1 /* 2 * Copyright 2008-2010, François Revol, revol@free.fr. All rights reserved. 3 * Copyright 2004-2007, Axel Dörfler, axeld@pinc-software.de. 4 * Based on code written by Travis Geiselbrecht for NewOS. 5 * 6 * Distributed under the terms of the MIT License. 7 */ 8 9 10 #include "atari_memory_map.h" 11 #include "toscalls.h" 12 #include "mmu.h" 13 14 #include <boot/platform.h> 15 #include <boot/stdio.h> 16 #include <boot/kernel_args.h> 17 #include <boot/stage2.h> 18 #include <arch/cpu.h> 19 #include <arch_kernel.h> 20 #include <kernel.h> 21 22 #include <OS.h> 23 24 #include <string.h> 25 26 27 //XXX: x86 28 /** The (physical) memory layout of the boot loader is currently as follows: 29 * 0x0500 - 0x10000 protected mode stack 30 * 0x0500 - 0x09000 real mode stack 31 * 0x10000 - ? code (up to ~500 kB) 32 * 0x90000 1st temporary page table (identity maps 0-4 MB) 33 * 0x91000 2nd (4-8 MB) 34 * 0x92000 - 0x92000 further page tables 35 * 0x9e000 - 0xa0000 SMP trampoline code 36 * [0xa0000 - 0x100000 BIOS/ROM/reserved area] 37 * 0x100000 page directory 38 * ... boot loader heap (32 kB) 39 * ... free physical memory 40 * 41 * The first 8 MB are identity mapped (0x0 - 0x0800000); paging is turned 42 * on. The kernel is mapped at 0x80000000, all other stuff mapped by the 43 * loader (kernel args, modules, driver settings, ...) comes after 44 * 0x81000000 which means that there is currently only 1 MB reserved for 45 * the kernel itself (see kMaxKernelSize). 46 */ 47 48 // notes m68k: 49 /** The (physical) memory layout of the boot loader is currently as follows: 50 * 0x0800 - 0x10000 supervisor mode stack (1) XXX: more ? x86 starts at 500 51 * 0x10000 - ? code (up to ~500 kB) 52 * 0x100000 or FAST_RAM_BASE if any: 53 * ... page root directory 54 * ... interrupt vectors (VBR) 55 * ... page directory 56 * ... boot loader heap (32 kB) 57 * ... free physical memory 58 * 0xdNNNNN video buffer usually there, as per v_bas_ad 59 * (=Logbase() but Physbase() is better) 60 * 61 * The first 32 MB (2) are identity mapped (0x0 - 0x1000000); paging 62 * is turned on. The kernel is mapped at 0x80000000, all other stuff 63 * mapped by the loader (kernel args, modules, driver settings, ...) 64 * comes after 0x81000000 which means that there is currently only 65 * 1 MB reserved for the kernel itself (see kMaxKernelSize). 66 * 67 * (1) no need for user stack, we are already in supervisor mode in the 68 * loader. 69 * (2) maps the whole regular ST space; transparent translation registers 70 * have larger granularity anyway. 71 */ 72 #warning M68K: check for Physbase() < ST_RAM_TOP 73 74 //#define TRACE_MMU 75 #ifdef TRACE_MMU 76 # define TRACE(x) dprintf x 77 #else 78 # define TRACE(x) ; 79 #endif 80 81 82 // since the page root directory doesn't take a full page (1k) 83 // we stuff some other stuff after it, like the interrupt vectors (1k) 84 #define VBR_PAGE_OFFSET 1024 85 86 static const uint32 kDefaultPageTableFlags = 0x07; // present, user, R/W 87 static const size_t kMaxKernelSize = 0x200000; // 2 MB for the kernel 88 89 // working page directory and page table 90 addr_t gPageRoot = 0; 91 92 static addr_t sNextPhysicalAddress = 0x100000; 93 static addr_t sNextVirtualAddress = KERNEL_BASE + kMaxKernelSize; 94 static addr_t sMaxVirtualAddress = KERNEL_BASE /*+ 0x400000*/; 95 96 #if 0 97 static addr_t sNextPageTableAddress = 0x90000; 98 static const uint32 kPageTableRegionEnd = 0x9e000; 99 // we need to reserve 2 pages for the SMP trampoline code XXX:no 100 #endif 101 102 static const struct