAddress);
231 	}
232 #endif
233 
234 	physicalAddress &= ~(B_PAGE_SIZE - 1);
235 
236 	// map the page to the correct page table
237 	gMMUOps->map_page(virtualAddress, physicalAddress, flags);
238 }
239 
240 
241 static void
242 init_page_directory(void)
243 {
244 	TRACE(("init_page_directory\n"));
245 
246 	// allocate a new pg root dir
247 	gPageRoot = get_next_physical_page();
248 	gKernelArgs.arch_args.phys_pgroot = (uint32)gPageRoot;
249 	gKernelArgs.arch_args.phys_vbr = (uint32)gPageRoot + VBR_PAGE_OFFSET;
250 
251 	// set the root pointers
252 	gMMUOps->load_rp(gPageRoot);
253 	// allocate second level tables for kernel space
254 	// this will simplify mmu code a lot, and only wastes 32KB
255 	gMMUOps->allocate_kernel_pgdirs();
256 	// enable mmu translation
257 	gMMUOps->enable_paging();
258 	//XXX: check for errors
259 
260 	//gKernelArgs.arch_args.num_pgtables = 0;
261 	gMMUOps->add_page_table(KERNEL_BASE);
262 
263 #if 0
264 
265 
266 	// clear out the pgdir
267 	for (int32 i = 0; i < 1024; i++) {
268 		gPageRoot[i] = 0;
269 	}
270 
271 	// Identity map the first 8 MB of memory so that their
272 	// physical and virtual address are the same.
273 	// These page tables won't be taken over into the kernel.
274 
275 	// make the first page table at the first free spot
276 	uint32 *pageTable = mmu_get_next_page_tables();
277 
278 	for (int32 i = 0; i < 1024; i++) {
279 		pageTable[i] = (i * 0x1000) | kDefaultPageFlags;
280 	}
281 
282 	gPageRoot[0] = (uint32)pageTable | kDefaultPageFlags;
283 
284 	// make the second page table
285 	pageTable = mmu_get_next_page_tables();
286 
287 	for (int32 i = 0; i < 1024; i++) {
288 		pageTable[i] = (i * 0x1000 + 0x400000) | kDefaultPageFlags;
289 	}
290 
291 	gPageRoot[1] = (uint32)pageTable | kDefaultPageFlags;
292 
293 	gKernelArgs.arch_args.num_pgtables = 0;
294 	add_page_table(KERNEL_BASE);
295 
296 	// switch to the new pgdir and enable paging
297 	asm("movl %0, %%eax;"
298 		"movl %%eax, %%cr3;" : : "m" (gPageRoot) : "eax");
299 	// Important.  Make sure supervisor threads can fault on read only pages...
300 	asm("movl %%eax, %%cr0" : : "a" ((1 << 31) | (1 << 16) | (1 << 5) | 1));
301 #endif
302 }
303 
304 
305 //	#pragma mark -
306 
307 
308 extern "C" addr_t
309 mmu_map_physical_memory(addr_t physicalAddress, size_t size, uint32 flags)
310 {
311 	addr_t address = sNextVirtualAddress;
312 	addr_t pageOffset = physicalAddress & (B_PAGE_SIZE - 1);
313 
314 	physicalAddress -= pageOffset;
315 
316 	for (addr_t offset = 0; offset < size; offset += B_PAGE_SIZE) {
317 		map_page(get_next_virtual_page(), physicalAddress + offset, flags);
318 	}
319 
320 	return address + pageOffset;
321 }
322 
323 
324 extern "C" void *
325 mmu_allocate(void *virtualAddress, size_t size)
326 {
327 	TRACE(("mmu_allocate: requested vaddr: %p, next free vaddr: 0x%lx, size: %ld\n",
328 		virtualAddress, sNextVirtualAddress, size));
329 
330 	size = (size + B_PAGE_SIZE - 1) / B_PAGE_SIZE;
331 		// get number of pages to map
332 
333 	if (virtualAddress != NULL) {
334 		// This special path is almost only useful for loading the
335 		// kernel into memory; it will only allow you to map the
336 		// 1 MB following the kernel base address.
337 		// Also, it won't check for already mapped addresses, so
338 		// you better know why you are here :)
339 		addr_t address = (addr_t)virtualAddress;
340 
341 		// is the address within the valid range?