boot_mmu_ops *gMMUOps; 103 104 static addr_t 105 get_next_virtual_address(size_t size) 106 { 107 addr_t address = sNextVirtualAddress; 108 sNextVirtualAddress += size; 109 110 TRACE(("%s(%d): %08x\n", __FUNCTION__, size, address)); 111 return address; 112 } 113 114 115 static addr_t 116 get_next_physical_address(size_t size) 117 { 118 addr_t address = sNextPhysicalAddress; 119 sNextPhysicalAddress += size; 120 121 TRACE(("%s(%d): %08x\n", __FUNCTION__, size, address)); 122 return address; 123 } 124 125 126 static addr_t 127 get_next_virtual_page() 128 { 129 TRACE(("%s\n", __FUNCTION__)); 130 return get_next_virtual_address(B_PAGE_SIZE); 131 } 132 133 134 static addr_t 135 get_next_physical_page() 136 { 137 TRACE(("%s\n", __FUNCTION__)); 138 return get_next_physical_address(B_PAGE_SIZE); 139 } 140 141 142 // allocate a page worth of page dir or tables 143 extern "C" addr_t 144 mmu_get_next_page_tables() 145 { 146 #if 0 147 TRACE(("mmu_get_next_page_tables, sNextPageTableAddress %p, kPageTableRegionEnd %p\n", 148 sNextPageTableAddress, kPageTableRegionEnd)); 149 150 addr_t address = sNextPageTableAddress; 151 if (address >= kPageTableRegionEnd) 152 return (uint32 *)get_next_physical_page(); 153 154 sNextPageTableAddress += B_PAGE_SIZE; 155 return (uint32 *)address; 156 #endif 157 addr_t tbl = get_next_physical_page(); 158 if (!tbl) 159 return tbl; 160 // shouldn't we fill this ? 161 //gKernelArgs.arch_args.pgtables[gKernelArgs.arch_args.num_pgtables++] = (uint32)pageTable; 162 163 #if 0 164 // clear them 165 uint32 *p = (uint32 *)tbl; 166 for (int32 i = 0; i < 1024; i++) 167 p[i] = 0; 168 #endif 169 return tbl; 170 } 171 172 #if 0 173 /** Adds a new page table for the specified base address */ 174 175 static void 176 add_page_table(addr_t base) 177 { 178 TRACE(("add_page_table(base = %p)\n", (void *)base)); 179 #if 0 180 181 // Get new page table and clear it out 182 uint32 *pageTable = mmu_get_next_page_tables(); 183 if (pageTable > (uint32 *)(8 * 1024 * 1024)) 184 panic("tried to add page table beyond the indentity mapped 8 MB region\n"); 185 186 gKernelArgs.arch_args.pgtables[gKernelArgs.arch_args.num_pgtables++] = (uint32)pageTable; 187 188 for (int32 i = 0; i < 1024; i++) 189 pageTable[i] = 0; 190 191 // put the new page table into the page directory 192 gPageRoot[base/(4*1024*1024)] = (uint32)pageTable | kDefaultPageTableFlags; 193 #endif 194 } 195 #endif 196 197 198 static void 199 unmap_page(addr_t virtualAddress) 200 { 201 gMMUOps->unmap_page(virtualAddress); 202 } 203 204 205 /** Creates an entry to map the specified virtualAddress to the given 206 * physicalAddress. 207 * If the mapping goes beyond the current page table, it will allocate 208 * a new one. If it cannot map the requested page, it panics. 209 */ 210 211 static void 212 map_page(addr_t virtualAddress, addr_t physicalAddress, uint32 flags) 213 { 214 TRACE(("map_page: vaddr 0x%lx, paddr 0x%lx\n", virtualAddress, physicalAddress)); 215 216 if (virtualAddress < KERNEL_BASE) 217 panic("map_page: asked to map invalid page %p!\n", (void *)virtualAddress); 218 219 // slow but I'm too lazy to fix the code below 220 gMMUOps->add_page_table(virtualAddress); 221 #if 0 222 if (virtualAddress >= sMaxVirtualAddress) { 223 // we need to add a new page table 224 225 gMMUOps->add_page_table(sMaxVirtualAddress); 226 // 64 pages / page table 227 sMaxVirtualAddress += B_PAGE_SIZE * 64; 228 229 if (virtualAddress >= sMaxVirtualAddress) 230 panic("map_page: asked to map a page to %p\n", (void *)virtualAddress); 231 } 232 #endif 233 234 physicalAddress &= ~(B_PAGE_SIZE - 1); 235 236 // map the page to the correct page table 237 gMMUOps->map_page(virtualAddress, physicalAddress, flags); 238 } 239 240 241 static void 242 init_page_directory(void) 243 { 244 TRACE(("init_page_directory\n")); 245 246 // allocate a new pg root dir 247 gPageRoot = get_next_physical_page(); 248 gKernelArgs.arch_args.phys_pgroot = (uint32)gPageRoot; 249 gKernelArgs.arch_args.phys_vbr = (uint32)gPageRoot + VBR_PAGE_OFFSET; 250 251 // set the root pointers 252 gMMUOps->load_rp(gPageRoot); 253 // allocate second level tables for kernel space 254 // this will simplify mmu code a lot, and only wastes 32KB 255 gMMUOps->allocate_kernel_pgdirs(); 256 // enable mmu translation 257 gMMUOps->enable_paging(); 258 //XXX: check for errors 259 260 //gKernelArgs.arch_args.num_pgtables = 0; 261 gMMUOps->add_page_table(KERNEL_BASE); 262 263 #if 0 264 265 266 // clear out the pgdir 267 for (int32 i = 0; i < 1024; i++) { 268 gPageRoot[i] = 0; 269 } 270 271 // Identity map the first 8 MB of memory so that their 272 // physical and virtual address are the same. 273 // These page tables won't be taken over into the kernel. 274 275 // make the first page table at the first free spot 276 uint32 *pageTable = mmu_get_next_page_tables(); 277 278 for (int32 i = 0; i < 1024; i++) { 279 pageTable[i] = (i * 0x1000) | kDefaultPageFlags; 280 } 281 282 gPageRoot[0] = (uint32)pageTable | kDefaultPageFlags; 283 284 // make the second page table 285 pageTable = mmu_get_next_page_tables(); 286 287 for (int32 i = 0; i < 1024; i++) { 288 pageTable[i] = (i * 0x1000 + 0x400000) | kDefaultPageFlags; 289 } 290 291 gPageRoot[1] = (uint32)pageTable | kDefaultPageFlags; 292 293 gKernelArgs.arch_args.num_pgtables = 0; 294 add_page_table(KERNEL_BASE); 295 296 // switch to the new pgdir and enable paging 297 asm("movl %0, %%eax;" 298 "movl %%eax, %%cr3;" : : "m" (gPageRoot) : "eax"); 299 // Important. Make sure supervisor threads can fault on read only pages... 300 asm("movl %%eax, %%cr0" : : "a" ((1 << 31) | (1 << 16) | (1 << 5) | 1)); 301 #endif 302 } 303 304 305 // #pragma mark - 306 307 308 extern "C" addr_t 309 mmu_map_physical_memory(addr_t physicalAddress, size_t size, uint32 flags) 310 { 311 addr_t address = sNextVirtualAddress; 312 addr_t pageOffset = physicalAddress & (B_PAGE_SIZE - 1); 313 314 physicalAddress -= pageOffset; 315 316 for (addr_t offset = 0; offset < size; offset += B_PAGE_SIZE) { 317 map_page(get_next_virtual_page(), physicalAddress + offset, flags); 318 } 319 320 return address + pageOffset; 321 } 322 323 324 extern "C" void * 325 mmu_allocate(void *virtualAddress, size_t size) 326 { 327 TRACE(("mmu_allocate: requested vaddr: %p, next free vaddr: 0x%lx, size: %ld\n", 328 virtualAddress, sNextVirtualAddress, size)); 329 330 size = (size + B_PAGE_SIZE - 1) / B_PAGE_SIZE; 331 // get number of pages to map 332 333 if (virtualAddress != NULL) { 334 // This special path is almost only useful for loading the 335 // kernel into memory; it will only allow you to map the 336 // 1 MB following the kernel base address. 337 // Also, it won't check for already mapped addresses, so 338 // you better know why you are here :) 339 addr_t address = (addr_t)virtualAddress; 340 341 // is the address within the valid range? 