342 		if (address < KERNEL_BASE || address + size * B_PAGE_SIZE
343 			>= KERNEL_BASE + kMaxKernelSize)
344 			return NULL;
345 
346 		for (uint32 i = 0; i < size; i++) {
347 			map_page(address, get_next_physical_page(), kDefaultPageFlags);
348 			address += B_PAGE_SIZE;
349 		}
350 
351 		TRACE(("mmu_allocate(KERNEL, %d): done\n", size));
352 		return virtualAddress;
353 	}
354 
355 	void *address = (void *)sNextVirtualAddress;
356 
357 	for (uint32 i = 0; i < size; i++) {
358 		map_page(get_next_virtual_page(), get_next_physical_page(), kDefaultPageFlags);
359 	}
360 
361 	TRACE(("mmu_allocate(NULL, %d): %p\n", size, address));
362 	return address;
363 }
364 
365 
366 /**	This will unmap the allocated chunk of memory from the virtual
367  *	address space. It might not actually free memory (as its implementation
368  *	is very simple), but it might.
369  */
370 
371 extern "C" void
372 mmu_free(void *virtualAddress, size_t size)
373 {
374 	TRACE(("mmu_free(virtualAddress = %p, size: %ld)\n", virtualAddress, size));
375 
376 	addr_t address = (addr_t)virtualAddress;
377 	size = (size + B_PAGE_SIZE - 1) / B_PAGE_SIZE;
378 		// get number of pages to map
379 
380 	// is the address within the valid range?
381 	if (address < KERNEL_BASE) {
382 		panic("mmu_free: asked to unmap out of range region (%p, size %lx)\n",
383 			(void *)address, size);
384 	}
385 
386 	// unmap all pages within the range
387 	for (uint32 i = 0; i < size; i++) {
388 		unmap_page(address);
389 		address += B_PAGE_SIZE;
390 	}
391 
392 	if (address == sNextVirtualAddress) {
393 		// we can actually reuse the virtual address space
394 		sNextVirtualAddress -= size;
395 	}
396 }
397 
398 
399 /** Sets up the final and kernel accessible GDT and IDT tables.
400  *	BIOS calls won't work any longer after this function has
401  *	been called.
402  */
403 
404 extern "C" void
405 mmu_init_for_kernel(void)
406 {
407 	TRACE(("mmu_init_for_kernel\n"));
408 
409 
410 
411 
412 	// remove identity mapping of ST space
413 	// actually done by the kernel when it's done using query_early
414 	//gMMUOps->set_tt(0, NULL, 0, 0);
415 
416 #if 0
417 	// set up a new idt
418 	{
419 		struct gdt_idt_descr idtDescriptor;
420 		uint32 *idt;
421 
422 		// find a new idt
423 		idt = (uint32 *)get_next_physical_page();
424 		gKernelArgs.arch_args.phys_idt = (uint32)idt;
425 
426 		TRACE(("idt at %p\n", idt));
427 
428 		// map the idt into virtual space
429 		gKernelArgs.arch_args.vir_idt = (uint32)get_next_virtual_page();
430 		map_page(gKernelArgs.arch_args.vir_idt, (uint32)idt, kDefaultPageFlags);
431 
432 		// clear it out
433 		uint32* virtualIDT = (uint32*)gKernelArgs.arch_args.vir_idt;
434 		for (int32 i = 0; i < IDT_LIMIT / 4; i++) {
435 			virtualIDT[i] = 0;
436 		}
437 
438 		// load the idt
439 		idtDescriptor.limit = IDT_LIMIT - 1;
440 		idtDescriptor.base = (uint32 *)gKernelArgs.arch_args.vir_idt;
441 
442 		asm("lidt	%0;"
443 			: : "m" (idtDescriptor));
444 
445 		TRACE(("idt at virtual address 0x%lx\n", gKernelArgs.arch_args.vir_idt));
446 	}
447 
448 	// set up a new gdt
449 	{
450 		struct gdt_idt_descr gdtDescriptor;
451 		segment_descriptor *gdt;
452 
453 		// find a new gdt
454 		gdt = (segment_descriptor *)get_next_physical_page();
455 		gKernelArgs.arch_args.phys_gdt = (uint32)gdt;
456 
457 		TRACE(("gdt at %p\n", gdt));
458 
459 		// map the gdt into virtual space
460 		gKernelArgs.arch_args.vir_gdt = (uint32)get_next_virtual_page();
461 		map_page(gKernelArgs.arch_args.vir_gdt, (uint32)gdt, kDefaultPageFlags);
462 
463 		// put standard segment descriptors in it
464 		segment_descriptor* virtualGDT
465 			= (segment_descriptor*)gKernelArgs.arch_args.vir_gdt;
466 		clear_segment_descriptor(&virtualGDT[0]);
467 
468 		// seg 0x08 - kernel 4GB code
469 		set_segment_descriptor(&virtualGDT[1], 0, 0xffffffff, DT_CODE_READABLE,
470 			DPL_KERNEL);
471 
472 		// seg 0x10 - kernel 4GB data
473 		set_segment_descriptor(&virtualGDT[2], 0, 0xffffffff, DT_DATA_WRITEABLE,
474 			DPL_KERNEL);
475 
476 		// seg 0x1b - ring 3 user 4GB code
477 		set_segment_descriptor(&virtualGDT[3], 0, 0xffffffff, DT_CODE_READABLE,
478 			DPL_USER);
479 