342 if (address < KERNEL_BASE || address + size * B_PAGE_SIZE 343 >= KERNEL_BASE + kMaxKernelSize) 344 return NULL; 345 346 for (uint32 i = 0; i < size; i++) { 347 map_page(address, get_next_physical_page(), kDefaultPageFlags); 348 address += B_PAGE_SIZE; 349 } 350 351 TRACE(("mmu_allocate(KERNEL, %d): done\n", size)); 352 return virtualAddress; 353 } 354 355 void *address = (void *)sNextVirtualAddress; 356 357 for (uint32 i = 0; i < size; i++) { 358 map_page(get_next_virtual_page(), get_next_physical_page(), kDefaultPageFlags); 359 } 360 361 TRACE(("mmu_allocate(NULL, %d): %p\n", size, address)); 362 return address; 363 } 364 365 366 /** This will unmap the allocated chunk of memory from the virtual 367 * address space. It might not actually free memory (as its implementation 368 * is very simple), but it might. 369 */ 370 371 extern "C" void 372 mmu_free(void *virtualAddress, size_t size) 373 { 374 TRACE(("mmu_free(virtualAddress = %p, size: %ld)\n", virtualAddress, size)); 375 376 addr_t address = (addr_t)virtualAddress; 377 size = (size + B_PAGE_SIZE - 1) / B_PAGE_SIZE; 378 // get number of pages to map 379 380 // is the address within the valid range? 381 if (address < KERNEL_BASE) { 382 panic("mmu_free: asked to unmap out of range region (%p, size %lx)\n", 383 (void *)address, size); 384 } 385 386 // unmap all pages within the range 387 for (uint32 i = 0; i < size; i++) { 388 unmap_page(address); 389 address += B_PAGE_SIZE; 390 } 391 392 if (address == sNextVirtualAddress) { 393 // we can actually reuse the virtual address space 394 sNextVirtualAddress -= size; 395 } 396 } 397 398 399 /** Sets up the final and kernel accessible GDT and IDT tables. 400 * BIOS calls won't work any longer after this function has 401 * been called. 402 */ 403 404 extern "C" void 405 mmu_init_for_kernel(void) 406 { 407 TRACE(("mmu_init_for_kernel\n")); 408 409 410 411 412 // remove identity mapping of ST space 413 // actually done by the kernel when it's done using query_early 414 //gMMUOps->set_tt(0, NULL, 0, 0); 415 416 #if 0 417 // set up a new idt 418 { 419 struct gdt_idt_descr idtDescriptor; 420 uint32 *idt; 421 422 // find a new idt 423 idt = (uint32 *)get_next_physical_page(); 424 gKernelArgs.arch_args.phys_idt = (uint32)idt; 425 426 TRACE(("idt at %p\n", idt)); 427 428 // map the idt into virtual space 429 gKernelArgs.arch_args.vir_idt = (uint32)get_next_virtual_page(); 430 map_page(gKernelArgs.arch_args.vir_idt, (uint32)idt, kDefaultPageFlags); 431 432 // clear it out 433 uint32* virtualIDT = (uint32*)gKernelArgs.arch_args.vir_idt; 434 for (int32 i = 0; i < IDT_LIMIT / 4; i++) { 435 virtualIDT[i] = 0; 436 } 437 438 // load the idt 439 idtDescriptor.limit = IDT_LIMIT - 1; 440 idtDescriptor.base = (uint32 *)gKernelArgs.arch_args.vir_idt; 441 442 asm("lidt %0;" 443 : : "m" (idtDescriptor)); 444 445 TRACE(("idt at virtual address 0x%lx\n", gKernelArgs.arch_args.vir_idt)); 446 } 447 448 // set up a new gdt 449 { 450 struct gdt_idt_descr gdtDescriptor; 451 segment_descriptor *gdt; 452 453 // find a new gdt 454 gdt = (segment_descriptor *)get_next_physical_page(); 455 gKernelArgs.arch_args.phys_gdt = (uint32)gdt; 456 457 TRACE(("gdt at %p\n", gdt)); 458 459 // map the gdt into virtual space 460 gKernelArgs.arch_args.vir_gdt = (uint32)get_next_virtual_page(); 461 map_page(gKernelArgs.arch_args.vir_gdt, (uint32)gdt, kDefaultPageFlags); 462 463 // put standard segment descriptors in it 464 segment_descriptor* virtualGDT 465 = (segment_descriptor*)gKernelArgs.arch_args.vir_gdt; 466 clear_segment_descriptor(&virtualGDT[0]); 467 468 // seg 0x08 - kernel 4GB code 469 set_segment_descriptor(&virtualGDT[1], 0, 0xffffffff, DT_CODE_READABLE, 470 DPL_KERNEL); 471 472 // seg 0x10 - kernel 4GB data 473 set_segment_descriptor(&virtualGDT[2], 0, 0xffffffff, DT_DATA_WRITEABLE, 474 DPL_KERNEL); 475 476 // seg 0x1b - ring 3 user 4GB code 477 set_segment_descriptor(&virtualGDT[3], 0, 0xffffffff, DT_CODE_READABLE, 478 DPL_USER); 479 480 // seg 0x23 - ring 3 user 4GB data 481 set_segment_descriptor(&virtualGDT[4], 0, 0xffffffff, DT_DATA_WRITEABLE, 482 DPL_USER); 483 484 // virtualGDT[5] and above will be filled later by the kernel 485 // to contain the TSS descriptors, and for TLS (one for every CPU) 486 487 // load the GDT 488 gdtDescriptor.limit = GDT_LIMIT - 1; 489 gdtDescriptor.base = (uint32 *)gKernelArgs.arch_args.vir_gdt; 490 491 asm("lgdt %0;" 492 : : "m" (gdtDescriptor)); 493 494 TRACE(("gdt at virtual address %p\n", (void *)gKernelArgs.arch_args.vir_gdt)); 495 } 496 #endif 497 498 // save the memory we've physically allocated 499 gKernelArgs.physical_allocated_range[0].size = sNextPhysicalAddress - gKernelArgs.physical_allocated_range[0].start; 500 501 // save the memory we've virtually allocated (for the kernel and other stuff) 502 gKernelArgs.virtual_allocated_range[0].start = KERNEL_BASE; 503 gKernelArgs.virtual_allocated_range[0].size = sNextVirtualAddress - KERNEL_BASE; 504 gKernelArgs.num_virtual_allocated_ranges = 1; 505 506 // sort the address ranges 507 sort_address_ranges(gKernelArgs.physical_memory_range, 508 gKernelArgs.num_physical_memory_ranges); 509 sort_address_ranges(gKernelArgs.physical_allocated_range, 510 gKernelArgs.num_physical_allocated_ranges); 511 sort_address_ranges(gKernelArgs.virtual_allocated_range, 512 gKernelArgs.num_virtual_allocated_ranges); 513 514 #ifdef TRACE_MMU 515 { 516 uint32 i; 517 518 dprintf("phys memory ranges:\n"); 519 for (i = 0; i < gKernelArgs.num_physical_memory_ranges; i++) { 520 dprintf(" base 0x%08" B_PRIx64 ", length 0x%08" B_PRIx64 "\n", 521 gKernelArgs.physical_memory_range[i].start, 522 gKernelArgs.physical_memory_range[i].size); 523 } 524 525 dprintf("allocated phys memory ranges:\n"); 526 for (i = 0; i < gKernelArgs.num_physical_allocated_ranges; i++) { 527 dprintf(" base 0x%08" B_PRIx64 ", length 0x%08" B_PRIx64 "\n", 528 gKernelArgs.physical_allocated_range[i].start, 529 gKernelArgs.physical_allocated_range[i].size); 530 } 531 532 dprintf("allocated virt memory ranges:\n"); 533 for (i = 0; i < gKernelArgs.num_virtual_allocated_ranges; i++) { 534 dprintf(" base 0x%08" B_PRIx64 ", length 0x%08" B_PRIx64 "\n", 535 gKernelArgs.virtual_allocated_range[i].start, 536 gKernelArgs.virtual_allocated_range[i].size); 537 } 538 } 539 #endif 540 } 541 542 543 extern "C" void 544 mmu_init(void) 545 { 546 TRACE(("mmu_init\n")); 547 switch (gKernelArgs.arch_args.mmu_type) { 548 #if 0 549 case 68851: 550 gMMUOps = &k851MMUOps; 551 break; 552 #endif 553 case 68030: 554 gMMUOps = &k030MMUOps; 555 break; 556 case 68040: 557 gMMUOps = &k040MMUOps; 558 break; 559 #if 0 560 case 68060: 561 gMMUOps = &k060MMUOps; 562 break; 563 #endif 564 default: 565 panic("unknown mmu type %d\n", gKernelArgs.arch_args.mmu_type); 566 } 567 568 gMMUOps->initialize(); 569 570 addr_t fastram_top = 0; 571 if (*TOSVARramvalid == TOSVARramvalid_MAGIC) 572 fastram_top = *TOSVARramtop; 573 if (fastram_top) { 574 // we have some fastram, use it first 575 sNextPhysicalAddress = ATARI_FASTRAM_BASE; 576 } 577 578 gKernelArgs.physical_allocated_range[0].start = sNextPhysicalAddress; 579 gKernelArgs.physical_allocated_range[0].size = 0; 580 gKernelArgs.num_physical_allocated_ranges = 1; 581 // remember the start of the allocated physical pages 582 583 TRACE(("mmu_init: enabling transparent