480 		// seg 0x23 - ring 3 user 4GB data
481 		set_segment_descriptor(&virtualGDT[4], 0, 0xffffffff, DT_DATA_WRITEABLE,
482 			DPL_USER);
483 
484 		// virtualGDT[5] and above will be filled later by the kernel
485 		// to contain the TSS descriptors, and for TLS (one for every CPU)
486 
487 		// load the GDT
488 		gdtDescriptor.limit = GDT_LIMIT - 1;
489 		gdtDescriptor.base = (uint32 *)gKernelArgs.arch_args.vir_gdt;
490 
491 		asm("lgdt	%0;"
492 			: : "m" (gdtDescriptor));
493 
494 		TRACE(("gdt at virtual address %p\n", (void *)gKernelArgs.arch_args.vir_gdt));
495 	}
496 #endif
497 
498 	// save the memory we've physically allocated
499 	gKernelArgs.physical_allocated_range[0].size = sNextPhysicalAddress - gKernelArgs.physical_allocated_range[0].start;
500 
501 	// save the memory we've virtually allocated (for the kernel and other stuff)
502 	gKernelArgs.virtual_allocated_range[0].start = KERNEL_BASE;
503 	gKernelArgs.virtual_allocated_range[0].size = sNextVirtualAddress - KERNEL_BASE;
504 	gKernelArgs.num_virtual_allocated_ranges = 1;
505 
506 	// sort the address ranges
507 	sort_address_ranges(gKernelArgs.physical_memory_range,
508 		gKernelArgs.num_physical_memory_ranges);
509 	sort_address_ranges(gKernelArgs.physical_allocated_range,
510 		gKernelArgs.num_physical_allocated_ranges);
511 	sort_address_ranges(gKernelArgs.virtual_allocated_range,
512 		gKernelArgs.num_virtual_allocated_ranges);
513 
514 #ifdef TRACE_MMU
515 	{
516 		uint32 i;
517 
518 		dprintf("phys memory ranges:\n");
519 		for (i = 0; i < gKernelArgs.num_physical_memory_ranges; i++) {
520 			dprintf("    base 0x%08" B_PRIx64 ", length 0x%08" B_PRIx64 "\n",
521 				gKernelArgs.physical_memory_range[i].start,
522 				gKernelArgs.physical_memory_range[i].size);
523 		}
524 
525 		dprintf("allocated phys memory ranges:\n");
526 		for (i = 0; i < gKernelArgs.num_physical_allocated_ranges; i++) {
527 			dprintf("    base 0x%08" B_PRIx64 ", length 0x%08" B_PRIx64 "\n",
528 				gKernelArgs.physical_allocated_range[i].start,
529 				gKernelArgs.physical_allocated_range[i].size);
530 		}
531 
532 		dprintf("allocated virt memory ranges:\n");
533 		for (i = 0; i < gKernelArgs.num_virtual_allocated_ranges; i++) {
534 			dprintf("    base 0x%08" B_PRIx64 ", length 0x%08" B_PRIx64 "\n",
535 				gKernelArgs.virtual_allocated_range[i].start,
536 				gKernelArgs.virtual_allocated_range[i].size);
537 		}
538 	}
539 #endif
540 }
541 
542 
543 extern "C" void
544 mmu_init(void)
545 {
546 	TRACE(("mmu_init\n"));
547 	switch (gKernelArgs.arch_args.mmu_type) {
548 #if 0
549 		case 68851:
550 			gMMUOps = &k851MMUOps;
551 			break;
552 #endif
553 		case 68030:
554 			gMMUOps = &k030MMUOps;
555 			break;
556 		case 68040:
557 			gMMUOps = &k040MMUOps;
558 			break;
559 #if 0
560 		case 68060:
561 			gMMUOps = &k060MMUOps;
562 			break;
563 #endif
564 		default:
565 			panic("unknown mmu type %d\n", gKernelArgs.arch_args.mmu_type);
566 	}
567 
568 	gMMUOps->initialize();
569 
570 	addr_t fastram_top = 0;
571 	if (*TOSVARramvalid == TOSVARramvalid_MAGIC)
572 		fastram_top = *TOSVARramtop;
573 	if (fastram_top) {
574 		// we have some fastram, use it first
575 		sNextPhysicalAddress = ATARI_FASTRAM_BASE;
576 	}
577 
578 	gKernelArgs.physical_allocated_range[0].start = sNextPhysicalAddress;
579 	gKernelArgs.physical_allocated_range[0].size = 0;
580 	gKernelArgs.num_physical_allocated_ranges = 1;
581 		// remember the start of the allocated physical pages
582 
583 	TRACE(("mmu_init: enabling transparent translation\n"));
584 	// enable transparent translation of the first 256 MB
585 	gMMUOps->set_tt(0, ATARI_CHIPRAM_BASE, 0x10000000, 0);
586 	// enable transparent translation of the 16MB ST shadow range for I/O
587 	gMMUOps->set_tt(1, ATARI_SHADOW_BASE, 0x01000000, 0);
588 
589 	TRACE(("mmu_init: init rtdir\n"));
590 	init_page_directory();
591 #if 0//XXX:HOLE
592 
593 	// Map the page directory into kernel space at 0xffc00000-0xffffffff
594 	// this enables a mmu trick where the 4 MB region that this pgdir entry
595 	// represents now maps the 4MB of potential pagetables that the pgdir
596 	// points to. Thrown away later in VM bringup, but useful for now.