translation\n")); 584 // enable transparent translation of the first 256 MB 585 gMMUOps->set_tt(0, ATARI_CHIPRAM_BASE, 0x10000000, 0); 586 // enable transparent translation of the 16MB ST shadow range for I/O 587 gMMUOps->set_tt(1, ATARI_SHADOW_BASE, 0x01000000, 0); 588 589 TRACE(("mmu_init: init rtdir\n")); 590 init_page_directory(); 591 #if 0//XXX:HOLE 592 593 // Map the page directory into kernel space at 0xffc00000-0xffffffff 594 // this enables a mmu trick where the 4 MB region that this pgdir entry 595 // represents now maps the 4MB of potential pagetables that the pgdir 596 // points to. Thrown away later in VM bringup, but useful for now. 597 gPageRoot[1023] = (uint32)gPageRoot | kDefaultPageFlags; 598 #endif 599 600 // also map it on the next vpage 601 gKernelArgs.arch_args.vir_pgroot = get_next_virtual_page(); 602 map_page(gKernelArgs.arch_args.vir_pgroot, (uint32)gPageRoot, kDefaultPageFlags); 603 604 // set virtual addr for interrupt vector table 605 gKernelArgs.arch_args.vir_vbr = gKernelArgs.arch_args.vir_pgroot 606 + VBR_PAGE_OFFSET; 607 608 // map in a kernel stack 609 gKernelArgs.cpu_kstack[0].start = (addr_t)mmu_allocate(NULL, 610 KERNEL_STACK_SIZE + KERNEL_STACK_GUARD_PAGES * B_PAGE_SIZE); 611 gKernelArgs.cpu_kstack[0].size = KERNEL_STACK_SIZE 612 + KERNEL_STACK_GUARD_PAGES * B_PAGE_SIZE; 613 614 TRACE(("kernel stack at 0x%lx to 0x%lx\n", gKernelArgs.cpu_kstack[0].start, 615 gKernelArgs.cpu_kstack[0].start + gKernelArgs.cpu_kstack[0].size)); 616 617 // st ram as 1st range 618 gKernelArgs.physical_memory_range[0].start = ATARI_CHIPRAM_BASE; 619 gKernelArgs.physical_memory_range[0].size = *TOSVARphystop - ATARI_CHIPRAM_BASE; 620 gKernelArgs.num_physical_memory_ranges = 1; 621 622 // fast ram as 2nd range 623 if (fastram_top) { 624 gKernelArgs.physical_memory_range[1].start = 625 ATARI_FASTRAM_BASE; 626 gKernelArgs.physical_memory_range[1].size = 627 fastram_top - ATARI_FASTRAM_BASE; 628 gKernelArgs.num_physical_memory_ranges++; 629 630 } 631 632 // mark the video area allocated 633 addr_t video_base = *TOSVAR_memtop; 634 video_base &= ~(B_PAGE_SIZE-1); 635 gKernelArgs.physical_allocated_range[gKernelArgs.num_physical_allocated_ranges].start = video_base; 636 gKernelArgs.physical_allocated_range[gKernelArgs.num_physical_allocated_ranges].size = *TOSVARphystop - video_base; 637 gKernelArgs.num_physical_allocated_ranges++; 638 639 640 gKernelArgs.arch_args.plat_args.atari.nat_feat.nf_page = 641 get_next_physical_page() /*| 0xff000000*/; 642 643 } 644 645 646 // #pragma mark - 647 648 649 extern "C" status_t 650 platform_allocate_region(void **_address, size_t size, uint8 protection, 651 bool /*exactAddress*/) 652 { 653 void *address = mmu_allocate(*_address, size); 654 if (address == NULL) 655 return B_NO_MEMORY; 656 657 *_address = address; 658 return B_OK; 659 } 660 661 662 extern "C" status_t 663 platform_free_region(void *address, size_t size) 664 { 665 mmu_free(address, size); 666 return B_OK; 667 } 668 669 670 void 671 platform_release_heap(struct stage2_args *args, void *base) 672 { 673 // It will be freed automatically, since it is in the 674 // identity mapped region, and not stored in the kernel's 675 // page tables. 676 } 677 678 679 status_t 680 platform_init_heap(struct stage2_args *args, void **_base, void **_top) 681 { 682 void *heap = (void *)get_next_physical_address(args->heap_size); 683 if (heap == NULL) 684 return B_NO_MEMORY; 685 686 *_base = heap; 687 *_top = (void *)((int8 *)heap + args->heap_size); 688 return B_OK; 689 } 690 691 692