597 	gPageRoot[1023] = (uint32)gPageRoot | kDefaultPageFlags;
598 #endif
599 
600 	// also map it on the next vpage
601 	gKernelArgs.arch_args.vir_pgroot = get_next_virtual_page();
602 	map_page(gKernelArgs.arch_args.vir_pgroot, (uint32)gPageRoot, kDefaultPageFlags);
603 
604 	// set virtual addr for interrupt vector table
605 	gKernelArgs.arch_args.vir_vbr = gKernelArgs.arch_args.vir_pgroot
606 		+ VBR_PAGE_OFFSET;
607 
608 	// map in a kernel stack
609 	gKernelArgs.cpu_kstack[0].start = (addr_t)mmu_allocate(NULL,
610 		KERNEL_STACK_SIZE + KERNEL_STACK_GUARD_PAGES * B_PAGE_SIZE);
611 	gKernelArgs.cpu_kstack[0].size = KERNEL_STACK_SIZE
612 		+ KERNEL_STACK_GUARD_PAGES * B_PAGE_SIZE;
613 
614 	TRACE(("kernel stack at 0x%lx to 0x%lx\n", gKernelArgs.cpu_kstack[0].start,
615 		gKernelArgs.cpu_kstack[0].start + gKernelArgs.cpu_kstack[0].size));
616 
617 	// st ram as 1st range
618 	gKernelArgs.physical_memory_range[0].start = ATARI_CHIPRAM_BASE;
619 	gKernelArgs.physical_memory_range[0].size = *TOSVARphystop - ATARI_CHIPRAM_BASE;
620 	gKernelArgs.num_physical_memory_ranges = 1;
621 
622 	// fast ram as 2nd range
623 	if (fastram_top) {
624 		gKernelArgs.physical_memory_range[1].start =
625 			ATARI_FASTRAM_BASE;
626 		gKernelArgs.physical_memory_range[1].size =
627 			fastram_top - ATARI_FASTRAM_BASE;
628 		gKernelArgs.num_physical_memory_ranges++;
629 
630 	}
631 
632 	// mark the video area allocated
633 	addr_t video_base = *TOSVAR_memtop;
634 	video_base &= ~(B_PAGE_SIZE-1);
635 	gKernelArgs.physical_allocated_range[gKernelArgs.num_physical_allocated_ranges].start = video_base;
636 	gKernelArgs.physical_allocated_range[gKernelArgs.num_physical_allocated_ranges].size = *TOSVARphystop - video_base;
637 	gKernelArgs.num_physical_allocated_ranges++;
638 
639 
640 	gKernelArgs.arch_args.plat_args.atari.nat_feat.nf_page =
641 		get_next_physical_page() /*| 0xff000000*/;
642 
643 }
644 
645 
646 //	#pragma mark -
647 
648 
649 extern "C" status_t
650 platform_allocate_region(void **_address, size_t size, uint8 protection,
651 	bool /*exactAddress*/)
652 {
653 	void *address = mmu_allocate(*_address, size);
654 	if (address == NULL)
655 		return B_NO_MEMORY;
656 
657 	*_address = address;
658 	return B_OK;
659 }
660 
661 
662 extern "C" status_t
663 platform_free_region(void *address, size_t size)
664 {
665 	mmu_free(address, size);
666 	return B_OK;
667 }
668 
669 
670 void
671 platform_release_heap(struct stage2_args *args, void *base)
672 {
673 	// It will be freed automatically, since it is in the
674 	// identity mapped region, and not stored in the kernel's
675 	// page tables.
676 }
677 
678 
679 status_t
680 platform_init_heap(struct stage2_args *args, void **_base, void **_top)
681 {
682 	void *heap = (void *)get_next_physical_address(args->heap_size);
683 	if (heap == NULL)
684 		return B_NO_MEMORY;
685 
686 	*_base = heap;
687 	*_top = (void *)((int8 *)heap + args->heap_size);
688 	return B_OK;
689 }
690 
691 
692